力学三大观点的综合应用二
应用“三大观点”解决力学综合问题(可自主编辑word)
应用“三大观点”解决力学综合问题(可自主编辑word)五、应用“三大观点”解决力学综合问题知识点1 应用动量与动力学观点解决力学综合问题基础回扣力学规律的选用原则(1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律。
(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题。
(3)若研究的对象为多个物体组成的系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件。
(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能。
(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换。
这种问题由于作用时间都极短,因此用动量守恒定律去解决。
易错辨析我们在应用动量与动力学知识观点解答问题时要注意将运动过程与受力情况分析清楚,恰当地选择研究对象、研究过程解题,避免出错。
知识点2 应用动量与能量观点解决力学综合问题基础回扣1.知识分析动量的观点:动量定理和动量守恒定律。
能量的观点:动能定理和能量守恒定律。
2.方法技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律)。
(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理。
(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处。
特别对于变力做功问题,就更显示出它们的优越性。
易错辨析1.通常能应用牛顿运动定律与运动学知识解决的力学问题,涉及到位移问题,我们可以应用动能定理解决问题。
2.通常能应用牛顿运动定律与运动学知识解决的力学问题,涉及到时间问题,我们可以应用动量定理解决问题。
题型专练 力学三大观点的综合应用(含答案)
题型专练力学三大观点的综合应用高考题型1应用力学三大观点处理多过程问题1.力学三大观点对比2.选用原则(1)当物体受到恒力作用做匀变速直线运动(曲线运动某一方向可分解为匀变速直线运动),涉及时间与运动细节时,一般选用动力学方法解题.(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移(摩擦生热)时,应优先选用能量守恒定律.(3)不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特别是对于打击类问题,因时间短且冲力随时间变化,应用动量定理求解.(4)对于碰撞、爆炸、反冲、地面光滑的板—块问题,若只涉及初末速度而不涉及力、时间,应用动量守恒定律求解.考题示例例1(2019·全国卷Ⅲ·25)静止在水平地面上的两小物块A、B,质量分别为m A=1.0 kg,m B=4.0 kg;两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离l=1.0 m,如图1所示.某时刻,将压缩的微型弹簧释放,使A、B 瞬间分离,两物块获得的动能之和为E k=10.0 J.释放后,A沿着与墙壁垂直的方向向右运动.A、B与地面之间的动摩擦因数均为μ=0.20.重力加速度取g=10 m/s2.A、B运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短.图1(1)求弹簧释放后瞬间A、B速度的大小;(2)物块A、B中的哪一个先停止?该物块刚停止时A与B之间的距离是多少?(3)A和B都停止后,A与B之间的距离是多少?答案 (1)4.0 m /s 1.0 m/s (2)物块B 先停止 0.50 m (3)0.91 m解析 (1)设弹簧释放瞬间A 和B 的速度大小分别为v A 、v B ,以向右为正方向,由动量守恒定律和题给条件有 0=m A v A -m B v B ① E k =12m A v A 2+12m B v B 2②联立①②式并代入题给数据得 v A =4.0 m /s ,v B =1.0 m/s ③(2)A 、B 两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a .假设A 和B 发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B .设从弹簧释放到B 停止所需时间为t ,B 向左运动的路程为s B ,则有m B a =μm B g ④ s B =v B t -12at 2⑤v B -at =0⑥在时间t 内,A 可能与墙发生弹性碰撞,碰撞后A 将向左运动,碰撞并不改变A 的速度大小,所以无论此碰撞是否发生,A 在时间t 内的路程s A 都可表示为 s A =v A t -12at 2⑦联立③④⑤⑥⑦式并代入题给数据得 s A =1.75 m ,s B =0.25 m ⑧这表明在时间t 内A 已与墙壁发生碰撞,但没有与B 发生碰撞,此时A 位于出发点右边0.25 m 处.B 位于出发点左边0.25 m 处,两物块之间的距离s 为 s =0.25 m +0.25 m =0.50 m ⑨(3)t 时刻后A 将继续向左运动,假设它能与静止的B 碰撞,碰撞时速度的大小为v A ′,由动能定理有 12m A v A ′2-12m A v A 2=-μm A g ()2l +s B ⑩ 联立③⑧⑩式并代入题给数据得 v A ′=7 m/s ⑪故A 与B 将发生碰撞.设碰撞后A 、B 的速度分别为v A ″和v B ″,由动量守恒定律与机械能守恒定律有 m A (-v A ′)=m A v A ″+m B v B ″⑫ 12m A v A ′2=12m A v A ″2+12m B v B ″2⑬ 联立⑪⑫⑬式并代入题给数据得 v A ″=375 m/s ,v B ″=-275m/s ⑭这表明碰撞后A 将向右运动,B 继续向左运动.设碰撞后A 向右运动距离为s A ′时停止,B 向左运动距离为s B ′时停止,由运动学公式2as A ′=v A ″2,2as B ′=v B ″2⑮ 由④⑭⑮式及题给数据得 s A ′=0.63 m ,s B ′=0.28 m ⑯s A ′小于碰撞处到墙壁的距离.由上式可得两物块停止后的距离s ′=s A ′+s B ′=0.91 m 命题预测1.(2020·山东威海市高三二模)如图2甲所示,足够长的斜面与水平面的夹角为30°,质量分别为0.5 kg 和1 kg 的A 、B 两个小物块,用一根细线相连,A 、B 之间有一被压缩的微型弹簧,A 、B 与弹簧组成的系统可视为质点.某时刻,将A 、B 从P 点由静止释放,运动至Q 点时,细线突然断裂,压缩的微型弹簧使A 、B 瞬间分离,从分离时开始计时,A 、B 短时间内运动的速度-时间图像如图乙所示,重力加速度取g =10 m/s 2.求:图2(1)A 、B 与斜面间的动摩擦因数μA 、μB ; (2)细线断裂前微型弹簧储存的弹性势能E p ; (3)A 、B 再次相遇前的最远距离L . 答案 (1)36 33 (2)6 J (3)6815m 解析 (1)根据题图乙可知,A 、B 分离后,B 沿斜面向下做匀速直线运动,A 沿斜面向上做匀减速直线运动,且A 的加速度大小为 a A =ΔvΔt=7.5 m/s 2 对A 由牛顿第二定律得m A g sin 30°+μA m A g cos 30°=m A a A ,解得μA =36对B 由平衡条件得m B g sin 30°=μB m B g cos 30°,解得μB =33(2)细线断裂瞬间,对A 、B 由动量守恒定律得 (m A +m B )v =m A v A +m B v B 由能量守恒定律得E p =12m A v A 2+12m B v B 2-12(m A +m B )v 2解得E p =6 J.(3)当A 、B 的速度相等时,二者相距最远,设A 上滑的时间为t A ,位移为x A ;A 下滑过程中的加速度为a A ′,时间为t A ′,位移为x A ′,则有|v A |=a A t A ,v A 2=2a A x A 对A 由牛顿第二定律得m A g sin 30°-μA m A g cos 30°=m A a A ′v B =a A ′t A ′,v B 2=2a A ′x A ′,B 发生的位移x B =v B (t A +t A ′) A 、B 再次相遇前的最远距离L =x B +x A -x A ′ 解得L =6815m.2.(2020·四川泸州市质量检测)如图3所示,足够长的固定粗糙水平木板左端的D 点平滑连接半径为R =2 m 、竖直放置的四分之一光滑圆弧轨道,C 、D 分别是圆弧轨道的最高点和最低点,两轨道均固定在地面上.可视为质点的物块A 从C 点开始,以初速度v 0=3 m/s 沿圆弧轨道滑动.水平木板上离D 点距离为3.25 m 的P 点静置另一个可视为质点的物块B .已知物块A 、B 与水平木板间的动摩擦因数均为μ=0.2,物块A 的质量m 1=1 kg ,取g =10 m/s 2.图3(1)求物块A 从C 点滑到D 点时,对圆弧轨道的压力;(2)若物块B 的质量为m 2=1 kg ,物块A 与B 碰撞后粘在一起,求它们最终停止的位置距D 点多远;(3)若B 的质量为m 2′= 5 kg ,物块A 与B 的碰撞为弹性碰撞(且碰撞时间极短),求物块A 与B 均停止后它们相距多远.答案 (1)34.5 N ,方向竖直向下 (2)5.5 m (3)3.5 m解析 (1)设物块A 在D 点的速度为v 1,则物块A 从C 点运动到D 点的过程,由动能定理可得: m 1gR =12m 1v 12-12m 1v 02得v 1=7 m/s设物块A 在D 点受到圆弧轨道向上的支持力大小为F N ,则有F N -m 1g =m 1v 12R得F N =34.5 N由牛顿第三定律可得:物块A 在D 点对圆弧轨道的压力大小为F N ′=34.5 N ,方向竖直向下.