假设检验例题与习题-完整版

合集下载

假设检验习题答案

假设检验习题答案

假设检验习题答案1.假设某产品的重量服从正态分布,现在从⼀批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性⽔平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。

解:假设检验为800:,800:0100≠=µµH H (产品重量应该使⽤双侧检验)。

采⽤t 分布的检验统计量nx t /0σµ-=。

查出α=0.05和0.01两个⽔平下的临界值(df=n-1=15)为2.131和2.947。

667.116/60800820=-=t 。

因为t <2.131<2.947,所以在两个⽔平下都接受原假设。

2.某牌号彩电规定⽆故障时间为10 000⼩时,⼚家采取改进措施,现在从新批量彩电中抽取100台,测得平均⽆故障时间为10 150⼩时,标准差为500⼩时,能否据此判断该彩电⽆故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=µµH H (使⽤寿命有⽆显著增加,应该使⽤右侧检验)。

n=100可近似采⽤正态分布的检验统计量nx z /0σµ-=。

查出α=0.01⽔平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性⽔平应先乘以2,再查到对应的临界值)。

计算统计量值3100/5001000010150=-=z 。

因为z=3>2.34(>2.32),所以拒绝原假设,⽆故障时间有显著增加。

3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了⼀个容量为26的样本,计算得平均值为1637。

问在5%的显著⽔平下,能否认为这批产品的指标的期望值µ为1600?解: 01:1600, :1600,H H µµ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量716001.251.960/26Z ===<,接受0:1600H µ=, 即,以95%的把握认为这批产品的指标的期望值µ为1600.4.某电器零件的平均电阻⼀直保持在2.64Ω,改变加⼯⼯艺后,测得100个零件的平均电阻为2.62Ω,如改变⼯艺前后电阻的标准差保持在O.06Ω,问新⼯艺对此零件的电阻有⽆显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H µµ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H µ≠, 即, 以95%的把握认为新⼯艺对此零件的电阻有显著影响.5.某⾷品⼚⽤⾃动装罐机装罐头⾷品,每罐标准重量为500克,每隔⼀定时间需要检查机器⼯作情况。

假设检验方法

假设检验方法

假设检验-1Hypothesis Testing假设检验方法【例】一种机床加工的零件尺寸绝对平均误差允许值为1.35mm 。

生产厂家现采用一种新的机床进行加工以期进一步降低误差。

为检验新机床加工的零件平均误差与旧机床相比是否有显著降低,从某天生产的零件中随机抽取50个进行检验。

利用这些样本数据,检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低?(α=0.1),数据见:”Parts .mtw ”左侧检验1.061.220.911.971.982.031.011.241.450.990.590.501.500.741.23 1.131.020.951.121.12 1.161.031.121.100.98 1.122.371.540.961.1950个零件尺寸的误差数据(mm)0.821.601.101.000.970.861.231.171.261.381.70 1.641.081.110.941.061.13 1.811.311.261-Sample Z Test —例题应用Minitab 检验假设检验-31-Sample Z Test—习题1. 请打开“1-Sample Z Test .mtw”C1为某钢丝绳索制造商声称其生产的钢丝绳的平均抗断强度为大于5磅,已经知道总体标准差为1,请判断其声明是否正确?注意:Ⅰ.当小样本时(n<25~30),且总体标准差未知时使用1-Sample T Test.使用1-Sample T Test前,一定要检验正态性.如果非正态时,可以考虑:a.增加样本量,达到n≥25.b.使用非参量设计(绿带教程一般不涉及)Ⅱ. 当大样本时(n≥25~30),使用1-Sample Z Test.不一定要求正态性.如果不知道总体标准差时,可以使用样本标准差代替.Ⅲ.当小样本时(n<25~30),但总体标准差已知时,也是使用1-Sample Z Test.注意:小样本时;一定要保证正态性.第一步设定H0和H a1. H0: 钢丝绳的平均抗断强度≤5H a:钢丝绳的平均抗断强度>5磅2. 取α=0.05假设检验-5第二步比较均值结论One-Sample Z: ValuesTest of mu= 5 vs mu> 5The assumed sigma = 1Variable N Mean StDev SE MeanValues 30 5.435 0.984 0.183Variable 95.0% Lower Bound Z PValues 5.134 2.38 0.009因为P小于0.05,所以对立假设成立。

假设检验例题和习题

假设检验例题和习题

(第二版) (原假设与备择假设旳拟定)
1. 属于决策中旳假设检验
2. 不论是拒绝H0还是不拒绝H0,都必需采用 相应旳行动措施
3. 例如,某种零件旳尺寸,要求其平均长度为 10cm,不小于或不不小于10cm均属于不合 格
我们想要证明(检验)不小于或不不小于这两种 可能性中旳任何一种是否成立
4. 建立旳原假设与备择假设应为
H0: = 5
H1: 5
= 0.05
df = 10 - 1 = 9 临界值(s):
拒绝 H0
拒绝 H0
.025
.025
-2.262 0 2.262 t
8 - 20
检验统计量:
t = x 0 = 5.3 5 = 3.16
s n 0.6 10
决策:
在 = 0.05旳水平上拒绝H0
结论:
阐明该机器旳性能不好
符?( = 0.05)
统计学
(第二版)
均值旳单尾 t 检验
(计算成果)
H0: 40000 H1: < 40000 = 0.05 df = 20 - 1 = 19 临界值(s):
拒绝域
.05
-1.7291 0
t
8 - 23
检验统计量:
t = x 0
sn
= 41000 40000 = 0.894 5000 20
8 - 12
双侧检验
统计学
(第二版)
H0: = 0.081
H1: 0.081
= 0.05
n = 200
临界值(s):
拒绝 H0
拒绝 H0
.025
.025
-1.96 0 1.96 Z
8 - 13
检验统计量:

统计学假设检验习题

统计学假设检验习题

一、单选1、如果检验的假设为0010:,:H H μμμμ≥<,则拒绝域为( )A 、 z z α>B 、z z α<-C 、A 或BD 、/2z z α<-二、多选1.下列关于假设检验的陈述正确的是( )。

A 、假设检验实质上是对原假设进行检验B 、假设检验实质上是对备选假设进行检验C 、当拒绝原假设时,只能认为肯定它的根据尚不充分,而不是认为它绝对错误D 、假设检验并不是根据样本结果简单地或直接地判断原假设和备选假设哪一个更有可能正确E 、当接受原假设时,只能认为否定它的根据尚不充分,而不是认为它绝对正确2、在假设检验中, α与β的关系是( )。

A 、在其它条件不变的情况下,增大α,必然会减少βB 、α和β不可能同时减少C 、在其它条件不变的情况下,增大α,必然会增大βD 、只能控制α不能控制βE 、增加样本容量可以同时减少α和β3、设总体为正态总体,总体方差未知,在小样本条件下,对总体均值进行如下的假设检验:01000:);(:μμμμμ≠=H H 为一已知数,1.0=α,则下列说法正确的有 ( )。

A 、),(1.0Z --∞和),(1.0+∞Z 为原假设的拒绝区域B 、),(05.0Z --∞和),(05.0+∞Z 为原假设的拒绝区域C 、),(1.0t --∞和),(1.0+∞t 为原假设的拒绝区域D 、),(05.0t --∞和),(05.0+∞t 为原假设的拒绝区域E 、若检验统计量的绝对值越大,则原假设越容易被拒绝4.某一批原材料的质量实际上是不符合生产标准,检验部门抽取1%的原材料检验,得出结论是该批原材料的质量符合生产标准,说明( ).A 、检验部门犯了第一类错误B 、检验部门犯了第二类错误C 、犯这种错误的概率是αD 、犯这种错误的概率是βE 、犯这种错误的原因是检验部门没有遵循随机原则三、判断1.假设检验是一种科学的统计决策方法,因此使用它不会犯错误.( )四、简答1.简述参数估计和假设检验的联系和区别.五、计算1、从某批食品中随机抽取12袋,测定其蛋白质的含量(%),测定结果如下: 24,26,27,23,20,28,23,24,27,25,26,23假定该食品每袋蛋白质的含量X 服从正态分布),(2σμN ,包装袋上表明蛋白质的含量为26%。

