人教版数学五年级上册第五章简易方程知识点
五年级数学上册5简易方程方法及难点归纳新人教版
解简易方程之方法及难点归纳重点概念:方程,方程的解,解方程,等式的基本性质(详见“知识点汇总”)要点回顾:“解方程”就是要运用“等式的基本性质”,对“方程”的左右两边同时进行运算,以求出“方程的解”的过程。
(方程的解即是如同“X=6”的形式)“解方程”就好像是要把复杂的绳结解开,因此一般要按照“绳结”形成的过程逆向操作(逆运算)。
过程规范:先写“解:”,“=”号对齐往下写,同时运算前左右两边要照抄,解的未知数写在左边。
注意事项:以下内容除了标明的外,全都是正确的方程习题示例,且没有跳步,请仔细观看其中每步的解题意图。
带“*”号的题目不会考查,但了解它们有助于掌握解复杂方程的一般方法,对简单的方程也就自然游刃有余了。
一、一步方程只有一步计算的方程,直接逆运算除未知数外的部分。
难点:当未知数出现在减数和除数时,要先逆运算含未知数的部分。
二、两步方程两步方程中,若是只有同级运算,也可以先计算,后当做一步方程求解。
注意要“带符号移动”,增添括号时还要注意符号的变化。
减法(即两边同加),再逆运算乘法(即两边同时除以),依此类推。
难点:当未知数出现在减数和除数时,要先把含有未知数的部分看作一个整体(可以看成是一个新的未知数),就相当于简化成了一步方程。
因此原方程就可以看成是6+y=10,5y=6和10-y=8的形式。
三、三步方程(一)应用乘法分配律,共同因数是已知数的具有乘法分配律的形式,即两个有共同因数的乘积(或具有相同除数的除法式子)相加或相减,而共同因数(或除数)是已知数的,既可以逆用乘法分配律提取共同因数而将其简化为两步方程,也可以直接算出已知部分而化简。
通过比较可以看出,一般来说提取共同因数的方法确实计算量要少一些,不容易算错。
(二)应用乘法分配律,共同因数是未知数的具有乘法分配律的形式,即两个有共同因数的乘积(或具有相同除数的除法式子)相加或相减,而共难点:隐藏的因数或错看的未知数容易成为此类问题的难点和易错点。
人教版数学五年级上册 第五单元 简易方程 思维导图知识梳理例题精讲易错专练(含答案)
第五单元简易方程(思维导图知识梳理例题精讲易错专练)人教版数学五年级上册一、思维导图二、知识点梳理知识点一:用字母表示数1.用字母表示数:在含有字母的式子里,字母之间的乘号可以记作“·”,也可以省略不写;2.用字母表示运算定律加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc注意:数和字母相乘,省略乘号时,一般把数写在字母前面,数和数相等不能省略乘号。
3.用字母表示复杂的数量关系(1)用字母可以表示数量关系。
(2)将字母的具体数值代入含有字母的式子中,即可求得相应式子的值。
4.化简含有字母的式子并代入数据求值计算含有字母的式子的时候,可以先运用运算定律将含有字母的式子进行化简,再求值。
知识点二:方程的意义及等式的性质1.意义:含有未知数的等式叫做方程。
2.等式的性质性质1:等式两边加上或者减去同一个数,左右两边仍然相等;性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
注意:方程一定是等式,但等式不一定是方程。
知识点三:解方程及实际问题1.使方程左右相等的未知数的值,叫做方程的解,求方程的解的过程叫做解方程;2.根据等式的性质解不同形式的方程;3.把求得的未知数的值代入原方程,看方程左边的值是否等于右边的值,如果相等,所求的未知数的值就是原方程的解,否则就不是。
注意:解方程的依据是等式的性质;解方程时等号要上下对齐。
4.稍微复杂的方程(1)列方程解决实际问题的步骤:首先,找出未知数,用字母X表示;其次,分析实际问题中的数量关系,找出等量关系,列方程;最后,解方程并检验作答。
(2)方程解法与算式解法的区别列方程解决问题时,未知数用字母表示,参与列式,算式解法中未知数不参与列式;列方程解决问题时根据题中的数量关系,列出含有未知数的等式,求未知数由解方程来完成,算术解法是根据题中已知数和未知数之间的关系确定解答步骤,再进行计算。
人教版小学五年级数学上册第五单元《简易方程》课文课件全
对应练习
(教材第59页“做一做”)
1.动车的速度为220千米/ 时,普通列车 的速度为120 千米/ 时。
巩固练习
(教材第57页第12题)
4. 工作效率 工作时间 工作总量
(个/分) 分
个
x
5
5x
150÷m
m
150
a
t
c= at
王红每分钟打字50个,利用表中的公式计算她1
小时打多少个字。
1小时=60分
c=at=50×60=3000(个)
答:她1小时打3000个字。
拓展练习
(教材第57页第13题)
5* .在右图中,
120+10a (2)根据这个式子,当a等于25时,商店一共
有多少千克苹果?
a=25,120+10a=120+10×25=370(千克)
对应练习
(教材第58页“做一做”)
2.仓库里有货物96吨,运走了12车,每车运b 吨。
(1)用式子表示仓库里剩下货物的吨数。
96-12b (2)根据这个式子,当b等于5时,仓库里剩下
巩固练习
(教材第60页第2题)
4. 用含有字母的式子表示下面的数量关系。
(1)t与3的和。 t+3
(2)20减去a的差。20-a
(3)x的2倍。 2x
(4)b除以12的商。 b÷12
(5)a的5倍减去4.8的差。 5a-4.8 (6)比x小9的数。 x-9
巩固练习
(教材第60页第3题)
有20人,平均分成a组, 每组(20÷a)人。
当x等于8时,一共用了多少根小棒? 7×8=56(根)
摆x个正方形比摆x个三角形多用了多少根小棒呢?
