定积分的简单应用练习题
(完整版)定积分简单应用——求体积
定积分的简单应用(二)复习:〔1〕求曲边梯形面积的方法是什么?〔2〕定积分的几何意义是什么?〔3〕微积分根本定理是什么?引入:我们前面学习了定积分的简单应用——求面积。
求体积问题也是定积分的一个重要应用。
下面我们介绍一些简单旋转几何体体积的求法。
简单几何体的体积计算问题:设由连续曲线y f(x)和直线x a,x b及x轴围成的平面图形〔如图甲〕绕x轴旋转一周所得旋转体的体积为V,如何求V?分析:在区间[a,b]内插入n 1个分点,使a x0x1x2L x n1x n b,把曲线y f(x)〔a x b〕分割成n个垂直于x轴的“小长条〞,如图甲所示。
设第i个“小长条〞的宽是x i x i x i1,i 1,2,L,n。
这个“小长条〞绕x轴旋转一周就得到一个厚度是x i的小圆片,如图乙所示。
当x i很小时,第i个小圆片近似于底面半径为y i f(x i)的小圆柱。
因此,第i个小圆台的体积V i近似为V i f2(x i)x i该几何体的体积V等于所有小圆柱的体积和:V[f2(x1)x1 f2(x2)x2L f2(x n)x n]这个问题就是积分问题,那么有:bf2(x)dx b2(x)dxV fa a归纳:设旋转体是由连续曲线y f(x)和直线x a,x b及x轴围成的曲边梯形绕x轴旋转V b2(x)dx而成,那么所得到的几何体的体积为fa2.利用定积分求旋转体的体积1/5〔1〕找准被旋转的平面图形,它的边界曲线直接决定被积函数〔2〕分清端点〔3〕确定几何体的构造〔4〕利用定积分进行体积计算3.一个以y轴为中心轴的旋转体的体积假设求绕y轴旋转得到的旋转体的体积,那么积分变量变为y,其公式为V b2(y)dy ga类型一:求简单几何体的体积例1:给定一个边长为a的正方形,绕其一边旋转一周,得到一个几何体,求它的体积思路:由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。
高考数学 2.12 定积分的概念与微积分基本定理、定积分的简单应用练习
课时提升作业(十五)定积分的概念与微积分基本定理、定积分的简单应用(25分钟 50分)一、选择题(每小题5分,共25分)1.(2014·陕西高考)定积分的值为( ) A.e+2B.e+1C.eD.e-1【解析】选C.=e.2.(2015·泉州模拟)直线y=2x+4与抛物线y=x2+1所围成封闭图形的面积是 ( )10163235A.B. C. D.3333 【解析】选 C.直线与抛物线在同一坐标系中的图象如图,则其围成的封闭图形的面积是31-⎰[(2x+4)-(x2+1)]dx=31-⎰(-x2+2x+3)dx=323132(x x 3x)133-++=-. 3.(2015·南昌模拟)已知函数f(x)=2 x ,2x 0,x 1,0x 2,⎧-≤≤⎨+<≤⎩则22-⎰f(x)dx 的值为( )A.43B.4C.6D.203【解析】选D.22-⎰f(x)dx=02-⎰x2dx+20⎰(x+1)dx3202118120x (x x)(0)(420).2032323=++=++⨯+-=-4.一质点运动时速度与时间的关系为v(t)=t2-t+2,质点做直线运动,则此质点在时间[1,2]内的位移为( )17141311A.B. C. D.6366【解析】选A.质点在时间[1,2]内的位移为21⎰(t2-t+2)dt=3221117(t t 2t)1326-+=. 5.由直线x+y-2=0,曲线y=x3以及x 轴围成的图形的面积为( )4553A. B. C. D.3464【解析】选D.由题意得3x y 20,y x ,+-=⎧⎨=⎩解得交点坐标是(1,1).故由直线x+y-2=0,曲线y =x3以及x 轴围成的图形的面积为1⎰x3dx+21⎰(2-x)dx=421211113x (2x x )0142424+-=+=. 【方法技巧】求平面几何图形面积的技巧求平面几何图形的面积,需根据几何图形的形状进行适当分割,然后通过分别求相应区间上的定积分求出各自的面积,再求和.二、填空题(每小题5分,共15分)6.已知t>0,若(2x-1)dx=6,则t 的值等于 .【解析】 (2x-1)dx=2xdx-1dx=22t t x xt t,-=-由t2-t=6得t=3或t=-2(舍去).答案:3【加固训练】设函数f(x)=ax2+b(a ≠0),若3⎰f(x)dx=3f(x0),则x0等于( ) A.±1B.2C.±3D.2【解析】选C.30⎰f(x)dx=30⎰(ax2+b)dx=331(ax bx)9a 3b 03+=+,所以9a+3b=3(a 20x +b),即20x =3,x0=±3,故选C.7.(2015·深圳模拟)由曲线y=sin x,y=cos x 与直线x=0,x=2π所围成的平面图形(图中的阴影部分)的面积是 .【解析】由图可得阴影部分面积S=240π⎰(cos x-sin x)dx=()2sin x cos x 4π+=2(2-1).答案:22-28.(2013·湖南高考)若x2dx=9,则常数T的值为.【解析】x2dx=33T11(x)T933==,所以T=3.答案:3三、解答题9.(10分)(2015·哈尔滨模拟)求由曲线y=x,直线y=x-2及y轴所围成的图形的面积.【解析】y=x与y=x-2以及y轴所围成的图形为如图所示的阴影部分,联立y x,y x2⎧=⎪⎨=-⎪⎩得交点坐标为(4,2),故所求面积为S=4⎰[x-(x-2)]dx=32242x16[x(2x)]323--=.【加固训练】设变力F(x)作用在质点M上,使M沿x轴正向从x=1运动到x=10,已知F(x)=x2+1且方向和x 轴正向相同,求变力F(x)对质点M所做的功.【解析】变力F(x)=x2+1使质点M沿x轴正向从x=1运动到x=10所做的功为W=101⎰F(x)dx=101⎰(x2+1)dx()3101(x x)342J.13=+=(20分钟40分)1.(5分)(2015·金华模拟)图中阴影部分的面积是()A.16B.18C.20D.22【解析】选B.由2y x4,y2x,=-⎧⎨=⎩得x2,y2=⎧⎨=-⎩或x8,y4,=⎧⎨=⎩则阴影部分的面积为S=222x⎰dx+82⎰(2x -x+4)dx3322228422211638 x(x x4x)18.0233233=+-+=+=2.(5分)若f(x)=()xf x4,x0,2cos 3tdt,x06->⎧⎪⎪π⎨+≤⎪⎪⎩⎰,则f(2 014)=.【解析】当x>0时,f(x)=f(x-4), 则f(x+4)=f(x),所以f(2 014)=f(2)=f(-2),又因为6π⎰cos 3tdt=11(sin 3t),633π=所以f(2 014)=f(-2)=2-2+13=712.答案:7 123.(5分)(2015·长沙模拟)如图,矩形OABC内的阴影部分是由曲线f(x)=sin x(x∈(0,π))及直线x=a(a∈(0,π))与x轴围成,向矩形OABC内随机投掷一点,若落在阴影部分的概率为14,则a的值是.【解题提示】利用定积分求出阴影部分面积,再利用几何概型求解.【解析】由已知S 矩形OABC=a ×6a =6,而阴影部分的面积为S=a0⎰sin xdx=(-cos x)a0 =1-cos a,依题意有OABCS11cos a 1,,S 464-==矩形即得:cos a=-12,又a ∈(0,π), 所以a=23π. 答案:23π4.(12分)汽车以54 km/h 的速度行驶,到某处需要减速停车,设汽车以等加速度-3 m/s2刹车,问从开始刹车到停车,汽车走了多远?【解析】由题意,得v0=54 km/h=15 m/s. 所以v(t)=v0+at=15-3t.令v(t)=0,得15-3t=0.解得t=5. 所以开始刹车5 s 后,汽车停车.所以汽车由刹车到停车所行驶的路程为s=5⎰v(t)dt=5⎰(15-3t )dt=253(15t t )02-=37.5(m).故汽车走了37.5 m. 5.(13分)(能力挑战题)如图所示,直线y=k x 分抛物线y=x-x2与x 轴所围图形为面积相等的两部分,求k 的值.【解析】抛物线y=x-x2与x 轴两交点的横坐标为 x1=0,x2=1,所以,抛物线与x 轴所围图形的面积S=10⎰(x-x2)dx=231x 11(x ).0236-= 由2y x x ,y kx,⎧=-⎨=⎩可得抛物线y=x-x2与y=kx 两交点的横坐标为x3=0,x4=1-k, 所以S 2=1k 0-⎰(x-x2-kx)dx()3231k 1k 11(x x )1k .0236--=-=-又知S=16,所以(1-k)3=12,于是3314k 1122==-. 【加固训练】曲线C:y=2x3-3x2-2x+1,点P(12,0),求过P 的切线l 与C 围成的图形的面积.【解析】设切点坐标为(x0,y0),y ′=6x2-6x-2, 则f ′(x0)=6x02-6x0-2,切线方程为y=(6x02-6x0-2)1(x )2-, 则y0=(6x02-6x0-2)01(x )2-, 即2x03-3x02-2x0+1=(6x02-6x0-2)·01(x )2-, 整理得x0(4x02-6x0+3)=0,解得x0=0,则切线方程为y=-2x+1.解方程组32y 2x 1,y 2x 3x 2x 1,=-+⎧⎨=--+⎩ 得x 0,y 1=⎧⎨=⎩或3x ,2y 2.⎧=⎪⎨⎪=-⎩ 由y=2x3-3x2-2x+1与y=-2x+1的图象可知S=32⎰[(-2x+1)-(2x3-3x2-2x+1)]dx=32⎰(-2x3+3x2)dx=2732.。
高考数学新课标定积分应用例题习题及详解
图3 定积分应用1、直角坐标系下平面图形面积的计算①连续曲线()(()0),y f x f x x a x b =≥==及及x 轴所围成的平面图形面积为()baA f x dx =⎰②设平面图形由上下两条曲线y f 上(x )及y f 下(x )及左右两条直线x a 及x b 所围成 则面积元素为[f 上(x ) f 下(x )]dx 于是平面图形的面积为: dxx f x f S b a ⎰-=)]()([下上③连续曲线()(()0),x y y c y d φφ=≥==及y 及y 轴所围成的平面图形面积为()dc A y dy φ=⎰④由方程1()x y φ=及2()x y φ=以及,y c y d ==所围成的平面图形面积为12[()()]d c A y y dy φφ=-⎰ 12()φφ>例1 计算两条抛物线2x y =及2y x =所围成的面积.解 求解面积问题,一般需要先画一草图(图3),我们要求的是阴影部分的面积.需要先找出交点坐标以便确定积分限,为此解方程组:⎩⎨⎧==22y x x y得交点(0,0)和(1,1).选取x 为积分变量,则积分区间为]1,0[,根据公式(1) ,所求的面积为一般地,求解面积问题的步骤为:(1) 作草图,求曲线的交点,确定积分变量和积分限.(2) 写出积分公式. (3) 计算定积分. 例2 计算抛物线y22x 及直线y x 4所围成的图形的面积解 (1)画图(2)确定在y 轴上的投影区间: [2 4](3)确定左右曲线4)( ,21)(2+==y y y y 右左ϕϕ(4)计算积分例3 求在区间[21,2 ]上连续曲线 y=ln x ,x 轴及二直线 x =21,及x = 2所围成平面区域(如图2)的面积 。
解:已知在[21,2 ]上,ln x ≤ 0 ; 在区间[ 1 , 2 ]上,ln x ≥0 ,则此区域的面积为: A = dx x ⎰221ln = dx x ⎰-221ln + dx x ⎰21ln例4 求抛物线 y 2=x 及x-2y-3=0所围成的平面图形(图 3)的面积 A 。
1.7.1定积分的简单应用(一)
1
0
xdx x dx
2 0
2
1
1
3
1
例 2 计算由曲线 y 2 x ,直线 y x 4以及 x 轴所 围成的图形的面积.
y 2x
解:两曲线的交点源自 y 2x (0,0), (8, 4). y x 4
直线与x轴交点为(4,0)
S S1 S2
(x 6 x x )dx
3 2
A1
A2
y x3 6x
3
于是所求面积
0 3
A A1 A2
2 3
253 A 2 ( x 6 x x )dx 0 ( x x 6 x )dx . 12
2
说明: 注意各积分区间上被积函数的形式.