(2)设物块A 在P 点与物块B 碰撞前瞬间的速度为v 2,加速度大小为a 1,则从D 点到P 点的过程中,由牛顿第二定律得:μm 1g =m 1a 1 -2a 1L =v 22-v 12 得v 2=6 m/s物块A 与物块B 碰撞的过程中,系统动量守恒,则有 m 1v 2=(m 1+m 2)v 3 解得v 3=3 m/sA 、B 碰撞后粘在一起做减速运动的过程中,设加速度大小为a 2,由牛顿第二定律可得:μ(m 1+m 2)g =(m 1+m 2)a 2 0-v 32=-2a 2x 得x =94m =2.25 m此时距D 的距离为L +x =5.5 m(3)物块A 运动到P 点的速度仍为v 2=6 m/s ,碰撞过后瞬间A 与B 的速度分别为v 4、v 5,A 与B 的碰撞为弹性碰撞,则碰撞过程系统动量和动能均守恒,可得m 1v 2=m 1v 4+m 2′v 5 12m 1v 22=12m 1v 42+12m 2′v 52 得v 4=-4 m /s ,v 5=2 m/s由于12m 1v 42<m 1gR +μm 1gL ,故A 反弹后不能达到C 点;设物块A 与B 碰撞过后,直至停止的整个运动过程中,在水平地面上运动的路程为s ,由动能定理可得: -μm 1gs =0-12m 1v 42得s =4 m故物块A 向左运动3.25 m 后滑上圆弧返回后又向右运动了x 1=s -L =0.75 m 物块B 向右减速至零,则有0-v 52=-2a 3x 2,μm 2′g =m 2′a 3 解得x 2=1 m故A 、B 相距s =L +x 2-x 1=3.5 m .高考题型2 应用力学三大观点解决板—块模型问题1.滑块和木板组成的系统所受的合外力为零时,优先选用动量守恒定律解题;若地面不光滑或受其他外力时,需选用动力学观点解题.2.滑块与木板达到相同速度时应注意摩擦力的大小和方向是否发生变化.3.应注意区分滑块、木板各自的对地位移和它们的相对位移.用运动学公式或动能定理列式时位移指对地位移;求系统摩擦生热时用相对位移(或相对路程). 考题示例例2 (2013·山东卷·38(2))如图4所示,光滑水平轨道上放置长板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为m A =2 kg 、m B =1 kg 、m C =2 kg.开始时C 静止,A 、B 一起以v 0=5 m/s 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 发生碰撞.求A 与C 碰撞后瞬间A 的速度大小.图4答案 2 m/s解析 因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量守恒定律得 m A v 0=m A v A +m C v C ①A 与B 在摩擦力作用下达到共同速度,设共同速度为v AB ,由动量守恒定律得 m A v A +m B v 0=(m A +m B )v AB ②A 与B 达到共同速度后恰好不再与C 碰撞,应满足 v AB =v C ③联立①②③式,代入数据得v A =2 m/s. 命题预测3.(2020·云南昆明市高三“三诊一模”测试)如图5甲所示,质量为m =0.3 kg 的小物块B (可视为质点)放在质量为M =0.1 kg 、长度L =0.6 m 的木板A 的最左端,A 和B 一起以v 0=1 m/s 的速度在光滑水平面上向右运动,一段时间后A 与右侧一竖直固定挡板P 发生弹性碰撞.以碰撞瞬间为计时起点,取水平向右为正方向,碰后0.5 s 内B 的速度v 随时间t 变化的图像如图乙所示.取重力加速度g =10 m/s 2,求:图5(1)A 与B 间的动摩擦因数μ;(2)A 与P 第1次碰撞到第2次碰撞的时间间隔; (3)A 与P 碰撞几次,B 与A 分离. 答案 (1)0.1 (2)0.75 s (3)2次解析 (1)碰后A 向左减速,B 向右减速,由题图乙得: a B =ΔvΔt=1 m/s 2 由牛顿第二定律有μmg =ma B 解得μ=0.1(2)碰后B 向右减速,A 向左减速到0后,向右加速,最后与B 共速,对A 、B 由动量守恒定律可得: m v 0-M v 0=(M +m )v 1 解得:v 1=0.5 m/s此过程,对B 由动量定理得:m v 1-m v 0=-μmgt 1 解得:t 1=0.5 s对A 由动能定理有:-μmgx A =12M v 12-12M v 02解得:x A =0.125 m此后A 、B 一起向右匀速运动的时间为:t 2=x Av 1=0.25 s所以一共用的时间:t =t 1+t 2=0.75 s ,即A 与P 第1次碰撞到第2次碰撞的时间间隔为0.75 s (3)A 第1次与挡板P 碰撞后到共速的过程中,对整个系统,由能量守恒有: 12m v 02+12M v 02=12(M +m )v 12+μmgx 相对1 解得x 相对1=0.5 m假设第3次碰撞前,A 与B 不分离,A 第2次与挡板P 相碰后到共速的过程中,以水平向右为正方向,由动量守恒有:m v 1-M v 1=(M +m )v 2 由能量守恒有:12m v 12+12M v 12=12(M +m )v 22+μmgx 相对2 解得:x 相对2=0.125 m由于x 相对=x 相对1+x 相对2>L ,所以A 与P 碰撞2次,B 与A 分离.4.如图6所示,质量为M 的水平木板静止在光滑的水平地面上,左端放一质量为m 的铁块,现给铁块一个水平向右的瞬时冲量使其以初速度v 0开始运动,并与固定在木板另一端的弹簧相碰后返回,恰好又停在木板左端.(重力加速度为g )图6(1)求整个过程中系统克服摩擦力做的功.(2)若铁块与木板间的动摩擦因数为μ,则铁块相对木板的最大位移是多少? (3)系统的最大弹性势能是多少?答案 (1)Mm v 022(M +m ) (2)M v 024μg (M +m ) (3)Mm v 024(M +m )解析 设弹簧被压缩至最短时,共同速度为v 1,此时弹性势能最大,设为E p ,铁块回到木板左端时,共同速度为v 2,则由动量守恒定律得 m v 0=(M +m )v 1① m v 0=(M +m )v 2②(1)整个过程系统克服摩擦力做的功 W f =12m v 02-12(M +m )v 22③联立②③解得W f =Mm v 022(M +m )④(2)系统克服摩擦力做的功 W f =2μmgL ⑤联立④⑤解得L =M v 024μg (M +m )⑥(3)根据能量守恒定律得 12W f +E p =12m v 02-12(M +m )v 12⑦ 联立①④⑦解得E p =Mm v 024(M +m )⑧5.(2020·河南郑州市线上测试)如图7所示,长木板B 的质量为m 2=1.0 kg ,静止放在粗糙的水平地面上,质量为m 3=1.0 kg 的物块C (可视为质点)放在长木板的最右端.一个质量为m 1=0.5 kg 的物块A 从距离长木板B 左侧l =9.5 m 处,以初速度v 0=10 m/s 向着长木板运动.一段时间后物块A 与长木板B 发生弹性正碰(时间极短),之后三者发生相对运动,整个过程物块C 始终在长木板上.已知物块A 及长木板与地面间的动摩擦因数均为μ1=0.1,物块C 与长木板间的动摩擦因数为μ2=0.2,物块C 与长木板间的最大静摩擦力等于滑动摩擦力,g 取10 m/s 2,求:(1)A 、B 碰后瞬间物块A 和长木板B 的速度; (2)长木板B 的最小长度;(3)物块A 离长木板左侧的最终距离.答案 (1)3 m /s ,方向向左 6 m/s ,方向向右 (2)3 m (3)10.5 m解析 (1)设物块A 与木板B 碰前瞬间的速度为v ,由动能定理得-μ1m 1gl =12m 1v 2-12m 1v 02解得v =v 02-2μ1gl =9 m/sA 与B 发生弹性碰撞,假设碰撞后的瞬间速度分别为v 1、v 2,由动量守恒定律得m 1v =m 1v 1+m 2v 2 由机械能守恒定律得12m 1v 2=12m 1v 12+12m 2v 22联立解得v 1=m 1-m 2m 1+m 2v =-3 m/s ,v 2=2m 1m 1+m 2v =6 m/s碰后瞬间物块A 的速度大小为3 m /s 、方向向左,长木板B 的速度大小为6 m/s 、方向向右; (2)碰撞后B 做减速运动,C 做加速运动,B 、C 达到共同速度之前,由牛顿运动定律,对木板B 有 -μ1(m 2+m 3)g -μ2m 3g =-m 2a 1 对物块C 有μ2m 3g =m 3a 2设从碰撞后到两者达到共同速度经历的时间为t ,则 v 2-a 1t =a 2t木板B 的最小长度d =v 2t -12a 1t 2-12a 2t 2=3 m(3)B 、C 达到共同速度之后,因μ1(m 2+m 3)g =μ2m 3g ,故二者一起减速至停下,设加速度大小为a 3,由牛顿运动定律得μ1(m 2+m 3)g =(m 2+m 2)a 3 整个过程B 运动的位移为 x B =v 2t -12a 1t 2+0-(a 2t )2-2a 3=6 mA 与B 碰撞后,A 做减速运动的加速度大小为a 4=μm 1g m 1=1 m/s 2,位移为x A =0-v 12-2a 4=4.5 m物块A 离长木板B 左侧的最终距离为 x A +x B =10.5 m.专题强化练[保分基础练]1.(2020·广东东莞市线上检测)如图1所示,一个质量为m 的物块A 与另一个质量为2m 的物块B 发生正碰,碰后B 物块刚好能落入正前方的沙坑中,假如碰撞过程中无机械能损失,已知物块B 与地面间的动摩擦因数为0.2,与沙坑的距离为1 m ,g 取10 m/s 2,物块可视为质点,则碰撞前瞬间A 的速度大小为( )A .0.5 m /sB .1 m/sC .2 m /sD .3 m/s答案 D解析 碰撞后B 做匀减速运动,由动能定理得-μ·2mgx =0-12×2m v 2,代入数据得v =2 m/s ,A 与B 碰撞的过程中,A 与B 组成的系统在水平方向上动量守恒,选取向右为正方向,则m v 0=m v 1+2m v ,由于没有机械能损失,则12m v 02=12m v 12+12×2m v 2,联立解得v 0=3 m/s ,故选D. 2.(2020·河北唐山市高三第一次模拟)如图2所示,光滑水平面上有质量为m 的足够长的木板,木板上放一质量也为m 、可视为质点的小木块,开始木块、木板均静止.现分别使木块获得向右的水平初速度v 0和2v 0,两次运动均在木板上留下划痕,则两次划痕长度之比为( )图2A .1∶4B .1∶42C .1∶8D .1∶12 答案 A解析 木块从开始到相对长木板静止的过程中,木块和木板组成的系统水平方向动量守恒,取水平向右为正方向,则有m v 0=(M +m )v ,解得v =m v 0M +m ;对系统,根据能量守恒定律有μmgs =12m v 02-12(M +m )v 2,解得划痕长度s =M v 022μ(M +m )g ,同理,当木块的初速度为2v 0时,则划痕长度为s ′=M (2v 0)22μ(M +m )g ,故两次划痕长度之比为s ∶s ′=1∶4,故A 正确,B 、C 、D 错误.3.如图3所示,在光滑水平面上有一带挡板的长木板,挡板和长木板的总质量为m ,木板长度为L (挡板的厚度可忽略不计),挡板上固定有一个小炸药包(可视为质量不计的点).