压杆临界力的计算公式

合集下载

材料力学10压杆稳定_2经验公式

材料力学10压杆稳定_2经验公式
其中,直线公式适用的柔度的界限值 s = (a-s) / b,为材料常数
这类杆称为中长杆(或中柔度杆),亦即直线公式适用于中长杆 (或中柔度杆)
说明: 当 ≤ s,称为粗短杆,则应按强度问题处理。
三、临界应力总图
压杆的临界应力 cr 可视作压杆柔度 的分段函数,即
π2E 2
cr
查表得 a = 461 MPa、b = 2.567 MPa
临界应力 临界力
cr a b 461 2.567 64.7 294.9 MPa Fcr cr A 162.7 kN
3)由于连杆在 x-y、x-z 两个平面内的柔度 z = 64.7、y = 57.4 比

π 2 EI min
0.7l 2
870 kN
2)两端固定但可沿轴向相对移动
长度因数 = 0.5, 立柱柔度
3600
zz
s


l
imin

0.5 3600 24
75 p
此时,立柱为中柔度杆,应用直线公式计算其临界力
由表 10-2 查得 a = 304 MPa,b = 1.12 MPa
临界应力 临界力
cr a b 304 1.12 75 220 MPa Fcr cr A 220 48.541 1068 kN
[例2] 图示连杆,已知材料为优质碳钢,弹性模量 E = 210×109 GPa, 屈服极限 s = 306 MPa。试确定该连杆的临界力Fcr ,并说明横截面的 设计是否合理。
解: 由于连杆在两 个方向上的约束情 况不同,故应分别 计算连杆在两个纵 向对称平面内的柔 度,柔度大的那个 平面即为失稳平面
1)计算柔度 在 x-y 平面(弯曲中性轴为 z 轴): 两端铰支

细长压杆的临界力公式—欧拉公式.

细长压杆的临界力公式—欧拉公式.

细长压杆的临界⼒公式—欧拉公式.10.2 细长压杆的临界⼒公式—欧拉公式⼀、两端铰⽀压杆的临界⼒图9—4为两端受压杆件,⼈们经过对不同长度(l ),不同截⾯(I ),不同材料(E )的压杆在内⼒不超过材料的⽐例极限时发⽣失稳的临界⼒P cr 研究得知: 22lPcr EI=π(9—1)式中:π—圆周率;E —材料的弹性摸量;l —杆件长度;I —杆件截⾯对⾏⼼主轴的惯性矩。

图9-4当杆端在各⽅向的约束情况相同时,压杆总是在抗弯刚度最⼩的纵向平⾯内失稳,所以(9-1)式中的惯性矩应取截⾯最⼩的形⼼惯性矩I min 。

瑞⼠科学家欧拉(L.Eular )早在18世纪,就对理想细长压杆在弹性范围的稳定性进⾏了研究。

从理论上证明了上述(9-1)式是正确的,因此(9-1)式⼜称为计算临界⼒的欧拉公式。

⼆、杆端⽀承对临界⼒的影响图9-5(a)(b)(c)(d)⼯程上常见的杆端⽀承形式主要有四种,如图9-5所⽰,欧拉进⼀步研究得出各种⽀承情况下的临界⼒。

如⼀端固定,⼀端⾃由的杆件,这种⽀承形式下压杆的临界⼒,只要在(9-1)式中以2l 代替l 即可。

()222l P cr EI=π(a )同理,可得两端固定⽀承的临界⼒为()225.0l P cr EI=π(b )⼀端固定,⼀端铰⽀压杆的临界⼒为 ()227.0l P cr EIπ(c )式(a ),(b),(c)和(9-1)可归纳为统⼀的表达式()22l P cr µπEI = (9-2)式中l µ称为压杆计算长度,µ称为长度系数,⼏种不同杆端⽀承的各µ值列于表9—1中,µ反映了杆端⽀承情况对临界⼒的影响。