学习小结: 如何求在直角坐标系下平面图形的面积? 1.作图象; 2.求交点的横坐标,定出积分上、下限; 3.确定被积函数,用定积分表示所求的面积, 特别注意分清被积函数的上、下位置; 4.用牛顿-莱布尼茨公式求定积分. 课外练习
2 0
2
0 8
2 xdx ( 2 x x 4)dx
2
8
y2 2 x
2 2 xdx ( 2 x x 4)dx
2
4 2 3 2 2 2 3 1 2 16 64 26 8 2 2 x |0 ( x x 4 x) |2 18 3 3 2 3 3 3
作业:课本 P A 组⑵ 67
课外练习
上节课外练习
a b
我们知道定积分 f ( x )dx 的几何意义:
a
b
它是介于 x 轴、函数 f ( x ) 的图象及两条直线 x a, x b 之间的各部分面积的代数和.(在 x 轴 上方的面积取正号,在 x 轴下方的面积取负号)
典型例题:定积分的简单应用
定积分的简单应用定积分是高中新增的数学的内容,是高等数学的基础。
它在初等数学中有着广泛的应用。
下面举例说明如下,供同学们学习时参考。
一.求函数表达式 例1设)(x f 连续,且⎰+=1)(2)(dtt f x x f ,求)(x f解:记⎰=10)(dtt f a ,则a x x f 2)(+=两端积分得:⎰⎰+=+=11221)2()(a dx a x dx x fa a 221+=,21-=a1)(-=∴x x f 。
二、计算平面图形的面积 例2计算正弦曲线y=sin 在[0,]上与轴所围成的平面图形的面积。
解:。
例3求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积解:如图,由⎪⎩⎪⎨⎧-==,)2(,22x y x y 得两曲线交点(1,1) 取x 为积分变量,]2,0[∈x , 所求面积323)2(3d )2(d 213103212102=-+=-+=⎰⎰x x x x x x A 三、平行截面面积为已知的立体体积例4曲线()1522=-+y x 绕x 轴旋转一周,求旋转体的体积。
解:⎰--+=11222)15(dx x V π,⎰--=11221)15(dx x V π12V V V -=⎰--+=1122)15(dx x π⎰----1122)15(x π 211210220120ππππ=⋅=-=⎰-dx x四、求旋转体的体积例5求底圆半径为r ,高为h 的圆锥体的体积。
解:建立如右图坐标系,则圆锥体可看成是由直线,x hry =h x =及x 轴所围成三角形绕x 轴旋转一周而成,故圆锥体体积h r x hr x x h r V hh2003222π313πd )(π=⋅==⎰ 五、求函数利润问题 例6Oxy 22)2(-=x y2xy = xyO ),(r h215x y -+=215x y --=六、在物理中的应用例7汽车以每小时32公里速度行驶,到某处需要减速停车。
定积分在物理上的简单应用
v /m/s
30
A
B
20
10
C t/s
oห้องสมุดไป่ตู้
10
20 30
40 50
60
图1.7 3
S 3tdt 30dt 1.5t 90dt
3 2 40 3 2 t 30t 10 t 90t 1350m. 2 0 4 40
10 60
答 汽车在这1min 行驶的路程是 1350m.
• 法二:由定积分的几何意义,直观的可以得出路程 即为如图所示的梯形的面积,即
30 60 s 30 1350 2
练习: 1. 物体以速度 v(t ) 3t 2 2t 3 (m/s) 作直线运动 , 它 在时刻 t 0 (s)到 t 3 (s)这段时间内的位移是( )m (A)9 (B)18 (C)27 (D)36
1.7.2 定积分在物理中的应用
1、变速直线运动的路程
设做变速直线运动的物体运动的速度v=v(t)≥0, 则此物体在时间区间[a, b]内运动的距离s为
s v(t )dt
a
b
v
v v(t )
O
a
b
t
v /m/s
例: 一辆汽车的 速 度 时间曲 线 如图 1.7 3所示.求汽车在 这1min 行驶的路程 .
30
A
B
20
10
C t/s
o
10
20 30
40 50
60
图1.7 3
解 由速度 时间曲线可知 : 3t , 0 t 10 ; 10 t 40; vt 30 , 1.5t 90, 40 t 60. 因此汽车在这 1min 行驶的路 程是 :
1.7 定积分的简单应用(2)
1.7 定积分的简单 应用x)≤0),x∈[a,b], x=a, x=b(a<b)和x轴围成的曲边梯形的面积S b 等于______________. f ( x)dx
a
2.做直线运动的质点在任意位置x处,所受 的力F(x)=1+ex,则质点沿着F(x)相同的方 向,从点x1=0处运动到点x2=1处,力F(x)所 做的功是_____________. e
例1 求由抛物线y2=8x(y>0)与直线x+y-6=0 及y=0所围成的图形的面积.
例2 已知抛物线y=x2-2x及直线x=0,x=a,y=0 围成的平面图形的面积为4/3,求a的值.
若”面积为4/3”,改为”面积不超过4/3” 呢?
练习:
已知直线y=kx分抛物线y=x-x2与x轴所围 图形为面积相等的两部分,求k的值.
例3 一点在直线上从时刻t=0(s)开始以速 度v=t2-4t+3 (m/s)运动,求: (1)在t=4 s的位置;
(2)在t=4 s运动的路程.
例4 列车以72 km/h的速度行驶,当制动时列车 获得加速度a=-0.4 m/s2,问列车应在进站前多长 时间,以及离车站多远处开始制动?
练习: A 、B两站相距7.2km,一辆电车从A站开 往B站,电车开出t s后到达途中C点,这一 段速度为1.2t (m/s),到C点速度达24 m/s, 从C点到B站前的D点以等速行驶,从D点 开始刹车,经过t s后,速度为(24-1.2t)m/s, 在B点恰好停车,试求: (1)A、C间的距离; (2) B、D间的距离; (3)电车从A站到B站所需的时间.
北师版高中数学选修2-2课后习题版 第四章 §3 定积分的简单应用
第四章DISIZHANG定积分§3定积分的简单应用课后篇巩固提升A组1.设f(x)在区间[a,b]上连续,则曲线f(x)与直线x=a,x=b,y=0围成的图形的面积为( )A.∫ba f(x)dx B.|∫f(x)badx|C.∫ba|f(x)|dx D.以上都不对f(x)在区间[a,b]上满足f(x)<0时,∫baf(x)dx<0,排除A;当围成的图形同时存在于x轴上方与下方时,∫baf(x)dx是两图形面积之差,排除B;无论什么情况C都正确.2.下列各阴影部分的面积S不可以用S=∫ba[f(x)-g(x)]dx求出的是( )S=∫ba[f(x)-g(x)]dx的几何意义是求函数f(x)与g(x)之间的阴影部分的面积,必须注意f(x)的图像要在g(x)的图像上方,对照各选项可知,D项中的f(x)的图像不全在g(x)的图像上方.故选D.3.如图,由函数f(x)=e x-e的图像,直线x=2及x轴围成的阴影部分的面积等于( )A.e2-2e-1B.e2-2eC.e 2-e 2D.e2-2e+1S=∫21f(x)dx=∫21(e x-e)dx=(e x-e·x)|12=e2-2e.4.直线y=2x,x=1,x=2与x轴围成的平面图形绕x轴旋转一周得到一个圆台,则该圆台的体积为( )A.28π3B.32π C.4π3D.3πV=∫21π·(2x)2dx=π∫214x2dx=4π·13x3|12=4π3(8-1)=28π3.5.如图所示,在边长为1的正方形OABC中,任取一点P,则点P恰好取自阴影部分的概率为( )A.14B.15C.16D.17{y=√x,y=x,得O(0,0),B(1,1).则S阴影=∫1(√x-x)dx=(23x 32-x 22)|01=23−12=16.故所求概率为S 阴影S 正方形=161=16.6.曲线y=cos x (π2≤x ≤3π2)与x 轴围成的平面图形的面积为 .解析由图可知,曲线y=cosx (π2≤x ≤3π2)与x 轴围成的平面图形的面积S=∫3π2π2cos xdx=-sin xπ23π2=(-sin3π2)−(-sin π2)=2.7.在同一坐标系中,作出曲线xy=1和直线y=x 以及直线y=3的图像如图所示,则阴影部分的面积为 . ∫113(3-1x )dx+∫31(3-x)dx=(3x-lnx)|131+(3x -12x 2)|13=3-(1-ln 13)+(9-12×32)−(3-12)=4-ln3.8.计算由y 2=x,y=x 2所围成图形的面积.,为了确定图形的范围,先求出这两条曲线的交点的横坐标.解方程组{y 2=x ,y =x 2,得出交点的横坐标为x=0或x=1.因此,所求图形的面积S=∫10(√x -x2)dx,又因为(23x 32-13x 3)'=x 12-x 2,所以S=(23x 32-13x 3)|01=23−13=13.9.求由曲线y=x 2+4与直线y=5x,x=0,x=4所围成的平面图形的面积.,如图所示.所求平面图形为图中阴影部分.解方程组{y =x 2+4,y =5x ,得交点为A(1,5),B(4,20).故所求平面图形的面积S=∫1(x 2+4-5x)dx+∫41(5x-x 2-4)dx=(13x 3+4x -52x 2)|01+(52x 2-13x 3-4x)|14=13+4-52+52×42-13×43-4×4-52+13+4=193.10.求抛物线y 2=2x 与直线y=4-x 围成的平面图形的面积.{y 2=2x ,y =4-x得抛物线和直线的交点为(2,2)及(8,-4).方法一:选x 作为积分变量,由图可得S=S A 1+S A 2.在A 1部分:由于抛物线的上部分方程为y=√2x ,下部分方程为y=-√2x ,所以S A 1=∫2[√2x -(-√2x )]dx=2√2∫20x 12dx=2√2·23x 32|02=163.S A 2=∫82[4-x-(-√2x )]dx =(4x -12x 2+2√23x 32)|28=383.所以S=163+383=18.方法二:∵y 2=2x,∴x=12y 2. 由y=4-x.得x=4-y,∴S=∫2-4(4-y -12y 2)dy=(4y -12y 2-16y 3)|-42=18.B 组1.如图,已知曲线y=f(x)与直线y=0,x=-32,x=2围成的图形面积为S 1=1,S 2=3,S 3=32,则∫2-32f(x)dx 等于( )A.112B.12C.-12D.72∫2-32f(x)dx=∫-1-32f(x)dx+∫1-1f(x)dx+∫21f(x)dx=S 1-S 2+S 3=1-3+32=-12.2.设直线y=1与y 轴交于点A,与曲线y=x 3交于点B,O 为原点,记线段OA,AB 及曲线y=x 3围成的区域为Ω.在Ω内随机取一点P,已知点P 取在△OAB 内的概率等于23,则图中阴影部分的面积为( )A.13B.14C.15D.16{y =1,y =x 3,解得{x =1,y =1. 则曲边梯形OAB 的面积为∫1(1-x 3)dx=(x -14x 4) 01=1-14=34.∵在Ω内随机取一个点P,点P 取在△OAB 内的概率等于23, ∴点P 取在阴影部分的概率等于1-23=13,∴图中阴影部分的面积为34×13=14.故选B.3.如图所示,直线y=kx 分抛物线y=x-x 2与x 轴所围成图形为面积相等的两部分,则k 的值为 .y=x-x 2与x 轴两交点横坐标为0,1,∴抛物线与x 轴所围成图形的面积为S=∫1(x-x 2)dx=(x 22-x 33)|01=16,抛物线y=x-x 2与直线y=kx 的两交点横坐标为0,1-k.∴S 2=∫1-k0(x-x 2-kx)dx=(1-k2x 2-x33)|01-k =16(1-k)3.又∵S=16,∴(1-k)3=12.∴k=1-√123=1-√432. 1-√4324.由直线y=x 和曲线y=x 3(x≥0)所围成的平面图形,绕x 轴旋转一周所得旋转体的体积为 .{y =x ,y =x 3(x ≥0),得{x =0,y =0,或{x =1,y =1.故所求体积V=∫1πx 2dx-∫10πx 6dx=π∫10x 2dx-π∫1x 6dx=π(13x 3|01-17x 7|01)=π(13-17)=4π21.5.已知函数f(x)=x 3-x 2+x+1,求其在点(1,2)处的切线与函数g(x)=x 2围成的图形的面积.(1,2)为曲线f(x)=x 3-x 2+x+1上的点,设过点(1,2)处的切线的斜率为k,则k=f'(1)=3×12-2×1+1=2,∴过点(1,2)处的切线方程为y-2=2(x-1),即y=2x.∴y=2x 与函数g(x)=x 2围成的图形如图.由{y =x 2,y =2x可得交点A(2,4). 又S △AOB =12×2×4=4,g(x)=x 2与直线x=2,x 轴围成的区域的面积S=∫20x 2dx=13x3|02=83,∴y=2x 与函数g(x)=x 2围成的图形的面积为S'=S △AOB -S=4-83=43.。
