管壳式换热器设计
管壳式换热器的课程设计
避免选用不合适的材料导致设备损坏 或安全事故;注意材料的兼容性和与 其他材料的接触情况;考虑材料的可 加工性和安装维护的便利性。
04
管壳式换热器的优化设计
传热效率优化
01
传热效率
通过选择合适的材料、优化管程和壳程流体的流速和温度,以及采用强
化传热技术,如增加翅片、改进管子形状等,提高换热器的传热效率。
管件与结构
优化换热器内部的管件和 结构,减少流体流动过程 中的局部阻力,降低压力 损失。
结构强度优化
1 2
应力分析
对换热器进行详细的应力分析,确保其在正常操 作条件下具有足够的结构强度和稳定性。
材料选择
根据使用条件和要求,选择合适的材料和厚度, 以提高换热器的结构强度和耐腐蚀性。
3
支撑与固定
合理设计换热器的支撑和固定结构,以减小应力 集中和振动,提高其结构强度和使用寿命。
新材料与新技术的应用
新型材料
采用高导热性能的复合材料、纳米材料等,提高换热器的传热效率。
新型涂层
利用先进的涂层技术,如陶瓷涂层、金属氧化物涂层等,增强换热器的抗腐蚀和 耐磨性能。
节能减排与环保要求
高效节能
研发低能耗的换热器,优化换热器结构,降低运行过程中的能源消耗。
环保设计
采用无毒、无害的材料,减少换热器对环境的影响,同时对换热器产生的废弃物进行环保处理。
能源与动力工程领域的应用
发电厂
管壳式换热器可用于加热和冷却发电厂中的各种 流体,如锅炉给水、凝结水和冷却水等。
船舶工程
在船舶工程中,管壳式换热器可用于船舶发动机 的冷却和加热,以及生活用水的加热和冷却。
采暖系统
在供暖系统中,管壳式换热器可用于将热量从热 源传递到水中,为建筑物提供热水供暖。
管壳式换热器的设计
管壳式换热器的设计管壳式换热器是一种常用的换热设备,广泛应用于石油化工、冶金、电力、制药、食品等行业。
它由壳体、管束、管板、管箱等组成,能够有效地将两种介质之间的热量传递。
下面将从换热原理、设计要求和结构设计等方面进行详细介绍。
一、换热原理管壳式换热器通过管壳两侧的介质进行热量传递。
其中,一个介质在管内流动,被称为"壳侧流体",另一个介质在管外流动,被称为"管侧流体"。
壳侧流体通过壳体流动,而管侧流体则通过管束流动。
热量传递主要通过壳侧流体和管侧流体之间的传导和对流传热方式进行。
二、设计要求1.热量传递效果好:要求在换热器内两种介质之间实现高效的热量传递,以满足工艺要求。
2.压力损失小:为了保证介质流动的稳定性和降低能源消耗,设计时需要尽量减小换热器内的动能损失。
3.适应不同工艺条件:换热器的设计要能适应不同的流量、温度和压力等工艺条件的变动。
4.安全可靠:要求在设计中考虑到换热器的安全性和可靠性,尽量减少故障率。
三、结构设计1.壳体:壳体是换热器的外壳,一般采用钢质材料制造。
壳体的选择应考虑到介质的性质、压力和温度等参数,并采取相应的增强措施。
2.管束:管束是由多根管子组成的,一般采用金属材料或塑料制造。
管束的设计要考虑到介质对管材的腐蚀性、温度和压力等参数,同时也要考虑到换热面积的要求。
3.管板:管板位于管束两端,起到支撑和固定管束的作用,一般采用钢质材料制造。
管板的设计要考虑到壳侧和管侧流体的流动特性,并采用合适的孔洞布置,以保证流体的均匀流动。
4.管箱:管箱是安装在管板上的设施,主要用于集流壳侧流体并将其引导出换热器。
管箱的设计应考虑到壳侧流体的流动特性和流量等参数,以实现流体的顺畅流动。
在设计过程中,需要进行换热器的热力计算和结构力学计算,以确定壳体、管束和管板等部件的尺寸和选材。
同时,还需要根据不同工艺和使用条件的要求,进行热交换面积的计算和确定。
管壳式换热器结构设计
管壳式换热器结构设计在化工、石油和能源等领域中,管壳式换热器是一种广泛应用的高效换热设备。
本文将详细探讨管壳式换热器的结构设计,包括材料选择、传热原理和应用特点等方面的内容,旨在提高设备的传热效率和可靠性。
一、管壳式换热器的基本结构管壳式换热器主要由壳体、管束、折流板、进出口接管等部件组成。
其核心部分是管束,它由许多平行排列的传热管组成。
这些传热管的一端与壳体连接,另一端则通过封头与进出口接管相连。
在操作时,一种流体(例如水或油)在管内流动,另一种流体(例如蒸汽或冷凝液)在壳侧流动,两种流体通过管壁进行热交换。
二、材料选择与优化管壳式换热器的材料选择对其性能和可靠性至关重要。
壳体通常采用碳钢、不锈钢和钛等材料,而管束则通常采用不锈钢、铜和钛等具有优良传热性能和抗腐蚀性的材料。
在某些特殊情况下,还可以考虑对关键部位进行表面处理,以提高抗腐蚀性和耐磨性。
三、传热原理与优化管壳式换热器的传热原理主要是通过对流传热和热传导的组合来实现的。
为了提高设备的传热效率,可以采用以下措施:1、改变折流板的形状和布置,以增加壳侧流体的湍流度。
2、选择具有高导热系数的材料,以提高管壁的热传导性能。
3、适当增加管束数量和布置密度,以增加传热面积。
四、应用特点与优势管壳式换热器在各种工业领域中得到了广泛应用,主要特点有:1、结构紧凑,占地面积小,易于布置。
2、材料选择广泛,适用于各种不同的工艺条件和腐蚀性介质。