表9-1 各种杆端⽀承压杆的长度系数图例9.1 图⽰轴⼼受压杆,截⾯⾯积为10mm ?20mm 。

已知其为细长杆,弹性模量E=200GPa ,试计算其临界⼒。

2m20图9-6单位:mm解:由杆件的约束形式可知:7.0=µ4333min1067.112102012mm hb I I y ?=?===临界⼒:223320010 1.67101076.2 1.076()(0.7 2.510)cr EI P N kN l ππµ====?? 三、临界应⼒和柔度在临界⼒的作⽤下,细长压杆横截⾯上的平均应⼒叫做压杆的临界应⼒,⽤cr σ表⽰。

工程力学28-压杆的临界应力

工程力学28-压杆的临界应力
件;临界应力图的绘制及运用临界应力图判断 杆件属于哪类杆件 • 掌握:不同约束条件下杆件柔度和临界应力的 计算
——重点
(1) P cr S时: cr 临界a应力总b图
cr
a b
s
a s b
s
s p称为中柔度杆,用经验公式求其临界应力。
(2) S 时: cr S
S 称为小柔度杆,其临界应力为屈服极限。
目录
4
总结:
•压杆柔度
l μ的四种取值情况
i
i
I A
•临界柔度
P
2E P
9-
与长度、截面性质、约束条件有关
目录
4
2
2.欧拉公式的适用范围 着眼点——临界应力在线弹性内(小于比例极限)
cr
2E 2
P
2E P
P
P 时称为大柔度杆(或长细杆),用欧拉公式求临界力;
P 时称为中、小柔度杆,不能用欧拉公式求临界力。
3 目录
3.经验公式、临界应力总图
直线型经验公式
32. 压杆的临界应力
1.临界应力和柔度
(1)临界应力:压杆处于临界状态时横截面上的平均应力
Fcr cr A (2)细长压杆的临界应力:
cr
Fcr A
2EI (E 2
即: cr
(3)柔度:
l i
2E 2
i I — 惯性半径
A
— —杆的柔度(或长细比)
P 比例极限
•临界应力
s
a s b
s 屈服极限
P
(大柔度杆) cr
2E 2
欧拉公式
S P (中柔度杆)cr a b直线公式
s (小柔度杆) cr s 强度问题

材料力学压杆稳定第3节 欧拉公式及经验公式

材料力学压杆稳定第3节 欧拉公式及经验公式

S
P

2、抛物线型经验公式
在工程实际中,对于中、小柔度压杆的临界应力计 算,也有建议采用抛物线型经验公式的,此公式为
cr a1 b12
式中 a1 、b1 与是与材料
有关的常数,其单位是
MPa。与前式中的 a 、
b 值是不同。
根据欧拉公式与抛物线 经验公式,得低合金结
构钢等压杆的 cr总图。
定计算中的一个重要综合参数。
• 如果压杆在不同的纵向平面内具有不同的柔度值, 由于压杆失稳首先发生在柔度最大的纵向平面内。 因此,压杆的临界应力应按柔度的最大值计算。
二、欧拉公式的适用范围
欧拉公式是在材料符合胡克定律条件下,即在线弹
性范围内,推导出来的。因此只有当cr p 时欧拉
公式才适用,即
临界应力形式 的欧拉公式
临界应力形式 的欧拉公式
cr

2E 2
式中柔度 是一个无量纲的量,它综合反映了压杆
的长度 l 、杆端的约束以及截面尺寸对临界应力 cr
的影响。对于一定材料的压杆,其临界应力仅与柔
度 有关, 值越大,则压杆越细长,临界应力 cr 值也越小,压杆越容易失稳。所以柔度 是压杆稳
cr

2E 2
p

P
E
P
大柔度杆或细长杆:对于结构钢的 p 2108 Pa、 E 21011Pa,则由上式可算得欧拉公式的适用
范围为 100;同理对于铸铁,欧拉公式的适用 范围为 80 。这类杆称为大柔度杆或细长杆。
三、经验公式
若压杆的柔度 P,则这种压杆的临界力不能再
cr a1 b12
cr

2E 2

细长压杆的临界压力欧拉公式

细长压杆的临界压力欧拉公式
(l)2
(2)
Fc r正 Fc r圆
π2EI正
( l)2
π2 EI圆
I正 I圆
a4

12 πd 4
( l)2
64

πd 2 4
2


12 πd 4
64
π 3
例2:图示两桁架中各杆的材料和截面均相同,设 F1和F2 分别为这两个
桁架稳定的最大载荷,则
(A) F1 = F2;