【高考数学】定积分的概念、基本定理及其简单应用1
【高考数学】定积分的概念、基本定理及其简单应用1未命名一、单选题1.由曲线2y x = ,3y x =围成的封闭图形的面积为( ) A .13B .14C .112D .7122.由曲线y =直线2y x =-及y 轴所围成的平面图形的面积为( )A .6B .4C .103D .1633.若20sin a xdx π=⎰,则函数1()x f x ax e -=+的图象在1x =处的切线方程为( )A .20x y -=B .20x y +=C .20x y -=D .20x y +=4.二项式()()310mx m ->展开式的第二项的系数为-3,则22mx dx -⎰的值为( )A .3B .73C .83D .25.已知函数()())11001x x f x x ⎧+-≤≤=<≤,则()1-1x f x d ⎰的值为( ) A .1+2π B .1+24π C . 1+4π D .1+22π6.1(e )d x x x --=⎰A .11e --B .1-C .312e-+D .32-7.函数1()1x f x x +=-的图象在点(3,2)处的切线与函数2()2g x x =+的图象围成的封闭图形的面积为( ) A .1112B .3316C .3516D .125488.4片叶子由曲线2||y x =与曲线2||y x =围成,则每片叶子的面积为( )A.6B .13C .23D .439.若2,a ln =125b -=,201cos 2c xdx π=⎰,则,,a b c 的大小关系( )A .a b c <<B .b a c <<C .c b a <<D .b c a <<10.平面直角坐标系中,过坐标原点O 作曲线:x C y e =的切线l ,则曲线C 、直线l 与y 轴所围成的封闭图形的面积为( )A .112e - B .2e C .12e -D .32e -11.正方形的四个顶点 分别在抛物线 和 上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是 ( )A .B .C .D .12.曲线4y x=与直线5y x =-围成的平面图形的面积为( ) A .152B .154C .154ln 24- D .158ln 22- 13.曲线()22f x x =,()22g x x x =-以及直线14x =所围成封闭图形的面积为( )A .132B .116C .18 D .1414.曲线 , 和直线 围成的图形面积是( ) A . B .C .D .15.()22310xk dx +=⎰,则k =( )A .1B .2C .3D .416.若1201ln 2,5,sin 4a b c xdx π-===⎰,则a ,b ,c ,的大小关系( ) A .a b c <<B .b a c <<C .c b a <<D .b c a <<17.已知()6cos 1x t dx π-=⎰,则常数t 的值为( )A .3π-B .1π-C .32π-D .52π-18.已知函数()f x 满足()()4f x f x =-,()524f x dx =⎰,则()51f x d x -⎰等于( )A .0B .2C .8D .不确定19.函数()1f x x=与两条平行线x e =,4x =及x 轴围成的区域面积是( ) A .2ln21-+B .2ln 21-C .ln 2-D .ln 220.由曲线y =x 2和曲线y =( )A .13B .310C .14D .1521.在812x ⎛⎫+ ⎪⎝⎭二项展开式中3x 的系数为m ,则()120x mx dx +=⎰( ) A .176B .206C .236D .26622.已知函数3,1()1,1x x f x x x⎧⎪=⎨≥⎪⎩<,(e 为自然对数的底数)的图象与直线x e =,x 轴围成的区域为E ,直线x e =与1y =围成的区域为F ,在区域F 内任取一点,则该点落在区域E 内的概率为( ) A .58eB .18eC .43eD .12e23.曲线21:C y x =,22:4C y x x =-以及直线:2l x =所围成封闭图形的面积为( )A .1B .3C .6D .824.已知曲线cos y x =,其中30,2x π⎡⎤∈⎢⎥⎣⎦,则该曲线与坐标轴围成的面积等于( )A .1B .2C .52D .325.曲线2sin (0)y x x π=≤≤与直线1y =围成的封闭图形的面积为( ) A.43π B.23π C.43π D.23π 26.在1100x y x y ==-=,,,围成的正方形中随机投掷10000个点,则落入曲线20x y -=,1y =和y 轴围成的区域的点的个数的估计值为( )A .5000B .6667C .7500D .785427.用S 表示图中阴影部分的面积,若有6个对面积S 的表示,如图所示,()caS f x dx =⎰①;()caS f x dx =⎰②;()c a S f x dx =⎰③;()()b ca bS f x dx f x dx =-⎰⎰④;()()c b baS f x dx f x dx =-⎰⎰⑤;()()b cabS f x dx f x dx =-⎰⎰⑥.则其中对面积S 的表示正确序号的个数为( )A .2B .3C .4D .528.如图,若在矩形OABC 中随机撒一粒豆子,则豆子落在图中阴影部分的概率为( )A .21π-B .2πC .22πD .221π-29.函数()2,? 0,2,x x f x x -≤=<≤,则()22f x dx -⎰的值为 ( ) A .6π+B .2π-C .2πD .830.4片叶子由曲线2||y x =与曲线2||y x =围成,则每片叶子的面积为()A .16B.6C .13D .2331.111d ex x ⎛⎫- ⎪⎝⎭⎰的值为( ) A .e 2-B .eC .e 1+D .e 1-32.已知412(1)x a x x ⎛⎫++- ⎪⎝⎭展开式中3x 项的系数为5,则0⎰=( ) A .2πB .πC .2πD .4π33.在4(1)(21)x x +-的展开式中,2x 项的系数为a ,则0(2)ax e x dx +⎰的值为( )A .1e +B .2e +C .23e +D .24e +34.1012x dx ⎫=⎪⎭⎰( ) A .14π+ B .12π+ C .124π+D .14π+35.已知,由抛物线2y x =、x 轴以及直线1x =所围成的曲边区域的面积为S.如图可以通过计算区域内多个等宽的矩形的面积总和来估算S.所谓“分之弥细,所失弥少”,这就是高中课本中的数列极限的思想.由此可以求出S 的值为( )A .12B .13C .14D .2536.计算2131dx x ⎛⎫+ ⎪⎝⎭⎰的值为( ) A .ln21+ B .2ln 21+ C .3ln23+D .3ln 21+37.设曲线cos y x =与x 轴、y 轴、直线6x π=围成的封闭图形的面积为b ,若()22ln 2g x x bx kx =--在[]1,+∞上的单调递减,则实数k 的取值范围是( )A .[)0,+∞B .()0,∞+C .[)1,+∞D .()1,+∞38.设[](]2,0,1,(){1,1,e x x f x x x∈=∈(其中为自然对数的底数),则0()ef x dx ⎰的值为( )A .43B .54C .65D .39.若ln 2a =,125b -=,201cos 2c xdx π=⎰,则a ,b ,c 的大小关系()A .a b c <<B .b a c <<C .c b a <<D .b c a <<40.定积分)232sin x x dx -+⎰的值是( )A .πB .2πC .2π+2cos2D .π+2cos241.如图所示,阴影部分的面积为()A .()41f x dx -⎰B .()41f x dx --⎰C .()()3413f x dx f x dx --⎰⎰D .()()4331f x dx f x dx --⎰⎰42.在平面直角坐标系中,由坐标轴和曲线3cos 02y x x π⎛⎫=≤≤⎪⎝⎭所围成的图形的面积为( ) A .2 B .52C .3D .443.已知()12201,log 3,cos6a x dxbc π=-==⎰,则,,a b c 的大小关系是()A .a b c <<B .c a b <<C .a c b <<D .b c a <<44.定积分()1214d x x x --=⎰( )A .0B .1-C .23-D .2-45.由曲线22y x x =+与直线y x =所围成的封闭图形的面积为( ) A .16B .13C .56D .2346.函数f x ()在区间[15]-, 上的图象如图所示,0()()xg x f t dt =⎰,则下列结论正确的是( )A .在区间04(,)上,g x ()先减后增且0g x <()B .在区间04(,)上,g x ()先减后增且0g x >()C .在区间04(,)上,g x ()递减且0g x >()D .在区间04(,)上,g x ()递减且0g x <() 47.若函数f (x)= +x ,则= A .B .C .D .48.已知225sin )a x dx -=⎰,且2am π=.则展开式212(1)m x x ⎛⎫-- ⎪⎝⎭中x 的系数为( ) A .12B .-12C .4D .-449.设,则的展开式中的常数项为A .20B .-20C .120D .-120二、填空题50.设抛物线C :22(0)y px p =>,过抛物线的焦点且平行于y 轴的直线与抛物线围成的图形面积为6,则抛物线的方程为________.51.若曲线y =x m =,0y =所围成封闭图形的面积为2m ,则正实数m =______.52.由曲线3y x =(x ≥0)与它在1x =处切线以及x 轴所围成的图形的面积为___________.53.设函数2y nx n =-+和1122y x n =-+(*n N ∈,2n ≥)的图像与两坐标轴围成的封闭图形的面积为n S ,则lim n n S →∞=________ 54.定积分=⎰____________.55.若函数的图象如图所示,则图中的阴影部分的面积为 ;56.已知1a -=⎰,则61[(2)]2a x xπ+--展开式中的常数项为______.57.已知实数x ,y 满足不等式组2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,且z =2x -y 的最大值为a ,则1e a dx x ⎰=______.58.如图放置的边长为1的正方形 沿 轴滚动,点 恰好经过原点.设顶点 的轨迹方程式 ( ),则对函数 有下列判断: ①函数 是偶函数;②对任意的 ,都有 ; ③函数 在区间 上单调递减; ④.其中判断正确的序号是 .59.222(3)x sinx dx --=⎰______.60.由x 的正半轴、2y x =和4x =所围成的封闭图形的面积是______61.12xdx ⎰的值为________.62.0=⎰_________.63.(434sin x dx -⎰的值为__________.64.若04sin n xdx π=⎰,2⎛⎝nx 的展开式中常数项为________.65.如图,在平面直角坐标系xoy 中,将直线y 2x=与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,圆锥的体积V 圆锥1=⎰π(2x )2dx 310|1212x ππ==据此类比:将曲线y =x 2(x ≥0)与直线y =2及y 轴所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V =_____.66.若()12143a x dx --=⎰,则a =______. 67.直线x =0、直线y =e +1与曲线y =e x +1围成的图形的面积为_____. 68.(12x dx +=⎰________69.1||-1x e dx ⎰值为______.70.22sin )x dx -+=⎰___________71.已知数列{}n a 是公比120=⎰q x dx 的等比数列,且312a a a =⋅,则10a =________.72.33(sin cos x x dx -+=⎰______.73.设计一个随机试验,使一个事件的概率与某个未知数有关,然后通过重复试验,以频率估计概率,即可求得未知数的近似解,这种随机试验在数学上称为随机模拟法,也称为蒙特卡洛法。
【高考数学】定积分的概念、基本定理及其简单应用10
10
未命名
一、单选题
1.定义 min a, b
a,a
b ,则由函数 f ( x)
min x2, 1 的图象与 x 轴、直线 x
2
b, a b
x
所围成的封闭图形的面积为
7
A.