木板左端有一质量也为m (可视为质点)的滑块.滑块与木板间的动摩擦因数恒定,整个系统处于静止状态.现给滑块一个水平向右的初速度v 0,滑块相对木板向右运动,刚好能与小炸药包接触,接触瞬间小炸药包爆炸(此过程时间极短,爆炸后滑块与木板只在水平方向上运动,且完好无损),滑块向左运动,最终回到木板的左端,恰与木板相对静止.重力加速度为g .求:图3(1)滑块与木板间的动摩擦因数;(2)小炸药包爆炸后瞬间滑块和木板的速度. 答案 (1)v 024gL(2)0 v 0,方向水平向右解析 (1)滑块相对木板向右运动,刚好能与炸药包接触,此时滑块和木板的速度相同,设滑块刚要与炸药包接触时的速度为v 1,以水平向右为正方向;滑块在木板上滑动的过程中,滑块和木板组成的系统所受合外力为零,则该系统动量守恒,故有m v 0=2m v 1解得v 1=12v 0,方向水平向右滑块在木板上滑动的过程中,对系统,由功能关系可知 μmgL =12m v 02-12×2m v 12联立解得μ=v 024gL(2)设小炸药包爆炸后瞬间滑块和木板的速度分别为v 1′和v 2′,最终滑块相对木板静止于木板的左端时速度为v 2,系统在爆炸前后动量守恒,则有 2m v 1=m v 1′+m v 2′ 2m v 1=2m v 2小炸药包爆炸后,滑块在木板上运动的过程中,对系统,根据功能关系,有 μmgL =12m v 1′2+12m v 2′2-12×2m v 22联立以上各式解得v 1′=0,v 2′=v 0,方向水平向右.[争分提能练]4.(2020·山东三校在线联考)如图4所示,一平板小车 C 静止在光滑的水平面上,质量分别为m 的物体A 和2m 的物体B 均以大小为v 的初速度分别沿同一直线同时从小车两端相向水平滑上小车.设两物体与小车间的动摩擦因数均为μ,小车质量为m ,最终物体A 、B 都停在小车上,物体 A 、B 始终没有相碰.重力加速度为g ,求:图4(1)最终小车的速度大小及方向; (2)平板车的长度至少为多长. 答案 (1)v 4 方向水平向左 (2)9v 28μg解析 (1)以A 、B 两物体及小车组成的系统为研究对象,以B 的初速度方向为正方向,由动量守恒定律可得2m v -m v =4m v 1解得v 1=v4,方向水平向左(2)初始阶段A 物体向右做匀减速运动,加速度大小a A =μmg m =μg ;B 物体向左做匀减速运动,加速度大小a B =μ·2mg2m=μg ;小车向左做匀加速运动,加速度大小a C =μ·2mg -μmg m =μg经过t 1时间,B 、C 达到共同速度,则有v -μgt 1=μgt 1此时t 1=v 2μg ,B 、C 的速度v 2=v2,方向向左,A 的速度大小与B 、C 相同,方向相反,该过程中,A 相对C 运动的距离:Δx 1=(v t 1-12a A t 12)+12a C t 12B 相对C 运动的距离:Δx 2=(v t 1-12a B t 12)-12a C t 12 此后B 、C 共同向左做减速运动,加速度大小a =μmg 3m =μg 3直到三物体速度相同,所用时间t 2=v 1-v 2-a=3v 4μg 该过程A 相对B 、C 滑行的距离:Δx 3=(v 2t 2-12a A t 22)+(v 2t 2-12at 22) 所以小车的长度至少是l =Δx 1+Δx 2+Δx 3=9v 28μg. 5.(2020·湖北武汉市高三调研卷)如图5所示,装置的左边是光滑水平台面,一水平轻质弹簧左端固定,右端连接着质量M =3 kg 的物块A .装置的中间是始终在以u =2 m/s 的速度顺时针转动的水平传送带,它与左边的台面等高并平滑对接,它也与右边的倾角θ=37°的光滑斜面平滑对接.物块A 静止在其平衡位置,此处距传送带左端l =0.5 m .质量m =1 kg 的物块B 从斜面上距水平台面高h =2.0 m 处由静止释放,已知物块B 与传送带之间的动摩擦因数μ=0.2,传送带的长度为L =1.0 m .物块A 、B 都可视为质点,A 、B 发生的每次碰撞都是弹性正碰且碰撞时间极短.取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,求:图5(1)物块B 与物块A 第一次碰撞前瞬间,B 的速度大小;(2)物块B 与物块A 第一次碰撞后,B 返回斜面相对水平台面能上升的最大高度h ′;(3)如果物块A 每次被B 碰撞后,会在外力帮助下静止在其平衡位置等待B 的再次碰撞,当物块B 在传送带上第一次对地速度减为零时,物块B 从开始到此时相对于地面运动的总路程s 多大.答案 (1)6 m/s (2)0.25 m (3)11.83 m解析 (1)B 从斜面滑下过程机械能守恒,mgh =12m v 02 解得B 滑上传送带瞬间v 0=210 m/sB 滑上传送带做匀减速运动,v 02-v 12=2aL ,μmg =ma解得B 滑过传送带与A 碰前瞬间的速度v 1=6 m/s(2)A 、B 发生弹性碰撞,动量守恒、机械能守恒,碰后B 的速度为v 2,A 的速度为v Am v 1=m v 2+M v A ,12m v 12=12m v 22+12M v A 2 联立两式解得v 2=-12v 1,v A =12v 1,即v 2=-3 m/s 物块B 以3 m/s 的速度返回到传送带上做匀减速运动直到最右端,则v 22-v 32=2aL解得v 3= 5 m/s >u =2 m/s故此次在传送带上向右一直做匀减速运动,则mgh ′=12m v 32,得h ′=0.25 m (3)物块B 上升h ′后再返回传送带右端时,速度大小为v 3= 5 m/s ,滑上传送带,减速至左端v 32-v 42=2aL ,得v 4=1 m/s物块B 与A 第二次发生弹性碰撞,碰后速度v 5=-12m/s 返回传送带后向右匀加速运动,u 2-v 52=2ax得x =1516m <L =1 m 故运动x 后匀速运动至右端,以初速度大小u =2 m/s 滑上斜面,则mgh ″=12mu 2 得h ″=0.2 m再次返回匀减速运动至传送带左端时恰好对地速度为零,则物块B 从开始到此时对地总路程s =4l +5L +h +2h ′+2h ″sin θ得s =716m ≈11.83 m. 6.如图6所示为某工地一传输工件的装置,AB 为一段足够大且固定的14圆弧轨道,圆弧半径R =5.6 m ,BC 为一段足够长的水平轨道,CD 为一段固定的14圆弧轨道,圆弧半径r =1 m ,三段轨道均光滑.一长为L =2 m 、质量为M =1 kg 的平板小车最初停在BC 轨道的最左端,小车上表面刚好与AB 轨道相切,且与CD 轨道最低点处于同一水平面.一可视为质点、质量为m =2 kg 的工件从距AB 轨道最低点的高度为h 处沿轨道自由滑下,滑上小车后带动小车向右运动,小车与CD 轨道左端碰撞(碰撞时间极短)后即被粘在C 处.工件只有从CD 轨道最高点飞出,才能被站在台面DE 上的工人接住.工件与小车间的动摩擦因数为μ=0.5,取g =10 m/s 2,则:图6(1)若h 为2.8 m ,则工件滑到圆弧底端B 点时对轨道的压力为多大?(2)要使工件能被站在台面DE 上的工人接住,则h 的取值范围为多少?答案 (1)40 N (2)187m<h ≤3 m 解析 (1)工件从起点滑到圆弧轨道底端B 点,设到B 点时的速度为v B ,根据动能定理有mgh =12m v B 2 工件做圆周运动,在B 点,由牛顿第二定律得F N -mg =m v B 2R联立解得F N =40 N由牛顿第三定律知,工件滑到圆弧底端B 点时对轨道的压力大小为F N ′=F N =40 N.(2)由于BC 轨道足够长,要使工件能到达CD 轨道,工件与小车必须能够达到共速,设工件刚滑上小车时的速度为v 0,工件与小车达到共速时的速度为v 1,假设工件到达小车最右端才与其共速,规定向右为正方向,则对于工件与小车组成的系统,由动量守恒定律得m v 0=(m +M )v 1由动能定理得μmgL =12m v 02-12(m +M )v 12 对于工件从AB 轨道滑下的过程,由机械能守恒定律得mgh 1=12m v 02 代入数据解得h 1=3 m要使工件能从CD 轨道最高点飞出,h 1=3 m 时物块有从AB 轨道滑下且不脱离小车的最大速度. 设工件从轨道下滑的最小高度为h ′,刚滑上小车的速度为v 0′,与小车达到共速时的速度为v 1′,刚滑上CD 轨道的速度为v 2′,规定向右为正方向,对工件和小车系统,由动量守恒定律得 m v 0′=(m +M )v 1′由动能定理得μmgL =12m v 0′2-12M v 1′2-12m v 2′2 工件恰好滑到CD 轨道最高点,由机械能守恒定律得 12m v 2′2=mgr 工件在AB 轨道滑动的过程,由机械能守恒定律得mgh ′=12m v 0′2 联立并代入数据解得h ′=187m 综上所述,要使工件能到达CD 轨道最高点,应使h 满足187 m<h ≤3 m.。
力学三大观点的综合应用(解析版)--2025高考物理
力学三大观点的综合应用目录题型一应用力学三大观点解决多过程问题 1题型二应用力学三大观点解决板-块模型及传送带模型问题 16题型一应用力学三大观点解决多过程问题力学三大观点对比力学三大观点对应规律表达式选用原则动力学观点牛顿第二定律F 合=ma物体做匀变速直线运动,涉及到运动细节.匀变速直线运动规律v =v 0+atx =v 0t +12at 2v 2-v 20=2ax 等能量观点动能定理W 合=ΔE k涉及到做功与能量转换机械能守恒定律E k 1+E p 1=E k 2+E p 2功能关系W G =-ΔE p 等能量守恒定律E 1=E 2动量观点动量定理I 合=p ′-p 只涉及初末速度、力、时间而不涉及位移、功动量守恒定律p 1+p 2=p 1′+p 2′只涉及初末速度而不涉及力、时间1.(2024·湖北·模拟预测)如图甲所示,小球A 以初速度v 0=2gR 竖直向上冲入半径为R 的14粗糙圆弧管道,然后从管道另一端沿水平方向以速度v 02=gR 冲出,在光滑水平面上与左端连有轻质弹簧的静止小球B 发生相互作用,距离B 右侧s 处有一个固定的弹性挡板,B 与挡板的碰撞没有能量损失。
已知A 、B 的质量分别为3m 、2m ,整个过程弹簧的弹力随时间变化的图像如图乙所示(从A 球接触弹簧开始计时,t 0已知)。
弹簧的弹性势能为E p =12kx 2,x 为形变量,重力加速度为g 。
求:(1)小球在管道内运动的过程中阻力做的功;(2)弹簧两次弹力最大值之比F 2:F 1;(3)小球B 的初始位置到挡板的距离s 。