π2EI
( l )2
称为长度因数,l 称为相当长度
π2EI (0.5l ) 2
0.5

Fc r
π2EI (0.7l ) 2
0.7

Fc r
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~
π2EI (2l ) 2
2

Fc r
π2EI l2
1

Fc r
例1:圆截面的细长压杆,材料、杆长和杆端约束保持不变,若将压杆的
直径缩小一半,则其临界力为原压杆的多少倍?若将压杆的横截面改变为面
积相同的正方形截面,则其临界力为原压杆的多少倍?
解:(1)
Fc r

π2EI
(l)2

π2E πd 4 64
第一讲 基本概念与欧拉公式
一:压杆稳定的概念
钢板尺:一端固 定 一端自由
Fcr :临界压力
二:细长压杆的临界压力
一、两端铰支细长压杆的临界压力
M (x) F w
EI w M (x) F w

材料力学压杆稳定第2节 细长压杆的临界载荷

材料力学压杆稳定第2节 细长压杆的临界载荷
解:查表 7-1 得 0.5
y
h
z
(1)截面对 y、z 轴的惯性矩分别为
b
Iy

hb3 12

100 643 12
m4
2.18106 m4
(1)截面对 y、z 轴的惯性矩分别为:
Iy

hb3 12

2.18106 m4
Iy

bh3 12
5.33106 m4
由于 I y Iz ,故应该将 I y 代入公式,得到
7
N
107 kN
例7-4 有一矩形截面压杆如图所示,两端固定, 但一端可沿轴向相对移动,材料为钢,已知弹性模量
E 200GPa,杆长 l 8m。 (1)当截面尺寸为b 64mm、h
100mm时,试计算压杆的临界载荷;
(2)若截面尺寸为h b 80mm,
此时压杆的临界载荷为多少?
压杆的横截面为圆形,其直径 d 60mm。
Fcr
求该压杆的临界载荷 。
解:查表 7-1 得 0.7
压杆截面 的惯性矩
Iy

d 4
64


0.064 64
m4
6.36107 m4
Fcr

2EI (l)2

3.14
2

210 109 6.36 (0.7 5)2
10
y
A (D2 d 2 ) bh 2b2
(20 2 16 2 ) mm 2 2b2
h
z
b 7.5 mm, h 15 mm
压杆横截面的惯性矩为
b
Iy

hb3 12

压杆临界力的计算公式

压杆临界力的计算公式

压杆临界力的计算公式压杆是一种常见的结构元件,常用于支撑和稳定物体或构件。

在设计和使用压杆时,需要确定其临界力,以确保结构的安全和可靠性。

压杆临界力的计算公式是压杆弹性稳定性理论的基础,可以通过以下两种方法进行计算:欧拉理论和约化截面方法。

一、欧拉理论欧拉理论是压杆临界力计算中最常用的方法,它基于对杆件弯曲和稳定性失效模式的分析。

根据杆件的两个主要失效模式,分别为弯曲和扭曲失效。

当压杆受外力作用时,其会出现弯曲失效。

欧拉理论中,弯曲失效的计算公式如下:Pcr = [(π^2 * E * I) / (K * L)^2]其中,Pcr为压杆临界力(单位为N或kg),E为材料的弹性模量(单位为N/m^2或Pa),I为压杆的截面转动惯量(单位为m^4),K为压杆的约束条件系数,L为压杆长度(单位为m)。

约束条件系数K的取值与杆件的边界条件有关。

对于两个端部固定的压杆,K为1;对于一个端部固定、一个端部自由的压杆,K为2当压杆长度较短或杆件较细时,可能发生扭曲失效。

扭曲失效的临界力计算公式如下:Pcr = [(π^2 * G * J) / (K * L)^2]其中,Pcr为压杆临界力(单位为N或kg),G为材料的剪切模量(单位为N/m^2或Pa),J为压杆的极值惯量(单位为m^4)。

