大地坐标转空间直角坐标方法
大地坐标转空间直角坐标方法
大地坐标转空间直角坐标方法1.准备工作:在进行大地坐标转换之前,首先要明确所采用的基准椭球参数,并且将大地坐标系转换为所采用的基准椭球上的坐标。
通常采用的基准椭球有WGS84、北京54和CGCS2000等。
这些基准椭球都有自己的参数,如长半轴a、偏心率e等。
根据所采用的基准椭球的参数,可以计算出该基准椭球的第一偏心率的平方(e^2)和扁率(f)等重要参数。
2.大地坐标转换为大地球面坐标:大地坐标的表示方法通常为经纬度(经度、纬度和高程)。
将经度和纬度转换为弧度形式,通过正弦定理和余弦定理等基本几何关系,可以计算出大地坐标在基准椭球上的投影参数。
利用这些参数,可以将大地坐标转换为大地球面坐标。
3.大地球面坐标转换为空间直角坐标:大地球面坐标是指基于基准椭球的坐标系,它只考虑地球的曲率而不考虑地球的引力场。
为了将其转换为直角坐标系,需要引入地球的引力场因素。
一种常见的方法是采用摄动参数法。
摄动参数法是通过导引纬度和经度等参数,计算出地球的重力梯度和坐标变换矩阵,并利用这些参数将大地球面坐标转换为空间直角坐标。
4.空间直角坐标的后处理:在将大地坐标转换为空间直角坐标之后,还需要进行一些后处理工作,以满足具体应用的要求。
例如,需要确定一个局部坐标系的原点和方向,进行坐标轴旋转和缩放等操作。
这些后处理工作可以在计算中进行,也可以在实际应用中进行。
总结起来,大地坐标到空间直角坐标的转换过程包括准备工作、大地坐标转大地球面坐标和大地球面坐标转空间直角坐标三个步骤。
在每个步骤中,需要根据具体问题选择合适的算法和参数。
同时,还需要注意坐标系之间的转换精度和误差控制,以确保转换结果的准确性。
常用坐标系之间的关系与转换
7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。
同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。
对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。
现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。
同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。
、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5上式表明了 2种基本坐标系之间的关系。
加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。
空间大地坐标系与平面直角坐标系转换公式
§2.3.1 坐标系的分类之相礼和热创作正如后面所提及的,所谓坐标系指的是描绘空间地位的表达方式,即采取什么方法来暗示空间地位.人们为了描绘空间地位,采取了多种方法,从而也发生了分歧的坐标系,如直角坐标系、极坐标系等.在丈量中经常运用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角.某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来暗示.空间直角坐标系可用图2-3来暗示:图2-3 空间直角坐标系二、空间大地坐标系空间大地坐标系是采取大地经、纬度和大地高来描绘空间地位的.纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离.空间大地坐标系可用图2-4来暗示:图2-4空间大地坐标系三、立体直角坐标系立体直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标经过某种数学变换映射到立体上,这种变换又称为投影变换.投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等.在我国采取的是高斯-克吕格投影也称为高斯投影.UTM投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数分歧而已.高斯投影是一种横轴、椭圆柱面、等角投影.从几何意义上讲,是一种横轴椭圆柱正切投影.如图左侧所示,想象有一个椭圆柱面横套在椭球里面,并与某一子午线相切(此子午线称为地方子午线或轴子午线),椭球轴的中心轴CC’经过椭球中心而与地轴垂直.高斯投影满足以下两个条件:1、它是正形投影;2、地方子午线投影后应为x轴,且长度坚持不变.将地方子午线东西各肯定经差(一样平常为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯立体直角坐标系,如下图2-5右侧所示.图2-5 高斯投影x 方向指北,y 方向指东.可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔肯定的地区,另立地方子午线,采纳分带投影的法子.我国国家丈量规定采取六度带和三度带两种分带方法.六度带和三度带与地方子午线存在如下关系:366-N L =中; n L 33=中其中,N 、n 分别为6度带和3度带的带号.另外,为了防止y 出现负号,规定y 值以为地加上500000m ;又为了区别分歧投影带,后面还要冠以带号,如第20号六度带中,y=-200.25m ,则成果表中写为y 假定=20499799.75m.x 值在北半球总显正值,就无需改变其观测值了.1、空间直角坐标系与空间大地坐标系间的转换图2-6暗示了空间直角坐标系与空间大地坐标系之间的关系.