假设检验的习题及详解包括典型考研真题

假设检验的习题及详解包括典型考研真题

§假设检验基本题型Ⅰ 有关检验统计量和两类错误的题型【例8.1】u 检验、t 检验都是关于 的假设检验.当 已知时,用u 检验;当 未知时,用t 检验.【分析】 由u 检验、t 检验的概念可知,u 检验、t 检验都是关于均值的假设检验,当方差2σ为已知时,用u 检验;当方差2σ为未知时,用t 检验. 【例8.2】设总体2(,)XN u σ,2,u σ未知,12,,,n x x x 是来自该总体的样本,记11ni i x x n ==∑,21()ni i Q x x ==-∑,则对假设检验0010::H u u H u u =↔≠使用的t 统计量t = (用,x Q 表示);其拒绝域w = . 【分析】2σ未知,对u 的检验使用t 检验,检验统计量为(1)x t t n ==-对双边检验0010::H u u H u u =↔≠,其拒绝域为2{||(1)}w t t n α=>-.【例8.3】设总体211(,)XN u σ,总体222(,)Y N u σ,其中2212,σσ未知,设112,,,n x x x 是来自总体X 的样本,212,,,n y y y 是来自总体Y 的样本,两样本独立,则对于假设检验012112::H u u H u u =↔≠,使用的统计量为 ,它服从的分布为 .【分析】记1111n i i x x n ==∑,2121n i i y y n ==∑,因两样本独立,故,x y 相互独立,从而在0H 成立下,()0E x y -=,221212()()()D x y D x D y n n σσ+=+=+,故构造检验统计量(0,1)x yu N =.【例8.4】设总体2(,)XN u σ,u 未知,12,,,n x x x 是来自该总体的样本,样本方差为2S ,对2201:16:16H H σσ≥↔<,其检验统计量为 ,拒绝域为 .【分析】u 未知,对2σ的检验使用2χ检验,又由题设知,假设为单边检验,故统计量为222(1)(1)16n S n χχ-=-,从而拒绝域为221{(1)}n αχχ-<-.【例8.5】某青工以往的记录是:平均每加工100个零件,由60个是一等品,今年考核他,在他加工零件中随机抽取100件,发现有70个是一等品,这个成绩是否说明该青工的技术水平有了显著性的提高(取0.05α=)?对此问题,假设检验问题应设为 【 】()A 01:0.6:0.6H p H p ≥↔<. ()B 01:0.6:0.6H p H p ≤↔>. ()C 01:0.6:0.6H p H p =↔≠. ()D 01:0.6:0.6H p H p ≠↔=.【分析】一般地,选取问题的对立事件为原假设.在本题中,需考察青工的技术水平是否有了显著性的提高,故选取原假设为0:0.6H p ≤,相应的,对立假设为1:0.6H p >,故选()B .【例8.6】某厂生产一种螺钉,标准要求长度是68mm ,实际生产的产品,其长度服从2(,3.6)N u ,考察假设检验问题01:68:68H u H u =↔≠.设x 为样本均值,按下列方式进行假设检验:当|68|1x ->时,拒绝原假设0H ;当|68|1x -≤时,接受原假设0H . (1)当样本容量36n =时,求犯第一类错误的概率α; (2)当样本容量64n =时,求犯第一类错误的概率α;(3)当0H 不成立时(设70u =),又64n =时,按上述检验法,求犯第二类错误的概率β. 【解】(1)当36n =时,223.6(,)(,0.6)36xN u N u =,000{|68|1|}{67|}{69|}P x H P x H P x H α=->=<+>成立成立成立67686968()[1()]( 1.67)[1(1.67)]0.60.6--=Φ+-Φ=Φ-+-Φ 2[1(1.67)]2[10.99575]0.095=-Φ=-=.(2)当64n =时,223.6(,)(,0.45)64xN u N u =000{|68|1|}{67|}{69|}P x H P x H P x H α=->=<+>成立成立成立67686968()[1()]0.450.45--=Φ+-Φ 2[1(2.22)]2[10.9868]0.0264=-Φ=-=.(3)当64n =,又70u =时,2(70,0.45)xN ,这时犯第二类错误的概率(70){|68|1|70}{6769|70}P x u P x u β=-≤==≤≤=69706770()()( 2.22)( 6.67)0.450.45--=Φ-Φ=Φ--Φ- (6.67)(2.22)10.98680.0132=Φ-Φ=-=.【评注】01(1)(2)的计算结果表明:当n 增大时,可减小犯第一类错误的概率α;02 当64n =,66u =时,同样可计算得到(66)0.0132β=.03 当64n =,68.5u =时,2(68.5,0.45)xN ,则(68.5){6769|68.5}P x u β=≤≤= 6968.56768.5()()(1.11)( 3.33)0.450.45--=Φ-Φ=Φ-Φ-0.8665[10.9995]0.8660=--=.这表明:当原假设0H 不成立时,参数真值越接近于原假设下的值时,β的值就越大. 【例8.7】设总体2(,)XN u σ,12,,,n x x x 是来自该总体的样本,对于检验01:0:0H u H u ≤↔>,取显著性水平α,拒绝域为:{}w u u α=>,其中u =,求:(1)当0H 成立时,求犯第一类错误的概率()u α; (2)当0H 不成立时,求犯第二类错误的概率()u β. 【解】(1)当0H 成立时,0u ≤,则(){|0}|0}u P u u u P u u ααα=>≤=>≤()|0}1()(0)P x u u u u u αα=->≤=-Φ≤因0u ≤,故()()1u u αααΦ≥Φ=-,从而()1()1(1)u u αααα≤-Φ=--=,即犯第一类错误的概率不大于α.(2)(){|0}()|0}u P u u u P x u u u ααβ=≤>=-≤>()(0)u u α=Φ>因0u >,故当u →+∞时,()0u β→,即u 与假设0H 偏离越大,犯第二类错误的概率越小;而当0u +→时,()1u βα→-,即当u 为正值且接近0时,犯第二类错误的概率接近1α-.基本题型Ⅱ 单个正态总体的假设检验【例8.8】某天开工时,需检验自动包装机工作是否正常,根据以往的经验,其包装的质量在正常情况下服从正态分布2(100,1.5)N (单位:kg ),先抽测了9包,其质量为: 99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.0,100.5 问这天包装机工作是否正常?【分析】 关键是将这一问题转化为假设检验问题.因检验包装机工作是否正常,化为数学问题应为双边检验01:100:100H u H u =↔≠.【解】由题意,提出假设检验问题:01:100:100H u H u =↔≠, 选取检验统计量(0,1)x u N =当0.05α=时,0.02521.96u u α==,又20.04 1.96u u α==<=,即接受原假设0H ,认为包装机工作正常.【例8.9】已知某种元件的寿命服从正态分布,要求该元件的平均寿命不低于1000h ,现从这批元件中随机抽取25知,测得平均寿命980X h =,标准差65S h =,试在水平0.05α=下,确定这批元件是否合格.【解】由题意,2σ未知,在水平0.05α=下检验假设0010:1000:1000H u u H u u ==↔<=属于单边(左边)t 检验.构造检验统计量 (1)x t t n =-,其中25,65,980n S X h ===,查t 分布表可得:0.05(1)(251) 1.7109t n t α-=-=,又0.05|| 1.538(24) 1.7109x t t ===<=.即接受原假设0H ,认为这批元件是合格的.【例8.10】某厂生产的一中电池,其寿命长期以来服从方差225000()σ=小时的正态分布,现有一批这种电池,从生产的情况来看,寿命的波动性有所改变,现随机地抽取26只电池,测得寿命的样本方差229200()S =小时,问根据这一数据能否推断这批电池寿命的波动性较以往有显著性的变化(取0.02α=).【解】 检验假设2201:5000:5000H H σσ=↔≠,选取统计量2222(1)(1)n S n χχσ-=-,由0.02α=,26n =,查2χ分布表可得220.012(1)(25)44.314n αχχ-==,220.0912(1)(25)11.524n αχχ--==, 又统计量2220.012(1)46(25)44.314n S χχσ-==>=,故拒绝原假设0H ,即认为这批电池寿命的波动性较以往有显著性的变化.【例8.11】 某种导线,要求其电阻的标准不得超过0.005(欧姆),今在生产的一批导线中取样品9根,测得0.007S =(欧姆),设总体为正态分布,问在水平0.05α=下,能否认为这批导线的标准差显著性地偏大?【解】本题属于总体均值未知,正态总体方差的单边检验问题0010:0.005:0.005H H σσσσ==↔>=选取统计量2222(1)(1)n S n χχσ-=-当0.05α=,9n =时,查2χ分布表可得:220.05(1)(8)15.507n αχχ-==,又题设0.007S =,则统计量22220.0522(1)80.00715.68(8)15.5070.005n S χχσ-⨯===>=. 故拒绝原假设0H ,认为这批导线的标准差显著性地偏大.【例8.12】 机器自动包装食盐,设每袋盐的净重服从正态分布,规定每袋盐的标准重量为500克,标准差不超过10克.