约束条件系数K的取值与杆件的边界条件有关。

二、约化截面方法约化截面方法是另一种常用的计算压杆临界力的方法,它考虑了截面的纵向应力和弯曲应力分布情况,并将压杆截面的有效面积进行了约化处理。

约化截面方法的计算公式如下:Pcr = Fc * A其中,Pcr为压杆临界力(单位为N或kg),Fc为约化截面的抗压强度(单位为N/m^2或Pa),A为压杆截面的有效面积(单位为m^2)。

约化截面的抗压强度Fc可以根据压杆所使用的材料和截面形状进行查表或计算。

需要注意的是,欧拉理论和约化截面方法都是理论模型,实际工程中应该根据实际情况选择合适的安全系数。

压杆临界力的计算公式[整理版]

压杆临界力的计算公式[整理版]

压杆临界力的计算公式:悬臂梁端部的最大位移为:5抗震概念设计:(1)选择对抗震有利的场地,开阔平坦密实均匀中硬土地段;(2)建筑物形状力求简单、规则,质量中心和刚度中心靠近,以免地震发生扭转和应力集中而形成薄弱环节;(3)选择技术先进经济合理的抗震结构体系;(4)保证结构整体性,结构和连接部位具有较好的延性;(5)选择抗震性能较好的材料;(6)非结构构件应与承重结构有可靠的连接以满足抗震要求。

1)多层砌体房屋设构造柱;设圈梁,并与构造柱相连;加强墙体的连接,楼板和梁应有足够的长度和可靠连接;加强楼梯间整体性。

(2)框架结构①把框架设计成延性框架,遵守强柱、强节点、强锚固,避免短柱、加强角柱,框架沿高度不宜突变,避免出现薄弱层;②控制最小配筋率,限制配筋最小直径;③受力筋锚固适当加长,节点处箍筋的适当加密。

1楼梯的梯段净宽应根据建筑使用的特征,一般按每股人流为0.55+(0~0.15)m的人流股数确定,并不应少于两股人流。

2住宅套内楼梯的梯段净宽,当一边临空时,不应小于0.75m;当两侧有墙时,不应小于0.9m。

套内楼梯的度不应大于0.20m,扇形踏步转角距扶手边0.25m处,宽度不应小于0.22m。

3楼梯休息平台宽度应大于或等于梯段宽度;楼梯踏步的宽度b和高度h的关系应满足:2h+b=600~620mm;每个梯段的踏步一般不应超过18级,亦不应少于3级。

4楼梯平台上部及下部过道处的净高不应小于2m,梯段净高不应小于2.20m。

5室内楼梯扶手高度自踏步前缘线量起不宜小于0.90m。

楼梯水平段栏杆长度大于0.50m时,其扶手高度不应小于1.05m。

7、建筑工程质量不符合要求时的处理:(1)经返工重做或更换器具、设备的检验批,应重新进行验收;(2)经有资质的检测单位检测鉴定能够达到设计要求的检验批,应予以验收;(3)经有资质的检测单位鉴定达不到设计要求,但经原设计单位核算认可能够满足结构安全和使用功能要求的检验批,可予以验收;(4)经返修或加固处理的分部、分项工程,虽然改变外形尺寸但仍能满足安全使用要求,可按技术处理方案和协商文件进行验收。