3、传热效率高,能够实现两种流体的有效热交换。
4、制造工艺成熟,操作维护方便,使用寿命较长。
五、结论本文对管壳式换热器的结构设计进行了全面分析,包括材料选择、传热原理和应用特点等方面的内容。
通过合理的结构设计,可以显著提高管壳式换热器的传热效率和可靠性,使其在各种工业领域中发挥更加重要的作用。
随着技术的不断进步,管壳式换热器的设计和制造水平也将不断提升,为工业生产带来更大的价值。
六、展望随着工业生产的不断发展和能源紧缺的压力日益增大,管壳式换热器的应用前景更加广阔。
管壳式换热器设计和选型
管壳式换热器设计和选型首先,管壳式换热器的设计需要根据具体的换热要求来确定,主要包括换热量、换热介质、流体流量和温度等参数。
根据设计要求,可以确定壳程和管程的尺寸、管道布置、换热面积等参数。
在设计过程中,需要考虑以下几个方面:1.热力计算:根据热源和热负荷的温度和流量要求,进行热力计算,确定所需的换热面积。
2.材料选择:根据工作介质的性质和工作条件,选择合适的材料,如不锈钢、铜合金等,以确保换热器的耐腐蚀性和耐高温性。
3.管道布置:根据介质的流态和流速等因素,确定管道的布置方式,如串流、并流、交叉流等,以实现最佳的换热效果。
4.换热面积:根据设计要求和换热性能,确定所需的换热面积,以满足换热要求。
5.清洗和维护:在设计过程中,要考虑到换热器的清洗和维护,选择合适的结构和材料,以方便换热器的维护和清洗。
在选型过程中,需要考虑以下几个因素:1.流体性质:选型时需要考虑流体的性质,包括流体的物理性质、压力和温度范围、粘度等。
不同的流体对换热器的要求不同,需要选择适合的换热器类型和材料。
2.温度和压力:根据工作条件确定换热器的温度和压力范围,选择符合要求的换热器。
3.环境限制:考虑到环境因素,如空间限制、气候条件等,选择适合的换热器尺寸和类型。
4.经济效益:综合考虑设备造价、运行费用、维护保养成本等因素,选择经济、高效的换热器。
5.供应商选择:选择有经验和信誉良好的供应商,确保提供优质的产品和服务。
总之,管壳式换热器的设计和选型需要根据具体的应用要求和工艺条件来确定,需要综合考虑热力计算、材料选择、管道布置、换热面积、清洗和维护等因素,并在选型过程中考虑流体性质、温度和压力、环境限制、经济效益和供应商选择等因素,以确保设计符合要求,选型合理可靠,并能够实现高效换热。
管壳式换热器的设计及计算
管壳式换热器的设计及计算管壳式换热器是常见的一种热交换设备,用于在流体之间进行热量传递。
它由一个外壳和多个热交换管组成。
在设计和计算管壳式换热器时,需要考虑以下几个方面:选择换热器类型、确定换热器尺寸、确定流体特性、计算热量传递量和压降等。
下面将详细介绍管壳式换热器的设计及计算过程。
首先,选择适合的换热器类型。
根据具体的应用和流体特性,可以选择不同类型的管壳式换热器,如定压式、定温式、冷凝器和蒸发器等。
每种类型的换热器都有特定的性能和适用范围,需根据实际需求确定。
接下来,确定换热器的尺寸。
首先要确定传热面积,这取决于所需的传热量和两种流体间的温度差。
一般来说,换热器的传热面积越大,传热效果越好。
然后确定换热器的外壳直径和长度,这取决于流体的流速、流量和压降要求。
根据流体速度和流量计算出流道的横截面积,再确定壳程内的流道数量,最后通过换热器的设计公式计算出外壳直径和长度。
确定流体特性是设计换热器的关键一步。
需要收集并分析流体的物性数据,如温度、压力、流速、密度、热容等。
这些参数将用于计算热量传递量和压降。
此外,还需要考虑流体的腐蚀性、粘度和污染物含量等因素,在选择材料时要注意其耐腐蚀性能和抗堵塞能力。
计算热量传递量是设计换热器的核心任务。
可以使用传热计算公式,如奥兹逊公式、Nusselt数公式等,根据流体的特性参数计算出传热系数。
传热系数与换热器的结构、流体速度和物性参数有关。
通过计算热传导、对流和辐射等传热机制,可以得到热量传递量的准确数值。
最后,要计算管壳式换热器的压降。
压降是流体通过换热器时产生的能量损失。
为了保证流体的正常流动和换热效果,需要控制良好的压降。
可以通过实验或计算公式,如达西公式和克尔文公式,预测换热器内的压降情况。
根据流体的流速、流量和物性参数,计算出壳程和管程内的压降,并进行整体的能量平衡计算。
综上所述,管壳式换热器的设计和计算包括选择换热器类型、确定尺寸、确定流体特性、计算热量传递量和压降等步骤。
管壳式换热器设计 课程设计
管壳式换热器设计课程设计XXX课程设计:管壳式换热器设计学院:机械与XXX专业:热能与动力工程专业班级:11-02班指导老师:小组成员:目录第一章:设计任务书第二章:管壳式换热器简介第三章:设计方法及设计步骤第四章:工艺计算4.1 物性参数的确定4.2 核算换热器传热面积4.2.1 传热量及平均温差4.2.2 估算传热面积第五章:管壳式换热器结构计算管壳式换热器是常用的热交换设备,广泛应用于化工、石油、制药、食品等行业。
本次课程设计旨在设计一台管壳式换热器,以满足特定工艺条件下的换热需求。
在设计之前,需要了解管壳式换热器的基本结构和工作原理。
管壳式换热器由外壳、管束、管板、管箱、管夹等部分组成。