图2-6 地球空间直角坐标系与大地坐标系在相反的基准下空间大地坐标系向空间直角坐标系的转换公式为:⎪⎭⎪⎬⎫+-=+=+=B H e N Z L B H N Y L B H N X sin ])1([sin cos )(cos cos )(2 (2-1)式中,W aN =,a 为椭球的长半轴,N 为椭球的卯酉圈曲率半径 a =6378.137km2222a b a e -=,e 为椭球的第一偏爱率,b 为椭球的短半轴 在相反的基准下空间直角坐标系向空间大地坐标系的转换公式为⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫-Φ=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+Φ=N B R H X Y arctg L W B Z ae tg arctg B cos cos sin 12(2-2) 式中2、空间坐标系与立体直角坐标系间的转换空间坐标系与立体直角坐标系间的转换采取的是投影变换的方法.在我国一样平常采取的是高斯投影.由于高斯投影和UTM 投影都是横轴墨卡托的特例,因此,高斯投影和UTM 投影都可以套用横轴墨卡托投影的投影公式.横轴墨卡托投影的投影的正反算公式可拜见有关材料,它们的区别在于轴子午线投影到立体上后,其长度的系数,对于高斯投影,系数为1,对于UTM 投影,其系数为.3、变动高程回化面的影响用户在建立地方独立坐标系时,偶然变动高程回化面,这将发生一个新椭球,这就必须计算新常数,新椭球常数按下列方法和步调进行:1) 新椭球是在国家坐标系的参考椭球上扩大构成的,它的扁率应与国家坐标系参考椭球的扁率相称,即a a ='. 2) 计算该坐标系地方地区的新椭球均匀曲率半径和新椭球长半轴.新椭球均匀曲率半径为:m mm m m m H B e e a H W a W e a H MN H R R +--=+-=+=+=22232sin 11)1('(2.10) 式中m H ───该地区均匀大地高;m B ───该地区的均匀纬度.新椭球的长半轴按下式计算:2221sin 1''e B e R a m--=(2.11)将新的椭球参数代入,就可以进行投影的正反计算了.二、坐标零碎的转换方法分歧坐标零碎的转换本质上是分歧基准间的转换,分歧基准间的转换方法有很多,其中最为经常运用的有布尔沙模型,又称为七参数转换法.七参数转换法是:设两空间直角坐标系间有七个转换参数:3 个平移参数()z y x ∆∆∆、3 个旋转参数()z y x εεε和 1 个尺度参数k .比方,由空间直角坐标系A 转换到空间直角坐标系B 可采取上面的公式:§2.3.4 GPS 丈量中经常运用的坐标零碎一、世界大地坐标系WGS-84WGS-84 坐标系是如今GPS 所采取的坐标零碎,GPS 所发布的星历参数和历书参数等都是基于此坐标零碎的.WGS-84 坐标零碎的全称是World Geodical System-84 (世界大地坐标系-84), 它是一个地心肠固坐标零碎.WGS-84 坐标零碎由美国国防部制图局建立,于1987 年取代了当时GPS 所采取的坐标零碎WGS-72 坐标零碎而成为如今GPS 所运用的坐标零碎.WGS-84 坐标系的坐标原点位于地球的质心,Z 轴指向BIH1984.0 定义的协议地球极方向,X 轴指向BIH1984.0 的启始子午面和赤道的交点,Y 轴与X 轴和Z 轴构成右手系.WGS-84 系所采取椭球参数为见表2.1.二、1954 年北京坐标系1954 年北京坐标系是我国如今广泛采取的大地丈量坐标系.该坐标系源自于原苏联采取过的1942 年普尔科夫坐标系.该坐标系采取的参考椭球是克拉索夫斯基椭球.该椭球的参数见表2.1.遗憾的是该椭球并未根据当时我国的地理观测材料进行重新定位,而是由前苏联西伯利亚地区的一等锁经我国的东北地区传算过来的,该坐标系的高程异常是从前苏联1955 年大地水准面重新平差的结果为起算值,按我国地理水准路线推算出来的,而高程又是以1956 年青岛验潮站的黄海均匀海水面为基准.由于当时条件的限定1954 年北京坐标系存在着很多缺陷次要表示在以下几个方面:1. 克拉索夫斯基椭球参数同当代精确的椭球参数的差别较大,而且不包含暗示地球物理特性的参数,因此给理论和实践工作带来了许多方便.2. 椭球定向不非常明白,椭球的短半轴既不指向国际通用的CIO 极,也不指向如今我国运用的JYD极.参考椭球面与我国大地水准面呈西高东低的零碎性倾斜,东部高程异常达60余米,最大达67 米.3. 该坐标零碎的大地点坐标是经过局部分区平差得到的.因此天下的地理大地操纵点实践上不克不及构成一个团体,区与区之间有较大的隙距,如在有的接合部中同一点在分歧区的坐标值相差1-2 米,分歧分区的尺度差别也很大,而且坐标传递是从东北到东南和东北,后一区是从前一区的最弱部作为坐标起算点,因此一等锁具有分明的坐标积存偏差.三、1980 年西安大地坐标系1978 年我国决定重新对天下地理大地网实施团体平差,而且建立新的国家大地坐标零碎.团体平差在新大地坐标零碎中进行,这个坐标零碎就是1980 年西安大地坐标零碎.1980 年西安大地坐标零碎所采取的地球椭球参数的四个几何和物理参数采取了IAG 1975 年的引荐值,见表2.1中的西安80.椭球的短轴平行于地球的自转轴(由地球质心指向1968.0 JYD 地极原点方向),起始子午面平行于格林尼治均匀地理子午面,椭球面同似大地水准面在我国境内符合最好,高程零碎以1956 年黄海均匀海水面为高程起算基准.四、几种经常运用的坐标零碎的几何和物理参数下表列出了几种经常运用的坐标零碎的几何和物理参数,用户必要时可以查阅:表 2.1 GPS 丈量中经常运用的坐标零碎的几何和物理参数§2.4 GPS高程零碎在丈量中经常运用的高程零碎有大地高零碎、正高零碎和正常高零碎.§2.4.1 大地高零碎大地高零碎是以参考椭球面为基准面的高程零碎,某点的大地高是该点到经过该点的参考椭球的法线与参考椭球面的交点间的距离.大地高也称为椭球高.大地高一样平常用符号H 暗示.大地高是一个纯几何量,不具有物理意义,同一个点在分歧的基准下具有分歧的大地高.通常,GPS接收机单点定位得到的高程为WGS-84下的大地高.§2.4.2 正高零碎正高零碎是以大地水准面为基准面的高程零碎,某点的正高是该点到经过该点的铅垂线与大地水准面的交点之间的距离.正高用符号 H g暗示.§2.4.3 正常高正常高零碎是以似大地水准面为基准的高程零碎,某点的正常高是该点到经过该点的铅垂线与似大地水准面的交点之间的距离,正常高用 H γ 暗示.§2.4.4高程零碎之间的转换关系大地水准面到参考椭球面的距离称为大地水准面差距,记为 h g ,大地高与正高之间的关系可以暗示为:正 高:g g h H H -=似大地水准面到参考椭球面的距离,称为高程异常,记为ζ.大地高与正常高之间的关系可以暗示为:正常高:ζγ-=H H高程之间的互相关系可以用下图2-7来暗示:图2-7 高程零碎间的互相关系。