压杆稳定计算简介

压杆稳定计算简介
式中的系数j为折减系数,它决定于压杆的材 料和柔度,折减系数j反映了柔度对压杆稳 定性的影响。j值可以从折减系数表中查得。
压杆的稳定条件为
p j[ ]
A
9.5 压杆稳定计算简介
了解压杆稳定的概念。 熟悉临界力和欧拉公式的计算。 掌握压杆稳定的校核。
一、临界压力和欧拉公式
杆件所受压力逐渐增加到某个限度时,压杆将 由稳定状态转化为不稳定状态。这个压力的限
度称为临界压力Pcr。它是压杆保持直线稳定形
状时所能承受的最小压力。
欧拉公式
pcr
2EI ( L) 2
1、熏烟的成分及作用
熏烟的成分很复杂,由气体、液体、固体微粒组成 的混合物,因熏材种类和熏烟的产生温度不同而不同, 且其状态和变化迅速,一般认为熏烟中最重要的成分是 酚、醇、有机酸、羰基化合物和烃类等。
2、熏制加工目的
1、赋予制品特殊的烟熏风味,增加香味 2、使制品外观产生特有的烟熏色,对加硝制品有促进发 色的作用 3、杀菌消毒,防止腐败变质,使制品耐贮藏
醇类:
木材熏烟中的醇种类繁多,最常见的为甲醇,又称木 醇,熏烟中还有伯醇、仲醇和叔醇等,为挥发性物质的载 体,杀菌能力较弱。
3、影响熏制的因素
熏烟质量
熏制的作用取决于熏烟质量如熏烟中成分种类和浓度等,而熏烟质量 的高低与燃料种类、燃烧温度等产生方式和条件有关。
熏制温度
熏制时温度过低,不会得到预期的熏制效果。但温度过高,会由于脂 肪融化、肉的收缩,达不到制品质量要求。常用的熏制温度为35~50℃, 一般熏制时间为12~48h。
EI-抗弯刚度 ;L-压杆的长度
μ-长度(支座)系数 ;固定 一端固定 两端铰支 一端固定
束情况
一端铰支

临界力和欧拉公式定理

临界力和欧拉公式定理

第二节临界力和欧拉公式浏览字体设置:- 11pt+ 10pt12pt14pt16pt放入我的网络收藏夹第二节临界力和欧拉公式杆件所受压力逐渐增加到某个限度时,压杆将由稳定状态转化为不稳定状态。

这个压力的限度称为临界力P cr。

它是压杆保持直线稳定形状时所能承受的最小压力。

为了计算压杆的稳定性,就要确定临界力的大小。

通过实验和理论推导,压杆临界力与各个因素有关:(1) 压杆的材料,P cr与材料的弹性模量E成正比,即(2)压杆横截面的形状和尺寸,P cr与压杆横截面的轴惯性矩J成正比,即(3) 压杆的长度,P cr与长度的平方l2成反比,即(4) 压杆两端的支座形式有关,用一个系数表示,称为支座系数,列于表1-10。

表1-10 压杆长度系数杆端约束情况两端固定一端固定一端铰支两端铰支一端固定一端自由长度系数0.5 ≈0.7 1.0 2.0压杆的挠曲线形状为计算方便,写成细长中心受压直杆临界力的欧拉公式对于两端铰支的细长中心受压直杆,当其在临界力cr P,的作用下处于不稳定直线形式的平衡状态,若其材料仍处于理想的线弹性范围内,从力学的观点讲,这类稳定问题称为线弹性稳定问题。

这是压杆稳定问题中最简单的一种。

由临界力的定义可知,中心受压直杆只有在临界力的作用下才有可能在微弯形态下维持平衡(见图7-3)。

现假设压杆轴线在临界力cr P作用下呈图7-3(b)所示的曲线形态。

在图示的坐标系下,压力cr P取正值,位移忙V=f(x)以沿y轴正方向为正,弯矩的正负号规定同2.3节。

压杆任一x 截面上弯矩为将式(7-1a)代入挠曲线的近似微分方程(6-8h)中,并利用压杆支承处的边界条件就可求出压杆的挠曲线的表达式,并进一步导出压杆承受的临界力crP 。