某天开工以后,为了检查机器工作是否正常,从已包装好的食盐中随机抽取9袋,测得其重量(克)为:497,507,510,475,484,488,524,491,515问这天自动包装机工作是否正常(显著性水平0.05α=)? 【解】 设每袋盐重量为随机变量X ,则2(,)XN u σ,为了检查机器是否工作正常,需检验假设:01:500H u =及202:100H σ≤.下面现检验假设0111:500:500H u H u =↔≠ 由于2σ未知,故构造统计量(1)x t t n =-由于0.05α=,查t 分布表可得0.0252(1)(8) 2.306t n t α-==,又由题设计算可得499,16.03X S ==,故统计量取值0.025||0.187(8) 2.306x t t ===<=即接受原假设01H ,认为机器包装食盐的均值为500克,没产生系统误差.下面在检验假设220212:100:100H H σσ≤↔>选取统计量2222(1)(1)n S n χχσ-=-,由于0.05α=,查2χ分布表可得220.05(1)(8)15.5n αχχ-==,而统计量2220.052(1)20.56(8)15.5n S χχσ-==>=,故拒绝原假设02H ,接受12H ,即认为其标准差超过了10克.由上可知,这天机器自动包装食盐,虽没有产生系统误差,但生产不够稳定(方差偏大),从而认为这天自动包装机工作不正常.基本题型Ⅲ 两个正态总体的假设检验【例8.13】 下表给出了两个文学家马克·吐温(Mark Twain )的8偏小品文以及斯诺·特格拉斯(Snodgrass )的10偏小品文中由3格字母组成的词比例.马克·吐温: 0.225,0.262,0.217,0.240,0.230,0.229,0.235,0.217斯诺·特格拉斯:0.209,0.205,0.196,0.210,0.202,0.207,0.224,0.223,0.220,0.201 设两组数据分别来自正态分布,且两总体方差相等,两样本相互独立,问两个作家所写的小品文中包含由3格字母组成的词的比例是否有显著性的差异(0.05α=)?【分析】首先应注意题中的“比例”即“均值”的含义,因而本题应属于未知方差,却知其相等的两正态母体,考虑它们的均值是否相等的问题.【解】设题中两正态母体分别记为,X Y ,其均值分别为12,u u ,因而检验问题如下:012112::H u u H u u =↔≠选取统计量(2)X Y T t n m =+-,其中8,10n m ==,()()22122112wn S m S Sn m -+-=+-,在0.05α=时,查t 分布表可得()()/20.025216 2.1199t n m t α+-==由题设样本数据计算可得22120.2319,0.2097,0.00021,0.00009X Y S S ====,0.119w S ===.从而t统计量值为()0.025|| 3.964316 2.1199X Y T t ===>=,因而拒绝原假设0H ,认为两个作家所写的小品文中包含由3格字母组成的词的比例有显著性的差异.【例8.14】据专家推测:矮个子的人比高个子的人的寿命要长一些,下面给出了美国31个自然死亡的总统的寿命.矮个子(身高小于5英尺8英寸)总统 Modison Van Buren B.Harrison J.Adams J.Q.Adams 身高 5’4” 5’6” 5’6” 5’7” 5’7” 寿命 85 79 67 90 80高个子(身高大于5英尺8英寸)总统 W.Harrison Plok Tayler Crant Hayes Truman Fillmore Pierce A.Johson 身高 5’8” 5’8” 5’8”5’8.5” 5’8.5” 5’9” 5’9” 5’10” 5’10” 寿命 68 53 65 63 70 88 74 64 66 总统 T.Roosevelt Coolidge Eisenhower Cleveland Wilson Hoover Monroe Tyler 身高 5’10” 5’10” 5’10” 5’11” 5’11” 5’11” 6’ 6’ 寿命 60 60 78 71 67 90 73 71 总统 Buchanan Taft Harding Jaskon Washington Arthur F.Roosevelt 身高 6’ 6’ 6’ 6’1” 6’2” 6’2” 6’2” 寿命77 72 57 78 67 56 63设两个寿命总体均为正态分布且方差相等,试问以上数据是否符合上述推测(0.05α=)? 【解】设矮个子总统寿命为X ,高个子总统寿命为Y ,需检验012112::H u u H u u =↔>.由于22212σσσ==未知,故选用统计量(2)X Y T t n m =+-,其中5,26n m ==,()()22122112wn S m S Sn m -+-=+-.由题设样本数据可得80.2,69.15,X Y ==22124294.8,252183.215S S ==,故()()221221185.4492wn S m S Sn m -+-==+-,从而统计量|| 2.448X Y T ==,又当0.05α=时,查t 分布表可得()()0.05229 1.6991t n m t α+-==,即()0.05|| 2.44829 1.6991T t =>=,故拒绝原假设0H ,即推测是正确的,认为矮个子的人比高个子的人的寿命要长一些 【例8.15】总体21(,)XN u σ,22(,)Y N u σ,112,,,n x x x 与212,,,n y y y 分别时来自总体,X Y 的样本,试讨论检验问题012112::H u u H u u δδ-≤↔->.【解】取统计量12(2)X Y T t n n =+-,其中()()221122212112wn S n S S n n -+-=+-, 则检验统计量为X Y T =,当1H 成立时,t 有偏大的趋势,故取拒绝域为12{(2)}w t t n n α=>+-.【例8.16】甲乙相邻地段各取了50块和25块岩心进行磁化率测定,算出两样本标准差分别是210.0139S =,220.0053S =,问甲乙两段的标准差是否有显著性差异(0.05α=)?【解】作假设001:H σσ=,由题设有250211501500.0139()0.01425014949i i S X X =⨯⨯-===-∑, 252221521520.0053()0.00545215151ii S Y Y =⨯⨯-===-∑ 从而统计量21112222(1)0.01422.630.0054(1)n S n F n S n -===-,当0.05α=,查F 分布表可得0.0252(501,521)(501,521) 1.7494F F α--=--=,0.97512(501,521)(501,521)0.5698FF α---=--=,因为0.0252.63(49,51) 1.7494F F =>=,故拒绝原假设0H ,即认为甲乙两段的标准差有显著性差异.【例8.17】在集中教育开课前对学员进行了测试,过来一段时间后,又对学员进行了与前一次同样程度的考查,目的是了解上次的学员与这次学员的考试分类是否有显著性差别(0.05α=),从上次与这次学员的考试中随机抽取12份考试成绩,如下表考试次数 考分 合计平均分 (1) 80.5,91.0,81.0,85.0,70.0,86.0,69.5,74.0,72.5,83.0,69.0,78.5940 78.5 (2)76.0,90.0,91.5,73.0,64.5,77.5,81.0,83.5,86.0,78.5,85.0,96080.073.5【解】此为双正态总体的假设检验,两总体均值未知,先检验假设2222012112::H H σσσσ=↔≠.选取统计量211222(1,1)S F F n n S =--,由题设可计算得221253.15,60.23S S ==,则统计量212253.150.882560.23S F S ===,取0.05α=,查F 分布表可得0.0252(11,11)(11,11) 3.43F F α==,0.97510.02521(11,11)(11,11)0.2915(11,11)FF F α-===.由于122(11,11)0.8825(11,11) 3.43FF F αα-<=<=,故在0.05α=下,接受0H ,即认为两次考试中学员的成绩的方差相等. 再假设012112::H u u H u u =↔≠.构造统计量12(2)X YT t n n =+-,其中()()221122212112wn S n S S n n -+-=+-,1212,12n n ==.由样本数据可得78.5,80.0,X Y ==221253.1515,60.2273S S ==,故()()2211222121156.68942wn S n S Sn n -+-==+-,从而统计量||0.488X Y T ==,在0.05α=下,查t 分布表可得()()120.0252222 2.0739t n n t α+-==.由于()0.025||0.48822 2.0739T t =<=,即认为两次考试中学员的平均成绩相等,从而认为两次考试中学员的成绩无显著性差异.基本题型Ⅳ 非正态总体参数假设检验【例8.18】某产品的次品率为0.17,现对此产品进行了新工艺试验,从中抽取400件检查,发现次品56间,能否认为这项新工艺显著性地影响产品质量(0.05α=)? 【解】检验问题01:0.17:0.17H p H p =↔≠由题设可知56ˆ0.14400m pn ===,构造统计量 1.597u ===-,当0.05α=时,查正态分布表可得0.025 1.96u =,因为0.025|| 1.96u u <=,故接受原假设0H ,认为新工艺显著性地影响产品质量.