空间直角坐标系与空间大地坐标系的相互转换及其C++源程序
空间直角坐标系与空间大地坐标系的相互转换1.空间直角坐标系/笛卡尔坐标系坐标轴相互正交的坐标系被称作笛卡尔坐标系。
三维笛卡尔坐标系也被称为空间直角坐标系。
在空间直角坐标系下,点的坐标可以用该点所对应的矢径在三个坐标轴上的投影长度来表示,只有确定了原地、三个坐标轴的指向和尺度,就定义了一个在三维空间描述点的位置的空间直角坐标系。
以椭球体中心O为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴构成右手坐标系O.XYZ,在该坐标系中,P点的位置用X,Y,Z表示。
在测量应用中,常将地球空间直角坐标系的坐标原点选在地球质心(地心坐标系)或参考椭球中心(参心坐标系),z轴指向地球北极,x轴指向起始子午面与地球赤道的交点,y轴垂直于XOZ面并构成右手坐标系。
空间直角坐标系2.空间大地坐标系由于空间直角坐标无法明确反映出点与地球之间的空间关系,为了解决这一问题,在测量中引入了大地基准,并据此定义了大地坐标系。
大地基准指的是用于定义地球参考椭球的一系列参数,包括如下常量:2.1椭球的大小和形状2.2椭球的短半轴的指向:通常与地球的平自转轴平息。
2.3椭球中心的位置:根据需要确定。
若为地心椭球,则其中心位于地球质心。
2.4本初子午线:通过固定平极和经度原点的天文子午线,通常为格林尼治子午线。
以大地基准为基础建立的坐标系被称为大地坐标系。
由于大地基准又以参考椭球为基准,因此,大地坐标系又被称为椭球坐标系。
大地坐标系是参心坐标系,其坐标原点位于参考椭球中心,以参考椭球面为基准面,用大地经度L、纬度B 和大地高H表示地面点位置。
过地面点P的子午面与起始子午面间的夹角叫P 点的大地经度。
由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0°~-180°)。
过P点的椭球法线与赤道面的夹角叫P点的大地纬度。
由赤道面起算,向北为正,叫北纬(0°~90°),向南为负,叫南纬(0°~-90°)。
大地、地心空间直角和球面三种坐标的转换
第一章大地坐标第一节大地坐标系统科技名词定义中文名称:大地坐标系英文名称:geodetic coordinate system定义:以参考椭球中心为原点、起始子午面和赤道面为基准面的地球坐标系。
应用学科:测绘学(一级学科);大地测量学(二级学科)大地坐标系(geodetic coordinate system)是大地测量中以参考椭球面为基准面建立起来的坐标系。
地面点的位置用大地经度、大地纬度和大地高度表示。
大地坐标系的确立包括选择一个椭球、对椭球进行定位和确定大地起算数据。
一个形状、大小和定位、定向都已确定的地球椭球叫参考椭球。
参考椭球一旦确定,则标志着大地坐标系已经建立。
大地坐标系亦称为地理坐标系。
大地坐标系是用来表述地球上点的位置的一种地区坐标系统。
它采用一个十分近似于地球自然形状的参考椭球作为描述和推算地面点位置和相互关系的基准面。
一个大地坐标系统必须明确定义其三个坐标轴的方向和其中心的位置。
通常人们用旋转椭球的短轴与某一规定的起始子午面分别平行干地球某时刻的平均自转轴和相应的真起始子午面来确定坐标轴的方向。
若使参考椭球中心与地球平均质心重合,则定义和建立了地心大地坐标系。
它是航天与远程武器和空间科学中各种定位测控测轨的依据。
若椭球表面与一个或几个国家的局部大地水准面吻合最好,则建立了一个国家或区域的局部大地坐标系。
大地坐标系中点的位置是以其大地坐标表示的,大地坐标均以椭球面的法线来定义。
其中,过某点的椭球面法线与椭球赤道面的交角为大地纬度;包含该法线和大地子午面与起始大地子午面的二面角为该点的大地经度;沿法线至椭球面的距离为该点的大地高。
大地纬度、大地经度和大地高分别用大写英文字母B、L、H表示。
大地坐标系是以地球椭球赤道面和大地起始子午面为起算面并依地球椭球面为参考面而建立的地球椭球面坐标系。
它是大地测量的基本坐标系,其大地经度L、大地纬度B和大地高H为此坐标系的3个坐标分量。
它包括地心大地坐标系和参心大地坐标系。
坐标系的转换
对于坐标系之间的转换,目前我们国家有以下几种:1、大地坐标(BLH)对平面直角坐标(XYZ);2、北京54全国80及WGS84坐标系的相互转换;3、任意两空间坐标系的转换。
坐标转换就是转换参数。
常用的方法有三参数法、四参数法和七参数法。
以下对上述三种情况作转换基本原理描述如下:1、大地坐标(BLH)对平面直角坐标(XYZ)常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。
椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。
一般的工程中3度带应用较为广泛。
对于中央子午线的确定的一般方法是:平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。
如x=3888888m,y=388888666m,则中央子午线的经度=38*3=114度。
另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。
确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。
2、北京54全国80及WGS84坐标系的相互转换这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。