这个临界力实际也就是使压杆维持微弯平衡的..........最小压力....。

将式(7-1a)代入公式(6-8h)可得其中I 为压杆横截面的最小形心主惯性矩。

令公式(7-1b)可改写为如下形式的二阶常系数线性微分方程其通解为式中A 、B 、k 三个待定常数可利用该挠曲线的三个边界条件来确定。

材料力学压杆稳定概念欧拉公式计算临界力课件

材料力学压杆稳定概念欧拉公式计算临界力课件

杆的长度远大于横截面尺 寸,且横截面尺寸保持不 变。
杆的材料需满足胡克定律 ,即应力与应变成线性关 系。
欧拉公式在压杆稳定中的应用
01
通过欧拉公式,可以计算出压杆在临界状态下的临界力,即压杆失稳 前的最大承载力。
02
临界力的大小与压杆的材料、截面形状、尺寸等因素有关,是评估压 杆稳定性能的重要指标。
通过优化载荷分布,可以改善压杆的受力状态,从而提高稳定性。
THANKS
感谢观看
详细描述
理想压杆的临界力不受压杆重量和惯性影响,因此在实际应用中 ,需要考虑这些因素对临界力的影响。
实际压杆临界力计算
总结词
实际压杆是指考虑自身重量和惯 性影响的压杆,其临界力计算需 考虑这些因素。
总结词
实际压杆的临界力受到自身重量 和惯性影响,因此需要考虑这些 因素对临界力的影响。
详细描述
在计算实际压杆的临界力时,需 要考虑压杆自重产生的挠度以及 横截面面积和长度等因素的影响 。
02
推导过程中,考虑了压杆的弯曲变形和轴向压缩变形,利用能
量守恒和弹性力学的基本方程,最终得到了欧拉公式。
推导过程涉及了数学和物理的相关知识,需要一定的专业背景
03
和理论基础。
欧拉公式应用条件
欧拉公式适用于理想弹性 材料制成的细长等截面直 杆。
杆的受力方式为两端受压 ,且轴向压力逐渐增加直 到临界状态。
材料力学压杆稳定概念欧 拉公式计算临界力课件
• 压杆稳定概念 • 欧拉公式 • 临界力计算 • 压杆稳定性的影响因素 • 提高压杆稳定性的措施
01
压杆稳定概念
压杆失稳现象
01
02
03
弯曲变形
当压杆受到压力时,可能 会发生弯曲变形,导致承 载能力下降。

怎样推导压杆的临界力和临界应力公式.

怎样推导压杆的临界力和临界应力公式.

06、基本知识 怎样推导压杆的临界力和临界应力公式(供参考) 同学们学习下面内容后,一定要向老师回信(849896803@ ),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。

回信请注明班级和学号的后面三位数。

1* 问题的提出及其对策 (1)1.1 问题的提出及其对策 ........................................................................................................ 1 1.2 压杆稳定分析概述——与强度、刚度分析对比 ............................................................ 2 2压杆临界压力F cr 的计算公式 ................................................................................................. 3 2.1 压杆稳定的力学模型——弯曲平衡 ................................................................................ 3 2.2梁的平衡理论——梁的挠曲微分方程 ............................................................................. 4 2.3 按梁的平衡理论分析两端铰支的压杆临界压力 ............................................................ 6 2.4 按梁的平衡理论分析一端固定一端自由的压杆临界压力 ............................................ 8 2.5 按梁的平衡理论分析一端固定一端铰支的压杆临界压力 .......................................... 10 2.6 按梁的平衡理论分析两端固定的压杆临界压力 .......................................................... 14 2.7 将四种理想压杆模型的临界力公式及其推导分析图示的汇总 .. (18)1* 问题的提出及其对策1.1 问题的提出及其对策试计算长度为400mm ,宽度为10mm ,厚度为1mm 的钢锯条,在一端固定、一端铰支的情况下,许用的轴向压力。

工程力学第3节 欧拉公式及经验公式

工程力学第3节 欧拉公式及经验公式
一、临界应力与压杆柔度 压杆处于临界状态时,将压杆的临界载荷除以横 截面面积 A,得到横截面上的应力,称为压杆的临界 应力,用 cr 表示。由公式知:
Fcr 2 EI cr A ( l ) 2 A

i
I A
2 2 2 Ei E cr 2 l 2 ( l ) ( )
cr a1 b12
2 cr 2E
P

例11-5 3 根材料相同的圆形截面压杆,均为一端固 定、一端自由,如图所示,直径均为 d 100mm,皆 P 200 MPa, 由 Q235 钢制成,材料的 E 206 GPa, a 304 MPa, S 235 MPa, b 1.12 MPa。试求各杆 的临界载荷。
cr a b S
a S S b
注意:仅当压杆的柔度 S时,才能用上式求解! 例:对于 Q235 钢: S 235MPa ,a 304 MPa ,
b 1.12 MPa
a S 304 235 63 S 1.12 b
综述 (1)
对于由合金钢、铝合金、铸铁等制作的 压杆,根据其柔度可将压杆分为三类:
P 的压杆,称为大柔度杆或细长杆
由欧拉公式 计算其临界应力 (2)S
cr 2E p
2
P 的压杆,称为中柔度杆或中长杆
由直线型经验公 式计算临界应力
cr a b
中柔度杆的 在 60 ~ 100 之间。实验指出,这种压 杆的破坏性质接近于大柔度杆,也有较明显的失稳 现象。
三、经验公式 若压杆的柔度 P,则这种压杆的临界力不能再 按欧拉公式计算。对于此类压杆,工程中通常采用 以实验结果为依据的经验公式来计算其临界应力。 1、直线型经验公式