热量通过内置于管束中的流体在管内传递,再通过管壳间的流体传递到外壳中,从而实现热交换。
设计过程中,需要确定流体的物性参数,包括密度、比热、导热系数等。
同时,还需要核算换热器传热面积,以满足特定的传热需求。
传热量和平均温差是计算传热面积的重要参数,而估算传热面积则需要考虑流体的流动状态、管束的排布方式等因素。
最终,我们将根据设计要求进行管壳式换热器的结构计算,确定外壳、管束等部分的尺寸和数量,以满足特定工艺条件下的换热需求。
第一章设计任务书本项目旨在设计一台管壳式换热器,用于将煤油由140℃冷却至40℃。
处理能力为10t/h,压强降不得超过100kPa。
具体操作条件为:煤油的入口温度为140℃,出口温度为40℃,冷却水的入口温度为26℃,出口温度为40℃。
2.第二章管壳式换热器简介管壳式换热器是石油化工行业中应用最广泛的换热器。
尽管各种板式换热器的竞争力不断上升,但管壳式换热器仍然占据着换热器市场的主导地位。
目前,各国为提高这类换热器性能进行的研究主要集中在强化传热、提高对苛刻工艺条件的适应性以及开发适用于各类腐蚀介质的材料。
此外,结构改进也是向着高温、高压、大型化方向发展的必然趋势。
5.1 换热管计算及排布方式在设计管壳式换热器时,需要计算并确定换热管的数量、直径和排布方式。
管壳式换热器设计总结
管壳式换热器设计总结管壳式换热器是一种常见的热交换设备,广泛应用于化工、石油、制药等行业。
其设计涉及到许多方面,包括换热原理、结构设计、材料选择等。
本文将从这些方面对管壳式换热器的设计进行总结和分析。
管壳式换热器的换热原理是通过管内流体与壳侧流体之间的热传导来实现热量的交换。
管内流体一般为待加热或待冷却的介质,而壳侧流体一般为冷却剂或加热介质。
通过这种方式,可以实现两种介质之间的热量转移,达到加热或冷却的目的。
管壳式换热器的结构设计是十分重要的。
它由管束、壳体、管板、管侧流体进出口以及壳侧流体进出口等部分组成。
管束是换热的核心部分,通过将多根管子固定在管板上,形成流体的通道。
而壳体则是管束的外部保护壳,起到支撑和密封的作用。
管侧流体通过管侧进出口进入管束内,与管内流体进行热量交换,然后再通过壳侧进出口流出。
这样的结构设计,既保证了换热效率,又方便了设备的安装和维护。
管壳式换热器的材料选择也是十分重要的一环。
由于在换热过程中,介质可能存在腐蚀、高温等问题,因此需要选择耐腐蚀、耐高温的材料。
常见的材料有不锈钢、钛合金等。
对于特殊的工况,还可以采用陶瓷、镍基合金等材料。
在管壳式换热器的设计过程中,还需要考虑一些其他因素。
首先是换热面积的确定,它与换热效果直接相关。
一般来说,换热面积越大,换热效果越好。
其次是流体的流速和流量,它们对换热器的换热效果和压力损失有着重要影响。
此外,还需要考虑到换热器的尺寸和重量,以及设备的安全性和可靠性等方面。
在实际应用中,还需要根据具体的工况和要求进行换热器的定制设计。
例如,在高温高压的条件下,需要采用密封性好、耐高温高压的结构和材料;在对流体的温度变化要求较高的情况下,需要采用多级换热器或增加管程等方式来提高换热效果。
管壳式换热器的设计需要考虑多个方面的因素,包括换热原理、结构设计、材料选择等。
合理的设计可以提高换热效率,降低能耗,满足工业生产的需求。
同时,还需要根据具体的工况和要求进行定制设计,以提高设备的安全性和可靠性。
管壳式换热器的设计
六、折流挡板
作用: ①提高壳程内流体的流速;
②加强湍流强度; ③提高传热效率; ④支撑换热管。
形式:
圆缺形
盘环形
最常用的为圆缺形挡板,切去的弓形高度约为外壳内径的
10%~40%,一般取20%~25%。
两相邻挡板的距离(板间距)h为外壳内径D的(0.2~1)倍。
• 板间距过小,不便于制造和维修,阻力较大; • 板间距过大,流体难于垂直地流过管束,使对流传热系数下降。
s 1.72 Re 0.19
Re u0 d e
de当量直径, m;NB折流挡板数; u 0为壳层中流体的流速, m s1
设计步骤
1、试算并初选设备规格
① 确定流体在换热器中流动途径。 ② 根据传热任务计算热负荷Q。 ③ 确定流体在换热器两端的温度,选择列管换热器的形 式;计算定性温度,并确定在定性温度下的流体物性。
五、管程和壳程数的确定
1.管程数
当流体的流量较小或传热面积较大而需管数很多时,有时会使管内流速较 低,对流系数较小。 为提高管内流速,可采用多管程。 但管程数过多,管程流动阻力加大,增加动力费用;多程会使平均温度差下降; 多程隔板使管板上可利用面积减少 标准中管程数有:1、2、4和6程,多程时应使每程管子数大致相等。-管程数Np:Ⅰ、Ⅱ、Ⅳ、Ⅵ 4-公称压力PN,MPa
• •
5-公称换热面积SN,m2
一、流体流径的选择-冷、热流体走管程或壳程
① 不洁净和易结垢的液体宜在管内-清洗比较方便
② 腐蚀性流体宜在管内-避免壳体和管子同时腐蚀,便于清洗 ③ 压强高的流体宜在管内-免壳体受压,节省壳程金属消耗量
系列标准中,采用的h(mm)值为: • 固定管板式:150,300,600; • 浮头式:150,200,300,480和600.