其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。
由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。
对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。
当然若条件不许可,且有足够的重合点,也可以进行人工解算。
详细方法见第三类。
3、任意两空间坐标系的转换由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。
空间大地坐标系与平面直角坐标系转换公式
§2. 3.1坐标系的分类正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即釆用什么方法来表示空间位置。
人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。
在测量中常用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向超始子午面与赤道的交点,丫轴位于赤道面上且按右手系与X 轴呈90°夹角。
某点在空间中的坐标可用该点在此坐标系的各■个坐标轴上的投影来表示。
空间直角坐标系可用图2-3 来表TJT :图2-3空间直角坐标系二.空间大地坐标系空间大地坐标系是釆用大地经.纬皮和大地离来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角:经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地离是空间点沿参考椭球的法线方向到参考描球面的距离。
空间大地坐标系可用图2-4来表示:三.平面直角坐标系平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。
投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。
在我国釆用的是离斯一克吕格投影也称为商斯投影。
UTM 投影和离斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。
鬲斯投影是一种横轴.椭圆柱面、等角投影。
从几何意艾上讲,是一种横轴椭圆柱正切投影。
如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC'通过椭球中心而与地轴垂直。
爲斯投影满足以下两个条件:1、它是正形投影;2、中央子午线投影后应为x轴,且长度保持不变。
将中央子午线东西各一定经差(一般为6度或3度)范国内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下S 2-5右侧所示。
常用坐标系之间的关系与转换
7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系 大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。
同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。
对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。
现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。
同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。
、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;上式表明了 2种基本坐标系之间的关系。
BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。
大地、地心空间直角和球面三种坐标地转换
第一章大地坐标第一节大地坐标系统科技名词定义中文名称:大地坐标系英文名称:geodetic coordinate system定义:以参考椭球中心为原点、起始子午面和赤道面为基准面的地球坐标系。
应用学科:测绘学(一级学科);大地测量学(二级学科)大地坐标系(geodetic coordinate system)是大地测量中以参考椭球面为基准面建立起来的坐标系。
地面点的位置用大地经度、大地纬度和大地高度表示。
大地坐标系的确立包括选择一个椭球、对椭球进行定位和确定大地起算数据。
一个形状、大小和定位、定向都已确定的地球椭球叫参考椭球。
参考椭球一旦确定,则标志着大地坐标系已经建立。
大地坐标系亦称为地理坐标系。
大地坐标系是用来表述地球上点的位置的一种地区坐标系统。
它采用一个十分近似于地球自然形状的参考椭球作为描述和推算地面点位置和相互关系的基准面。
一个大地坐标系统必须明确定义其三个坐标轴的方向和其中心的位置。
通常人们用旋转椭球的短轴与某一规定的起始子午面分别平行干地球某时刻的平均自转轴和相应的真起始子午面来确定坐标轴的方向。
若使参考椭球中心与地球平均质心重合,则定义和建立了地心大地坐标系。
它是航天与远程武器和空间科学中各种定位测控测轨的依据。
若椭球表面与一个或几个国家的局部大地水准面吻合最好,则建立了一个国家或区域的局部大地坐标系。
大地坐标系中点的位置是以其大地坐标表示的,大地坐标均以椭球面的法线来定义。
其中,过某点的椭球面法线与椭球赤道面的交角为大地纬度;包含该法线和大地子午面与起始大地子午面的二面角为该点的大地经度;沿法线至椭球面的距离为该点的大地高。
大地纬度、大地经度和大地高分别用大写英文字母B、L、H表示。
大地坐标系是以地球椭球赤道面和大地起始子午面为起算面并依地球椭球面为参考面而建立的地球椭球面坐标系。
它是大地测量的基本坐标系,其大地经度L、大地纬度B和大地高H为此坐标系的3个坐标分量。
它包括地心大地坐标系和参心大地坐标系。
大地坐标系与空间直角坐标系的联系