【答案】(1)-32mgR ;(2)7:5;(3)35t 0gR 【详解】(1)设小球在管道内运动的过程阻力做功为W f ,根据动能定理可得-3mgR +W f =12⋅3m v 02 2-12⋅3mv 20解得W f =-32mgR(2)当A 、B 第一次共速时,弹簧压缩量最大,弹簧弹力最大,设压缩量为x 1,A 、B 共同速度为v 共1,从A 刚接触弹簧到A 、B 共速,根据动量守恒定律和机械能守恒定律可得3mv 02=(3m +2m )v 共112kx 21=12⋅3m v 02 2-12⋅(3m +2m )v 2共1此时弹簧弹力为F 1,有F 1=kx 1由图乙可知,弹簧刚好恢复原长时,B 与挡板相撞,设此时A 、B 速度分别为v 1、v 2,从A 刚接触弹簧到弹簧恢复原长,根据动量守恒定律和机械能守恒定律可得3mv 02=3mv 1+2mv 212⋅3m v 02 2=12⋅3mv 21+12⋅2mv 22解得v 1=15gR ,v 2=65gR此时B 原速率反弹,当A 、B 第二次共速时,弹簧压缩量再一次达到最大,设压缩量为x 2,A 、B 共同速度为v 共2,从B 刚反弹到弹簧第二次压缩最大,根据动量守恒定律和机械能守恒定律可得3mv 1-2mv 2=(3m +2m )v 共212kx 22=12⋅3mv 21+12⋅2mv 22-12(3m +2m )v 2共2此时弹簧弹力为F 2,有F 2=kx 2联立解得F 2:F 1=7:5(3)设A 、B 一起向右运动的过程中,任意时刻A 、B 速度分别为v A 、v B ,根据动量守恒可得3mv 02=3mv A +2mv B 在任意一极短时间∆t 内,有3mv 02Δt =3mv A Δt +2mv B Δt 所以3mv 02Δt =3m Δx A +2m Δx B 等式两边求和得3mv 02t 0=3ms A +2ms B 由图乙可知,t 0时B 与挡板发生碰撞,此时弹簧恰好恢复原长,故从t =0到t =t 0时,A 、B 位移相同,即s A =s B =s联立解得s =35t 0gR 2.(2024·河北·三模)滑雪是人们在冬季喜爱的户外运动。
2025高考物理总复习力学三大观点的综合应用
台最右端 N 点停下,随后滑下的 B 以 2v0 的速度与 A 发
图1
生正碰,碰撞时间极短,碰撞后 A、B 恰好落在桌面上圆盘内直径的两端。已知 A、
B 的质量分别为 m 和 2m,碰撞过程中损失的能量为碰撞前瞬间总动能的14。A 与
传送带间的动摩擦因数为 μ,重力加速度为 g,A、B 在滑至 N 点之前不发生碰撞,
答案 (1)8 N 5 N (2)8 m/s (3)0.2 m
解析 (1)当滑块处于静止时桌面对滑杆的支持力等于滑块和
滑杆的重力,即N1=(m+M)g=8 N 当滑块向上滑动时受到滑杆的摩擦力f=1 N,根据牛顿第三定
律可知滑块对滑杆的摩擦力f′=1 N,方向竖直向上,则此时桌
面对滑杆的支持力为N2=Mg-f′=5 N。
一起竖直向上运动。已知滑块的质量m=0.2 kg,滑杆的质量
M=0.6 kg,A、B间的距离l=1.2 m,重力加速度g取10 m/s2,
不计空气阻力。求:
图4
01 02 03 04
目录
提升素养能力
(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大
小N1和N2; (2)滑块碰撞前瞬间的速度大小v1; (3)滑杆向上运动的最大高度h。
该过程中弹簧对物体B冲量的大小。
答案 (1)mA 2gH mA+mB
(2)2t 2(mA+mB)gt+2mA 2gH
解析 (1)设A和B碰前瞬间的速度大小为v0,和B碰后瞬间的
速度大小为v,有 mAgH=21mAv20 v0= 2gH
01 02 03 04
目录
提升素养能力
由动量守恒定律有 mAv0=(mA+mB)v 解得 v=mmAA+2mgHB 。 (2)从碰后至返回到碰撞点的过程中,AB结合体做简谐运动。 根据简谐运动的对称性,可得运动时间t总=2t 回到碰撞点时速度大小为 vt=v=mmAA+2mgHB 方向竖直向上 取向上为正方向,由动量定理得I-(mA+mB)g·2t=(mA+mB)vt-[-(mA+mB)v] 解得 I=2(mA+mB)gt+2mA 2gH。
5力学三大观点的综合应用
向右 2m
二、动量观点与能量观点综合
例2、如图所示,坡道顶端距水平面高度为 h,质量为 m1 的小物块 A 从坡道顶端由静止滑下,在进入水平面上的滑道时无机械能损失, 为使 A 制动,将轻弹簧的一端固定在水平滑道延长线 M 处的墙上, 另一端与质量为 m2 的挡板 B 相连,弹簧处于原长时,B 恰位于滑 道的末端 O 点.A 与 B 碰撞时间极短,碰后结合在一起共同压缩 弹簧,已知在 OM 段 A、B 与水平面间动摩擦因数均为μ,其余各 处的摩擦不计,重力加速度为 g,求:
(1)滑雪运动员在水平面 BC 上受到的阻力大小 f. (2)平抛运动的初速度. (3)落地时损失的机械能ΔE.
图 T1-6
解:(1)对 BC 过程运用动能定理得- fs2=-12mv2 解得 f=m2sv22=75 N. (2)在平抛运动过程中因 h=12gt2,有 t= 2gh=2 s,则平抛 运动的初速度为 v0=st1=15 m/s. (3)由能量守恒知,落地时损失的机械能为 ΔE=12mv20+mgh-12mv2=15 750 J.
前小车相对地运动的位移.
s? L 2
(2)求弹簧解除锁定瞬间物块和
小车的速度分别为多少? v1 ? v0 ? 2 ?gL(车),v2 ? 0
解:(1)物块在小车上运动到右壁时,设小车与物块的共同 速度为 v,由动量守恒定律得 mv0=2mv,由能量关系有 μmgl =12mv20-12·2mv2,故 v0=2 μgl,在物块相对小车向右运动的过 程中,小车向右做匀加速运动,加速度为 a=μg,速度由 0 增 加到 v=v20,小车位移为 s,则
图 T1-5
解:因 v0=4 m/s>v=2 m/s,物件在传送带上做匀减速运动, 当速度减小到与传送带速度相同后,随传送带匀速运动.由牛 顿第二定律 F=ma 得 a=μmmg=μg=2 m/s2,减速所经过的位移 s1=v-2-2va20=3 m,所用时间 t1=v--av0=1 s,物件到达右端还需 时间 t2=L-v s1=3.5 s,所以物件到达右端共需时间 t=t1+t2= 4.5 s.
10专题:力学三大观点综合运用专题(含答案)
10专题:力学三大观点综合运用专题力学三大观点对应规律表达式选用原则动力学观点牛顿第二定律F合=ma物体做匀变速直线运动(曲线运动某一方向可分解为匀变速直线运动),涉及到运动细节.匀变速直线运动规律v=v0+atx=v0t+12at2v2-v02=2ax等能量观点动能定理W合=ΔE k当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移(摩擦生热)时,应优先选用能量守恒定律机械能守恒定律E k1+E p1=E k2+E p2功能关系W G=-ΔE p等能量守恒定律E1=E2动量观点动量定理I合=p′-p只涉及初末速度、力、时间而不涉及位移、功,特别是打击类问题动量守恒定律p1+p2=p1′+p2′对于碰撞、爆炸、反冲、地面光滑的板—块问题,只涉及初末速度而不涉及力、时间1.如图,一质量M=6 kg的木板B静止于光滑水平面上,物块A质量m=6 kg,停在木板B的左端.质量为m0=1 kg的小球用长为L=0.8 m的轻绳悬挂在固定点O上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与物块A发生碰撞后反弹,反弹所能达到的距最低点的最大高度为h=0.2 m,物块A与小球可视为质点,不计空气阻力.已知物块A、木板B间的动摩擦因数μ=0.1,(取g=10 m/s2)求:(1)小球运动到最低点与物块A碰撞前瞬间,小球的速度大小;(2)小球与物块A碰撞后瞬间,物块A的速度大小;(3)为使物块A、木板B达到共同速度前物块A不滑离木板,木板B至少多长.2.如图所示,在水平轨道上方O处,用长为L=1 m的细线悬挂一质量为m=0.1 kg 的滑块B,B 恰好与水平轨道相切,并可绕O点在竖直平面内摆动.水平轨道的右侧有一质量为M=0.3 kg 的滑块C与轻质弹簧的一端相连,弹簧的另一端固定在竖直墙D上,弹簧处于原长时,滑块C 静止在P点处.一质量也为m=0.1 kg的子弹以初速度v0=15 2 m/s 射穿滑块B后(滑块B质量不变)射中滑块C并留在其中,一起压缩弹簧,弹簧最大压缩量为x=0.2 m.滑块B做圆周运动,恰好能保证绳子不松弛.滑块C与PD段的动摩擦因数为μ=0.5,A、B、C均可视为质点,重力加速度为g=10 m/s2,结果保留两位有效数字.求:(1)子弹A和滑块B作用过程中损失的能量;(2)弹簧的最大弹性势能.3.如图所示,水平传送带两端A、B间距为L=6 m,质量为M=2 kg的木块随传送带一起以v0=2 m/s的速度向左匀速运动,木块与传送带间的动摩擦因数μ=0.3,当木块运动至最左端A 点时,一个质量为m=0.5 kg的小球以v=20 m/s的速度水平向右撞向木块并与木块粘连在一起(g=10 m/s2)。
2024届高考复习 专题17 力学三大观点的综合应用(原卷版)
专题17 力学三大观点的综合应用目录题型一应用力学三大观点解决多过程问题 (1)题型二应用力学三大观点解决板—块模型及传送带模型问题 (6)题型一应用力学三大观点解决多过程问题力学三大观点对比力学三大观点对应规律表达式选用原则动力学观点牛顿第二定律F合=ma物体做匀变速直线运动,涉及到运动细节.匀变速直线运动规律v=v0+atx=v0t+12at2v2-v02=2ax等能量观点动能定理W合=ΔE k涉及到做功与能量转换机械能守恒定律E k1+E p1=E k2+E p2功能关系W G=-ΔE p等能量守恒定律E1=E2动量观点动量定理I合=p′-p只涉及初末速度、力、时间而不涉及位移、功动量守恒定律p1+p2=p1′+p2′只涉及初末速度而不涉及力、时间【例1】如图所示,水平桌面左端有一顶端高为h的光滑圆弧形轨道,圆弧的底端与桌面在同一水平面上.桌面右侧有一竖直放置的光滑圆轨道MNP,其形状为半径R=0.8 m的圆环剪去了左上角135°后剩余的部分,MN为其竖直直径,P点到桌面的竖直距离也为R.一质量m=0.4 kg的物块A自圆弧形轨道的顶端释放,到达圆弧形轨道底端恰与一停在圆弧底端水平桌面上质量也为m的物块B发生弹性正碰(碰撞过程没有机械能的损失),碰后物块B的位移随时间变化的关系式为s=6t-2t2(关系式中所有物理量的单位均为国际单位),物块B 飞离桌面后恰由P点沿切线落入圆轨道.(重力加速度g取10 m/s2)求:(1)BP间的水平距离s BP;(2)判断物块B能否沿圆轨道到达M点;(3)物块A由静止释放的高度h.【例2】(2021·云南省高三二模)如图所示,光滑弧形槽静置于光滑水平面上,底端与光滑水平面相切,弧形槽高度h=2.7 m、质量m0=2 kg.BCD是半径R=0.4 m的固定竖直圆形光滑轨道,D是轨道的最高点,粗糙水平面AB与光滑圆轨道在B点相切,已知A、B两点相距2 m.现将质量m=1 kg的物块从弧形槽顶端由静止释放,物块进入粗糙水平面AB前已经与光滑弧形槽分离,并恰能通过光滑圆轨道最高点D,重力加速度g=10 m/s2.求:(1)物块从弧形槽滑下的最大速度大小;(2)物块在圆形轨道B点时受到的轨道的支持力大小;(3)物块与粗糙水平面AB间的动摩擦因数.【例3】(2022·湖南怀化市一模)如图所示,光滑轨道abc固定在竖直平面内,ab 倾斜、bc水平,与半径R=0.4 m竖直固定的粗糙半圆形轨道cd在c点平滑连接。