管壳式换热器设计
1 概 述
2、冷凝器(condenser) 1)分离器 2)全凝器 3、加热器(一般不发生相变)(heater) 1)预热器(preheater)——粘度大的液体,喷雾 状不好,预热使其粘度下降; 2)过热器(superheater)——加热至饱和温度以 上。 4.蒸发器(etaporater)——发生相变 5.再沸器(reboiler) 6.废热锅炉(waste heat boiler)
1 概 述
2、浮头式换热器 优点:管束可以抽出,便于清洗; 缺点:换热器结构较复杂,金属耗量较大。 适用场合:适用于介质易结垢的场合。
3、填料函式换热器 优点:造价比浮头式低,检修、清洗容易,填料函处泄漏能 及时发现; 缺点:壳程内介质由外漏的可能,壳程中不宜处理易挥发、 易燃、易爆、有毒的介质。 适用场合:适用于低压小直径场合。
2 管子的选用及其与管板的连接
结构:主要有4种
2 管子的选用及其与管板的连接
3、胀焊并用 前面我们讲了胀接、焊接后,会发现它们各自有优、缺点,因而目前广泛应用了 胀焊并用的方法,这种方法能提高连接处的抗疲劳性能,消除应力腐蚀和间隙腐蚀, 提高使用寿命。 胀焊并用连接形式主要有: 1)先焊后胀:强度焊+贴胀 高温高压换热器中大多用厚壁管,胀接时要使用润滑油,进入接头后缝隙中会在焊 接时生成气体,恶化焊缝质量,只要胀接过程控制得当,先焊后胀可避免这一弊病。
3 管板结构
2、正方形和转角正方形排列
正方形和转角正方形排列,管间小桥形成一条直线通道,便于机械清洗。要 经常清洗管子外表面上的污垢时,多用正方形排列或转角正方形排列。
3 管板结构
3.组合排列法 多程换热器中。 3.2 管间距: 管间距指两相邻换热管中心的距离。其值的确定需要考虑以下几个因素: ① 管板强度; ② 清洗管子外表面时所需要的空隙; ③ 换热管在管板上的固定方法。 一般要求管间距≥1.25d0,还应符合规定:
管壳式换热器的设计
管壳式换热器的设计
1.传热面积的计算:传热面积决定了热交换效果的好坏,计算传热面
积是设计的第一步。
传热面积的大小受到工艺需求、流体特性和设备尺寸
等因素的影响。
2.流体流速的选择:流体流速对传热效率有重要影响。
流速不宜过大,以免增加流体阻力和泵耗能,但也不宜过小,以免影响传热效果。
需要通
过经验和实验确定合适的流速范围。
3.换热器的参数选择:根据工艺要求和流体性质选择合适的管壳式换
热器参数,如管子和外壳的材料、厚度和长度等。
一般情况下,不同材料
的换热器对不同的流体具有不同的传热效果和抗腐蚀能力。
4.温度和压力的控制:管壳式换热器工作时,内外两种流体通常以不
同的温度和压力运行,因此需要采取相应的措施确保换热器的安全性能。
这包括选择合适的密封材料、加装安全阀和温控装置等。
5.清洗和维护的考虑:管壳式换热器在长期使用过程中会有积垢和堵
塞的问题,因此需要预留清洗口和维护通道,并定期进行清洗和维护工作,以保证换热器的正常运行。
总之,管壳式换热器的设计需要综合考虑传热效率、流体性质、工艺
要求和设备安全性能等因素,确保换热效果良好、运行安全可靠。
通过合
理的设计和选择,可以使管壳式换热器发挥最佳的效果,实现节能降耗的
目的。
管壳式换热器设计-课程设计
一、课程设计题目管壳式换热器的设计二、课程设计内容1.管壳式换热器的结构设计包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器法兰的选择,管板尺寸确定塔盘结构,人孔数量及位置,仪表接管选择、工艺接管管径计算等等。
2. 壳体及封头壁厚计算及其强度、稳定性校核(1)根据设计压力初定壁厚;(2)确定管板结构、尺寸及拉脱力、温差应力;(3)计算是否安装膨胀节;(4)确定壳体的壁厚、封头的选择及壁厚,并进行强度和稳定性校核。
3. 筒体和支座水压试验应力校核4. 支座结构设计及强度校核包括:裙座体(采用裙座)、基础环、地脚螺栓5. 换热器各主要组成部分选材,参数确定。
6. 编写设计说明书一份7. 绘制2号装配图一张,Auto CAD绘3号图一张(塔设备的)。
三、设计条件气体工作压力管程:半水煤气0.75MPa壳程:变换气 0.68 MPa壳、管壁温差55℃,tt >ts壳程介质温度为220-400℃,管程介质温度为180-370℃。
由工艺计算求得换热面积为140m2,每组增加10 m2。
四、基本要求1.学生要按照任务书要求,独立完成塔设备的机械设计;2.设计说明书一律采用电子版,2号图纸一律采用徒手绘制;3.各班长负责组织借用绘图仪器、图板、丁字尺;学生自备图纸、橡皮与铅笔;4.画图结束后,将图纸按照统一要求折叠,同设计说明书统一在答辩那一天早上8:30前,由班长负责统一交到HF508。
5.根据设计说明书、图纸、平时表现及答辩综合评分。
五、设计安排六、说明书的内容1.符号说明2.前言(1)设计条件;(2)设计依据;(3)设备结构形式概述。
3.材料选择(1)选择材料的原则;(2)确定各零、部件的材质;(3)确定焊接材料。
4.绘制结构草图(1)换热器装配图(2)确定支座、接管、人孔、控制点接口及附件、内部主要零部件的轴向及环向位置,以单线图表示;(3)标注形位尺寸。
(4)写出图纸上的技术要求、技术特性表、接管表、标题明细表等5.壳体、封头壁厚设计(1)筒体、封头及支座壁厚设计;(2)焊接接头设计;(3)压力试验验算;6.标准化零、部件选择及补强计算:(1)接管及法兰选择:根据结构草图统一编制表格。
管壳式换热器课程设计
管壳式换热器课程设计一、管壳式换热器的介绍管壳式换热器是目前应用最为广泛的换热设备,它的特点是结构坚固、可靠高、适应性广、易于制造、处理能力大、生产成本低、选用的材料范围广、换热面的清洗比较方便、高温和高压下亦能应用。
但从传热效率、结构的紧凑性以及位换热面积所需金属的消耗量等方面均不如一些新型高效率紧凑式换热器。
管壳式换热器结构组成:管子、封头、壳体、接管、管板、折流板;如图1-1所示。
根据它的结构特点,可分为固定管板式、浮头式、U形管式、填料函和釜式重沸器五类。