大地坐标系与空间直角坐标系的联系大地坐标系和空间直角坐标系是地理学和测绘学中两种常用的坐标系统。
它们在地表测绘、位置定位和地理信息系统中起着至关重要的作用。
尽管两者有一些显著的差异,但它们之间也存在着联系。
大地坐标系是一种基于地球椭球体的坐标系统,用于描述地球表面的位置。
大地坐标系通常以经度、纬度和高程来表示一个点的位置。
经度表示一个点相对于本初子午线的东西方向位置,纬度表示一个点相对于赤道的南北方向位置,而高程表示一个点相对于海平面的高度。
空间直角坐标系是一种笛卡尔坐标系,用于描述三维空间中的位置。
空间直角坐标系以一个参考点为原点,以三个相互垂直的坐标轴表示一个点的位置。
通常情况下,空间直角坐标系的坐标轴分别为X、Y和Z,分别表示水平平面上的东西方向、南北方向和垂直方向。
虽然大地坐标系和空间直角坐标系的表示方式不同,但它们之间存在一定的联系。
首先,它们都是用于描述位置的坐标系统。
无论是测量地球表面上的点,还是标定三维空间中的点,都需要使用坐标系统来记录和表示位置信息。
其次,大地坐标系和空间直角坐标系都使用了测量单位。
在大地坐标系中,经度和纬度通常表示为度数,而高程通常以米或英尺为单位。
在空间直角坐标系中,坐标轴的刻度通常使用米或其他长度单位。
这些测量单位的使用使得位置的表示更加准确和统一。
此外,大地坐标系和空间直角坐标系都可以进行坐标转换。
在实际应用中,常常需要在不同的坐标系统之间进行转换。
例如,将一个点的大地坐标转换为空间直角坐标,或者将一个点的空间直角坐标转换为大地坐标。
这种坐标转换可以通过各种数学和几何方法来实现,以满足不同应用场景的需求。
综上所述,虽然大地坐标系和空间直角坐标系有一些差异,但它们之间存在联系。
它们都用于描述位置、使用测量单位以及支持坐标转换。
这些坐标系统的应用广泛而重要,涵盖了地理学、测绘学、导航定位和地理信息系统等领域,在实际的地理空间数据处理中起着至关重要的作用。
注:本文的Markdown源码如下:# 大地坐标系与空间直角坐标系的联系大地坐标系和空间直角坐标系是地理学和测绘学中两种常用的坐标系统。
最新大地坐标与直角空间坐标转换计算公式
大地坐标与直角空间坐标转换计算公式大地坐标与直角空间坐标转换计算公式一、参心大地坐标与参心空间直角坐标转换1名词解释:A :参心空间直角坐标系: a) 以参心0为坐标原点;b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合;d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系:a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ;c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ;d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。
2 参心大地坐标转换为参心空间直角坐标:⎪⎭⎪⎬⎫+-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半径,f 椭球扁率,W 为第一辅助系数a b a e 22-=或 f f e 1*2-= W aN B W e =-=22sin *1(西安80椭球参数:长半轴a=6378140±5(m ) 短半轴b=6356755.2882m 扁 率α=1/298.2573 参心空间直角坐标转换参心大地坐标[]NBY X H He N Y X H N Z B X Y L -+=+-++==cos ))1(**)()(*arctan()arctan(22222二 高斯投影及高斯直角坐标系1、高斯投影概述高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大为控制投影后的长度变形,采用分带投影的方法。
MATLAB实验大地坐标与空间直角坐标的换算程序设计(经典)
min=fix((du-degree)*60); second=(((du-degree)*60-min)*60); B=degree+min/100+second/10000; end
3、实例计算验证 首先将文件 data1.txt 中大地坐标转换为空间直角坐标, 并将转换后的数据按照格 式存贮在文件 data2.txt 中, data1.txt 格式为: data2.txt 格式为: x test 程序如下:
function [x, y, z] = geo2xyz (L, B, h) a=6378137; %椭球长半轴 f=1/298.257223563; %椭球扁率 b=a*(1-f); %求椭球短半轴 e=sqrt(a^2-b^2)/a; %椭球第一偏心率 N=a./sqrt(1-(e^2)*(sin(B)).^2); % 卯酉圈曲率半径 %大地坐标换算为空间直角坐标 x、 y、z x=(N+h).*cos(B).*cos(L); y=(N+h).*cos(B).*sin(L); z=[N.*(1-e^2)+h].*sin(B); end 度分秒转化为弧度函数如下: function azimuth=dms2rad(dms)%度分秒转弧度函数
RTK坐标转换
RTK 测量常用坐标转换方法RTK 测量获得的是WGS-84坐标系下大地坐标,并不能直接在工程建设中使用。
要将其转换为独立坐标系坐标,有两种方法:(1)WGS-84大地坐标直接在WGS-84椭球上做高斯投影,得到WGS-84高斯平面坐标,然后通过平面坐标转换的方法,求得WGS-84平面坐标与独立坐标系的转换参数,进而将WGS-84高斯平面坐标转换为独立坐标系坐标。
(2)WGS-84大地坐标转换为WGS-84空间直角坐标,然后通过七参数方法将WGS-84空间直角坐标转换为目标椭球(BJ54对应的克氏椭球或西安80对应的1975国际椭球)空间直角坐标、目标椭球大地坐标,最后做高斯投影、平面四参数转换得到当地坐标。