12
【答案】 D
5
B.
12
1 C. ln 2
6
1 D . ln 2
3
【解析】
由题意 f (x)
0
[ ,0] 2
0
cos2 tdt
2
C。
x 1 sin t ,则 dx costdt ,所以
0
1
1
(1 cos2t )dt
+ 1 sin2t|0
2
224
2
2
4 ,应选答案
10.若 sin2t cosxdx ,其中 t 0, ,则 t ( )
0
2
A.
B.
C.
D.
3
2
3
【答案】 B
【解析】 试题分析: 因为 sin2t
(2) 对每个曲边梯形确定其存在的范围,从而确定积分的上、下限;
(3) 确定被积函数;
(4) 求出各曲边梯形的面积和,即各积分的绝对值的和.
2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的
边界不同时,要分不同情况讨论.
6.设 A
x, y | 0
x m,0
y
n
1 , s 为 e 1 的展开式的第一项(
A.
B.
C.
【答案】 C
【解析】
当0
数学选修2-2定积分的简单应用练习题含答案
数学选修2-2定积分的简单应用练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 曲线y=sin x与x轴在区间[0, 2π]上所围成阴影部分的面积为()A.−4B.−2C.2D.42. 由直线x=0,x=2,y=0和抛物线x=√1−y所围成的平面图形绕x轴旋转所得几何体的体积为()A.46 15πB.43π C.1615π D.83π3. 由直线x=1,x=2,y=0与抛物线y=x2所围成的曲边梯形的面积为()A.1 3B.53C.73D.1134. 由曲线y=x2+2与y=3x,x=0,x=1所围成的平面图形的面积为()A.5 6B.1C.53D.25. 曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.3π10B.π2C.π5D.7π106. 函数y=sin x,y=cos x在区间(π4,5π4)内围成图形的面积为()A.√2B.2√2C.3√2D.4√27. 一物体在力F(x)=3+e2x(x的单位:m,F的单位:N)的作用下,沿着与力F相同的方向,从x=0处运动到x=1处,力F(x)所做的功为()A.(3+e2)JB.(3+12e2)J C.(52+12e2)J D.(2+e2)J8. 由曲线y=√x,y=x−2及x轴所围成的封闭图形的面积是()A.4B.103C.163D.1549. 下列表示图中f(x)在区间[a, b]上的图象与x 轴围成的面积总和的式子中,正确的是( )A.∫f ba (x)dx B.|∫f ba (x)dx|C.∫f c 1a (x)dx +∫f c 2c 1(x)dx +∫f cc 2(x)dxD.∫f c 1a (x)dx −∫f c 2c 1(x)dx +∫f cc2(x)dx10. 直线y =x 与曲线y =√x 3围成的平面图形的面积是.( ) A.14 B.2 C.1D.1211. 设函数f(x)=ax 2+c(a ≠0),若∫f 10(x)dx =f(x 0),0≤x 0≤1,则x 0的值为________.12. y =cos x 与直线x =0,x =π及x 轴围成平面区域面积为________.13. 由曲线y =|x|,y =−|x|,x =2,x =−2合成的封闭图形绕y 轴旋转一周所得的旋转体的体积为V ,则V =________.14. 两曲线x −y =0,y =x 2−2x 所围成的图形的面积是________.15. 由曲线y =x 2和直线x =0,x =1,以及y =0所围成的图形面积是________. 16.若在平面直角坐标系xOy 中将直线y =x 2与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,则该圆锥的体积V 圆锥=∫π10(x 2)2dx =π12x 3|10=π12据此类比:将曲线y =x 2与直线y =9所围成的图形绕y 轴旋转一周得到一个旋转体,则该旋转体的体积V =________.17. 在直角坐标平面内,由直线x=1,x=2,y=0和曲线y=1所围成的平面区域的x面积是________.18. 在xOy平面上,将抛物线弧y=1−x2(0≤x≤1)、x轴、y轴围成的封闭图形记为D,如图中曲边三角形OAB及内部.记D绕y轴旋转一周而成的几何体为Ω,过点(0, y)(0≤y≤1)作Ω的水平截面,所得截面面积为(1−y)π,试构造一个平放的直三棱柱,利用祖暅原理得出Ω的体积值为________.19. 函数f(x)=x3−x2+x+1在点(1, 2)处的切线与函数g(x)=x2−x围成的图形的面积等于________.2ax2−a2x)dx,则f(a)的最大值为________.20. 已知f(a)=∫(1x2在第一象限内的交点为P.21. 已知曲线C1:y2=2x与C2:y=12(1)求曲线C2在点P处的切线方程;(2)求两条曲线所围成图形的面积S.22. 求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.23. 已知曲线C:y=x2(x≥0),直线l为曲线C在点A(1, 1)处的切线.(1)求直线l的方程;(2)求直线l与曲线C以及x轴所围成的图形的面积.24. 如图一是火力发电厂烟囱示意图.它是双曲线绕其一条对称轴旋转一周形成的几何体,烟囱最细处的直径为10m,最下端的直径为12m,最细处离地面6m,烟囱高14m,试求该烟囱占有空间的大小.(精确到0.1m3)25.(1)已知复数z的共轭复数是z¯,且z⋅z¯−3iz=10,求z;1−3ix所围成的平面图形的面积.(2)求曲线y=√x与直线x+y=2,y=−1326.(1)已知(√x +2√x4)n 展开式的前三项系数成等差数列.求n .(2)如图所示,在一个边长为1的正方形AOBC 内,曲线y =x 2和曲线y =√x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),求所投的点落在叶形图内部的概率.27. 求由下列给出的边界所围成的区域的面积: (1)y =sin x(π4≤x ≤π),x =π4,y =0;(2)y =x 2,y =2x 2,x =1;(3)y =x 2,y =√x .28. 求由y =4−x 2与直线y =2x −4所围成图形的面积.29. 已知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0. (1)求S 0.(2)求所围成图形绕ox 轴旋转所成旋转体的体积.30. 已知函数y =f(x)的图形如图所示,给出y =f(x)与x =10和x 轴所围成图形的面积估计值;要想得到误差不超过1的面积估计值,可以怎么做?31. 已知曲线C:y =√x 和直线:x −2y =0由C 与围成封闭图形记为M . (1)求M 的面积;(2)若M 绕x 轴旋转一周,求由M 围成的体积.32. 已知f(x)为一次函数,且f(x)=x ∫f 20(t)dt +1, (1)求函数f(x)的解析式;(2)若g(x)=x ⋅f(x),求曲线y =g(x)与x 轴所围成的区域绕x 轴旋转一周所得到的旋转体的体积.33. 已知圆锥的高为ℎ,底半径为r ,用我们计算抛物线下曲边梯形面积的思路,推导圆锥体积的计算公式. [提示:(1)用若干张平行于圆锥底面的平面把它切成n 块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn ,2r n,3r n…,(n−1)r n,r ;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n 2)×πr 2n 2,当n 越来越大时所趋向的值.].34. 求曲线y =√x(0≤x ≤4)上的一条切线,使此切线与直线x =0,x =4以及曲线y =√x 所围成的平面图形的面积最小.35. 过点(0, 1)作曲线L:y =ln x 的切线,切点为A .又L 与x 轴交于B 点,区城D 由L 、x 轴与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.36. 求曲线y =2x −x 2,y =2x 2−4x 所围成图形的面积.37. 已知∫(103ax +1)(x +b)dx =0,a ,b ∈R ,试求ab 的取值范围.38. 求下列曲线所围成图形的面积:曲线y=cos x,x=π2,x=3π2,y=0.39. 求曲线y=sin x与直线x=−π2,x=5π4,y=0所围成的平面图形的面积.40. 如图,直线y=kx分抛物线y=x−x2与x轴所围图形为面积相等的两部分,求k的值.参考答案与试题解析数学选修2-2定积分的简单应用练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 D【考点】定积分在求面积中的应用 【解析】由积分的几何意义可得,S =2∫sin π0xdx ,即可得出结论. 【解答】解:由积分的几何意义可得,S =2∫sin π0xdx =(−cos x)|0π=4. 故选:D . 2.【答案】 A【考点】用定积分求简单几何体的体积 【解析】由题意此几何体的体积可以看作是∫π20(1−x 2)2dx ,求出积分即得所求体积. 【解答】解:由题意几何体的体积; ∫π20(1−x 2)2dx=π(x −23x 3+15x 5)|02=π(2−23×23+15×25) =4615π 故选A . 3. 【答案】 C【考点】定积分在求面积中的应用 【解析】先根据题意画出区域,然后依据图形利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可. 【解答】解:直线x =1,x =2,y =0与抛物线y =x 2所围成的曲边梯形的面积为S =∫x 221dx =13x 3|12=83−13=73,故选:C .4.【答案】 A【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解,然后求出曲线y =x 2+2与y =3x 的交点坐标,然后利用定积分表示所围成的平面图形的面积,根据定积分的定义解之即可. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x =[13X 3+2X −32X 2]01=56 故选:A 5.【答案】 A【考点】用定积分求简单几何体的体积 【解析】欲求曲线y =x 2和y 2=x 所围成的平面图形绕x 轴旋转一周后所形成的旋转体的体积,可利用定积分计算,即求出被积函数y =π(x −x 4)在0→1上的积分即可. 【解答】解:设旋转体的体积为V ,则v =∫π10(x −x 4)dx =π(12x 2−15x 5)|01=3π10.故旋转体的体积为:3π10. 故选A . 6. 【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,所求面积为S =∫(5π4π4sin x −cos x)dx ,然后利用公式求出sin x −cos x 的原函数F(x),算出F(5π4)−F(π4)的值,即为所求图形的面积. 【解答】解:根据题意,所求面积为S =∫(5π4π4sin x −cos x)dx =(−cos x −sin x +C)|π45π4 (其中C 为常数) ∴ S =(−cos 5π4−sin5π4+C)−(−cos π4−sin π4+C)=(√22+√22+C)−(−√22−√22+C)=2√2 故选B 7.【答案】 C【考点】定积分的简单应用 【解析】先根据题意建立关系式∫(103+e 2x )dx ,然后根据定积分的计算法则求出定积分的值即可. 【解答】解:根据题意可知F(x)所做的功为∫(103+e 2x )dx =(3x +12e 2x )|01=3+12e 2−12=52+12e 2故选C .8.【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,先求出积分的上下限,即可求出所围成的图形的面积 【解答】解:联立直线y =x −2,曲线y =√x 构成方程组,解得{x =4,y =2,联立直线y =x −2,y =0构成方程组,解得{x =2,y =0,如图所示:∴曲线y=√x,y=x−2及x轴所围成的封闭图形的面积S=∫√x40dx−∫(42x−2)dx=2x32|04 −(1x2−2x)|24=163−2=103.故选B.9.【答案】D【考点】定积分在求面积中的应用定积分定积分的简单应用【解析】先根据定积分的几何意义可知将区间[a, b]分成三段,然后利用上方曲线方程减下方的曲线方程,求积分即为面积,从而求出所求.【解答】解:根据定积分的几何意义可知将区间[a, b]分成三段利用上方曲线方程减下方的曲线方程,求积分即为面积S=∫fc1a (x)dx−∫fc2c1(x)dx+∫fcc2(x)dx故选:D10.【答案】D【考点】定积分在求面积中的应用【解析】先画出画出直线y=x与曲线y=√x3围成的平面图形,然后求出交点横坐标得到积分上下限,然后利用定积分表示出图形的面积,根据定积分的运算法则进行求解即可.【解答】解:画出直线y=x与曲线y=√x3围成的平面图形图形关于原点对称,交点的横坐标为−1,1∴直线y=x与曲线y=√x3围成的平面图形的面积是∫(1−1√x3−x)dx=2∫(1√x3−x)dx=2(34x43−12x2)|01=2(34−12−0)=12故选D .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】 √33【考点】定积分的简单应用 【解析】求出定积分∫f 10(x)dx ,根据方程ax 02+c =∫f 10(x)dx 即可求解.