二、换热器的设计2.1设计参数参数名称壳程管程设计压力(MPa) 2.6 1.7操作压力(MPa) 2.2 1.0/0.9(进口/出口)设计温度(℃) 250 75操作温度(℃) 220/175(进口、出口) 25/45(进口/出口)流量(Kg/h) 40000 选定物料(-)石脑油冷却水程数(个) 1 2腐蚀余度(mm) 3 -2.2设计任务1. 根据传热参数进行换热器的选型和校核2.对换热器主要受压原件进行结构设计和强度校核,包括筒体、前端封头管箱、外头盖、封头、法兰、管板、支座等。
3.设计装配图和重要的零件图。
2.3热工设计2.3.1基本参数计算2.3.1.1估算传热面积-=220-45=175-=175-25=150因为,所以采用对数平均温度差算术平均温度差:=P=R=查温差修正系数表得因此平均有效温差为0.82放热量考虑换热器对外界环境的散热损失,则热流体放出的热量将大于冷流体吸收的热量,即:取热损失系数,则冷流体吸收的热量:由可的水流量:==31372.8这里初估K=340W/(),由稳态传热基本方程得传热面积:=16.552.3.1.2由及换热器系列标准,初选型号及主要结构参数选取管径卧式固定管板式换热器,其参数见上表。
从而查《换热器设计手册》表1-2-7,即下表公称直径管程数管子根数中心排管管程流通换热面积换热管长换热管外径壁厚:d=50mm排列形式:正三角形管间距: =32mm折流板间距:2.1.1.3实际换热面积计算实际换热面积按下式计算2.2计算总传热系数,校核传热面积总传热系数的计算式中:——管外流体传热膜系数,W/(m2·K);——管内流体传热膜系数,W/(m2·K);,——分别为管外、管内流体污垢热阻,(m2·K) /W;—管壁厚度,m;——管壁材料的导热系数,W/(m2·K) oαiαiorr,δwλ2.2.1管内传热膜系数管内未冷却水流入,其速度为:雷诺数:对于湍流,由Dittus –Boelter关系式,有传热膜系数:其中,普朗特数: =4.87由于冷却水要被加热,故取n=0.4,即管内传热膜系数为:=927.4W/()2.2.1管外传热膜系数因换热管呈正三角形排列,根据Kern法当量直径:=故0.55流体流过管间最大截面积是其中壳体内径估算为=0.37因此,=0.216.7=雷诺数:普朗特数:壁温可视为流体平均温度,即:2.2.3总传热系数因为有污垢热阻,因此查看表《GB151-1999管壳式换热器》可有管外有机物污垢热阻:/W管内冷却水污垢热阻:/W插入法得到=因此得到故2.2.4总换热面积由稳态传热基本方程:=8.5(1+25%)=10.62.3计算管程压力降管程压力降有三部分组成,可按照如下公式进行计算—流体流过直管因摩擦阻力引起的压力降,Pa;--流体流经回弯管中因摩擦阻力引起的压力降,Pa;—流体流经管箱进出口的压力降,Pa;—结构矫正因素,无因次,对Φ25×2.5mm,取为1.4;--管程数,取2;--串联的壳程数,取1其中:对光滑管,Re=3时,由伯拉修斯式,得:因此,因此,管程压力降在允许范围内1.3.2壳程压力降采用埃索法计算公式:式中:--流体横过管束的压力降,Pa;--流体通过折流板缺口的压力降,Pa;—壳程压力降的结垢修正系数,无因此,对液体取1.15;其中:式中:F—管子排列方法对压力降的修正系数,对三角形F=0.5;—壳程流体摩擦系数,当Re>500时,;--横过管束中心线的管子数,对三角形排列;--按壳程流通截面积计算的流速,。
管壳式换热器的设计及选型指导
N
B
3.5
2B D
fs
u02 2
45.7kPa
s 1.0at ,可行
传热面积校核
查表,取 Ri 0.00021m2 C W, R0 0.00018m 2 C W
K计
1
1 0.00021 0.0025 0.00018
1
685W m2 C
2317
45
1717
A计
Q
Ktm
9.54105 4186.8 685 3600 0.97 43.7
①流向的选择 一般逆流优于并流
②确定冷却介质出口温度 t2,求对数平均推动力
tm逆
T1
t1 T2
ln T1 t1
t2
T2 t2
③对 tm逆 进行 修正
R T1 T2 t1 t2
P t2 t1 T2 t1
查图得到
tm tm逆
Ⅲ.根据经验估计传热系数 K,估 计算传热面积 A qm1Cp1 T1 T2 K估 A估tm逆
f0 : 壳程流体摩擦系数
Ps P允 可增大挡板间距
Ⅵ.计算传热系数 校核传热面积
根据流体的性质选择适当的 垢层热阻 R
1 1 R 1
K估 i
0
Q
A计 Ktm
A NTd0l
A A计 1.10 ~ 1.20
否则重新估计 K估 ,重复以上计算
• 冷却介质的选择是一个经济上的权衡问题,按设 备费用和操作费用的最低原则确定冷却介质的最优出 口温度 t2opt
38.2m 2
根据所选换热器 A NTd0l 124 3.14 0.025 4.5 43.8m2
∴
A 43.8 1.15
A计 38.2
管壳式换热器的设计计算
管壳式换热器的设计计算1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。
(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3) 压强高的流体宜走管内,以免壳体受压。
(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。
(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。
(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。
在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。
2. 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。
但是流速增加,又使流体阻力增大,动力消耗就增多。
所以适宜的流速要通过经济衡算才能定出。
此外,在选择流速时,还需考虑结构上的要求。
例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。
管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。
这些也是选择流速时应予考虑的问题。