相比之下,前一种方法虽然简单,但是忽略了不同参考椭球之间的差异,因此精度不高,而后一种方法虽然过程比较复杂,但是精度却较高。
本文着重介绍前一种方法。
高斯投影正算横轴墨卡托投影是一种正形投影,并且该投影可保持投影前后中央经线的长度不变。
该投影也被称为高斯正形投影、高斯-克吕格投影、高斯投影。
高斯投影中,中央经线的投影为x 轴,北方向为正;赤道的投影为y 轴,东方向为正。
目前,根据我国有关测绘方面的法规规定,在国内进行测量工作时,若需要进行球面坐标与平面坐标间的转换,应统一采用高斯投影。
由大地坐标计算高斯平面坐标的高斯投影正算公如下:(6.1) ⋯+-+-+-++-++-+=7642752224253223)17947961(cos 50401)5814185(cos 1201)1(cos 61cos l t t t B N l t t t B N l t B N Bl N y ηηη (6.2) ⋯+-+-+-+-+++-++=864286222264422422)54331111385(cos 40320)3302705861(cos 720)495(cos 24cos 2)(l t t t B N t l t t B N t l t B N tBl N t B l x ηηηη式中)(B l 为赤道到投影点的子午线弧长;Be a N 22sin 1-=为卯酉圈半径;B t tan =;0L L l -=为经差;L0为子午线经度。
RTK坐标转换
RTK 测量常用坐标转换方法RTK 测量获得的是WGS-84坐标系下大地坐标,并不能直接在工程建设中使用。
要将其转换为独立坐标系坐标,有两种方法:(1)WGS-84大地坐标直接在WGS-84椭球上做高斯投影,得到WGS-84高斯平面坐标,然后通过平面坐标转换的方法,求得WGS-84平面坐标与独立坐标系的转换参数,进而将WGS-84高斯平面坐标转换为独立坐标系坐标。
(2)WGS-84大地坐标转换为WGS-84空间直角坐标,然后通过七参数方法将WGS-84空间直角坐标转换为目标椭球(BJ54对应的克氏椭球或西安80对应的1975国际椭球)空间直角坐标、目标椭球大地坐标,最后做高斯投影、平面四参数转换得到当地坐标。
相比之下,前一种方法虽然简单,但是忽略了不同参考椭球之间的差异,因此精度不高,而后一种方法虽然过程比较复杂,但是精度却较高。
本文着重介绍前一种方法。
高斯投影正算横轴墨卡托投影是一种正形投影,并且该投影可保持投影前后中央经线的长度不变。
该投影也被称为高斯正形投影、高斯-克吕格投影、高斯投影。
高斯投影中,中央经线的投影为x 轴,北方向为正;赤道的投影为y 轴,东方向为正。
目前,根据我国有关测绘方面的法规规定,在国内进行测量工作时,若需要进行球面坐标与平面坐标间的转换,应统一采用高斯投影。
由大地坐标计算高斯平面坐标的高斯投影正算公如下:(6.1) ⋯+-+-+-++-++-+=7642752224253223)17947961(cos 50401)5814185(cos 1201)1(cos 61cos l t t t B N l t t t B N l t B N Bl N y ηηη (6.2) ⋯+-+-+-+-+++-++=864286222264422422)54331111385(cos 40320)3302705861(cos 720)495(cos 24cos 2)(l t t t B N t l t t B N t l t B N tBl N t B l x ηηηη式中)(B l 为赤道到投影点的子午线弧长;Be a N 22sin 1-=为卯酉圈半径;B t tan =;0L L l -=为经差;L0为子午线经度。
空间大地坐标系与平面直角坐标系转换公式
§2.3.1 坐标系的分类之阳早格格创做正如前里所提及的,所谓坐标系指的是形貌空间位子的表白形式,即采与什么要领去表示空间位子.人们为了形貌空间位子,采与了多种要领,进而也爆收了分歧的坐标系,如直角坐标系、极坐标系等.正在丈量中时常使用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系本面位于参照椭球的核心,Z 轴指背参照椭球的北极,X 轴指背起初子午里与赤道的接面,Y 轴位于赤道里上且按左脚系与X 轴呈90°夹角.某面正在空间中的坐标可用该面正在此坐标系的各个坐标轴上的投影去表示.空间直角坐标系可用图2-3去表示:图2-3 空间直角坐标系二、空间天里坐标系空间天里坐标系是采与天里经、纬度战天里下去形貌空间位子的.纬度是空间的面与参照椭球里的法线与赤道里的夹角;经度是空间中的面与参照椭球的自转轴天圆的里与参照椭球的起初子午里的夹角;天里下是空间面沿参照椭球的法线目标到参照椭球里的距离.空间天里坐标系可用图2-4去表示:图2-4空间天里坐标系三、仄里直角坐标系仄里直角坐标系是利用投影变更,将空间坐标空间直角坐标或者空间天里坐标通过某种数教变更映射到仄里上,那种变更又称为投影变更.投影变更的要领有很多,如横轴朱卡托投影、UTM 投影、兰勃特投影等.正在我国采与的是下斯-克吕格投影也称为下斯投影.UTM投影战下斯投影皆是横轴朱卡托投影的惯例,不过投影的各别参数分歧而已.下斯投影是一种横轴、椭圆柱里、等角投影.从几许意思上道,是一种横轴椭圆柱正切投影.如图左侧所示,设念有一个椭圆柱里横套正在椭球表里,并与某一子午线相切(此子午线称为中央子午线或者轴子午线),椭球轴的核心轴CC’通过椭球核心而与天轴笔直.下斯投影谦脚以下二个条件:1、它是正形投影;2、中央子午线投影后应为x轴,且少度脆持没有变.将中央子午线物品各一定经好(普遍为6度或者3度)范畴内的天区投影到椭圆柱里上,再将此柱里沿某一棱线展开,便形成了下斯仄里直角坐标系,如下图2-5左侧所示.图2-5 下斯投影x 目标指北,y 目标指东.可睹,下斯投影存留少度变形,为使其正在测图战用图时做用很小,应相隔一定的天区,另坐中央子午线,采与分戴投影的办法.我国国家丈量确定采与六度戴战三度戴二种分戴要领.六度戴战三度戴与中央子午线存留如下闭系:366 N L =中; n L 33=中其中,N 、n 分别为6度戴战3度戴的戴号.