压杆临界压力fcr的计算公式

压杆临界压力fcr的计算公式

压杆临界压力fcr的计算公式
压杆临界压力fcr的计算公式是根据美国工程学杂志《工程学杂志》(Engineering Science)上一篇2019年的文章所推导得出的。

该文章中,作者使用了一个称为“BRDF(辐射传输模型)”的模拟工具,来估算压杆周围的表面温度分布和表面辐射率。

压杆临界压力fcr的计算公式如下:
fcr = 0.85 * (0.5 * r3 - 0.25 * r22) + 0.3 * r1 其中,r1和r2分别是压杆两个接触点的距离,r3是压杆表面的面积。

这个公式可以理解为,压杆临界压力fcr是一个与压杆表面温度和接触点温度相关的非线性函数,它随着接触点温度的变化而变化。

当压杆表面温度接近临界温度时,压杆临界压力会逐渐增加,而当温度降下去时,压力会迅速下降。

这个公式可以用于设计和优化压杆的性质,以提高其安全性和效率。

临界力计算公式

临界力计算公式

临界力计算公式
临界力计算通常在结构工程和材料力学中指的是细长压杆的失稳临界载荷。

对于两端受不同约束条件的细长压杆,其临界力(也称为欧拉临界载荷)可以通过欧拉公式来计算:
欧拉公式如下:P_c=\frac{\pi^2EI}{(KL)^2}Pc=(KL)2π2EI
其中:
P_cPc是临界力或临界载荷。

EE是材料的弹性模量。

II是截面关于主轴的转动惯量。

KK是长度因数或临界应力系数,其值取决于杆件两端的约束条件(例如两端固定时K=1K=1,两端铰接时K=\muK=μ,其中\muμ是长度系数,根据边界条件取0.5、0.7、1或2等)。

LL是杆件的无支长度。

具体的长度系数μ值对应不同的边界条件如前所述:
两端固定:\mu=0.5μ=0.5
一端固定另一端铰支:\mu=0.7μ=0.7
两端铰支:\mu=1μ=1
一端固定另一端自由:\mu=2μ=2
使用欧拉公式计算临界力的前提是该压杆满足细长杆假设(即其长度远大于横截面尺寸,并且工作时处于小应变范围内),且临界应力不超过材料的比例极限。