3. 流体两端温度的确定若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。
若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。
例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。
管壳式换热器设计
管壳式换热器设计一、设计原理:二、工艺要点:1.确定热媒:根据工艺要求,选择合适的热媒,包括流体的物性参数(如密度、比热等)、热传导性能等。
2.确定传热面积:根据传热工质的物性、进出口温度差、热媒的传热系数等参数,计算所需的传热面积。
一般情况下,可以根据热传导的基本公式进行计算,也可以通过经验公式进行估算。
3.确定流量与速度:根据热媒的性质及工艺需求,计算出所需的流量和速度。
流量一般通过流量计进行测量,速度通过壳体内径和流量计算得出。
4.确定壳程和管程流体的传热系数:通过经验公式计算出壳程和管程的传热系数,用于后续的热传导计算。
5.确定传热过程:根据实际情况,选择合适的传热过程,包括对流传热、传导传热和辐射传热等。
6.确定材料和结构:根据工艺要求和运行条件,选择合适的材料进行制造。
同时,结构设计要考虑到换热效果、运行安全性和维护方便性。
三、常见设计问题:1.壳程流体和管程流体的温度差:对于壳程和管程,流体的温度差越大,传热效果越好。
设计时需要考虑流体温度差对换热器的尺寸和传热效率的影响。
2.压降:壳程和管程的流体在换热过程中会产生压降。
设计时需要考虑压降对流体流速和传热系数的影响,并在设计中进行合理的折减和控制。
3.热媒的物性参数:热媒的物性参数对换热器的设计和运行有很大影响。
需要考虑热媒的密度、比热、热传导系数等参数,并在设计中进行合理的估算和计算。
4.材料选择:根据工艺要求和运行条件,选择合适的材料进行制造。
必须考虑材料的耐受性和耐腐蚀性,以及对流体和环境的影响。
总结:管壳式换热器设计涉及多个方面的参数和工艺要求,包括热媒选择、传热面积计算、流量和速度确定、传热系数估算、传热过程选择、材料和结构设计等。
在实际设计中,需按照工艺要求和运行条件合理选择参数和材料,并通过模拟计算和经验公式进行设计。
同时,需要注意常见的设计问题,如温度差、压降、热媒物性参数和材料选择等。
通过合理的设计和选择,可以实现管壳式换热器的高效工作和长期稳定运行。
管壳式换热器原理与设计
管壳式换热器原理与设计管壳式换热器是一种常见的换热设备,广泛应用于化工、炼油、石油化工、动力、核能等多个工业领域。
其工作原理和设计要点如下:工作原理:基本构造:管壳式换热器主要由壳体、管束、管板、折流板、管箱等部件组成。
壳体通常为圆筒形,内部装有平行排列的管束,管束两端固定在管板上。
流体通过管内(管程)和管外(壳程)进行热交换。
热量传递:冷热两种流体分别在管程和壳程中流动,热量通过管壁从高温流体传递给低温流体。
一种流体在管内流动(管程流体),另一种流体在管外,即壳体内流动(壳程流体)。
热量传递遵循热力学第二定律,从高温区自发流向低温区。
强化传热:为了提高传热效率,壳程内常设置折流板,迫使壳程流体多次改变方向,增加流体湍流程度,从而提高传热系数。
管束的排列(如等边三角形或正方形)也会影响传热效率和清洁维护的便利性。
设计要点:流体选择:根据工艺要求决定哪种流体走管程,哪种走壳程。
一般而言,易结垢或腐蚀性的流体走管程便于清洗和更换管束。
材料选择:根据流体的性质(如温度、压力、腐蚀性)选择合适的材料,如不锈钢、碳钢、铜合金等,以确保换热器的耐用性和安全性。
热负荷计算:根据工艺条件计算所需的热负荷,确定换热面积,进而决定管束的数量、长度和直径。
压降考虑:设计时需考虑流体在管程和壳程中的压降,确保泵送能耗合理,避免因压降过大导致系统运行不稳定。
结构设计:包括管板的设计(固定管束的方式)、壳体厚度设计、支撑和悬挂结构设计等,以保证换热器的机械强度和稳定性。
清洗与维护:设计时应考虑换热器的可维护性,如管束的可拆卸性,以及便于清洗壳程内部的结构设计。
综上所述,管壳式换热器的设计是一个综合考虑热工性能、机械强度、材料选择、经济性和可维护性的复杂过程,需要精确的计算和细致的工程设计。
管壳式换热器的设计
管壳式换热器的设计1. 管壳式换热器概述管壳式换热器是一种常见且广泛应用于工业领域的换热设备。
它主要由壳体、热交换管束、管板、进出口管道和支撑结构等组成。
通过壳体内外流体的传热和传质,实现不同流体之间的能量交换。
管壳式换热器的设计对于提高传热效率、减少能源消耗、降低设备运行成本具有重要意义。
在设计过程中,需要考虑多个因素,包括选择合适的换热管材料、确定合适的管束结构、优化流道布局等。
2. 管壳式换热器设计步骤2.1 确定操作参数在进行管壳式换热器设计前,首先需要明确操作参数,包括流体的流量、温度、压力等。
这些参数的确定对于选择合适的换热器尺寸和换热面积至关重要。
2.2 选择合适的换热管材料在进行换热器设计时,需要根据流体的特性选择合适的换热管材料。
常见的换热管材料包括碳钢、不锈钢、铜合金等。
根据流体的性质、温度和压力等因素,选择耐腐蚀、导热性好的管材。
2.3 确定管束结构管束结构的设计直接影响到换热器的传热效率和压降。
通常有多种不同的管束结构可供选择,如固定管板式、浮动管板式和U型管式等。
根据具体需求和操作参数,选择合适的管束结构。
2.4 流道布局优化流道布局对于管壳式换热器的性能至关重要。
良好的流道布局可以提高流体的流动速度,增加传热面积,从而提高换热效率。
通过合理的流道设计,可以减小压力损失,降低能源消耗。
2.5 确定热交换面积根据操作参数和所选的管束结构,计算出所需的热交换面积。
通常使用LMTD (Log Mean Temperature Difference)法进行计算。
2.6 设计壳体结构和管道连接根据热交换需求和操作参数,设计合适的壳体结构和管道连接。
壳体结构应具有良好的强度和刚度,同时要考虑便于清洁和维修的因素。
3. 管壳式换热器设计的优化方法3.1 流体动力学模拟利用流体动力学模拟软件对管壳式换热器的流动状态进行模拟和分析,以优化流体的流动路径和流速分布,提高传热效率。
3.2 换热管材料优化选择通过对不同换热管材料的性能进行评估和比较,选择性能更好的材料,以提高换热效率和延长换热器的使用寿命。