其余,为了预防y 出现背号,确定y 值认为天加上500000m ;又为了辨别分歧投影戴,前里还要冠以戴号,如第20号六度戴中,y=-200.25m ,则成果表中写为y 假定=20499799.75m.x 值正在北半球总隐正值,便无需改变其瞅测值了.1、空间直角坐标系与空间天里坐标系间的变更图2-6表示了空间直角坐标系与空间天里坐标系之间的闭系.图2-6 天球空间直角坐标系与天里坐标系正在相共的基准下空间天里坐标系背空间直角坐标系的变更公式为:⎪⎭⎪⎬⎫+-=+=+=B H e N Z L B H N Y L B H N X sin ])1([sin cos )(cos cos )(2 (2-1)式中,W aN =,a 为椭球的少半轴,N 为椭球的卯酉圈直率半径 a =6378.137km2222a b a e -=,e 为椭球的第一偏偏心率,b 为椭球的短半轴 正在相共的基准下空间直角坐标系背空间天里坐标系的变更公式为⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫-Φ=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+Φ=N B R H X Y arctg L W B Z ae tg arctg B cos cos sin 12(2-2) 式中2、空间坐标系与仄里直角坐标系间的变更空间坐标系与仄里直角坐标系间的变更采与的是投影变更的要领.正在我国普遍采与的是下斯投影.果为下斯投影战UTM 投影皆是横轴朱卡托的惯例,果此,下斯投影战UTM 投影皆不妨套用横轴朱卡托投影的投影公式.横轴朱卡托投影的投影的正反算公式可拜睹有闭资料,它们的辨别正在于轴子午线投影到仄里上后,其少度的系数,对付于下斯投影,系数为1,对付于UTM 投影,其系数为.3、变动下程归化里的做用用户正在修坐场合独力坐标系时,偶我变动下程归化里,那将爆收一个新椭球,那便必须估计新常数,新椭球常数按下列要领战步调举止:1) 新椭球是正在国家坐标系的参照椭球上夸大产死的,它的扁率应与国家坐标系参照椭球的扁率相等,即a a ='. 2) 估计该坐标系中央天区的新椭球仄衡直率半径战新椭球少半轴.新椭球仄衡直率半径为:m mm m m m H B e e a H W a W e a H MN H R R +--=+-=+=+=22232sin 11)1('(2.10) 式中m H ───该天区仄衡天里下;m B ───该天区的仄衡纬度.新椭球的少半轴按下式估计:2221sin 1''e B e R a m--=(2.11)将新的椭球参数代进,便不妨举止投影的正反估计了.二、坐标系统的变更要领分歧坐标系统的变更真量上是分歧基准间的变更,分歧基准间的变更要领有很多,其中最为时常使用的有布我沙模型,又称为七参数变更法.七参数变更法是:设二空间直角坐标系间有七个变更参数:3 个仄移参数()z y x ∆∆∆、3 个转动参数()z y x εεε战 1 个尺度参数k .比圆,由空间直角坐标系A 变更到空间直角坐标系B 可采与底下的公式:§2.3.4 GPS 丈量中时常使用的坐标系统一、天下天里坐标系WGS-84WGS-84 坐标系是暂时GPS 所采与的坐标系统,GPS 所颁布的星历参数战历书籍参数等皆是鉴于此坐标系统的.WGS-84 坐标系统的齐称是World Geodical System-84 (天下天里坐标系-84), 它是一个天心底固坐标系统.WGS-84 坐标系统由好国国防部造图局修坐,于1987 年与代了当时GPS 所采与的坐标系统WGS-72 坐标系统而成为当前GPS 所使用的坐标系统.WGS-84 坐标系的坐标本面位于天球的量心,Z 轴指背BIH1984.0 定义的协议天球极目标,X 轴指背BIH1984.0 的开初子午里战赤道的接面,Y 轴与X 轴战Z 轴形成左脚系.WGS-84 系所采与椭球参数为睹表2.1.二、1954 年北京坐标系1954 年北京坐标系是我国暂时广大采与的天里丈量坐标系.该坐标系源自于本苏联采与过的1942 年普我科妇坐标系.该坐标系采与的参照椭球是克推索妇斯基椭球.该椭球的参数睹表2.1.遗憾的是该椭球并已依据当时我国的天文瞅测资料举止沉新定位,而是由前苏联西伯利亚天区的一等锁经我国的东北天区传算过去的,该坐标系的下程非常十分是往日苏联1955 年天里程度里沉新仄好的截止为起算值,按我国天文程度门路推算出去的,而下程又是以1956 年青岛验潮站的黄海仄衡海火里为基准.由于当时条件的节造1954 年北京坐标系存留着很多缺面主要表示正在以下几个圆里:1. 克推索妇斯基椭球参数共新颖透彻的椭球参数的好别较大,而且没有包罗表示天球物理个性的参数,果而给表里战本量处事戴去了许多便当.2. 椭球定背没有格中透彻,椭球的短半轴既没有指背国际通用的CIO 极,也没有指背暂时我国使用的JYD极.参照椭球里与我国天里程度里呈西下东矮的系统性倾斜,东部下程非常十分达60余米,最大达67 米.3. 该坐标系统的天里面坐标是通过局部分区仄好得到的.果此世界的天文天里统造面本量上没有克没有及产死一个完齐,区与区之间有较大的隙距,如正在有的接合部中共一面正在分歧区的坐标值出进1-2 米,分歧分区的尺度好别也很大,而且坐标传播是从东北到西北战西北,后一区是往日一区的最强部动做坐标起算面,果而一等锁具备明隐的坐标聚集缺面.三、1980 年西安天里坐标系1978 年我国决断沉新对付世界天文天里网真止完齐仄好,而且修坐新的国家天里坐标系统.完齐仄好正在新天里坐标系统中举止,那个坐标系统便是1980 年西安天里坐标系统.1980 年西安天里坐标系统所采与的天球椭球参数的四个几许战物理参数采与了IAG 1975 年的推荐值,睹表2.1中的西安80.椭球的短轴仄止于天球的自转轴(由天球量心指背1968.0 JYD 天极本面目标),起初子午里仄止于格林僧治仄衡天文子午里,椭球里共似天里程度里正在我国境内切合最佳,下程系统以1956 年黄海仄衡海火里为下程起算基准.