杠杆的压杆稳定性计算公式

杠杆的压杆稳定性计算公式

杠杆的压杆稳定性计算公式引言。

在工程学和物理学中,杠杆是一种简单机械装置,用于将力或运动从一个地方传递到另一个地方。

杠杆的稳定性是一个重要的问题,特别是在设计和建造大型结构时。

在本文中,我们将讨论杠杆的压杆稳定性计算公式,以帮助工程师和设计师更好地理解和评估杠杆的稳定性。

杠杆的基本原理。

杠杆是由一个固定点、一个支点和一个负载点组成的简单机械装置。

当一个力作用在支点上时,它会产生一个力矩,这个力矩会使负载点产生一个力,从而产生一个力矩。

根据杠杆的长度和力的大小,可以计算出所需的力矩。

杠杆的稳定性。

杠杆的稳定性是指在外部力作用下,杠杆是否会发生失稳。

失稳可能导致结构的倒塌或破坏,因此对杠杆的稳定性进行评估是非常重要的。

在设计和建造大型结构时,必须考虑杠杆的稳定性,以确保结构的安全性和稳定性。

杠杆的压杆稳定性计算公式。

杠杆的压杆稳定性可以通过以下公式来计算:Pcr = (π² E I) / (L²)。

其中,Pcr表示临界压力,E表示弹性模量,I表示截面惯性矩,L表示杠杆的长度。

这个公式是根据欧拉公式推导出来的,欧拉公式描述了在外部压力作用下,杆件会发生失稳的情况。

根据这个公式,可以计算出杠杆在外部压力作用下的临界压力,从而评估杠杆的稳定性。

应用举例。

假设有一根长度为2m的钢杆,截面的惯性矩为1000mm^4,弹性模量为200GPa。

我们可以使用上述公式来计算这根钢杆在外部压力作用下的临界压力。

根据公式,临界压力Pcr为:Pcr = (π² 200GPa 1000mm^4) / (2m)²。

= 98.97MPa。

这说明在外部压力小于98.97MPa时,这根钢杆是稳定的。

如果外部压力大于这个数值,钢杆就可能发生失稳。

因此,工程师和设计师可以根据这个计算结果来评估和设计结构,以确保杠杆的稳定性。

结论。

杠杆的稳定性是一个重要的问题,在工程学和物理学中具有广泛的应用。

通过使用杠杆的压杆稳定性计算公式,工程师和设计师可以更好地评估和设计结构,确保结构的安全性和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压杆临界力的计算公式
1.欧拉公式:
欧拉公式是压杆稳定性分析中最常用的一种方法。

根据欧拉公式,压杆的临界力可以通过以下公式计算:
Pcr = ((π^2)EI) / ((KL)^2)
其中,Pcr表示压杆的临界力,E表示材料的弹性模量,I表示压杆的截面面积惯性矩,K表示杆的端部支座的系数,L表示杆的长度。

欧拉公式适用于较细长的压杆,在其它条件相同的情况下,杆的截面越大,临界力就越大;杆的长度越长,临界力就越小。

同时,欧拉公式适用于直线变形的杆,不能用于弯曲变形。

2.莱昂哈德公式:
莱昂哈德公式是考虑了杆的端部支座的影响,在欧拉公式的基础上进行修正的公式。

该公式计算压杆的临界力如下:
Pcr = ((KLEI) / (r + ((2L)/π)) ^ 2)
其中,Pcr表示压杆的临界力,E表示材料的弹性模量,I表示压杆的截面面积惯性矩,K表示杆的端部支座的系数,L表示杆的长度,r表示杆的端部支座的半径。

3. Adomian分解法:
Adomian分解法是一种近似求解非线性微分方程的方法,在压杆临界力的计算中也有应用。

该方法通过将非线性方程分解为无穷级数的形式,然后将其逐级近似求解。

Adomian分解法的具体步骤如下:
-(1)将压杆的平衡方程进行分解:Mx''(x)+f(x)=0,其中,M表示压杆的弯矩,f(x)表示外力。

-(2)将平衡方程表示为无穷级数的形式:x''(x)=∑An(x)。

-(3)通过逐级近似求解无穷级数,得到压杆临界力。

Adomian分解法的优点是可以处理非线性问题,但是在具体应用中需要取不同级数的项进行求解,并选择适当的近似方法。

4.极限平衡法:
极限平衡法是一种通过平衡条件来确定压杆临界力的方法,它适用于复杂的压杆分析问题。

该方法的基本思想是,在压杆失稳之前,杆的初始形状必须满足平衡条件。

具体步骤如下:
-(1)假设杆的初始形状(如弯曲、扭转等)。

-(2)根据平衡条件计算外力和内力。

-(3)调整杆的形状,直到满足平衡条件。

-(4)根据调整后的形状计算压杆的临界力。

极限平衡法的优点是可以考虑复杂的形状和加载情况,但是需要通过试错法来获取满足平衡条件的初始形状。

总结:
压杆临界力的计算公式主要有欧拉公式、莱昂哈德公式、Adomian分解法和极限平衡法。

不同的计算方法适用于不同的压杆稳定性问题,选择合适的方法可以更准确地求解压杆临界力。

其中,欧拉公式和莱昂哈德公式是最常用的方法,适用于直线变形的压杆。

而Adomian分解法和极限平衡法适用于非线性问题和复杂形状的压杆分析。

相关文档
最新文档