管壳式换热器的设计和选型
管壳式换热器的设计和选型管壳式换热器是一种传统的标准换热设备,它具有制造方便、选材面广、适应性强、处理量大、清洗方便、运行可靠、能承受高温、高压等优点,在许多工业部门中大量使用,尤其是在石油、化工、热能、动力等工业部门所使用的换热器中,管壳式换热器居主导地位。
为此,本节将对管壳式换热器的设计和选型予以讨论。
(一)管壳式换热器的型号与系列标准鉴于管壳式换热器应用极广,为便于设计、制造、安装和使用,有关部门已制定了管壳式换热器系列标准。
1.管壳式换热器的基本参数和型号表示方法(1)基本参数管壳式换热器的基本参数包括:①公称换热面积;②公称直径;③公称压力;④换热器管长度;⑤换热管规格;⑥管程数。
(2)型号表示方法管壳式换热器的型号由五部分组成:1──换热器代号2──公称直径DN,mm;3──管程数:ⅠⅡⅣⅥ;4──公称压力PN,MPa;5──公称换热面积SN,m2。
例如800mm、0.6MPa的单管程、换热面积为110m2的固定管板式换热器的型号为:G800 I-0.6-110G──固定管板式换热器的代号。
2.管壳式换热器的系列标准固定管板式换热器及浮头式换热器的系列标准列于附录中,其它形式的管壳式换热器的系列标准可参考有关手册。
(二)管壳式换热器的设计与选型换热器的设计是通过计算,确定经济合理的传热面积及换热器的其它有关尺寸,以完成生产中所要求的传热任务。
1.设计的基本原则(1)流体流径的选择流体流径的选择是指在管程和壳程各走哪一种流体,此问题受多方面因素的制约,下面以固定管板式换热器为例,介绍一些选择的原则。
①不洁净和易结垢的流体宜走管程,因为管程清洗比较方便。
②腐蚀性的流体宜走管程,以免管子和壳体同时被腐蚀,且管程便于检修与更换。
③压力高的流体宜走管程,以免壳体受压,可节省壳体金属消耗量。
④被冷却的流体宜走壳程,可利用壳体对外的散热作用,增强冷却效果。
⑤饱和蒸汽宜走壳程,以便于及时排除冷凝液,且蒸汽较洁净,一般不需清洗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计设计题目:管壳式水-水换热器姓名院系专业年级学号指导教师年月日目录1前言 (1)2课程设计任务书 (2)3课程设计说明书 (3)3.1确定设计方案 (3)3.1.1选择换热器的类型 (3)3.1.2流动空间及流速的确定 (3)3.2确定物性数据 (3)3.3换热器热力计算 (4)3.3.1热流量 (4)3.3.2平均传热温度差 (4)3.3.3循环冷却水用量 (4)3.3.4总传热系数K (5)3.3.4计算传热面积 (6)3.4工艺结构尺寸 (6)3.4.1管径和管内流速 (6)3.4.2管程数和传热管数 (6)3.4.3平均传热温差校正及壳程数 (7)3.4.4传热管排列和分程方法 (7)3.4.5壳体内径 (7)3.4.6折流板 (8)3.4.7接管 (8)3.5换热器核算 (8)3.5.1热量核算 (8)3.5.2换热器内流体的流动阻力 (12)3 .6换热器主要结构尺寸、计算结果 (13)3.7换热器示意图、管子草图、折流板图 (14)4设计总结 (15)5参考文献 (16)1前言在工程中,将某种流体的热量以一定的传热方式传递给他种流体的设备,成为热交换器。
热交换器在工业生产中的应用极为普遍,例如动力工业中锅炉设备的过热器、省煤器、空气预测器,电厂热力系统中的凝汽器、除氧器、给水加热器、冷水塔;冶金工业中高炉的热风炉,炼钢和轧钢生产工艺中的空气和煤气预热;制冷工业中蒸汽压缩式制冷机或吸收式制冷机中的蒸发器、冷凝器;制糖工业和造纸工业的糖液蒸发器和纸浆蒸发器,都是热交换器的应用实例。
在化学工业和石油化学工业的生产过程中,应用热交换器的场合更是不胜枚举。
在航空航天工业中,为了及时取出发动机及辅助动力装置在运行时产生的大量热量;热交换器也是不可或缺的重要部件。
根据热交换器在生产中的地位和作用,它应满足多种多样的要求。
一般来说,对其基本要求有:(1)满足工艺过程所提出的要求。
热交换强度高,热损失少。
在有利的平均温度下工作。
(2)要有与温度和压力条件相适应的不易遭到破坏的工艺结构,制造简单,装修方便,经济合理,运行可靠。
(3)设备紧凑。
这对大型企业,航空航天、新能源开发和余热回收装置更有重要意义。
(4)保证低的流动阻力,以减少热交换器的消耗。
管壳式换热器是目前应用最为广泛的一种换热器。
它包括:固定管板式换热器、U 型管壳式换热器、带膨胀节式换热器、浮头式换热器、分段式换热器、套管式换热器等。
管壳式换热器由管箱、壳体、管束等主要元件构成。
管束是管壳式换热器的核心,其中换热管作为导热元件,决定换热器的热力性能。
另一个对换热器热力性能有较大影响的基本元件是折流板(或折流杆)。
管箱和壳体主要决定管壳式换热器的承压能力及操作运行的安全可靠性。
2课程设计任务书2.1设计题目管壳式水-水换热器设计2.2设计任务设计一个处理能力为2.4x106吨/年热水的管壳式换热器,热水入口温度85℃,出口温度60℃,冷却介质为循环水,入口温度为25℃,出口温度为40℃,允许压强降不大于10^5Pa 。
每年按照280天计算,每天连续24小时运行。
试设计一台管壳式换热器,完成该生产任务。
2.3设计原始资料(技术参数)热水在72.5℃下的有关物性数据如下: 密度 31/977m kg =ρ恒压比热容 1p c =4.189kJ/(kg.℃) 导热系数 1λ=0.6695W/(m ℃) 粘度 5110335.39-⨯=μPa 循环水在32.5℃下的物性数据:密度 2ρ=994.8㎏/m 3恒压比热容 2p c =4.174kJ/(kg℃) 导热系数 2λ=0.6233w/(m℃) 粘度 s Pa ⋅⨯=-3210764.0μ3课程设计说明书3.1 确定设计方案3.1.1.选择换热器的类型两流体温度变化情况:热流体进口温度85℃,出口温度60℃。
冷流体(循环水)进口温度25℃,出口温度40℃。
该换热器冷却热的热水,传热量较大,可预计排管较多,因此初步确定选用固定管板式换热器。
3.1.2流动空间及流速的确定单从两物流的操作压力看,热水操作压力达0.1MPa ,应使热水走管程,循环冷却水走壳程。