力学三大基本观点的综合应用研究
力学三大基本观点的综合应用研究力学三大基本观点,即牛顿运动定律(特别是牛顿第二定律)、动量守恒定律和能量守恒定律,是物理学中解决力学问题的基石。
这些观点不仅各自独立且深刻,而且在实际应用中往往相互关联、相互补充,共同构成了解决复杂力学问题的完整框架。
以下是对力学三大基本观点综合应用的研究。
1. 牛顿运动定律的应用牛顿第二定律(F=ma)是连接力和运动的桥梁,它描述了物体加速度与所受合外力及物体质量之间的关系。
在解决力学问题时,首先需要根据物体的受力情况(包括重力、弹力、摩擦力等)确定合外力,然后利用牛顿第二定律求出物体的加速度,进而通过运动学公式求解物体的速度、位移等运动学量。
2. 动量守恒定律的应用动量守恒定律(在没有外力作用或外力作用远小于内力作用时,系统总动量保持不变)是处理碰撞、爆炸等涉及多个物体相互作用问题的重要工具。
在应用动量守恒定律时,需要明确系统的边界(即哪些物体构成系统),判断系统是否满足动量守恒的条件,然后建立动量守恒的等式进行求解。
动量守恒定律不仅简化了问题的求解过程,还揭示了物体间相互作用的本质。
3. 能量守恒定律的应用能量守恒定律(能量既不会被消灭,也不会创生,能量只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变)是自然界普遍遵循的基本定律之一。
在力学中,它表现为机械能守恒(在只有重力或弹力做功的情况下,物体的动能和势能之和保持不变)或更一般的能量转化与守恒。
通过分析物体的受力情况和运动过程,确定能量的转化与守恒关系,可以建立能量等式进行求解。
这种方法在处理复杂力学问题时尤为有效。
4. 三大观点的综合应用在实际问题中,力学三大基本观点往往不是孤立地应用,而是需要综合运用。
例如,在处理碰撞问题时,可以首先利用动量守恒定律确定碰撞前后物体的速度关系,然后利用牛顿第二定律分析碰撞过程中的受力情况,最后通过能量守恒定律验证结果的正确性。
三大力学观点的综合应用
(2)设 A 车的质量为 mA,碰后加速度大小为 aA,根据牛顿 第二定律有
μmAg=mAaA④ 设碰撞后瞬间 A 车速度的大小为 vA′,碰撞后滑行的距离 为 sA,由运动学公式有 vA′2=2aAsA⑤ 设碰撞前的瞬间 A 车速度的大小为 vA。两车在碰撞过程中 动量守恒,有 mAvA=mAvA′+mBvB′⑥ 联立③④⑤⑥式并利用题给数据得 vA=4.3 m/s。⑦
(1)求物块 M 碰撞后的速度大小; (2)若平台表面与物块 M 间的动摩擦因数 μ=0.5,物块 M 与 小球的初始距离为 x1=1.3 m,求物块 M 在 P 处的初速度大小。
[解析] (1)碰后物块 M 做平抛运动,设其平抛运动的初速 度为 v3,平抛运动时间为 t,由平抛运动规律得
h=12gt2① x=v3t② 得:v3=x 2gh=3.0 m/s。③ (2)物块 M 与小球在 B 点处碰撞,设碰撞前物块 M 的速度 为 v1,碰撞后小球的速度为 v2,由动量守恒定律: Mv1=mv2+Mv3④
解析:(1)由题图乙可知: 长木板的加速度 a1=12 m/s2=0.5 m/s2 由牛顿第二定律可知:小物块施加给长木板的滑动摩擦力 Ff= m1a1=2 N 小物块与长木板之间的动摩擦因数:μ=mF2fg=0.2。 (2)由题图乙可知,小物块的加速度 a2=42 m/s2=2 m/s2 由牛顿第二定律可知:F-μm2g=m2a2 解得 F=4 N。
碰后小球从 B 点处运动到最高点 A 过程中机械能守恒,设 小球在 A 点的速度为 vA,则12mv22=12mvA2+2mgL⑤
小球在最高点时有:2mg=mvLA2⑥ 由⑤⑥解得:v2=6.0 m/s⑦ 由③④⑦解得:v1=mv2+MMv3=6.0 m/s⑧ 物块 M 从 P 点运动到 B 点过程中,由动能定理: -μMgx1=12Mv12-12Mv02⑨ 解得:v0= v12+2μgx1=7.0 m/s。 [答案] (1)3.0 m/s (2)7.0 m/s
力学三大观点的综合应用
力学三大观点得综合应用1.动量定理得公式Ft=p′-p除表明两边大小、方向得关系外,还说明了两边得因果关系,即合外力得冲量就是动量变化得原因.动量定理说明得就是合外力得冲量与动量变化得关系,反映了力对时间得累积效果,与物体得初、末动量无必然联系.动量变化得方向与合外力得冲量方向相同,而物体在某一时刻得动量方向跟合外力得冲量方向无必然联系.动量定理公式中得F就是研究对象所受得包括重力在内得所有外力得合力,它可以就是恒力,也可以就是变力,当F为变力时,F应就是合外力对作用时间得平均值.2.动量守恒定律(1)内容:一个系统不受外力或者所受外力之与为零,这个系统得总动量保持不变.(2)表达式:m1v1+m2v2=m1v1′+m2v2′;或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp=0(系统总动量得增量为零);或Δp1=-Δp2(相互作用得两个物体组成得系统,两物体动量得增量大小相等、方向相反).(3)守恒条件①系统不受外力或系统虽受外力但所受外力得合力为零.②系统合外力不为零,但在某一方向上系统合力为零,则系统在该方向上动量守恒.③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程.3.解决力学问题得三个基本观点(1)力得观点:主要就是牛顿运动定律与运动学公式相结合,常涉及物体得受力、加速度或匀变速运动得问题.(2)动量得观点:主要应用动量定理或动量守恒定律求解,常涉及物体得受力与时间问题,以及相互作用物体得问题.(3)能量得观点:在涉及单个物体得受力与位移问题时,常用动能定理分析;在涉及系统内能量得转化问题时,常用能量守恒定律.1.力学规律得选用原则(1)单个物体:宜选用动量定理、动能定理与牛顿运动定律.若其中涉及时间得问题,应选用动量定理;若涉及位移得问题,应选用动能定理;若涉及加速度得问题,只能选用牛顿第二定律.(2)多个物体组成得系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.2.系统化思维方法,就就是根据众多得已知要素、事实,按照一定得联系方式,将其各部分连接成整体得方法.(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂得运动.(2)对多个研究对象进行整体思维,即把两个或两个以上得独立物体合为一个整体进行考虑,如应用动量守恒定律时,就就是把多个物体瞧成一个整体(或系统)、考向1动量与能量得观点在力学中得应用例1(2014·安徽·24)在光滑水平地面上有一凹槽A,中央放一小物块B、物块与左右两边槽壁得距离如图1所示,L为1、0 m,凹槽与物块得质量均为m,两者之间得动摩擦因数μ为0、05、开始时物块静止,凹槽以v0=5 m/s得初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g取10 m/s2、求:图1(1)物块与凹槽相对静止时得共同速度;(2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞得次数;(3)从凹槽开始运动到两者刚相对静止所经历得时间及该时间内凹槽运动得位移大小.解析(1)设两者间相对静止时速度为v,由动量守恒定律得m v0=2m vv=2、5 m/s,方向向右.(2)设物块与凹槽间得滑动摩擦力F f=μF N=μmg设两者相对静止前相对运动得路程为s1,由动能定理得-F f·s1=12-12m v202(m+m)v解得s 1=12、5 m已知L =1 m ,可推知物块与右侧槽壁共发生6次碰撞.(3)设凹槽与物块碰前得速度分别为v 1、v 2,碰后得速度分别为v 1′、v 2′、有m v 1+m v 2=m v 1′+m v 2′12m v 21+12m v 22=12m v 1′2+12m v 2′2 得v 1′=v 2,v 2′=v 1即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者得速度图线如图所示,根据碰撞次数可分为13段,凹槽、物块得v —t 图象在两条连续得匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则 v =v 0+at a =-μg 解得t =5 s凹槽得v —t 图象所包围得阴影部分面积即为凹槽得位移大小s 2、(等腰三角形面积共分13份,第一份面积为0、5L ,其余每份面积均为L )s 2=12(v 02)t +6、5L解得s 2=12、75 m答案 (1)2、5 m/s ,方向向右 (2)6次 (3)5 s 12、75 m如图2,半径R =0、8 m 得四分之一圆弧形光滑轨道竖直放置,圆弧最低点D 与长为L =6 m 得水平面相切于D 点,质量M =1、0 kg 得小滑块A 从圆弧顶点C 由静止释放,到达最低点后,与D 点右侧m =0、5 kg 得静止物块B 相碰,碰后A 得速度变为v A =2、0 m /s ,仍向右运动.已知两物块与水平面间得动摩擦因数均为μ=0、1,若B 与E 处得竖直挡板相碰,没有机械能损失,取g =10 m/s 2、求:图2(1)滑块A 刚到达圆弧得最低点D 时对圆弧得压力;(2)滑块B 被碰后瞬间得速度;(3)讨论两滑块就是否能发生第二次碰撞.