【解答】解:∵ f(x)=ax 2+c(a ≠0),∴ f(x 0)=∫f 10(x)dx =[ax 33+cx]01=a3+c .又∵f(x 0)=ax 02+c .∴ x 02=13,∵ x 0∈[0, 1]∴ x 0=√33. 12.【答案】2【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得:曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍, ∴ S =2∫cos π20xdx =2 故答案为2.13.【答案】323π【考点】旋转体(圆柱、圆锥、圆台)用定积分求简单几何体的体积【解析】作出曲线围成的封闭图象,根据旋转得到旋转体的结构即可得到结论.【解答】解:曲线y=|x|,y=−|x|,x=2,x=−2合成的封闭图形绕y轴旋转一周所得的旋转体为底面半径为2,高为4的圆柱,去掉2个底面半径为2,高为2的圆锥,则对应的体积为π×42−2×13π×22×2=16π−16π3=323π,故答案为:323π14.【答案】92【考点】定积分在求面积中的应用【解析】先根据题意画出区域,然后依据图形得到积分上限为3,积分下限为0,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为3,积分下限为0;两曲线x−y=0,y=x2−2x所围成的图形的面积是∫(33x−x2)dx而∫(303x−x2)dx=(32x2−13x3)|03=272−9=92∴曲边梯形的面积是92故答案为92.15. 【答案】13【考点】定积分在求面积中的应用 【解析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数y =x 2在区间[0, 1]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案. 【解答】解:∵ 曲线y =x 2和直线L:x =1的交点为A(1, 1),∴ 曲线C:y =x 2、直线L:x =1与x 轴所围成的图形面积为 S =∫x 210dx =13x 3|01=13.故答案为:13.16. 【答案】81π2【考点】用定积分求简单几何体的体积 【解析】根据类比推理,结合定积分的应用,即可求出旋转体的体积. 【解答】解:根据类比推理得体积V =∫π90(√y)2dy =∫π90ydy =12πy 2|09=81π2,故答案为:81π2.17.【答案】 ln 2【考点】定积分在求面积中的应用 【解析】先根据所围成图形的面积利用定积分表示出来,然后根据定积分的定义求出面积即可. 【解答】解:由题意,S =∫1x 21dx =ln x|12=ln 2.故答案为:ln 2. 18. 【答案】√34π 【考点】用定积分求简单几何体的体积 【解析】(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等,即可得出结论. 【解答】解:(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的, 根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等, 即Ω的体积为π⋅√34=√34π. 故答案为√34π. 19. 【答案】92【考点】定积分在求面积中的应用 【解析】求出函数的切线方程,利用积分的几何意义即可求出区域的面积. 【解答】解:函数的导数为f′(x)=3x 2−2x +1,则在(1, 2)处的切线斜率k =f′(1)=3−2+1=2, 则对应的切线方程为y −2=2(x −1),即y =2x , 由{y =x 2−x y =2x,解得x =3或x =0,则由积分的几何意义可得阴影部分的面积S =∫(302x −x 2+x)dx =(32x 2−13x 3)| 30 =92,故答案为:92.20. 【答案】29【考点】定积分的简单应用 【解析】先根据定积分的运算公式求出f(a)的解析式,然后利用二次函数的图象和性质即可求出f(a)的最大值. 【解答】解:f(a)=∫(102ax 2−a 2x)dx =(23ax 3−12a 2x 2)|01=23a −12a 2∴ 当a =23时,f(a)取最大值,最大值为29 故答案为:29三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程 【解析】 此题暂无解析 【解答】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43. 22. 【答案】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1 23. 【答案】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程;(2)根据定积分的几何意义即可求出所围成的图形的面积. 【解答】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.24.【答案】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6),所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 3【考点】用定积分求简单几何体的体积 双曲线的特性【解析】由题意建立坐标系,得到如图的双曲线,烟囱最细处的直径为10m 即2a =10,最下端的直径为12m ,最细处离地面6m ,即双曲线经过(−6, 6),烟囱高14m ,即自变量范围为−6到8,由此利用定积分的值得到体积. 【解答】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6), 所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 325.【答案】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0),直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.【考点】 复数的运算 共轭复数复数代数形式的混合运算 定积分在求面积中的应用 【解析】 此题暂无解析 【解答】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0), 直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.26. 【答案】解:(1)∵ (√x 2x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴ 1+n(n−1)2×14=n ,整理得n 2−9n +8=0,n 1=1(舍) n 2=8…(2)所投的点落在叶形图内记为事件A ,由几何概型的概率公式得: P(A)=叶形图面积AOBC 的面积=∫(10√x−x 2)dx1=(23x 32−13x 3)|01=13…【考点】二项式定理的应用定积分在求面积中的应用 等差数列的性质几何概型计算(与长度、角度、面积、体积有关的几何概型) 【解析】(1)由题意可得,C n 0+C n 2(12)2=2C n 1⋅12,解关于n 的方程即可;(2)由几何概型的概率公式可知,需求叶形图的面积,利用定积分∫(10√x −x 2)dx 可求叶形图的面积,从而使问题解决. 【解答】解:(1)∵ (√x 2√x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴1+n(n−1)2×14=n,整理得n2−9n+8=0,n1=1(舍)n2=8…(2)所投的点落在叶形图内记为事件A,由几何概型的概率公式得:P(A)=叶形图面积AOBC的面积=∫(1√x−x2)dx1=(23x32−13x3)|01=13…27.【答案】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.【考点】定积分的简单应用【解析】首先求出被积函数的原函数,进一步利用定积分知识求出结果.【解答】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.28.【答案】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x3−x2+8x)|−42=36.【考点】定积分在求面积中的应用【解析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出y=4−x2与直线y=2x−4所围成图形的面积,即可求得结论.【解答】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x 3−x 2+8x)|−42=36.29. 【答案】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx =π[x2−14sin 2x]0π=π(π2−14×0)=π22【考点】用定积分求简单几何体的体积 定积分在求面积中的应用【解析】(1)根据题意可知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0=∫sin π0xdx ,解之即可;(2)所围成图形绕ox 轴旋转所成旋转体的体积为V =π∫sin 2π0xdx ,根据定积分的定义解之即可. 【解答】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx=π[x 2−14sin 2x]0π=π(π2−14×0)=π2230.【答案】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c , 由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx =(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 【考点】定积分在求面积中的应用 【解析】设f(x)=ax 3+bx 2+cx +d ,利用待定系数法确定函数关系式,利用定积分求出面积估计值;若要误差小可分段求出f(x)的解析式,然后使用定积分求出面积. 【解答】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c ,由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx=(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 31. 【答案】解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43;(2)V =∫[40π(√x)2−π(x2)2]dx =π(x 22−x 312)|04=8π3.【考点】用定积分求简单几何体的体积 旋转体(圆柱、圆锥、圆台)【解析】(1)求得交点坐标,可得积分区间,即可求M 的面积; (2)旋转一周所得旋转体的体积应该用定积分来求.【解答】 解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43; (2)V =∫[40π(√x)2−π(x2)2]dx=π(x 22−x 312)|04=8π3.32.【答案】 解:(1)设f(x)=kx +b , ∵ f(x)=x ∫f 20(t)dt +1, ∴ kx +b =x •(kt 22+bt)|02+1,∴ kx +b =(2k +2b)x +1,∴ k =−2,b =1, ∴ f(x)=−2x +1,;2)g(x)=xf(x)=−2x 2+x , ∴ V =π∫[120xf(x)]2dx =π240. 【考点】用定积分求简单几何体的体积定积分【解析】(1)利用待定系数法,结合定积分的定义求函数f(x)的解析式;(2)求出g(x),应用定积分来求旋转体的体积.【解答】解:(1)设f(x)=kx+b,∵f(x)=x∫f2(t)dt+1,∴kx+b=x•(kt22+bt)|02+1,∴kx+b=(2k+2b)x+1,∴k=−2,b=1,∴f(x)=−2x+1,;2)g(x)=xf(x)=−2x2+x,∴V=π∫[120xf(x)]2dx=π240.33.【答案】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎn⋅16n(n+1)(2n+1)⋅πr2n2=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积【考点】用定积分求简单几何体的体积【解析】利用极限的定义进行分割、近似代换和求极限的方法,进行推到【解答】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎ⋅1n(n+1)(2n+1)⋅πr22=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积34.【答案】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2√x −x0)即y=y02+2√x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022x√x)dx=2y0+x−163=2√x0x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=22+√22.