但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降;且两流体温度相差较大,应使α较大的循环水(一般气体α<液体)走管内。
所以从总体考虑,应使循环水走管程,热水走壳程。
选用Φ25mm×2.5mm 的碳钢管,管内循环水流速取1m/s 。
3.2 确定物性数据定性温度:可取流体进出口温度的平均值。
壳程热水的定性温度为T=(85+60)/2=72.5℃管程流体的定性温度为t =(25+40)/2=32.5℃根据定性温度,分别查取壳程和管程流体的有关物性数据。
热水在0.1MPa ,72.5℃下的有关物性数据如下: 密度 1ρ=977 kg/m ³定压比热容 1p c =4.189 kJ /(kg ·℃) 导热系数 1λ=0.6695 W/(m·℃) 黏度 1μ=39.335×10-5 Pa ·s循环水在0.1MPa ,32.5℃下的有关物性数据如下: 密度 0ρ=994.8 kg/m ³定压比热容0p c =4.174 kJ /(kg ·℃) 导热系数 0λ=0.6233 W/(m·℃) 黏度 o μ=76.4×10-5 Pa ·s3.3 换热器热力计算3.3.1 热流量1Q = 11p c m (T 1-T 2) (3-1) 式中:1Q ——热源热流量,单位W ;1p C ——定压比热容,单位kJ /(kg ·k); 1T ——热源进口温度,单位K ; 2T ——热源出口温度,单位K 。
则:1Q =2.4*10^9/(3600*24*280)×4.189×10 3 ×(85-60)=7969.57×310( w) 3.3.2平均传热温度差 有效平均温度差:2121,ln t t t t t m ∆∆∆-∆=∆ (3-2)式中:1t ∆,2t ∆——分别为换热器两端冷热流体的温差,K 。
将1t ∆=354085=-K ,2t ∆=352560=-K 代入式(3-2)得: 则:=∆,m t 40K 。
3.3.3.循环冷却水用量冷却水热流量: m o =)(12t t c Q po i- (3-3)式中:0m ——冷源热流量,单位;kg/s ; 0p C ——定压比热容,单位kJ /(kg ·k); 1t ——冷源进口温度,单位K ; 2t ——冷源出口温度,单位K 。
则:0m =7969.57×10 3/[4.174×10 3×(40-25)]=127.29(kg/s) 3.3.4总传热系数K 管程传热系数计算雷诺数 ii i i u d μρ=Re (3-4)式中:i Re ——雷诺数;i d ——换热管内径,单位mm 。
则雷诺数:i Re =26041.88 计算管程换热系数0.80.40.023()()pi i i i i i i i i ic d u d μλραμλ= (3-5)式中:Re ——雷诺数; i Pr ——普朗特数;i λ——导热系数,单位W/(m ·k); i d ——换热管内径,单位mm 。
则管程换热系数:i α4.0338.02)6233.010764.010174.4(88.26041020.01033.62023.0--⨯⨯⨯⨯⨯⨯⨯= =4693.67W/(m ·k)壳程传热系数假设壳程的传热系数λ0=390W/(m 2·℃) 污垢热阻:热水侧的热阻si R =0.000344m 2·℃/W 冷却水侧的热阻so R =0.000172m 2·℃/W钢的导热系数λ=45W/(m ·℃ )总传热系数: soom o i o si i R d bd d d R di do K ++++=αλα11(3-6)式中:m d ——对数平均直径,取0.0225mm ; b ——传热管壁厚,m 。
λ——导热系数;o d ——换热管外径,单位mm 。
将数值依次代入(3-6)得:=K 280.5W/(m ·℃ ) 3.3.5 计算传热面积计算传热面积 S '=1Q /Kt (3-7) 式中:K ——传热系数,W/(m ·k);S '——与K 值对应的传热面积,m 2 t ——有效平均温差,K; 1Q ——交换的热量,W 。
则S '=591.91(2m )考虑15%的面积裕度, S=S '×1.15=680.70(2m )3.4 工艺结构尺寸3.4.1 管径和管内流速选用φ25×2.5mm 的传热管(碳钢管),可设管内冷却水流速1u =1m/s 。
3.4.2管程数和传热管数依据传热管内径和流速确定单程传热管数 12.4n u d V i i i π=(3-8)式中:i V ——流体的流量,m 3/s ; i d ——管子内径,m ;i n ——单程管管数(必须取为整数)。
则:=⨯÷=102.048.99429.1272πi n 407.5=408(根)按单程管计算,所需的传热管长度L 为 ii d n πSL =(3-9) 代入数据(3-9)有:02.040814.3680.70L ⨯⨯==26.6m按单管程设计,传热管过长,宜采用多管程结构。
现取传热管长 l= 8 m ,则该换热器管程数为N p =L/l (3-10) 式中:L ——按单程计算的管长,m ;l ——选定的每程管长,m 。
则该换热器管程数:N p =26.6/8≈4(管程) 传热管总根数N = 408×4= 1632(根) 3.4.3平均传热温差校正及壳程数平均传热温差校正系数 R=1221T T t t --=67.125-4060-85= P=2112t t T T --=6.060-8525-40= 按单壳程、四管程结构,温差校正系数查教材图可得t ∆ϕ=0.95平均传热温差tm ∆=m t t '∆⨯∆ϕ (3-11) 代入数据有:tm ∆=0.95×40=36.8 (℃) 3.4.4 传热管排列和分程方法采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。
取管心距t=1.25οd ,则:o d t 25.1= (3-12) t=1.25×25≈31.25=32(mm ) 横过管束中心线的管数:N n c 19.1= (3-13)代入数据有: c n = 1.191632=48(根) 3.4.5 壳体内径采用单管程结构,取管板利用率η=0.7,则壳体内径为: η/05.1D N t = (3-14) 代入数据有:mm t 16227.0/163205.1D ==。