答案 (1)30 N ,方向竖直向下 (2)4 m/s (3)见解析解析 (1)设小滑块运动到D 点得速度为v ,由机械能守恒定律有:MgR =12M v 2由牛顿第二定律有F N -Mg =M v 2R联立解得小滑块在D 点所受支持力F N =30 N由牛顿第三定律有,小滑块在D 点时对圆弧得压力为30 N ,方向竖直向下. (2)设B 滑块被碰后得速度为v B ,由动量守恒定律: M v =M v A +m v B解得小滑块在D 点右侧碰后得速度v B =4 m/s(3)讨论:由于B 物块得速度较大,如果它们能再次相碰一定发生在B 从竖直挡板弹回后,假设两物块能运动到最后停止,达到最大得路程,则对于A 物块 -μMgs A =0-12M v 2A解得s A =2 m对于B 物块,由于B 与竖直挡板得碰撞无机械能损失,则-μmgs B =0-12m v 2B解得s B =8 m(即从E 点返回2 m)由于s A +s B =10 m<2×6 m =12 m ,故它们停止运动时仍相距2 m ,不能发生第二次碰撞. 考向2 综合应用力学三大观点解决多过程问题例2 如图3所示,在光滑得水平面上有一质量为m =1 kg 得足够长得木板C ,在C 上放置有A 、B 两物体,A 得质量m A =1 kg ,B 得质量为m B =2 kg 、A 、B 之间锁定一被压缩了得轻弹簧,弹簧储存得弹性势能E p =3 J ,现突然给A 、B 一瞬时冲量作用,使A 、B 同时获得v 0=2 m/s 得初速度,且同时弹簧由于受到扰动而解除锁定,并在极短得时间内恢复原长,之后与A 、B 分离.已知A 与C 之间得动摩擦因数为μ1=0、2,B 、C 之间得动摩擦因数为μ2=0、1,且滑动摩擦力略小于最大静摩擦力.求:图3(1)弹簧与A 、B 分离得瞬间,A 、B 得速度分别就是多大?(2)已知在C 第一次碰到右边得固定挡板之前,A 、B 与C 已经达到了共同速度,求在到达共同速度之前A 、B 、C 得加速度分别就是多大及该过程中产生得内能为多少? 答案 见解析解析 (1)在弹簧弹开两物体得过程中,由于作用时间极短,对A 、B 、弹簧组成得系统由动量守恒定律与能量守恒定律可得:(m A +m B )v 0=m A v A +m B v BE p +12(m A +m B )v 20=12m A v 2A +12m B v 2B 联立解得:v A =0,v B =3 m/s 、 (2)对物体B 有:a B =μ2g =1 m/s 对A 、C 有:μ2m B g =(m A +m )a 又因为:m A a <μ1m A g故物体A 、C 得共同加速度为a =1 m/s 2、对A 、B 、C 整个系统来说,水平方向不受外力,故由动量守恒定律与能量守恒定律可得: m B v B =(m A +m B +m )vQ =12m B v 2B -12(m A +m B +m )v 2 解得:Q =4、5 J ,v =1、5 m/s(2014·广东·35)如图4所示得水平轨道中,AC 段得中点B 得正上方有一探测器,C处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点得物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2得质量都为m =1 kg ,P 与AC 间得动摩擦因数为μ=0、1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2与P 均视为质点,P 与挡板得碰撞为弹性碰撞.图4(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间得速度大小v 与碰撞损失得动能ΔE ;(2)若P 与挡板碰后,能在探测器得工作时间内通过B 点,求v 1得取值范围与P 向左经过A 点时得最大动能E 、答案 (1)3 m /s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J解析 (1)设P 1与P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1=2m v 2①解得:v 2=v 12=3 m/s碰撞过程中损失得动能为:ΔE k =12m v 21-12×2m v 22②解得ΔE k =9 J(2)P 滑动过程中,由牛顿第二定律知ma =-μmg ③可以把P 从A 点运动到C 点再返回B 点得全过程瞧作匀减速直线运动,根据运动学公式有3L=v 2t +12at 2④由①③④式得v 1=6L -at 2t①若2 s 时通过B 点,解得:v 1=14 m/s ②若4 s 时通过B 点,解得:v 1=10 m/s 故v 1得取值范围为:10 m /s ≤v 1≤14 m/s设向左经过A 点得速度为v A ,由动能定理知 12×2m v 2A -12×2m v 22=-μ·2mg ·4L 当v 2=12v 1=7 m/s 时,复合体向左通过A 点时得动能最大,E k A max =17 J 、(限时:45分钟)1.如图1所示,质量为M =4 kg 得木板静置于足够大得水平地面上,木板与地面间得动摩擦因数μ=0、01,板上最左端停放着质量为m =1 kg 可视为质点得电动小车,车与木板右端得固定挡板相距L =5 m .现通电使小车由静止开始从木板左端向右做匀加速运动,经时间t =2 s ,车与挡板相碰,车与挡板粘合在一起,碰撞时间极短且碰后自动切断小车得电源.(计算中取最大静摩擦力等于动摩擦力,并取g =10 m/s 2、)图1(1)试通过计算说明:车与挡板相碰前,木板相对地面就是静止还就是运动得? (2)求出小车与挡板碰撞前,车得速率v 1与板得速率v 2; (3)求出碰后木板在水平地面上滑动得距离s 、答案 (1)向左运动 (2)v 1=4、2 m /s ,v 2=0、8 m/s (3)0、2 m 解析 (1)假设木板不动,电动车在板上运动得加速度为a 0,由L =12a 0t 2得:a 0=2Lt 2=2、5 m/s 2此时木板使车向右运动得摩擦力:F f =ma 0=2、5 N 木板受车向左得反作用力:F f ′=F f =2、5 N木板受地面向右最大静摩擦力:F f0=μ(M +m )g =0、5 N 由于F f ′>F f0,所以木板不可能静止,将向左运动.(2)设车与挡板碰前,车与木板得加速度分别为a 1与a 2,相互作用力为F ,由牛顿第二定律与运动学公式:对小车:F =ma 1 v 1=a 1t对木板:F -μ(m +M )g =Ma 2 v 2=a 2t两者得位移得关系:v 12t +v 22t =L联立并代入数据解得:v 1=4、2 m /s ,v 2=0、8 m/s(3)设车与木板碰后其共同速度为v ,两者相碰时系统动量守恒,以向右为正方向,有 m v 1-M v 2=(m +M )v对碰后滑行s 得过程,由动能定理得: -μ(M +m )gs =0-12(M +m )v 2联立并代入数据,解得:s =0、2 m2.如图2所示,在倾角为30°得光滑斜面上放置一质量为m 得物块B ,B 得下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧得压缩量为x 0,O 点为弹簧得原长位置.在斜面顶端另有一质量也为m 得物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,并恰好回到O 点(A 、B 均视为质点).试求:图2(1)A 、B 相碰后瞬间得共同速度得大小; (2)A 、B 相碰前弹簧具有得弹性势能;(3)若在斜面顶端再连接一光滑得半径R =x 0得半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上得速度,试问:v 为多大时物块A 恰能通过圆弧轨道得最高点?答案 (1)123gx 0 (2)14mgx 0 (3) (20+43)gx 0解析 (1)设A 与B 相碰前得速度为v 1,A 与B 相碰后共同速度为v 2由机械能守恒定律得mg 3x 0sin 30°=12m v 21由动量守恒定律得m v 1=2m v 2解以上二式得v 2=123gx 0(2)设A 、B 相碰前弹簧所具有得弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12(2m )v 22=2mgx 0sin 30° 解得E p =14mgx 0(3)设物块A 与B 相碰前得速度为v 3,碰后A 、B 得共同速度为v 4 12m v 2+mg 3x 0sin 30°=12m v 23 m v 3=2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则 12(2m )v 24+E p =12(2m )v 25+2mgx 0sin 30° 此后A 继续上滑到半圆轨道最高点时速度为v 6,则 12m v 25=12m v 26+mg 2x 0sin 30°+mgR (1+sin 60°) 在最高点有mg =m v 26R联立以上各式解得v =(20+43)gx 0、3.如图3所示,光滑得水平面AB (足够长)与半径为R =0、8 m 得光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点得右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m /s 得传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲得质量为m 1=3 kg ,乙得质量为m 2=1 kg ,甲、乙均静止在光滑得水平面上.现固定乙,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道得压力恰好等于甲得重力.传送带与乙物体间得动摩擦因数为0、6,重力加速度g 取10 m/s 2,甲、乙两物体可瞧作质点.图3(1)求甲球离开弹簧时得速度;(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行得最远距离;(3)甲、乙均不固定,烧断细线以后,求甲与乙能否再次在AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙得速度;若不会再次碰撞,请说明原因.