【评注】本题的理论依据时中心极限定理:当n 充分大时,在0H 成立时,u =(0,1)N 分布.【例8.19】 已知某种电子元件的使用寿命X 服从指数分布()E λ,现抽查100个元件,得样本均值950()x h =,能否认为参数0.01λ=(0.05α=)? 【解】由题设()XE λ,故211,EX DX λλ==,当n 充分大时,1((0,1)1x u x N λλ-==-,现在检验问题01:0.001:0.001H H λλ=↔≠,则((0.0019501)0.5u x λ=-=⨯-=,当0.05α=时,查正态分布表可得0.025 1.96u =,因为0.025|| 1.96u u <=,故接受原假设0H ,认为参数0.01λ=.【评注】总体()X F x ,2,EX u DX σ==,则当n充分大时,u =从(0,1)N 分布.【例8.20】对某干洗公司去除污点的比例做下列假设检验01:0.7:0.9H p H p =↔=,选出100个污点,设其中去除的污点数为x ,拒绝域为{82}w x =>. (1)当0.7p =时,求犯第一类错误的概率α; (2)当0.9p =时,求犯第二类错误的概率β. 【解】(1)由题设有{82|0.7}1P x p α=>==-Φ1(2.62)10.99560.0044=-Φ=-=.(2){82|0.9}P x p β=≤==Φ( 2.67)1(2.67)10.99620.0038=Φ-=-Φ=-=.【评注】从计算分析,这一检验法的α,β皆很小,是较好的检验.§历年考研真题评析1、【98.1.4】设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,计算得到平均成绩为66.5,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生平均成绩为70分?并给出检验过程.【解】设该次考试的考生成绩为X ,则2(,)XN ,设X 为从总体X 抽取的样本容量为n 的样本均值,S 为样本标准差,根据题意建立假设001:70;:70H H .选取统计量 07036X X TnSS在70时,2(70,),(35)X T t .选取拒绝域{||}R T ,其中满足{||}0.05P T ,即{||}0.95P T .即0.975(35) 2.0301t . 由036,66.5,70,15n xs 可以计算得统计量T 的值|66.570|||361.42.030115T .因此不能拒绝0H ,即在显著性水平0.05下可以认为全体考生的平均成绩为70分.§习题全解1、在正常情况下,某炼钢厂的铁水含碳量(%)2(4.55,)XN σ.一日测得5炉铁水含碳量如下:4.48,4.40,4.42,4.45,4.47在显著性水平0.05α=下,试问该日铁水含碳量得均值是否有明显变化. 【解】设铁水含碳量作为总体X ,则2(4.55,)XN σ,从中选取容量为5的样本,测得24.444,0.0011X S ==.由题意,设原假设为0: 4.55H u = 构造检验统计量 ||(4)X u t t S -=,则7.051t ==在显著性水平0.05α=下,查表可得0.97512(4)(4) 2.77647.051tt α-==<,拒绝原假设0H ,即认为有显著性变化.2、根据某地环境保护法规定,倾入河流的废物中某种有毒化学物质含量不得超过3ppm.该地区环保组织对某厂连日倾入河流的废物中该物质的含量的记录为:115,,x x .经计算得15148ii x==∑, 1521156.26i i x ==∑.试判断该厂是否符合环保法的规定.(该有毒化学物质含量X 服从正态分布)【解】设有毒化学物质含量作为总体X ,则2(,)XN u σ,从中选取容量为15的样本,测得1511 3.215i i X x ===∑,22221111()()0.1911n ni i i i S x x x nx n n ===-=-=--∑∑.由题意,设原假设为0:3H u <,备择假设为1:3H u >.构造检验统计量(14)X t t =,则 1.777t ==,在显著性水平0.05α=下,查表可得10.95(14)(14) 1.7613 1.777t t α-==<,即拒绝原假设0H ,接受备择假设1H ,认为该厂不符合环保的规定.3、某厂生产需用玻璃纸作包装,按规定供应商供应的玻璃纸的横向延伸率不应低于65.已知该指标服从正态分布2(,)N μσ, 5.5σ=.从近期来货中抽查了100个样品,得样本均值55.06x =,试问在0.05α=水平上能否接受这批玻璃纸? 【解】设玻璃纸的横向延伸率为总体X ,则2(,5.5)XN u ,从中选取容量为100的样本,测得55.06x =.由题意,设原假设为0:65H u >,备择假设为1:65H u <.构造检验统计量||(0,1)X u U N σ-=,则|55.0665|18.07275.5U -==在显著性水平0.05α=下,查表可得10.95 1.644918.0727U U α-==<,即拒绝原假设0H ,接受备择假设1H ,不能接受该批玻璃纸..4、某纺织厂进行轻浆试验,根据长期正常生产的累积资料,知道该厂单台布机的经纱断头率(每小时平均断经根数)的数学期望为9.73根,标准差为1.60根.现在把经纱上浆率降低20%,抽取200台布机进行试验,结果平均每台布机的经纱断头率为9.89根,如果认为上浆率降低后均方差不变,问断头率是否受到显著影响(显著水平α=0.05)?【解】设经纱断头率为总体X ,则9.73u EX ==, 1.6σ==,从中选取容量为200的样本,测得9.89x =.由题意,设原假设为0:9.73H u =,备择假设为1:9.73H u ≠. 构造检验统计量(0,1)X U N =,则 1.4142U ==在显著性水平0.05α=下,查表可得0.975121.96 1.4142UU α-==>,即接受原假设0H ,认为断头率没有受到显著影响.5、某厂用自动包装机装箱,在正常情况下,每箱重量服从正态分布2(100,)N σ.某日开工后,随机抽查10箱,重量如下(单位:斤):99.3,98.9,100.5,100.1,99.9,99.7,100.0,100.2,99.5,100.9.问包装机工作是否正常,即该日每箱重量的数学期望与100是否有显著差异?(显著性水平α=0.05) 【解】设每箱重量为总体X ,则2(100,)XN σ,从中选取容量为10的样本,测得99.9x =,20.34S =.由题意,设原假设为0:100H u =,备择假设为1:100H u ≠.构造检验统计量||(9)X u t t S -=,则0.5423t ==,在显著性水平0.05α=下,查表可得0.97512(9)(9) 2.26220.5423tt α-==>,即接受原假设0H ,认为每箱重量无显著差异.6、某自动机床加工套筒的直径X 服从正态分布.现从加工的这批套筒中任取5个,测得直径分别为15,,x x (单位m μ:),经计算得到51124ii x==∑, 5213139i i x ==∑.试问这批套筒直径的方差与规定的27σ=有无显著差别?(显著性水平0.01α=) 【解】设这批套筒直径为总体X ,则2(,)XN u σ,从中选取容量为5的样本,测得151124.815i i X x ===∑,22221111()()15.9511n ni i i i S x x x nx n n ===-=-=--∑∑. 由题意,设原假设为20:7H σ=,备择假设为21:7H σ≠.构造检验统计量2222(1)(4)n S χχσ-=,则2415.959.11437χ⨯==,在显著性水平0.01α=下,查表可得220.99512(4)(4)14.86αχχ-==,220.0052(4)(4)0.2070αχχ==,从而222122(4)(4)ααχχχ-<<. 即接受原假设0H ,认为这批套筒直径的方差与规定的27σ=无显著差别.7、甲、乙两台机床同时独立地加工某种轴,轴的直径分别服从正态分布211(,)N μσ、222(,)N μσ(12,μμ未知).今从甲机床加工的轴中随机地任取6根,测量它们的直径为16,,x x ,从乙机床加工的轴中随机地任取9根,测量它们的直径为19,,y y ,经计算得知:61204.6ii x==∑, 6216978.9i i x ==∑,91370.8i i y ==∑,92115280.2i i y ==∑.问在显著性水平0.05α=下,两台机床加工的轴的直径方差是否有显著差异? 【解】设两台机床加工的轴的直径分别为总体,X Y ,则211(,)XN μσ、222(,)YN μσ,从总体X 中选取容量为6的样本,测得61134.16i i X x ===∑222211111()()0.40811n ni i i i S x x x nx n n ===-=-=--∑∑. 从总体Y 中选取容量为9的样本,测得91141.29i i Y y ===∑222221111()()0.40511n ni i i i S y y y ny n n ===-=-=--∑∑ 由题意,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,8)S F F S =,则0.4081.0070.405F ==,在显著性水平0.05α=下,查表可得0.97512(5,8)(5,8) 6.76FF α-==,0.0252(5,8)(5,8)0.1479F F α==,从而122(5,8)(5,8)F F Fαα-<<.即接受原假设0H ,认为两台机床加工的轴的直径方差无显著差异.8、某维尼龙厂根据长期正常生产积累的资料知道所生产的维尼龙纤度服从正态分布,它的标准差为0.048.