【考点】定积分在求面积中的应用【解析】先根据导数的几何意义求出曲线y=√x(0≤x≤4)上任一点处的切线方程,再求出积分的上下限,然后利用定积分表示出图形面积,最后利用定积分的定义进行求解即可.【解答】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2x −x0)即y=y02+2x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022√x√x)dx=2y0+√x−163=2√x0√x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=2√2+√22.35.【答案】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b ,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx =8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.【考点】用定积分求简单几何体的体积 【解析】求出A 的坐标和切线方程,则所求面积和体积均可用两个定积分的差来表示. 【解答】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx=8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.36. 【答案】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 【考点】定积分在求面积中的应用 【解析】先求出两曲线的交点坐标,利用定积分的应用即可求出对应图形的面积. 【解答】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 37. 【答案】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 【考点】定积分的简单应用 【解析】先根据定积分的运算法则建立a 与b 的等量关系,然后设ab =t 则a +b =−3t+12,再利用构造法构造a ,b 为方程x 2+3t+12x +t =0两根,然后利用判别式可求出a .b 的取值范围. 【解答】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 38.【答案】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x 与直线x =π2,x =π所围成的平面区域的面积的二倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.39. 【答案】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 【考点】定积分在求面积中的应用 【解析】求曲线y =sin x 与直线x =−π2,x =5π4,y =0所围成的平面图形的面积【解答】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 40.【答案】 由 {y =kx y =x −x2 得 {x =1−k y =k −k 2 (0<k <1). 由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112 ∴ (1−k)3=12 ∴ k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.【考点】定积分的简单应用 【解析】先由 {y =kx y =x −x 2 得 {x =1−k y =k −k 2 ,根据直线y =kx 分抛物线y =x −x 2与x 轴所围成图形为面积相等的两个部分得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 下面利用定积分的计算公式即可求得k 值. 【解答】由 {y =kx y =x −x 2得 {x =1−k y =k −k 2 (0<k <1).由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112试卷第31页,总31页 ∴ (1−k)3=12 ∴k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.。
高中数学选修2-2同步练习题库:定积分的简单应用(填空题:容易)
定积分的简单应用(填空题:容易)1、若,则实数的值是 .2、由曲线所围成的封闭图形的面积为________3、如图所示,在边长为1的正方形中任取一点,则点恰好取自阴影部分的概率为___________.4、已知,则函数的单调递减区间是______.5、定积分的值为.6、_____________.7、曲线与直线及所围成的封闭图形的面积为 .8、曲线与所围成的封闭图形的面积s=9、已知,则.10、曲线和曲线围成的图形面积是11、的值等于 .12、曲线与直线围成的封闭图形的面积是 .13、在平面直角坐标系内,由曲线所围成的封闭图形的面积为.14、二项式的展开式的第二项的系数为,则的值为.15、.16、由直线与曲线所围成的封闭图形的面积为______________.17、定积分.18、计算定积分:.19、已知函数,则。
20、= .21、计算= .22、计算:= .23、等于.24、________.25、定积分___________;26、=。
27、求曲线,所围成图形的面积.28、由曲线,直线所围图形面积S= .29、定积分= .30、定积分的值为____________.31、计算定积分(x2+sinx)dx=.32、求曲线y=,y=2-x,y=-x所围成图形的面积为_______。
33、已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为________.34、dx + .35、曲线=x与y=围成的图形的面积为______________.36、=________________。
37、设.若曲线与直线所围成封闭图形的面积为,则______.38、一物体在力(单位:)的作用下沿与力相同的方向,从处运动到(单位:)处,则力做的功为焦.39、由直线,,曲线及轴所围成的图形的面积是.40、计算定积分 .41、已知求 .42、曲线与直线所围成的封闭图形的面积为.43、在的展开式中的常数项为p,则 .44、设=,则二项式展开式中含项的系数是。
高考定积分应用常见题型大全(含答案)
高考定积分应用常见题型大全(含答案)一.选择题(共21小题)1.(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.2.(2010•山东)由曲线y=x2,y=x3围成的封闭图形面积为()A.B.C.D.3.设f(x)=,函数图象与x轴围成封闭区域的面积为()A.B.C.D.4.定积分的值为()A.B.3+ln2 C.3﹣ln2 D.6+ln25.如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是()A.1B.C.D.6.=()A.πB.2C.﹣πD.47.已知函数f(x)的定义域为[﹣2,4],且f(4)=f(﹣2)=1,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,则平面区域f(2a+b)<1(a≥0,b≥0)所围成的面积是()A.2B.4C.5D.8 8.∫01e x dx与∫01e x dx相比有关系式()A.∫01e x dx<∫01e x dx B.∫01e x dx>∫01e x dxC.(∫01e x dx)2=∫01e x dx D.∫01e x dx=∫01e x dx9.若a=,b=,则a与b的关系是()A.a<b B.a>b C.a=b D.a+b=0 10.的值是()A.B.C.D.11.若f(x)=(e为自然对数的底数),则=()A.+e2﹣e B.+eC.﹣e2+eD.﹣+e2﹣e12.已知f(x)=2﹣|x|,则()A.3B.4C.3.5 D.4.513.设f(x)=3﹣|x﹣1|,则∫﹣22f(x)dx=()A.7B.8C.7.5 D.6.5 14.积分=()A.B.C.πa2D.2πa215.已知函数的图象与x轴所围成图形的面积为()A.1/2 B.1C.2D.3/2A.4B.C.D.2π17.曲线y=x3在点(1,1)处的切线与x轴及直线x=1所围成的三角形的面积为()A.B.C.D.18.图中,阴影部分的面积是()A.16 B.18 C.20 D.2219.如图中阴影部分的面积是()A.B.C.D.20.曲线与坐标轴围成的面积是()A.B.C.D.21.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=高考定积分应用常见题型大全(含答案)参考答案与试题解析一.选择题(共21小题)1.(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.考点:定积分在求面积中的应用;几何概型.专题:计算题.分析:根据题意,易得正方形OABC的面积,观察图形可得,阴影部分由函数y=x与y=围成,由定积分公式,计算可得阴影部分的面积,进而由几何概型公式计算可得答案.解答:解:根据题意,正方形OABC的面积为1×1=1,而阴影部分由函数y=x与y=围成,其面积为∫01(﹣x)dx=(﹣)|01=,则正方形OABC中任取一点P,点P取自阴影部分的概率为=;故选C.点评:本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.2.(2010•山东)由曲线y=x2,y=x3围成的封闭图形面积为()A.B.C.D.考点:定积分在求面积中的应用.专题:计算题.分析:要求曲线y=x2,y=x3围成的封闭图形面积,根据定积分的几何意义,只要求∫01(x2﹣x3)dx即可.解答:解:由题意得,两曲线的交点坐标是(1,1),(0,0)故积分区间是[0,1]所求封闭图形的面积为∫01(x2﹣x3)dx═,故选A.点评:本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积.3.设f(x)=,函数图象与x轴围成封闭区域的面积为()考点:分段函数的解析式求法及其图象的作法;函数的图象;定积分在求面积中的应用.专题:计算题;数形结合.分析:利用坐标系中作出函数图象的形状,通过定积分的公式,分别对两部分用定积分求出其面积,再把它们相加,即可求出围成的封闭区域曲边图形的面积.解答:解:根据题意作出函数的图象:根据定积分,得所围成的封闭区域的面积S=故选C点评:本题考查分段函数的图象和定积分的运用,考查积分与曲边图形面积的关系,属于中档题.解题关键是找出被积函数的原函数,注意运算的准确性.4.定积分的值为()A.B.3+ln2 C.3﹣ln2 D.6+ln2考点:定积分;微积分基本定理;定积分的简单应用.专题:计算题.分析:由题设条件,求出被积函数的原函数,然后根据微积分基本定理求出定积分的值即可.解答:解:=(x2+lnx)|12=(22+ln2)﹣(12+ln1)=3+ln2故选B.点评:本题考查求定积分,求解的关键是掌握住定积分的定义及相关函数的导数的求法,属于基础题.5.如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是()考点:定积分;定积分的简单应用.专题:计算题.分析:联立由曲线y=x2和曲线y=两个解析式求出交点坐标,然后在x∈(0,1)区间上利用定积分的方法求出围成的面积即可.解答:解:联立得,解得或,设曲线与直线围成的面积为S,则S=∫01(﹣x2)dx=故选:C点评:考查学生求函数交点求法的能力,利用定积分求图形面积的能力.6.=()A.πB.2C.﹣πD.4考点:微积分基本定理;定积分的简单应用.专题:计算题.分析:由于F(x)=x2+sinx为f(x)=x+cosx的一个原函数即F′(x)=f(x),根据∫a b f(x)dx=F(x)|a b公式即可求出值.解答:解:∵(x2++sinx)′=x+cosx,∴(x+cosx)dx=(x2+sinx)=2.故答案为:2.点评:此题考查学生掌握函数的求导法则,会求函数的定积分运算,是一道基础题.7.已知函数f(x)的定义域为[﹣2,4],且f(4)=f(﹣2)=1,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,则平面区域f(2a+b)<1(a≥0,b≥0)所围成的面积是()考点:定积分的简单应用.分析:根据导函数的图象,分析原函数的性质或作出原函数的草图,找出a、b满足的条件,画出平面区域,即可求解.解答:解:由图可知[﹣2,0)上f′(x)<0,∴函数f(x)在[﹣2,0)上单调递减,(0,4]上f′(x)>0,∴函数f(x)在(0,4]上单调递增,故在[﹣2,4]上,f(x)的最大值为f(4)=f(﹣2)=1,∴f(2a+b)<1(a≥0,b≥0)⇒表示的平面区域如图所示:故选B.点评:本题考查了导数与函数单调性的关系,以及线性规划问题的综合应用,属于高档题.解决时要注意数形结合思想应用.8.∫01e x dx与∫01e x dx相比有关系式()A.∫01e x dx<∫01e x dx B.∫01e x dx>∫01e x dxC.(∫01e x dx)2=∫01e x dx D.