答案 (1)4 3 m/s (2)12 m (3)见解析解析 (1)设甲离开弹簧时得速度大小为v 0,运动至D 点得过程中机械能守恒:12m 1v 20=m 1g ·2R +12m 1v 2D 在最高点D ,由牛顿第二定律,有2m 1g =m 1v 2DR联立解得:v 0=4 3 m/s(2)甲固定,烧断细线后乙得速度大小为v 乙,由能量守恒得E p =12m 1v 20=12m 2v 2乙 得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙速度为零时离A 端最远,最远距离为: s =v 2乙2a=12 m<20 m 即乙在传送带上滑行得最远距离为12 m 、(3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为v 1、v 2,甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2甲、乙弹簧组成得系统能量守恒:E p =12m 1v 20=12m 1v 21+12m 2v 22 解得:v 1=2 3 m/s ,v 2=6 3 m/s 甲沿轨道上滑时,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h =0、6 m<0、8 m则甲上滑不到等圆心位置就会返回,返回AB 面上时速度大小仍然就是v 1=2 3 m/s 乙滑上传送带,因v 2=6 3 m /s<12 m/s ,则乙先向右做匀减速运动,后向左匀加速. 由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲得速度为2 3 m/s ,方向向右,乙得速度为6 3 m/s ,方向向左4.如图4所示,一倾斜得传送带倾角θ=37°,始终以v =12 m /s 得恒定速度顺时针转动,传送带两端点P 、Q 间得距离L =2 m ,紧靠Q 点右侧有一水平面长x =2 m ,水平面右端与一光滑得半径R =1、6 m 得竖直半圆轨道相切于M 点,MN 为竖直得直径.现有一质量M =2、5 kg得物块A 以v 0=10 m/s 得速度自P 点沿传送带下滑,A 与传送带间得动摩擦因数μ1=0、75,到Q 点后滑上水平面(不计拐弯处得能量损失),并与静止在水平面最左端得质量m =0、5 kg 得B 物块相碰,碰后A 、B 粘在一起,A 、B 与水平面得动摩擦因数相同均为μ2,忽略物块得大小.已知sin 37°=0、6,cos 37°=0、8,求:图4(1)A 滑上传送带时得加速度a 与到达Q 点时得速度; (2)若A 、B 恰能通过半圆轨道得最高点N ,求μ2;(3)要使A 、B 能沿半圆轨道运动到N 点,且从N 点抛出后能落到传送带上,则μ2应满足什么条件?答案 (1)12 m /s 2 12 m/s (2)0、5 (3)0、09≤μ2≤0、5解析 (1)对A 刚上传送带时进行受力分析,由牛顿第二定律得:Mg sin θ+μ1Mg cos θ=Ma 解得:a =12 m/s 2设A 能达到传送带得速度,由v 2-v 20=2ax 0得运动得位移x 0=116 m<L则到达Q 点前A 已与传送带共速 由于Mg sin θ=μ1Mg cos θ,所以A 先加速后匀速,到Q 点得速度为v =12 m/s 、 (2)设A 、B 碰后得共同速度为v 1, 由动量守恒定律得:M v =(M +m )v 1 解得:v 1=10 m/sA 、B 在最高点时速度为v 3有:(M +m )v 23R =(M +m )g设A 、B 在M 点速度为v 2,由机械能守恒得: 12(M +m )v 22=12(M +m )v 23+(M +m )g ×2R 在水平面上由动能定理得: 12(M +m )v 21-12(M +m )v 22=μ2(M +m )gx 解得:μ2=0、5(3)①若以v 3由N 点抛出,则有:2R =12gt 2 x 1=v 3t =3、2 m>x则要使AB 能沿半圆轨道运动到N 点,并能落在传送带上,则μ2≤0、5②若AB 恰能落在P 点,则有:2R -L sin θ=12gt ′2 x +L cos θ=v 3′t ′由12(M +m )v 2′2=12(M +m )v 3′2+(M +m )g ×2R 与12(M +m )v 21-12(M +m )v 2′2=μ2(M +m )gx 联立可得:μ2=0、09综上所述,μ2应满足:0、09≤μ2≤0、5。
力学三大观点的综合应用 --2024届新高考物理冲刺专项训练(解析版)
力学三大观点的综合应用1(2024·辽宁鞍山·二模)如图所示,质量为m 的小球A 通过长为L 的不可伸长轻绳悬挂于天花板上,质量为2m 的小球B 放在高也为L 的支架上。
现将A 球拉至水平位置由静止释放,在最低点与静止的B 球发生碰撞,碰后瞬间B 球的速度大小为22gL 3。
求:(1)从碰后至B 球落地时的B 球的水平位移x ;(2)A 、B 碰后瞬间轻绳对A 的拉力大小F T 。
【答案】(1)x =43L ;(2)F T =119mg 【详解】(1)碰后B 球做平抛运动运动,则有L =12gt 2x =v B ⋅t得x =43L (2)设A 球碰前的速度为v 0,对A 球列动能定理有mgL =12mv 20A 、B 两球碰撞满足动量守恒,设碰后A 球速度为v 0,向右为正,则有mv 0=mv A +2mv B 得v A =-2gL 3由牛顿第二定律得F T -mg =mv 2A L得F T =119mg 2(23-24高三上·江西吉安·期末)如图所示,内壁光滑的圆弧轨道ABC 固定在竖直面内,与在光滑的水平面相切于A 点,O 是圆心,OA 、OB 分别是竖直半径和水平半径,∠COB =37°。
甲、乙两小球(均视为质点)静置在A 点的右侧,乙的质量为3m ,现让甲获得一个水平向左的速度2v 0,甲、乙发生弹性碰撞,碰刚结束时甲、乙的速度正好等大反向,然后乙从A 点进入圆弧轨道向上运动,重力加速度大小为g ,sn 37°=0.6,cos37°=0.8。
(1)求甲球的质量;(2)若乙球到达C 点(即将离开轨道还未离开轨道)与圆弧轨道间的弹力刚好为0,则圆弧轨道的半径为多少?(3)在第(2)问中,当乙球运动到B 点时,重力的瞬时功率为多少。
【答案】(1)m ;(2)5v 0219g ;(3)-91919mgv 0【详解】(1)设甲球的质量为M ,碰撞刚结束时设甲、乙两球的速度分别为-v ,v ,由弹性碰撞规律可得M ×2v 0=M -v +3mv12M 2v 0 2=12Mv 2+12×3mv 2综合解得M =m ,v =v 0(2)设圆弧轨道的半径为R ,把乙球在C 点的重力分别沿着CO 和垂直CO 正交分解,则沿着CO 方向的分力为G y =3mg sin37°若乙球到达C 点(即将离开轨道还未离开轨道)与轨道间的弹力刚好为0,则G y 充当向心力,则有G y =3mv C 2R乙球从A 到C 由机械能守恒定律可得3mg R +R sin37° =12×3mv 2-12×3mv C 2综合解得R =5v 0219gv C =319v 0(3)乙从A 到B 由机械能守恒定律可得3mgR =12×3mv 2-12×3mv B 2乙在B 点重力的瞬时功率为P =-3mgv B综合可得P =-91919mgv 03(2024·广西·一模)在图示装置中,斜面高h =0.9m ,倾角α=37°,形状相同的刚性小球A 、B 质量分别为100g 和20g ,轻弹簧P 的劲度系数k =270N /m ,用A 球将弹簧压缩Δl =10cm 后无初速释放,A 球沿光滑表面冲上斜面顶端与B 球发生对心弹性碰撞,设碰撞时间极短,弹簧弹性势能E p =12k (Δl )2,重力加速度的大小取g =10m/s 2,sin37°=0.6。
三大动力学观点在力学中的综合应用--2024年高考物理大题突破(解析)
三大动力学观点在力学中的综合应用1.考查重点:动量定理、动量守恒定律与牛顿运动定律、功能关系综合解决分析多运动组合问题,有时涉及弹簧问题和传送带、板块问题。
2.考题形式:计算题。
1(2023·河南校联考模拟预测)如图所示,粗细均匀的光滑直杆竖直固定在地面上,一根轻弹簧套在杆上,下端与地面连接,上端连接带孔的质量为m 的小球B 并处信息:刚开始弹簧处于压缩状态于静止状态,质量为m 的小球A 套在杆上,在B 球上方某一高度处由静止释放,两球碰撞后粘在一起。
当A 、B 一起上升到最高点时,A 、B 的加速度大小为32g ,信息:完全非弹性碰撞信息:速度为零,弹簧形变量最大g 为重力加速度,弹簧的形变总在弹性限度内,已知弹簧的弹性势能表达式为E p =12kx 2,其中k 为弹簧的劲度系数、x 为弹簧的形变量,A 、B 两球均可视为质点。
求:(1)小球A 开始释放的位置离B 球的距离;(2)两球碰撞后,弹簧具有的最大弹性势能及两球运动过程中的最大速度;信息:释放高度相同,故与B 球碰前的速度和A 球的相同(3)若将A 球换成C 球,C 球从A 球开始静止的位置由静止释放,C 、B 发生弹性信息:弹性碰撞的特点:动量守恒,机械能守恒碰撞,碰撞后立即取走C 球,此后B 球上升的最大高度与A 、B 一起上升的最大高度相同,则C 球的质量多大。
【答案】 (1)8mg k (2)25m 2g 22k 3g m 2k (3)13m 【解析】 (1)开始时,弹簧的压缩量x 1=mg k①当A 、B 一起上升到最高点时,设弹簧的伸长量为x 2,根据牛顿第二定律kx 2+2mg =2m ·32g 解得x 2=mg k②[关键点]末状态弹簧的伸长量与初态弹簧的压缩量相同,故该过程弹性势能未变化设开始时A 、B 间的距离为h ,根据机械能守恒定律,有mgh =12mv 21③设A 、B 碰撞后一瞬间,A 、B 共同速度大小为v 2,根据动量守恒定律,有mv 1=2mv 2④从碰后一瞬间到上升到最高点,根据机械能守恒定律,有12×2mv 22=2mg (x 1+x 2)⑤解得h =8mgk 。
力学的三大基本观点及其应用