某日随机抽取5根纤维,测得其纤度为1.32,1.55,1.36,1.40,1.44.问该日所生产得维尼龙纤度的均方差是否有显著变化(显著性水平α=0.1)? 【解】设维尼龙纤度为总体X ,则2(,0.048)XN u ,从中选取容量为5的样本,测得511 1.4145i i X x ===∑,2211()0.00781n i i S x x n ==-=-∑.由题意,设原假设为0:0.048H σ=,备择假设为1:0.048H σ≠.构造检验统计量2222(1)(4)n S χχσ-=,则2240.007813.542(0.048)χ⨯==在显著性水平0.1α=下,查表可得220.9512(4)(4)9.487713.542αχχ-==<.即拒绝原假设0H ,认为维尼龙纤度的均方差有显著变化.9、某项考试要求成绩的标准差为12,先从考试成绩单中任意抽出15份,计算样本标准差为16,设成绩服从正态分布,问此次考试的标准差是否符合要求(显著性水平α=0.05)? 【解】 设考试成绩为总体X ,则2(,12)XN u ,从中选取容量为15的样本,测得16S =.由题意,设原假设为0:12H σ=,备择假设为1:12H σ≠. 构造检验统计量2222(1)(14)n S χχσ-=,则222141619.055612χ⨯==.在显著性水平0.05α=下,查表可得220.97512(14)(14)26.1189αχχ-==,220.0252(14)(14) 5.6287αχχ==,从而222122(14)(14)ααχχχ-<<.即接受原假设0H ,认为此次考试的标准差符合要求.10、某卷烟厂生产甲、乙两种香烟,分别对他们的尼古丁含量(单位:毫克)作了六次测定,获得样本观察值为:甲:25,28,23,26,29,22; 乙:28,23,30,25,21,27.假定这两种烟的尼古丁含量都服从正态分布,且方差相等,试问这两种香烟的尼古丁平均含量有无显著差异(显著性水平α=0.05,)?对这两种香烟的尼古丁含量,检验它们的方差有无显著差异(显著性水平α=0.1)?【解】设这两种烟的尼古丁含量分别为总体,X Y ,则211(,)X N μσ、222(,)Y N μσ,从中均选取容量为6的样本,测得61125.56i i X x ===∑,22111()7.51n i i S x x n ==-=-∑, 61125.66676i i Y y ===∑,22211()11.06671n i i S y y n ==-=-∑, 由题意,在方差相等时,设原假设为012:H u u =,备择假设为112:H u u ≠.构造检验统计量12(2)X Y t t n n =+-,其中222112212(1)(1)9.2834(2)wn S n S S n n -+-==+-.则0.0948t ==,在显著性水平0.05α=下,查表可得120.97512(2)(10) 2.22810.0948tn n t α-+-==>.即接受原假设0H ,认为这两种香烟的尼古丁平均含量无显著差异.由题意,在方差待定时,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,5)S F F S =,则7.50.677711.0667F ==,在显著性水平0.1α=下,查表可得0.9512(5,8)(5,5) 5.0503FF α-==,0.052(5,8)(5,5)0.1980F F α==,由122(5,5)(5,5)F F Fαα-<<.即接受原假设0H ,认为它们的方差无显著差异.§同步自测题及参考答案一、选择题1、关于检验水平α的设定,下列叙述错误的是 【 】()A α的选取本质上是个实际问题,而非数学问题. ()B 在检验实施之前, α应是事先给定的,不可擅自改动.()C α即为检验结果犯第一类错误的最大概率. ()D 为了得到所希望的结论,可随时对α的值进行修正.2、关于检验的拒绝域W,置信水平a ,及所谓的“小概率事件”,下列叙述错误的是 【 】()A a 的值即是对究竟多大概率才算“小”概率的量化描述. ()B 事件021|),,,{(H W X X X n ∈ 为真}即为一个小概率事件.()C 设W 是样本空间的某个子集,指事件}|),,,{(021为真H W X X X n ∈ . ()D 确定恰当的W 是任何检验的本质问题.3、设总体22),,(~σσμN X 未知,通过样本n X X X ,,,21 检验假设00:μμ=H ,此问题拒绝域形式为 【 】()A }C >. ()B }/100{C n S X <-. ()C }10/100{C S X >- . ()D }{C X >.4、设n X X X ,,,21 为来自总体2(,)N μσ的样本,若μ未知, 100:20≤σH ,21:100,H 0.05a ,关于此检验问题,下列不正确的是 【 】()A 检验统计量为100)(12∑=-ni iX X. ()B 在0H 成立时,)1(~100)1(22--n x S n . ()C 拒绝域不是双边的. ()D 拒绝域可以形如})({12∑=>-ni i k X X .5、设总体服从正态分布2(,3)XN μ,12,,,n x x x 是X 的一组样本,在显著性水平0.05α=下,假设“总体均值等于75”拒绝域为12{,,,:74.0275.98}n w x x x x x =<⋃>,则样本容量n = 【 】()A 36. ()B 64. ()C 25. ()D 81.二、填空题1、为了校正试用的普通天平,把在该天平上称量为100克的10个试样在计量标准天平上进行称量,得如下结果:99.3, 98.7, 100.5, 101,2, 98.399.7 99.5 102.1 100.5, 99.2 假设在天平上称量的结果服从正态分布,为检验普通天平与标准天平有无显著差异,0H为 .2、设样本2521,,,X X X 来自总体μμ),9,(N 未知,对于检验0010::H H μμμμ=↔= 取拒绝域形如k X ≥-0μ,若取05.0=a ,则k 值为 .3、设12,,,n x x x 是正态总体2(,)XN μσ的一组样本.现在需要在显著性水平0.05α=下检验假设2200:H σσ=.如果已知常数u ,则0H 的拒绝域1w =______________;如果未知常数u ,则0H 的拒绝域2w =______________.4、在一个假设检验问题中令0H 是原假设,1H 时备择假设,则犯第一类错误的概率{______________}P ,犯第二类错误的概率{______________}P .三、解答题1、某批矿砂的5个样本中的镍含量,经测定为(%)3.25,3.27,3.24,3.26,3.24设测定值总体服从正态分布,问在0.01α=下,能否接受假设:这批矿砂的含量的均值为3.25.2、已知精料养鸡时,经若干天鸡的平均重量为4公斤.今对一批鸡改用粗料饲养,同时改善饲养方法,经同样长的饲养期后随机抽取10只,的其数据如下:3.7,3.8,4.1,3.9,4.6,4.7,5.0,4.5,4.3,3.8已知同一批鸡的重量X 服从正态分布,试推断:这一批鸡的平均重量是否显著性提高.试就0.01α=和0.05α=分别推断.3、测定某种溶液中的水份,它的10个测定值给出0.037%S =,设测定值总体为正态分布,2σ为总体方差,试在水平0.05α=下检验假设01:0.04%:0.04%H H σσ=↔<.4、在70年代后期,人们发现在酿造啤酒时,在麦芽干燥过程中形成致癌物质亚硝基二甲胺(NDMA ).到了80年代初期开发了一种新的麦芽干燥过程,下面给出了在新老两种干燥过程中形成的NDMA 的含量(以10亿份中的份数计)老过程 6,4,5,5,6,5,5,6,4,6,7,4 新过程2,1,2,2,1,0,3,2,1,0,1,3设两样本分别来自正态总体,且两总体的方差相等,两样本独立,分别以12,u u 记对应于老、新过程的总体均值,试检验假设(0.05α=)0111:2:2H u u H u u -=↔->.5、检验了26匹马,测得每100毫升的血清中,所含的无机磷平均为3.29毫升,标准差为0.27毫升;又检验了18头羊,每100毫升血清中汗无机磷平均值为3.96毫升,标准差为0.40毫升.设马和羊的血清中含无机磷的量均服从正态分布,试问在显著性水平0.05α=条件下,马和羊的血清中无机磷的含量有无显著性差异?6、某种产品的次品率原为0.1,对这种产品进行新工艺试验,抽取200件发现了13件次品,能否认为这项新工艺显著性地降低了产品的次品率(0.05α=)?7、设n X X X ,,,21 为总体(,4)XN a 的样本,已知对假设01:1: 2.5H a H a =↔=,0H 的拒绝域为{2}w X =>.(1)当9u =时,求犯两类错误的概率α和β; (2)证明:当n →∞时,0α→,0β→.同步自测题参考答案 一、选择题1.()D .2. ()C .3. ()C .4. ()B .5. ()A . 二、填空题1.100=μ.2. 1.176.3. 222210.0250.97522110011{()()()()}nniii i w x u n x u n χχσσ===->⋃-<∑∑;222220.0250.975220(1)(1){(1)(1)}n S n S w n n χχσσ--=>-⋃<- .4.10{|}P H H 接受成立,01{|}P H H 接受成立.三、解答题 1、接受0H .2、0.01α=时,显著性提高;0.05α=时,没有显著性提高 .3、 接受0H .4、拒绝0H ,接受1H .5、方差无显著性差异,均值有显著性差异,故有显著性差异.6、 拒绝0H .7、(1)0.0668α=,0.2266β=,(2)102α=-Φ→,(04β=Φ-→()n →∞.。