四、几种时常使用的坐标系统的几许战物理参数下表列出了几种时常使用的坐标系统的几许战物理参数,用户需要时不妨查阅:表 2.1 GPS 丈量中时常使用的坐标系统的几许战物理参数§2.4 GPS下程系统正在丈量中时常使用的下程系统有天里下系统、正下系统战仄常下系统.§2.4.1 天里下系统天里下系统是以参照椭球里为基准里的下程系统,某面的天里下是该面到通过该面的参照椭球的法线与参照椭球里的接面间的距离.天里下也称为椭球下.天里下普遍用标记H 表示.天里下是一个杂几许量,没有具备物理意思,共一个面正在分歧的基准下具备分歧的天里下.常常,GPS接支机单面定位得到的下程为WGS-84下的天里下.§2.4.2 正下系统正下系统是以天里程度里为基准里的下程系统,某面的正下是该面到通过该面的铅垂线与天里程度里的接面之间的距离.正下用标记 H g 表示.§2.4.3 仄常下仄常下系统是以似天里程度里为基准的下程系统,某面的仄常下是该面到通过该面的铅垂线与似天里程度里的接面之间的距离,仄常下用 H γ 表示.§2.4.4下程系统之间的变更闭系天里程度里到参照椭球里的距离称为天里程度里好同,记为 h g ,天里下与正下之间的闭系不妨表示为:正 下:g g h H H -=似天里程度里到参照椭球里的距离,称为下程非常十分,记为ζ.天里下与仄常下之间的闭系不妨表示为:仄常下:ζγ-=H H下程之间的相互闭系不妨用下图2-7去表示:图2-7 下程系统间的相互闭系。
空间直角坐标系与空间大地坐标系的相互转换及其C++源程序
空间直角坐标系与空间大地坐标系的相互转换1.空间直角坐标系/笛卡尔坐标系坐标轴相互正交的坐标系被称作笛卡尔坐标系。
三维笛卡尔坐标系也被称为空间直角坐标系。
在空间直角坐标系下,点的坐标可以用该点所对应的矢径在三个坐标轴上的投影长度来表示,只有确定了原地、三个坐标轴的指向和尺度,就定义了一个在三维空间描述点的位置的空间直角坐标系。
以椭球体中心O为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴构成右手坐标系O.XYZ,在该坐标系中,P点的位置用X,Y,Z表示。
在测量应用中,常将地球空间直角坐标系的坐标原点选在地球质心(地心坐标系)或参考椭球中心(参心坐标系),z轴指向地球北极,x轴指向起始子午面与地球赤道的交点,y轴垂直于XOZ面并构成右手坐标系。
空间直角坐标系2.空间大地坐标系由于空间直角坐标无法明确反映出点与地球之间的空间关系,为了解决这一问题,在测量中引入了大地基准,并据此定义了大地坐标系。
大地基准指的是用于定义地球参考椭球的一系列参数,包括如下常量:2.1椭球的大小和形状2.2椭球的短半轴的指向:通常与地球的平自转轴平息。
2.3椭球中心的位置:根据需要确定。
若为地心椭球,则其中心位于地球质心。
2.4本初子午线:通过固定平极和经度原点的天文子午线,通常为格林尼治子午线。
以大地基准为基础建立的坐标系被称为大地坐标系。
由于大地基准又以参考椭球为基准,因此,大地坐标系又被称为椭球坐标系。
大地坐标系是参心坐标系,其坐标原点位于参考椭球中心,以参考椭球面为基准面,用大地经度L、纬度B 和大地高H表示地面点位置。
过地面点P的子午面与起始子午面间的夹角叫P 点的大地经度。
由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0°~-180°)。
过P点的椭球法线与赤道面的夹角叫P点的大地纬度。
由赤道面起算,向北为正,叫北纬(0°~90°),向南为负,叫南纬(0°~-90°)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大地坐标转空间直角坐标方法
大地坐标(经纬度)是地球表面上用于描述位置的一种坐标系统,常用的表示方式是用经度和纬度来表示一个位置。
而空间直角坐标是一种三维坐标系统,它由东西、南北和垂直地面三个方向组成。
大地坐标转换为空间直角坐标的方法分为两步:首先将大地坐标转换为大地平面坐标系坐标,然后再将大地平面坐标转换为空间直角坐标。
第一步,将大地坐标转换为大地平面坐标系坐标,常用的方法有三角形式法和高斯投影法。
1.三角形式法:
三角形式法是根据大地三角形的性质,通过计算大地纬度和经度的变化量,将大地坐标转换为大地平面坐标。
具体步骤如下:
(1)选取一个参考点,确定该点的大地坐标和大地平面坐标。
(2)计算待转换点的纬度和经度的变化量,即ΔB和ΔL。
(3)根据大地坐标的定义,计算待转换点的大地平面坐标,即X和Y。
2.高斯投影法:
高斯投影法是一种常用的大地平面坐标投影方法,它是根据高斯球面正轴投影的原理,通过计算大地纬度和经度的变化量,将大地坐标转换为大地平面坐标。
具体步骤如下:
(1)确定投影中央经线,选择一个参考点,确定该点的大地坐标和大地平面坐标。
(2)计算待转换点的纬度和经度的变化量,即ΔB和ΔL。
(3)根据高斯投影的计算公式,计算待转换点的大地平面坐标,即
X和Y。
第二步,将大地平面坐标转换为空间直角坐标,常用的方法有高斯变
换法和椭球投影法。
1.高斯变换法:
高斯变换法是将大地平面坐标通过高斯投影法计算得到的坐标转换为
空间直角坐标。
具体步骤如下:
(1)选择一个参考点,确定参考点的大地平面坐标和空间直角坐标。
(2)计算待转换点的大地平面坐标与参考点的大地平面坐标之差,
即ΔX和ΔY。
(3)根据高斯变换的计算公式,计算待转换点的空间直角坐标,即X、Y和Z。
2.椭球投影法:
椭球投影法是将大地平面坐标通过椭球投影的原理,将大地平面坐标
转换为空间直角坐标。
具体步骤如下:
(1)选择一个参考点,确定参考点的大地平面坐标和空间直角坐标。
(2)计算待转换点的大地平面坐标与参考点的大地平面坐标之差,
即ΔX和ΔY。
(3)根据椭球投影的计算公式,计算待转换点的空间直角坐标,即X、Y和Z。
综上所述,大地坐标转换为空间直角坐标的方法分为两步:首先将大地坐标转换为大地平面坐标系坐标,可以通过三角形式法或高斯投影法实现;然后再将大地平面坐标转换为空间直角坐标,可以通过高斯变换法或椭球投影法实现。
这些方法的具体计算公式需根据坐标系统和地球椭球体参数进行选择和计算。