力学的三大基本观点及其应用一、力学的三个基本观点:力的观点:牛顿运动定律、运动学规律动量观点:动量定理、动量守恒定律能量观点:动能定理、机械能守恒定律、能的转化和守恒定律例1.质量为M的汽车带着质量为m的拖车在平直公路上匀速前进,速度为v,某时刻拖车突然与汽车脱钩,到拖车停下瞬间司机才发现.若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?小结:先大后小,守恒优先变1:质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为v时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现.若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?小结:涉及时间,动量定理优先变2:质量为M的汽车带着质量为m的拖车在平直公路上匀速前进,中途拖车脱钩,待司机发现时,汽车已行驶了L的距离,于是立即关闭油门.设运行过程中所受阻力与重力成正比,汽车牵引力恒定不变,汽车停下时与拖车相距多远?小结:涉及位移,动能定理优先B A 二、力的观点与动量观点结合:例 2.如图所示,长 12m 、质量为 50kg 的木板右端有一立柱,木板置于水平地面上,木板与地面间的动摩因数为 0.1,质量为 50kg 的人立于木板左端,木板与人均静止,当人以 4m/s 2 的加速度匀加速向右奔跑至板右端时立即抱住立柱,(取 g =10m/s 2)试求:(1)人在奔跑过程中受到的摩擦力的大小. (2)人从开始奔跑至到达木板右端所经历的时间.(3)人抱住立柱后,木板向什么方向滑动?还能滑行多远的距离?三、动量观点与能量观点综合:例 3.如图所示,坡道顶端距水平面高度为 h ,质量为 m 的小物块 A 从坡道顶端由静 1止滑下,在进入水平面上的滑道时无机械能损失,为使 A 制动,将轻弹簧的一端固定在水平滑道延长线 M 处的墙上,另一端与质量为 m 的挡板 B 相连,弹簧处于原长2时, 恰位于滑道的末端 O 点. 与 B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在 OM 段 A 、B 与水平面间动摩擦因数均为 μ,其余各处的摩擦不计,重力加速度为 g ,求:(1)物块 A 在与挡板 B 碰撞前瞬间速度 v 的大小.(2)弹簧最大压缩量为 d 时的弹性势能 E (设弹簧处于原长p时弹性势能为零).四、三种观点综合应用:例 4.对于两物体碰撞前后速度在同一直线上,且无机械能损失的碰撞过程,可以简化为如下模型:A 、B 两物体位于光滑水平面上,仅限于沿同一直线运动.当它们之间的距离大于等于某一定值 d 时,相互作用力为零,当它们之间的距离小于 d 时,存在大小恒为 F 的斥力.设 A 物体质量 m =1.0kg ,开始时静止在直线上某点;B 物1体质量m=3.0kg,以速度v从远处沿直线向A运动,如图所示.若d=0.10m,F=200.60N,v=0.20m/s,求:(1)相互作用过程中A、B加速度的大小;(2)从开始相互作用到A、B间的距离最小时,系统动能的减少量;(3)A、B间的最小距离.例5.如图所示,在光滑的水平面上有一质量为m、长度为L的小车,小车左端有一质量也是m可视为质点的物块,车子的右壁固定有一个处于锁定状态的压缩轻弹簧(弹簧长度与车长相比可忽略),物块与小车间滑动摩擦因数为μ,整个系统处于静止状态.现在给物块一个水平向右的初速度v,物块刚好能与小车右壁的弹簧接触,此时弹簧锁定瞬间解除,当物块再回到左端时,恰与小车相对静止.求:(1)物块的初速度v及解除锁定前小车相对地运动的位移.(2)求弹簧解除锁定瞬间物块和小车的速度分别为多少?五、习题训练:1.如图所示,水平轨道的AB段是光滑的,BC段是粗糙的,AB轨道与BC轨道在B点衔接。
题型专练二 力学三大观点的综合应用(原卷版)—2023年高考物理热点重点难点专练(全国通用)
题型专练二力学三大观点的综合应用这部分知识单独考查一个知识点的试题非常少,大多数情况都是同时涉及到几个知识点,而且都是牛顿运动定律、动能定理和机械能守恒定律或能量守恒定律、动量定理和动量守恒定律的内容结合起来考查,考查时注重物理思维与物理能力的考核.例题1.竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B静止于水平轨道的最左端,如图(a)所示。
t=0时刻,小物块A在倾斜轨道上从静止开始下滑,一段时间后与B发生弹性碰撞(碰撞时间极短);当A返回到倾斜轨道上的P点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止。
物块A运动的vt图象如图(b)所示,图中的v1和t1均为未知量。
已知A的质量为m,初始时A与B的高度差为H,重力加速度大小为g,不计空气阻力。
(a)(b)(1)求物块B的质量;(2)在图(b)所描述的整个运动过程中,求物块A克服摩擦力所做的功;(3)已知两物块与轨道间的动摩擦因数均相等。
在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B 再次碰上。
求改变前后动摩擦因数的比值。
例题2.如图所示,半径R=2.8 m的光滑半圆轨道BC与倾角θ=37°的粗糙斜面轨道在同一竖直平面内,两轨道间由一条光滑水平轨道AB相连,A处用光滑小圆弧轨道平滑连接,B处与圆轨道相切。
在水平轨道上,两静止小球P、Q压紧轻质弹簧后用细线连在一起。
某时刻剪断细线后,小球P向左运动到A点时,小球Q沿圆轨道到达C点;之后小球Q落到斜面上时恰好与沿斜面向下运动的小球P发生碰撞。
已知小球P的质量m1=3.2 kg,小球Q的质量m2=1 kg,小球P与斜面间的动摩擦因数μ=0.5,剪断细线前弹簧的弹性势能E p=168 J,小球到达A点或B点时已和弹簧分离。
重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:(1)小球Q运动到C点时的速度大小;(2)小球P沿斜面上升的最大高度h;(3)小球Q离开圆轨道后经过多长时间与小球P相碰。
专题六 力学中三大观点的综合应用
得
12mv2=12mv12+2mgR
③
设碰撞后粘合在一起的两ห้องสมุดไป่ตู้速度大小为 v2,由动量守恒定律得
mv1=2mv2
④
飞出轨道后做平抛运动,水平方向的分运动为匀速直线运动,有
2R=v2t
⑤
综合②③④⑤式得
v=2 2gR
⑥
答案 (1)2
R g (2)2 2gR
专题六 力学中三大观点的综合应用
力学中三大观点是指动力学观点,动量观点和能量观 点.动力学观点主要是牛顿运动定律和运动学公式,动量观 点主要是动量定理和动量守恒定律,能量观点包括动能定理、 机械能守恒定律和能量守恒定律.此类问题过程复杂、综合 性强,能较好地考查应用有关规律分析和解决综合问题的能 力.
(3)滑块经过传送带作用后做平抛运动 h2=12gt23 当两滑块速度相差最大时,它们的水平射程相差最大,当 m1≫m2 时,滑块 m1、m2 碰撞后的速度相差最大,经过传送带后速度相差 也最大 v1=mm11- +mm22v0=v0=5.0 m/s v2=m12+m1m2v0=2v0=10.0 m/s
一定守恒;碰撞过程、子弹打击木块、不受其他外力作 用的二物体相互作用问题,一般考虑用动量守恒定律分 析. 4.如含摩擦生热问题,则考虑用能量守恒定律分析.
【典例1】 (2013·皖南八校高三第一次联考,16)如图1所示, 质量为m1的滑块(可视为质点)自光滑圆弧形槽的顶端A处 无初速度地滑下,槽的底端与水平传送带相切于左传导 轮顶端的B点,A、B的高度差为h1=1.25 m.传导轮半 径很小,两个轮之间的距离为L=4.00 m,滑块与传送带 间的动摩擦因数μ=0.20,右端的轮子上沿距离地面高度 h2=1.80 m,g取10 m/s2.
第一篇专题二培优点2力学三大观点的综合应用
(3)长木板的长度s(计算结果保留两位有效数字)。 答案 7.3 m
小滑块进入槽内且恰好能通过半圆轨道最高点D, 则由牛顿第二定律得 mg=mvRD2 小滑块从C到D过程由动能定理得 -mg·2R=12mvD2-12mvC2 联立解得 vC= 5gR=6 m/s 小滑块在底端B滑上长木板的速度 vB=v0+a2t2=7 m/s+2×1.5 m/s=10 m/s
4 与传送带间的动摩擦因数为μ,重力加速度为g, A、B在滑至N点之前不发生碰撞,忽略空气阻 力和圆盘的高度,将药品盒视为质点。求:
123
(1)A在传送带上由静止加速到与传送带共速
所用的时间t;
答案
v0 μg
A在传送带上运动时的加速度a=μg 由静止加速到与传送带共速所用的时间 t=va0=μvg0
系统能量守恒,弹簧最长或最短时, 系统动能相等,所以弹簧最长和最 短时形变量相等, 则弹簧最大长度与最小长度之差 Δx=2x1=0.2 m。
例2 (2023·广东茂名市一模)某户外大型闯关游戏“渡河”环节中,选手从 高台俯冲而下,为了解决速度过快带来的风险,设计师设计了如图所示 的减速装置。浮于河面的B板紧靠缓冲装置A板,B的左侧放置一物体C。 选手通过高台光滑曲面下滑,经过A后滑上B。已知A、B的质量均为M0 =48 kg,C的质量为M=12 kg。A、B的长度均为L=3 m,选手与A、B 间的动摩擦因数均为μ1=0.5,A与地面间的动摩擦因数μ2=0.3。B在水中 运动时受到的阻力是其所受浮力的0.1倍,B碰到河岸后立即被锁定。不 计水流速度,选手和物体C均可看作质点,g=10 m/s2,则:
解得v1=2v0 v2=v0
(另一解 v1=23v0,v2=53v0 不符合题意,舍掉)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力学三大观点的综合应用(二)
1、质量为M的圆环用细线(质量不计)悬挂着,将两个质量均为m的有孔小珠套在此环上且可以在环上做无摩擦的滑动,如图所示,今同时将两个小珠从环的顶部释放,并沿相反方向自由滑下,试求:
(1)在圆环不动的条件下,悬线中的张力T随cosθ(θ为小珠和大环圆心连线与竖直方向的夹角)变化的函数关系,并求出张力T的极小值及相应的cosθ值;
(2)小球与圆环的质量比至少为多大时圆环才有可能上升?
2、如图(a)所示,把质量均为m的两个小钢球用长为2L的线连接,放在光滑的水平面上.在线的中央作用一个恒定的拉力,其大小为F,其方向沿水平方向且与开始时连线的方向垂直,连线非常柔软且不会伸缩,质量可忽略不计.试问:
(1)当两连线的张角为2时,如图(b)所示,在与力F垂直的方向上钢球所受的作用力是多大?
(2)钢球第一次碰撞时,在与力F垂直的方向上钢球的对地速度为多大?
(3)经过若下次碰撞,最后两个钢球一直处于接触状态下运动,则由于碰撞而失去的总能量为多少?
3、如图所示,水平地面上静止放置着物块B和C相距l=1.0m物快A以速度v0=10m/s沿水平方向与B正碰,碰撞后A和B牢固粘在一起向右运动,并再与C发生正碰,碰后瞬间C 的速度v=2.0m/s,已知A和B的质量均为m.C的质量为A质量的k倍,物块与地面的动摩擦因数μ=0.45(设碰撞时间很短,g取10m/s2)
(1)计算与C碰撞前瞬间AB的速度(2)根据AB与C的碰撞过程分析k 的取值范围,并讨论与C碰撞后AB的可能运动方向.
4、
5、
6、如图所示,一长为6L的轻杆一端连着质量为m的小球,另一端固定在铰链O处(轻杆可绕铰链自由转动)。
一根不可伸长的轻绳一端系于轻杆的中点,另一端通过轻小定滑轮连接在质量M=12m的小物块上,物块放置在倾角θ=30°的斜面顶端。
已知滑轮到地面A点的距离为3L,铰链O到A点的距离为L,不计一切摩擦。
整个装置从图中实线所示位置由静止释放,直到轻杆被拉至竖直位置。
问:(1)在这一过程中小球与物块构成的系统重力势能变化了多少?是增加了还是减少了?
(2)当轻杆被拉至竖直位置时小球的瞬时速度多大?
(3)在这一过程中轻绳对轻杆做了多少功?。