最新第六章 假设检验习题及答案

最新第六章 假设检验习题及答案

假设检验习题及答案填空题1.原假设与备择假设是一个__________,也就是说在假设检验中原假设与备择假设只有一个成立,且必有一个成立。

(完备事件组)2.我们在检验某项研究成功与否时,一般以研究目标作为__________,如在研究新管理方法是否对销售业绩(周销售量)产生影响时,设原周销售量为A 元,欲对新管理方法效果进行检验,备择假设为__________。

(备择假设H1:μ>A)单选题从统计量出发,对总体某些特性的“假设”作出拒绝或接受的判断的过程称为( )A.参数估计B.统计推断C.区间估计D.假设检验答案:d2.假设检验的概率依据是( )。

A.小概率原理B.最大似然原理C.大数定理D.中心极限定理答案:a多选题1.统计推断包括以下几个方面的内容( )。

A.通过构造统计量,运用样本信息,实施对总体参数的估计B.从统计量出发,对总体某些特性的“假设”作出拒绝或接受的判断C.相关分析D.时间序列分析E.回归分析答案:a, b2.假设检验的基本思想是( )。

A.先对总体的参数或分布函数的表达式做出某种假设,然后找出一个在假设成立条件下出现可能性甚小的(条件)小概率事件。

B.如果试验或抽样的结果使该小概率事件出现了,这与小概率原理相违背,表明原来的假设有问题,应予以否定,即拒绝这个假设。

C.若该小概率事件在一次试验或抽样中并未出现,就没有理由否定这个假设,表明试验或抽样结果支持这个假设,这时称假设也实验结果是相容的,或者说可以接受原来的假设。

D.如果试验或抽样的结果使该小概率事件出现了,则不能否认这个假设。

E.若该小概率事件在一次试验或抽样中并未出现,则否定这个假设。

答案:a, b, c3.假设检验的具体步骤包括( )。

A.根据实际问题的要求,提出原假设及备择假设;B.确定检验统计量,并找出在假设成立条件下,该统计量所服从的概率分布;C.根据所要求的显著性水平和所选取的统计量,查概率分布临界值表,确定临界值与否定域;D.将样本观察值代入所构造的检验统计量中,计算出该统计量的值。

第8章假设检验含答案

第8章假设检验含答案

第8章假设检验含答案第8章假设检验一、单项选择题1.设样本是来自正态总体,其中未知,那么大样本时检验假设时,用的是()。

A 、 Z 检验法B 、检验法C 、检验法D 、检验法答案:A2.在假设检验中,由于抽样的偶然性,拒绝了实际上成立的H 0假设,则()。

A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:A3.在假设检验中,由于抽样偶然性,接受了实际上不成立的H 0假设,则()。

A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:B4.在假设检验中,接受了实际上成立的H 0假设,则()。

A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:C5.在假设检验中,拒绝实际上不成立的H 0假设是()。

A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:C6.α=0.05, t>t 0.05,ν,统计上可认为( )。

A 、两总体均数差别无显著意义B 、两样本均数差别无显著意义C 、两总体均数差别有显著意义D 、两样本均数差别有显著意义答案:C7.假设检验时,是否拒绝H 。

,取决于( )。

A 、被研究总体有无本质差别B 、选用α的大小C 、抽样误差的大小D 、以上都是答案:D8.设总体服从N(μ,σ2)分布,σ2已知,若样本容量n 和置信度1-α均保持不变,则对于不同的样本观测值,总体均值μ的置信区间长度()。

A 、变长B 、变短C 、不变D 、不能确定答案:C9.假设检验中,显著性水平α表示()。

A 、P{接受0H |0H 为假}B 、P{拒绝0H |0H 为真}C 、置信度为αD 、无具体含义答案:B11.在对总体参数的假设检验中,若给定显著性水平α(0<α<1),则犯第一类错误的概率为()。

A .1-αB 、αC 、α/2D 、不能确定答案:B12.对某批产品的合格率进行假设检验,如果在显著性水平α=0.05下接受了零假设,则在显著性水平α=0.01下()。

人大版统计学 习题加答案第四章 假设检验

人大版统计学 习题加答案第四章 假设检验

第四章 假设检验填空(5题/章),选择(5题/章),判断(5题/章),计算(3题/章) 一、填空1、在做假设检验时容易犯的两类错误是 和2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为 ,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为3、假设检验有两类错误,分别是 也叫第一类错误,它是指原假设H0是 的,却由于样本缘故做出了 H0的错误;和 叫第二类错误,它是指原假设H0是 的, 却由于样本缘故做出 H0的错误。

4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α,则α称为 。

5、 假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为 。

6、从一批零件中抽取100个测其直径,测得平均直径为5.2cm ,标准差为1.6cm ,想知道这批零件的直径是否服从标准直径5cm ,在显著性水平α下,否定域为7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000小时,则为不合格,那么可以提出的假设为 。

(用H 0,H 1表示)8、一般在样本的容量被确定后,犯第一类错误的概率为α,犯第二类错误的概率为β,若减少α,则β9、某厂家想要调查职工的工作效率,用方差衡量工作效率差异,工厂预计的工作效率为至少制作零件20个/小时,随机抽样30位职工进行调查,得到样本方差为5,试在显著水平为0.05的要求下,问该工厂的职工的工作效率 (有,没有)达到该标准。