∫01e x dx=∫01e x dx考点:定积分的简单应用;定积分.专题:计算题.分析:根据积分所表示的几何意义是以直线x=0,x=1及函数y=e x或y=e x在图象第一象限内圆弧与坐标轴围成的面积,只需画出函数图象观察面积大小即可.解答:解:∫01e x dx表示的几何意义是以直线x=0,x=1及函数y=e x在图象第一象限内圆弧与坐标轴围成的面积,∫01e x dx表示的几何意义是以直线x=0,x=1及函数y=e x在图象第一象限内圆弧与坐标轴围成的面积,如图∵当0<x<1时,e x x>e x,故有:∫01e x dx>∫01e x dx点评:本题主要考查了定积分,定积分运算是求导的逆运算,解题的关键是求原函数,也可利用几何意义进行求解,属于基础题.9.若a=,b=,则a与b的关系是()A.a<b B.a>b C.a=b D.a+b=0考点:定积分的简单应用.专题:计算题.分析:a==(﹣cosx)=(﹣cos2)﹣(﹣cos)=﹣cos2≈sin24.6°,b==sinx=sin1﹣sin0=sin1≈sin57.3°.解答:解:∵a==(﹣cosx)=(﹣cos2)﹣(﹣cos)=﹣cos2≈﹣cos114.6°=sin24.6°,b==sinx=sin1﹣sin0=sin1≈sin57.3°,∴b>a.故选A.点评:本题考查定积分的应用,是基础题.解题时要认真审题,仔细解答.10.的值是()A.B.C.D.考点:定积分的简单应用.专题:计算题.分析:根据积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线y=x2在第一象限的部分坐标轴围成的面积,只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线x=1围成的图形的面积即可.解答:解;积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线y=x2在第一象限的部分坐标轴围成的面积,故只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线x=1围成的图形的面积之差.故答案选A点评:本题主要考查了定积分,定积分运算是求导的逆运算,解题的关键是求原函数,也可利用几何意义进行求解,属于基础题11.若f(x)=(e为自然对数的底数),则=()A.+e2﹣e B.+eC.﹣e2+eD.﹣+e2﹣e考点:定积分的简单应用.专题:计算题.分析:由于函数为分段函数,故将积分区间分为两部分,进而分别求出相应的积分,即可得到结论.解答:解:===故选C.点评:本题重点考查定积分,解题的关键是将积分区间分为两部分,再分别求出相应的积分.12.已知f(x)=2﹣|x|,则()A.3B.4C.3.5 D.4.5考点:定积分的简单应用.专题:计算题.分析:由题意,,由此可求定积分的值.解答:解:由题意,=+=2﹣+4﹣2=3.5故选C.点评:本题考查定积分的计算,解题的关键是利用定积分的性质化为两个定积分的和.13.设f(x)=3﹣|x﹣1|,则∫﹣22f(x)dx=()A.7B.8C.7.5 D.6.5考点:定积分的简单应用.专题:计算题.分析:∫﹣22f(x)dx=∫﹣22(3﹣|x﹣1|)dx,将∫﹣22(3﹣|x﹣1|)dx转化成∫﹣21(2+x)dx+∫12(4﹣x)dx,然后根据定积分的定义先求出被积函数的原函数,然后求解即可.解答:解:∫﹣22f(x)dx=∫﹣22(3﹣|x﹣1|)dx=∫﹣21(2+x)dx+∫12(4﹣x)dx=(2x+x2)|﹣21+(4x﹣x2)|12=7 故选A.点评:本题主要考查了定积分,定积分运算是求导的逆运算,同时考查了转化与划归的思想,属于基础题.14.积分=()考点:定积分的简单应用;定积分.专题:计算题.分析:本题利用定积分的几何意义计算定积分,即求被积函数y=与x轴所围成的图形的面积,围成的图象是半个圆.解答:解:根据定积分的几何意义,则表示圆心在原点,半径为3的圆的上半圆的面积,故==.故选B.点评:本小题主要考查定积分、定积分的几何意义、圆的面积等基础知识,考查考查数形结合思想.属于基础题.15.已知函数的图象与x轴所围成图形的面积为()A.1/2 B.1C.2D.3/2考点:定积分在求面积中的应用.专题:计算题.分析:根据几何图形用定积分表示出所围成的封闭图形的面积,求出函数f(x)的积分,求出所求即可.解答:解:由题意图象与x轴所围成图形的面积为=(﹣)|01+sinx=+1=故选D.点评:本题考查定积分在求面积中的应用,求解的关键是正确利用定积分的运算规则求出定积分的值,本题易因为对两个知识点不熟悉公式用错而导致错误,牢固掌握好基础知识很重要.16.由函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形的面积是()考点:定积分在求面积中的应用.专题:计算题.分析:由题意可知函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形可利用定积分进行计算,只要求∫0(1﹣cosx)dx即可.然后根据积分的运算公式进行求解即可.解答:解:由函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形的面积,就是:∫0(1﹣cosx)dx=(x﹣sinx)|0=.故选B.点评:本题考查余弦函数的图象,定积分,考查计算能力,解题的关键是两块封闭图形的面积之和就是上部直接积分减去下部积分.17.曲线y=x3在点(1,1)处的切线与x轴及直线x=1所围成的三角形的面积为()A.B.C.D.考点:定积分在求面积中的应用.专题:计算题.分析:欲求所围成的三角形的面积,先求出在点(1,1)处的切线方程,只须求出其斜率的值即可,故要利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.解答:解:∵y=x3,∴y'=3x2,当x=1时,y'=3得切线的斜率为3,所以k=3;所以曲线在点(1,1)处的切线方程为:y﹣1=3×(x﹣1),即3x﹣y﹣2=0.令y=o得:x=,∴切线与x轴、直线x=1所围成的三角形的面积为:S=×(1﹣)×1=故选B.点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,属于基础题.18.图中,阴影部分的面积是()A.16 B.18 C.20 D.22考点:定积分在求面积中的应用.专题:计算题.分析:从图象中知抛物线与直线的交点坐标分别为(2,﹣2),(8,4).过(2,﹣2)作x轴的垂线把阴影部分分为S1,S2两部分,利用定积分的方法分别求出它们的面积并相加即可得到阴影部分的面积.解答:解:从图象中知抛物线与直线的交点坐标分别为(2,﹣2),(8,4).过(2,﹣2)作x轴的垂线把阴影部分分为S1,S2两部分,分别求出它们的面积A1,A2:A1=∫02[]dx=2 dx=,A2=∫28[]dx=所以阴影部分的面积A=A1+A2==18故选B.点评:本题考查定积分在求面积中的应用,解题是要注意分割,关键是要注意在x轴下方的部分积分为负(积分的几何意义强调代数和),属于基础题.考查学生利用定积分求阴影面积的方法的能力.19.如图中阴影部分的面积是()A.B.C.D.考点:定积分在求面积中的应用.专题:计算题.分析:求阴影部分的面积,先要对阴影部分进行分割到三个象限内,分别对三部分进行积分求和即可.解答:解:直线y=2x与抛物线y=3﹣x2解得交点为(﹣3,﹣6)和(1,2)抛物线y=3﹣x2与x轴负半轴交点(﹣,0)设阴影部分面积为s,则==所以阴影部分的面积为,故选C.点评:本题考查定积分在求面积中的应用,解题是要注意分割,关键是要注意在x轴下方的部分积分为负(积分的几何意义强调代数和),属于基础题.20.曲线与坐标轴围成的面积是()A.B.C.D.考点:定积分在求面积中的应用.专题:计算题.分析:先根据题意画出区域,然后依据图形得到积分下限为0,积分上限为,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.解答:解:先根据题意画出图形,得到积分上限为,积分下限为0曲线与坐标轴围成的面积是:S=∫0(﹣)dx+∫dx=∴围成的面积是故选D.点评:本题主要考查了学生会求出原函数的能力,以及考查了数形结合的思想,同时会利用定积分求图形面积的能力,解题的关键就是求原函数.21.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=考点:定积分在求面积中的应用.专题:计算题;数形结合.分析:根据圆的对称性以及反比例函数的对称性可得,阴影部分的面积等于圆的面积的,即可求得圆的半径,再根据P在反比例函数的图象上,以及在圆上,即可求得k的值.解答:解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:r=2.∵点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点.∴3a2=k且=r∴a2=×(2)2=4.∴k=3×4=12,则反比例函数的解析式是:y=.故选C.点评:本题主要考查反比例函数图象的对称性的知识点,解决本题的关键是利用反比例函数的对称性得到阴影部分与圆之间的关系.。
定积分的简单应用李用
b
a
f
x
g
xd. x
注:
两曲线围成的平面图形的面积的计算 例 1. 计算由两条抛物线 y2 x和 y x2围成图形的面积.
解:作出y2=x,y=x2的图象如图所示:
解方程组
y y
x x2
x
y
00或xy
1 1
y
y y2 xx B
即两曲线的交点为(0,0),(1,1)
S = S曲边梯形OABC - S曲边梯形OABD
返回
(2)∵v(t)=t2-4t+3=(t-1)(t-3),
∴在区间[0,1]及[3,4]上的v(t)≥0,
在区间[1,3]上,v(t)≤0.
∴在t=4 s时的路程为
1
3
4
s=0(t2-4t+3)dt-1(t2-4t+3)dt+3(t2-4t+3)dt
=(13t3-2t2+3t)|10-(13t3-2t2+3t)|31+(13t3-2t2+3t)|43=4(m).
图1.7 3
s 30 60 30 1350
2
二、变力沿直线所作的功
1、恒力作功
由物理学知道,如果物体在作直线运动的过
程中有一个不变的力F 作用在这物体上,且这力
的方向与物体的运动方向一致,那么,在物体移
动了距离 s时,力 F 对物体所作的功为W F s .
2、变力所做的功
问题:物体在变力F(x)的作用下做直线运动,并
例 2 计算由曲线 y 2x ,直线 y x 4以及 x 轴所
围成的图形的面积.
y 2x
解: 两曲线的交点
y
2x
(0, 0), (8, 4).
y x 4
直线与x轴交点为(4,0)
【高考数学】定积分的概念、基本定理及其简单应用6
2
x, g x x , f x g x dx
3
x dx
0 ,则是正交函数,
1
1
综上,正交函数的组数为 2 ,故选 C.
【方法点睛】本题考查定积分的运算及新定义问题,属于难题
.新定义题型的特点是:
通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,
要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信
2
9.设 f ( x)
,则 f ( x)dx 等于 (
)
2 x, x (1,2]
0
3
A.
4
4
B.
5
5
C.
6
D. 0
【答案】 A
【解析】
【分析】
原积分化为
2
f( x)dx=
1
1
1
2
x2 dx+ (2﹣ x)dx,根据定积分的计算法则计算即可
0
0
1
试卷第 5 页,总 67 页
【详解】
2
f (x)dx=
cos xdx sin t 1 ,其中
t。
2
2
2
函数 S g(t ) sin t 1的图象是将正弦函数的图象向上平移一个单位。
故选 B。 【点睛】 本题考查定积分、正弦函数的图象及函数图象的平移等知识。考查学生的运算能力、转 化能力。不规则图形面积的求解,应用定积分来求解。
1 1 x2 , x [0,1]
ABCD A1B1C1D1 的棱长为 1,如图所示,根
)
试卷第 2 页,总 67 页
8 A.
3 【答案】 B
16
B.
1.7 定积分的简单应用(1)
W F ( x)dx
0
L
L
0
1 2 L 1 2 kxdx kx |0 kL 2 2
练习
1.一物体沿直线以v=2t+3(t的单位为s,v的 单位为m/s)的速度运动,求该物体在3~5s 间行进的路程.
S (2t 3)dt 22m
3 5
2.一物体在力F(x)=3x+4(单位:N)的作用下, 沿着与力F相同的方向,从x=0处运动到 x=4处(单位:m),求F(x)所作的功. 40
3 2
(2)S (e e x )dx 1
0
1
定积分在物理中的应用
一辆汽车的速度一时间曲线如图所示,求 汽车在这 1 min 行驶的路程。
3t vt 30 - 1.5t 90 (0 t 10) (10 t 40) (40 t 60)
的图形的面积.
解 两曲线的交点
y x 6x (0,0), ( 2,4), ( 3,9). 2 y x
3
y x2
A1
0
2
(x 6 x x )dx
3 2
y x3 6x
A2 ( x x 6 x)dx
2 3 0
3
于是所求面积
0 3
A A1 A2
2
4 2 3 2 2 2 3 1 2 16 64 26 8 2 2 x |0 ( x x 4 x) |2 18 3 3 2 3 3 3
练习
求下列曲线所围成的图形的面积:
(1)y=x2,y=2x+3;
(2)y=ex,y=e,x=0.
