2019届一轮复习人教版 绳上的活结、死结问题与活动杆、固定杆问题 学案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“绳上的‘死结’和‘活结’模型”

“活动杆”与“固定杆”

一、“活结”与“死结”

绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种.

1. “活结”

“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线.

2. “死结”

“死结”可理解为把绳子分成两段,且不可沿绳子移动的结点。“死结”一般是由绳子打结而形成的,“死结”两侧的绳子因打结而变成两根独立的绳子。学.

死结的特点:

1.绳子的结点不可随绳移动

2.“死结”两侧的绳子因打结而变成两根独立的绳子,因此由“死结”分开的两端绳子上的弹力不一定相等

【典例1】如图所示,将一细绳的两端固定于两竖直墙的A、B两点,通过一个光滑的挂钩将某重物挂在绳上,下面给出的四幅图中有可能使物体处于平衡状态的是()

【答案】C

【解析】由于重物是通过一个光滑的挂钩挂在绳上,绳子张力处处相等,而两边绳子的合力大小等于物体的重力,方向竖直向上,由对称性可知两边绳子与竖直方向的夹角相等,所以C正确。

【典例2】如图所示,一轻绳的两端分别固定在不等高的A、B两点,现用另一轻绳将一物体系于O 点,设轻绳AO、BO相互垂直,α>β,且两绳中的拉力分别为F A、F B,物体受到的重力为G,下列表述正确的是()

A.F A一定大于G

B.F A一定大于F B

C.F A一定小于F B

D.F A与F B大小之和一定等于G

【答案】 B

【典例3】如图所示,在水平天花板的A点处固定一根轻杆a,杆与天花板保持垂直.杆的下端有一个轻滑轮O.另一根细线上端固定在该天花板的B点处,细线跨过滑轮O,下端系一个重为G的物体,BO 段细线与天花板的夹角为θ=30°.系统保持静止,不计一切摩擦.下列说法中正确的是()

A .细线BO 对天花板的拉力大小是G

2

B .a 杆对滑轮的作用力大小是G

2

C .a 杆和细线对滑轮的合力大小是G

D .a 杆对滑轮的作用力大小是G 【答案】 D

二、“活动杆”与“固定杆”

轻杆是物体间连接的另一种方式,根据轻杆与墙壁连接方式的不同,可以分为“活动杆”与“固定杆”.

所谓“活动杆”,就是用铰链将轻杆与墙壁连接,其特点是杆上的弹力方向一定沿着杆的方向; 而“固定杆”就是将轻杆固定在墙壁上(不能转动),此时轻杆上的弹力方向不一定沿着杆的方向。 【典例1】 甲、乙两图中的杆都保持静止,试画出甲、乙两图O 点受杆的作用力的方向.(O 为结点)

图2-1-8

【答案】 如解析图所示

【解析】甲为自由杆,受力一定沿杆方向,如下图甲所示的F N1.乙为固定杆,受力由O 点所处状态决定,此时受力平衡,由平衡条件知杆的支持力F N2的方向与mg 和F 1的合力方向相反,如下图乙所示.

【典例2】如图甲所示,轻绳AD 跨过固定的水平横梁BC 右端的定滑轮挂住一个质量M 1的物体,∠ACB =30°;图乙中轻杆HG 一端用铰链固定在竖直墙上,另一端G 通过细绳EG 拉住,EG 与水平方向也成30°,轻杆的G 点用细绳GF 拉住一个质量M 2的物体,求:

(1)轻绳AC 段的张力F T AC 与细绳EG 的张力F T EG 之比; (2)轻杆BC 对C 端的支持力; (3)轻杆HG 对G 端的支持力.

【答案】(1)M 1

2M 2

(2)M 1g 方向和水平方向成30°指向右上方 (3)3M 2g 方向水平向右

【解析】 题图甲和乙中的两个物体M 1、M 2都处于平衡状态,根据平衡的条件,首先判断与物体相连的细绳,其拉力大小等于物体的重力;分别取C 点和G 点为研究对象,进行受力分析如图甲和乙所示,根据平衡规律一一求解.

(3)图乙中,根据平衡方程有F T EG sin 30°=M 2g ,F T EG cos 30°=F NG ,所以F NG =M 2g cot 30°=3M 2g ,方向水平向右.

相关文档
最新文档