KEY: 1、弃真错误,纳伪错误 2、双边检验,单边检验3、拒真错误,真实的,拒绝,取伪错误,不真实的,接受4、显著性水平5、小概率事件6、1.25>21α-z7、H 0:t≥1000 H 1:t <1000 8、增大 9、有二、 选择1、假设检验中,犯了原假设H 0实际是不真实的,却由于样本的缘故而做出的接受H 0的错误,此类错误是( )A 、α类错误B 、第一类错误C 、取伪错误D 、弃真错误 2、一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A 、0:5H μ=,1:5H μ≠B 、0:5H μ≠,1:5H μ>C 、0:5H μ≤,1:5H μ>D 、0:5H μ≥,1:5H μ< 3、一个95%的置信区间是指( ) A 、总体参数有95%的概率落在这一区间内 B 、总体参数有5%的概率未落在这一区间内C 、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D 、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增大样本容量,则犯两类错误的概率( ) A 、都增大 B 、都减小 C 、都不变 D 、一个增大一个减小5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。

(完整版)统计学假设检验习题答案

(完整版)统计学假设检验习题答案

1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。

解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。

采用t 分布的检验统计量nx t /0σμ-=。

查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。

667.116/60800820=-=t 。

因为t <2.131<2.947,所以在两个水平下都接受原假设。

2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。

n=100可近似采用正态分布的检验统计量nx z /0σμ-=。

查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。

计算统计量值3100/5001000010150=-=z 。

因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。

3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。

假设检验的5个步骤例题

假设检验的5个步骤例题

假设检验的5个步骤例题
假设检验的五个步骤分别是:提出假设、构造检验统计量、确定显著水平、进行统计决策和结论。

以下是一个例题:
研究问题:某公司认为,他们的新产品的销售额会在100万以上,否则就会在100万以下。

我们来检验这个预测是否准确。

提出假设:
假设1: 新产品的销售额在100万以上。

假设2: 新产品的销售额在100万以下。

构造检验统计量:
如果新产品的销售额在100万以上,则认为假设1为真,否则假设2为真。

我们需要收集新产品的销售额数据来进行判断。

确定显著水平:
选择显著水平为0.05,这意味着如果数据不支持假设1的准确性,那么我们有5%的概率会错误地拒绝假设1。

进行统计决策:
根据收集的数据,我们计算出销售额为150万。

由于这个数值高于100万,所以假设1是正确的。

结论:根据以上步骤,我们得出结论:新产品的销售额在100万以上,因此假设1是正确的。

请注意,这只是一个简单的例子,实际应用中的假设检验可能会涉及更复杂的统计方法和数据分析。

完整版假设检验习题及答案

完整版假设检验习题及答案

第二章假设检验3.2 —种元件,要求其使用寿命不低于1000 (小时),现在从一批这种元件中随机 抽取25件,测得其寿命平均值为950 (小时)。

已知这种元件寿命服从标准差100(小时)的正态分布,试在显著水平 0.05下确定这批元件是否合格。

提出假设:H 0: 1000, H 1: 1000构造统计量:此问题情形属于u 检验,故用统计量:V= u U 1本题中:0.05 u 0.95 1.64即, u u 0.95拒绝原假设H 0认为在置信水平0.05下这批元件不合格。

3.4某批矿砂的五个样品中镍含量经测定为(%):3.25 3.27 3.24 3.26 3.24 设测定值服从正态分布,问在 0.01下能否接受假设,这批矿砂的镍含量为提出假设: H° :13.25 H 1 :1 0构造统计量:本题属于 2未知的情形,可用t 检验,即取检验统计量为:t=—S .n 1本题中,x 3.252, S=0.0117, n=5代入上式得:t =3.252-3.25 0.0117 .5 1否定域为:V= t>^_(n 1)2本题中, 0.01,t 0.995(4) 4.6041Qt t12接受H 0,认为这批矿砂的镍含量为 3.25。

Xu=—— 00 此题中:x 950 代入上式得:950-1000 u= 2.5 100 25拒绝域:0 100 n=25 0 10000.34193.5确定某种溶液中的水分,它的10个测定值X 0.452%, S 0.035%,0.452%-0.5% t= -4.1143 0.035%拒绝域为: V 二t >t i. (n 1)本题中, 0.05 n=10t °.95(9)1.8331 t 4.1143拒绝H 0 (ii)构造统计量: 未知,可选择统计量2nS 22"本题中,S 0.035% n=100.04%代入上式得:否定域为:接受H 。

假设检验例题

假设检验例题

选择题在进行假设检验时,原假设(H₀)通常表述为:A. 总体参数等于某特定值(正确答案)B. 总体参数不等于某特定值C. 样本参数等于某特定值D. 样本参数不等于某特定值下列哪一项不是假设检验的基本步骤?A. 确定显著性水平B. 计算检验统计量C. 无限次重复实验(正确答案)D. 作出决策当样本量较大时,哪种分布常用于构造假设检验的统计量?A. 二项分布B. 正态分布(正确答案)C. 泊松分布D. 超几何分布在单侧检验中,拒绝域的位置取决于:A. 样本均值的大小B. 备择假设的方向(正确答案)C. 总体标准差D. 显著性水平的大小与方向无关第一类错误是指:A. 原假设为真时拒绝原假设(正确答案)B. 原假设为假时接受原假设C. 备择假设为真时拒绝备择假设D. 备择假设为假时接受备择假设在进行t检验前,需要满足的前提条件是:A. 总体方差已知B. 样本量必须大于30C. 样本数据来自正态分布总体(正确答案)D. 以上都不是假设检验中,P值的意义是:A. 原假设为真的概率B. 在原假设成立条件下,观测到当前或更极端结果出现的概率(正确答案)C. 备择假设为真的概率D. 以上都不是若显著性水平α=0.05,则拒绝域的面积占整个分布曲线的比例为:A. 0.05(正确答案)B. 0.95C. 0.025D. 依赖于具体分布形态在进行方差分析(ANOVA)时,若F统计量的值较大,则:A. 说明各组均值无显著差异B. 说明至少有一组均值与其他组有显著差异(正确答案)C. 一定存在误差项方差为零的情况D. 以上都不是必然结论。

假设检验例题及解析

假设检验例题及解析

选择题在进行假设检验时,如果原假设为真,而样本数据却导致我们拒绝了原假设,这种情况被称为:A. 第一类错误(正确答案)B. 第二类错误C. 第三类错误D. 无错误假设我们要检验某种药物是否能有效降低血压,原假设应为:A. 药物能降低血压B. 药物不能降低血压(正确答案)C. 药物对血压无影响D. 药物可能升高血压在单样本t检验中,如果计算出的t值大于临界t值,我们应该:A. 接受原假设B. 拒绝原假设(正确答案)C. 无法判断D. 重新进行试验假设检验中的P值表示的是:A. 原假设为真的概率B. 备择假设为真的概率C. 在原假设为真的条件下,观察到当前或更极端结果的概率(正确答案)D. 犯第二类错误的概率在进行两个独立样本的均值比较时,如果两个样本的方差未知且不相等,我们应使用:A. 单样本t检验B. 配对t检验C. Welch's t检验(正确答案)D. 方差分析假设检验中的显著性水平α通常设定为:A. 0.01B. 0.05(正确答案)C. 0.10D. 0.20在进行卡方检验时,如果计算出的卡方值小于临界卡方值,我们应该:A. 接受原假设(正确答案)B. 拒绝原假设C. 无法判断D. 需要更多数据假设我们要检验某种食品中是否含有某种有害物质,原假设应为:A. 食品中含有有害物质B. 食品中不含有害物质(正确答案)C. 食品中可能含有有害物质D. 食品中一定不含有害物质在进行假设检验时,如果犯第二类错误的成本远高于犯第一类错误的成本,我们应该:A. 提高显著性水平αB. 降低显著性水平α(正确答案)C. 保持显著性水平α不变D. 无法确定如何调整显著性水平α。