32 (1) S ((2 x 3) x )dx 1 3
定积分的简单应用习题教学提纲
定积分的简单应用习题[学业水平训练]1.用S 表示图中阴影部分的面积,则S 的值是( )A.⎠⎛a c f (x )d x B .⎠⎛ac f (x )d x | C .⎠⎛a b f (x )d x +⎠⎛bc f (x )d x D .⎠⎛b c f (x )d x -⎠⎛ab f (x )d x 解析:选D .∵x ∈[a ,b ]时,f (x )<0,x ∈[b ,c ]时,f (x )>0,∴阴影部分的面积S =⎠⎛b c f (x )d x -⎠⎛ab f (x )d x . 2.物体以速度v (t )=3t 2-2t +3做直线运动,它在t =0到t =3这段时间内的位移是( )A .9B .18C .27D .36解析:选C .所求位移s =⎠⎛03v (t )d t =⎠⎛03(3t 2-2t +3)d t =(t 3-t 2+3t )|30=27. 3.曲线y =x 3与直线y =x 所围成图形的面积等于( )A.⎠⎛-11(x -x 3)d xB.⎠⎛-11(x 3-x )d x C .2⎠⎛01(x -x 3)d x D .2⎠⎛-11(x -x 3)d x 解析:选C .由⎩⎪⎨⎪⎧ y =xy =x 3求得直线y =x 与曲线y =x 3的交点分别为(-1,-1),(1,1),由于两函数都是奇函数,根据对称性得S =2⎠⎛01(x -x 3)d x . 4.以初速度40 m/s 向上抛一物体,t s 时刻的速度v =40-10t 2,则此物体达到最高时的高度为( )A.1603 mB.803 m C .403 m D .203m 解析:选A.v =40-10t 2=0,得物体达到最高时t =2,则高度h =⎠⎛02(40-10t 2)d t =(40t -103t 3)|20=1603(m). 5.一物体在力F (x )=15-3x 2(力的单位:N ,位移的单位:m)作用下沿与力F (x )成30°角的方向由x =1 m 直线运动到x =2 m 处,作用力F (x )所做的功W 为( )A. 3 J B .2 3 JC .4 3 JD .32J 解析:选C .W =⎠⎛12F (x )cos 30°d x =32⎠⎛12(15-3x 2)d x =32(15x -x 3)|21=32[(30-8)-(15-1)]=43(J).6.质点直线运动瞬时速度的变化规律为v (t )=-3sin t ,则t 1=3至t 2=5时间内的位移是________.(精确到0.01)解析:s =⎠⎛35v (t )d t =⎠⎛35(-3sin t )d t =3cos t 53=3(cos 5-cos 3)≈3.82.答案:3.827.由y =x 2,y =14x 2及x =1围成的图形的面积S =________. 解析:图形如图所示:S =⎠⎛01x 2d x -⎠⎛0114x 2d x =⎠⎛0134x 2d x =14x 3|10=14. 答案:148.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10 s 内所经过的路程是________m.解析:s =⎠⎛0101+t d t =23(1+t )32|100=23(1132-1). 答案:23(1132-1) 9.计算曲线y =x 2-2x +3与直线y =x +3所围成图形的面积.解:由⎩⎪⎨⎪⎧ y =x +3,y =x 2-2x +3, 解得x =0或x =3.如图.因此所求图形的面积为S =⎠⎛03(x +3)d x -⎠⎛03(x 2-2x +3)d x=⎠⎛03[(x +3)-(x 2-2x +3)]d x =⎠⎛03(-x 2+3x )d x =(-13x 3+32x 2)|30=92. 10.A 、B 两站相距7.2 km ,一辆电车从A 站开往B 站,电车开出t s 后到达途中C 点,这一段的速度为1.2t m/s ,到C 点的速度为24 m/s ,从C 点到B 站前的D 点以等速行驶,从D 点开始刹车,经t s 后,速度为(24-1.2t ) m/s ,在B 站恰好停车,试求:(1)A ,C 间的距离;(2)B ,D 间的距离.解:(1)设A 到C 的时间为t 1s ,则1.2t 1=24,解得t 1=20.则AC =⎠⎛0201.2t d t =0.6t 2|200=240(m). 即A ,C 间的距离为240 m.(2)设D 到B 的时间为t 2 s ,则24-1.2t 2=0,解得t 2=20,则BD =⎠⎛020(24-1.2t )d t =(24t -0.6t 2)|200=240(m). 即B ,D 间的距离为240 m.[高考水平训练]1.有一横截面面积为4 cm 2的水管控制往外流水,打开水管后t 秒末的流速为v (t )=6t -t 2(单位:cm/s)(0≤t ≤6).则t =0到t =6这段时间内流出的水量为( ) A .36 cm 3B .72 cm 3C .108 cm 3D .144 cm 3解析:选D .由题意可得,t =0到t =6这段时间内流出的水量V =⎠⎛064(6t -t 2)d t =4⎠⎛06(6t -t 2)d t=4(3t 2-13t 3)|60=144(cm 3). 故t =0到t =6这段时间内流出的水量为144 cm 3.2.(2014·高考山东卷)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A .2 2B .4 2C .2D .4解析:选D .令4x =x 3,解得x =0或x =±2,∴S =⎠⎛02(4x -x 3)=(2x 2-x 44)|20=8-4=4,故选D . 3.在底面积为S 的圆柱形容器中盛有一定量的气体,在等温条件下,由于气体的膨胀,把容器中的一个活塞(面积为S )从点a 处推到b 处,计算在移动过程中,气体压力所做的功.解:由物理学知识易得,压强p 与体积V 的乘积是常数k ,即pV =k .∵V =xS (x 指活塞与底的距离),∴p =k V =k xS. ∴作用在活塞上的力F =p ·S =k xS ·S =k x. ∴所做的功W =⎠⎛ab k x d x =k ·ln x |b a =k ln b a . 4.设点P 在曲线y =x 2上,从原点向A (2,4)移动,如果直线OP ,曲线y =x 2及直线x =2所围成的面积分别记为S 1、S 2.(1)当S 1=S 2时,求点P 的坐标;(2)当S 1+S 2有最小值时,求点P 的坐标和最小值. 解:(1)设点P 的横坐标为t (0<t <2),则P 点的坐标为(t ,t 2),直线OP 的方程为y =tx .S 1=⎠⎛0t (tx -x 2)d x =16t 3, S 2=⎠⎛t2(x 2-tx )d x =83-2t +16t 3. 因为S 1=S 2, 所以t =43,点P 的坐标为(43,169). (2)S =S 1+S 2=16t 3+83-2t +16t 3=13t 3-2t +83, S ′=t 2-2,令S ′=0得t 2-2=0.∵0<t <2,∴t =2,因为0<t <2时,S ′<0;2<t <2时,S ′>0. 所以,当t =2时,S 1+S 2有最小值83-423,此时点P 的坐标为(2,2).。
定积分的简单应用(1)
热身练习
用定积分表示下列图形的面积 1
y
y = 1− x
1
x
2
-1
o
首页
上页
下页
返回
热身练习
2
−π
y
y = sin x
0
π
x
首页
返回 上页 下页
返回
巩固训练
计算由曲线 y = x2 与 y = x所围图形的面积
解:作出草图,所求面积为阴影部分的面积 作出草图,
y2 = x 解方程组 y = x 2 得交点横坐标为 x = 0 及 x = 1
首页
上页
下页
返回
首页
上页
下页
返回
几何意义
y
当 f (x) ≥ 0,定积分 ,
y = f ( x)
∫
b
a
f (x)dx
0 a
b
x
表示曲线 y = f (x),直线 x = a,
x = b和 x 轴所围成的曲边梯形 和
的面积
首页
上页
下页
返回
几何意义
y 当函数 f (x) ≤ 0 , 定积分 a b x
定积分的简单应用
用定积分计算平面图形的面积
授课人:崔志会 授课人 崔志会
首页
上页
下页
返回
问题情境(复习引入 问题情境 复习引入 )
的几何意义是什么? 1、 f ( x )dx 的几何意义是什么? ∫
b a
2、微积分基本定理是什么? 微积分基本定理是什么?
1
首页
上页
下页
返回
范例
1、 计算:由曲线 f ( x ) = − x 2 ,直线 、 计算: y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分的简单应用
1、设235111111,,a dx b dx c dx x x x ===⎰⎰⎰,则下列关系式成立的是( ) A .235a b c << B .325b a c << C .523c a b << D .253a c b <<
2、由曲线sin ,cos y x y x ==与直线0,2x x π
==所围成的平面图形(图1中的阴影部分)
的面积是( )
A .1
B .
4π C .22
D .222- 3、设函数n a x x f )()(+=,其中()()
,300,cos 6/2
0-==⎰f f xdx n π则()x f 的展开式中4x 的系数为( )
4、曲线y =x 2和直线x =0,x =1,y =14所围成的图形(阴影部分)的面积为( )
5.以初速度40 m/s 竖直向上抛一物体,t 秒时刻的速度v =40-10t 2,则此物体达到最高时的高度为( ) m m m m
6、设函数f (x )=ax 2+b (a ≠0),若∫30f (x )d x =3f (x 0),则x 0等于( )
A .±1 C .± 3 D .2
7、12
2)x x x dx --⎰(等于( ) A .2
4π- B. 2
2π- C. 12π- D. 14
π- 8.函数F (x )=⎠⎛0
x t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0和最小值-323
C .有最小值-323,无最大值
D .既无最大值也无最小值
9、计算20π⎰
sin 2x d x =_________________;∫32⎝ ⎛⎭⎪⎫x +1x 2d x=___________________; ∫20|x -1|d x=_________________;20π⎰1-sin 2x d x=__________________. 10、若 11(2)3ln 2(1)a x dx a x
+=+>⎰,则a 的值是_____________ ; 11、.如图,在矩形ABCD 中,AB =2.AD =3,AB 中点为E ,点F ,G 分别在线段AD ,
BC 上随机运动,则∠FEG 为锐角的概率为 。
12、当x ∈R ,|x|<1时,有如右表达式:1+x +x 2+…+x n +…=11-x
. 两边同时积分得:∫1201dx +∫120xdx +∫120x 2dx +…+∫120x n dx +…=∫12011-x
dx , 从而得到如右等式:1×12+12×⎝⎛⎭⎫12+13×⎝⎛⎭⎫12+…+1n +1×⎝⎛⎭
⎫12+…=ln 2. 请根据以上材料所蕴含的数学思想方法,计算:C 0n ×12+12C 1n ×122+13C 2n ×123+…+1n +1C n n ×⎝⎛⎭
⎫12=__________. 13.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.
14.如图,设点P 从原点沿曲线y =x 2向点A (2,4)移动,直线OP 与曲线y =x 2围成图形的面积为S 1,直线OP 与曲线y =x 2及直线x =2围成图形的面积为S 2,若S 1=S 2,求点P 的坐标.
15.一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度t t t v ++
-=1555)((单位:m/s )紧急刹车至停止。
求:
(I )从开始紧急刹车到火车完全停止所经过的时间;
(Ⅱ)紧急刹车后火车运行的路程。