管理统计学 第2版 第五章 假设检验

管理统计学 第2版 第五章 假设检验
2008年8月
原假设(null hypothesis)备择假设(alternative hypothesis)
原假设又称“0假设”,研究者想收集证据予以反对的假设,用H0表示 所表达的含义总是指参数没有变化或变量之间没有关系 最初假设是成立的,之后根据样本数据确定是否有足够的证据拒绝它 总是有符号 =, <= 或>= H0 : m = 某一数值 H0 : m 某一数值 H0 : m 某一数值
第五章 假设检验
本章学习目标 (1)了解假设检验的基本思想 (2)掌握各种条件下检验统计量的构建 (3)掌握列联表分析的原理和应用 (4)掌握应用SPSS软件进行T检验的程序步骤和报告分析
第五章 假设检验
什么是假设检验? (hypothesis test) 先对总体的参数(或分布形式)提出某种假设,然后利用样本信息判断假设是否成立的统计方法 有参数检验和非参数检验 逻辑上运用反证法,统计上依据小概率原理 小概率是在一次试验中,一个几乎不可能发生的事件发生的概率 在一次试验中小概率事件一旦发生,我们就有理由拒绝原假设
抽样分布
H0
临界值
临界值
a/2
a/2
拒绝H0
拒绝H0
1 -
置信水平
Region of Rejection
Region of Nonrejection
Region of Rejection
假设
双侧检验
原假设
H0 : m =m0
备择假设
H1 : m ≠m0
用统计量决策(左侧检验 )
2008年8月
备择假设也称“研究假设”,研究者想收集证据予以支持的假设,用H1或Ha表示 所表达的含义是总体参数发生了变化或变量之间有某种关系 备择假设通常用于表达研究者自己倾向于支持的看法,然后就是想办法收集证据拒绝原假设,以支持备择假设 总是有符号 , 或 H1 :: m ≠某一数值 H1 :m >某一数值 H1 :m <某一数值

统计学假设检验习题答案

统计学假设检验习题答案

21 •假设某产品的重量服从正态分布, 现在从一批产品中随机抽取 16件, 测得平均重量为 820克,标准差为60克,试以显著性水平 =0.01与 =0.05, 分别检验这批产品的平均重量是否是 800克。

解:假设检验为 H 。

: % =800,比:% =800 (产品重量应该使用双侧820—800平下的临界值(df= n-1=15)为2.131和2.947。

t1.667 。

因为60/716t <2.131<2.947,所以在两个水平下都接受原假设。

2 •某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取 100台,测得平均无故障时间为 10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(=0.01) ?解:假设检验为H 0:丄0 = 10000,H1 ^-010000(使用寿命有无显Z = X 一」0。

查出〉=0.01-/ . n2.34之间(因为表中给出的是双侧检验的接受域临界值, 因此本题的单侧检验显著性水平应先乘以2 ,再查到对应的临界值)。

计算统计量值Z=10150T0000=3。

因为Z=3>2.34(>2.32),所以拒绝原假设,无故障500/J100时间有显著增加。

3.设某产品的指标服从正态分布,它的标准差 b 已知为150,今抽了一个容量为26的样本,计算得平均值为1637。

问在5 %的显著水平下,能否认 为这批产品的指标的期望值 □为1600?解:H 0」T600,」=1600,标准差 b 已知,拒绝域为检验)。

采用t 分布的检验统计量。

查出〉=0.05和0.01两个水著增加,应该使用右侧检验)n=100可近似采用正态分布的检验统计量 水平下的反查正态概率表得到临界值2.32 到62取〉=0.05, n = 26,=17 <12 接受l5H 0:0^1ll600,0 / 2 6即,以95%的把握认为这批产品的指标的期望值□为1600.4.某电器零件的平均电阻一直保持在2.64 Q,改变加工工艺后,测得100个零件的平均电阻为 2.62 Q,如改变工艺前后电阻的标准差保持在 0.06 Q,问新工艺对此零件的电阻有无显著影响(a =0.05)?解:H 0:」=2.64,比:」=2.64,已知标准差(=0.16,拒绝域为Z > z 。

(完整版)假设检验习题及答案

(完整版)假设检验习题及答案

第三章 假设检验3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。

已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。

{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。

3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为0101102: 3.25 H :t X 3.252, S=0.0117, n=50.3419H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴Q 本题中,接受认为这批矿砂的镍含量为。

3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}0.95()0.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t X n ασα==-==1-构造统计量:本文中未知,可用检验。

取检验统计量为X 本题中,代入上式得: 0.452%-0.5%拒绝域为:V=t >t 本题中,01 4.1143H <=∴t 拒绝{}22200222212210.952()nS S 0.035% n=10 0.04%100.035%7.65630.04% V=(1)(1)(9)16.919ii n n ααμχσσχχχχχχ--===*==>--==Q 2构造统计量:未知,可选择统计量本题中,代入上式得:()()否定域为:本题中, 210(1)n H αχ-<-∴接受3.9设总体116(,4),,,X N X X μ:K 为样本,考虑如下检验问题:{}{}01123:0 H :1() =0.05 V ={2X -1.645}V = 1.502X 2.125V =2X 1.962X 1.96(ii)H i μμα==-≤≤≤≤-≥试证下述三个检验(否定域)犯第一类错误的概率同为或通过计算他们犯第二类错误的概率,说明哪个检验最好?解:{}{}{}{}00.97512012()0.050.05:02*1.960.052 1.64502 1.645 1.645( 1.645)1(1.645)=1-0.95=0.05V 1.502 2.i P x V H X U U H X V X X P X P X ααμσμσ-=∈=⎧⎫-⎪⎪=>==⎨⎬⎪⎪⎩⎭=∴>==≤-⎧⎫⎪⎪-⎪⎪≤-=≤-=Φ-=-Φ⎨⎬⎪⎪⎪⎪⎩⎭=≤≤即,P U 这里P {}{}{}{}{}{}203301110125 1.50 2.120(2.215)(1.50)0.980.930.052 1.962 1.962 1.96 1.96P(V H )=1-P 2 1.962(1(1.96))0.05ii :2 1.645X P V H V X X X X H V X σββ⎧⎫⎪⎪-⎪⎪=≤≤⎨⎬⎪⎪⎪⎪⎩⎭=Φ-Φ=-=⎫⎪⎪=≤-≥=≥=≥⎬⎪⎪⎭<=-Φ=X ≥-或()犯第二类错误的概率 =P -V =P {}1μ=-{}{}223310.3551(0.355)0.36:1 1.502 2.12511 4.125:2 1.96110.04 3.96V P X V P X σβμσβμσ⎧⎫⎪⎪+⎪⎪≥=-Φ=⎨⎬⎪⎪⎪⎪⎩⎭=-≤≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎪⎩⎭ΦΦ=≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎩⎭X =P X =1-P 3.50 =1-(4.125)+(3.50)=1X =P ⎪ΦΦ∴11 =(3.96)-(0.04)=0.99996092-0.516=0.48396092V 出现第二类错误的概率最小,即V 最好。

统计学假设检验习题答案

统计学假设检验习题答案

1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显着性水平?=0.01与?=0.05,分别检验这批产品的平均重量是否是800克。

解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。

采用t 分布的检验统计量nx t /0σμ-=。

查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。

667.116/60800820=-=t 。

因为t <2.131<2.947,所以在两个水平下都接受原假设。

2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显着增加(?=0.01)解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显着增加,应该使用右侧检验)。

n=100可近似采用正态分布的检验统计量nx z /0σμ-=。

查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显着性水平应先乘以2,再查到对应的临界值)。

计算统计量值3100/5001000010150=-=z 。

因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显着增加。

3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。

问在5%的显着水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量716001.251.960/26Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显着影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显着影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。

假设检验练习题 -答案

假设检验练习题 -答案

假设检验练习题1. 简单回答下列问题:1)假设检验的基本步骤?答:第一步建立假设(通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论)有三类假设第二步选择检验统计量给出拒绝域的形式。

根据原假设的参数检验统计量:对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A拒绝域的形式由备择假设的形式决定H1:W为双边H1:W为单边H1:W为单边第三步:给出假设检验的显著水平第四步给出零界值C,确定拒绝域W有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。

例如:对于=0.05有的双边W为的右单边W为的右单边W为第五步根据样本观测值,计算和判断计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝,否则接受(计算P值227页p值由统计软件直接得出时拒绝,否则接受计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)2)假设检验的两类错误及其发生的概率?答:第一类错误:当为真时拒绝,发生的概率为第二类错误:当为假时,接受发生的概率为3)假设检验结果判定的3种方式?答:1.计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝,否则接受2.计算P值227页p值由统计软件直接得出时拒绝,否则接受3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受4)在六西格玛A阶段常用的假设检验有那几种?应用的对象是什么?答:连续型(测量的数据):单样本t检验-----比较目标均值双样本t检验-----比较两个均值方差分析-----比较两个以上均值等方差检验-----比较多个方差离散型(区分或数的数据):卡方检验-----比较离散数2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档