方法小结
五年级数学上册简易方程知识点汇总
实用精品文献资料分享
五年级数学上册《简易方程》知识点汇总
五年级数学上册《简易方程》知识点汇总
1、在含有字母的式子里,数字和字母中间的乘号,字母和字母之间的乘号,可以记作“・”,也可以省略不写。
加号、减号,除号以及数与数之间的乘号不能省略。
2、a×a可以写作a・a或a ,a 读作a的平方。
2a表示a+a
3、方程:含有未知数的等式称为方程。
方程一定是等式,但等式不一定是方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
(解方程要先写“解”)方程的解是一个数;解方程是一个计算过程。
4、解方程的原理:(1)等式的基本性质等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
(2)10个数量关系式:加法:和=加数+加数一个加数=和-两一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商
5、方程的检验过程:检验:方程左边=…… =方程右边所以,x=…是方程的解。
6、列方程解应用题的步骤:(1)弄清题意,找出未知数,用x表示。
(2)分析、找出数量之间的等量关系,列出方程;(3)解方程。
(4)检验,写出答案。
7、和倍或差倍应用题的解答方法:设一倍的量为x,另一个量根据倍数关系表示为几x。
再根据两个量的和或差列出方程。
新人教版小学数学五年级上册 《简易方程》知识点梳理 复习资料
第五单元《简易方程》知识点梳理一、用字母表示数1.在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写,字母和数字相乘一般要把数字写在前面。
加号、减号、除号以及数与数之间的乘号不能省略。
2.a2读作a的平方,表示2个a相乘或a×a。
2a表示2个a相加或a+a 或2×a 。
3.用字母表运算定律。
加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法交换律:ab=ba 乘法结合律:abc=a(bc)乘法分配律:(a+b)c=ac+bc4.用字母表示计算公式。
长方形的周长公式:c=2(a+b) 长方形的面积公式:s=ab正方形的周长公式:c=4a 正方形的面积公式:s= a2二、等式和方程1.等式:表示相等关系的式子叫等式。
2.等式的性质1:等式两边加上(或减去)同一个数,左右两边仍然相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
3.方程:(1)方程:含有未知数的等式叫做方程。
(2)使方程左右两边相等的未知数的值,叫做方程的解。
(3)求方程的解的过程叫做解方程。
(4)所有的方程都是等式,但等式不一定都是方程。
(5)方程的解是一个数,解方程是一个计算过程。
4.四则运算的10个关系式:加法:和=加数+加数一个加数=和-另一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商8、方程的检验过程:方程左边=……=……=方程右边所以,X=……是方程的解。
9.方程与实际问题中常用的等量关系式。
路程=速度X 时间速度=路程÷时间时间=路程÷速度总价=单价X 数量单价=总价÷数量数量=总价÷单价工作总量=工作效率X 工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率总产量=单产量X 数量单产量=总产量÷数量数量=总产量÷单产量大数-小数=相差数大数-相差数=小数小数+相差数=大数一倍量X倍数=几倍量几倍量÷倍数=一倍量几倍量÷一倍量=倍数评价测试样例一、填空题。
五年级上册数学第五单元简易方程
五年级上册数学第五单元简易⽅程第五章简易⽅程【知识回顾】⽤字母表⽰数(1)⽤字母表⽰数量关系、运算定律和计算公式知识点⼀、⽤字母表⽰数⽤含有字母的式⼦表⽰数量关系时,如果出现字母与数相乘时,要省略乘号时,⼀般把数写在字母前⾯。
知识点⼆、⽤字母表⽰运算定律和计算公式(1)乘法交换律:a×b=b×a → a·b=b·a 或ab=ba乘法结合律:(a×b)×c=a×(b×c)→(a·b)·c=a·(b·c)或(ab)c=a(bc)乘法分配律:(a+b)×c =a×c+b×c→(a+b)·c =a·c+b·c或(a+b)·c =ac+bc(2)⽤S表⽰⾯积,⽤C表⽰周长。
1)如果⽤a表⽰正⽅形的边长,那么这个正⽅形的周长:C =a·4=4a(省略乘号时,⼀般把数写在字母前⾯)这个正⽅形的⾯积:S =a·a=(读作:a的平⽅,表⽰2个a相乘)2)如果⽤a表⽰长⽅形的长, b表⽰宽,那么这个长⽅形的周长:C =(a+b)·2=2(a+b)这个长⽅形的⾯积:S = a·b=ab【典题解析】例:(1)读出下⾯各式,并说明表⽰的意义.(2)把下⾯各式写成⼀个数的平⽅的形式.5×5(3)省略乘号,写出下⾯各式.(4)根据运算定律在□填上适当的字母或数.(□+□)+□□·(□·□)(5)如果⽤表⽰长⽅形的长,表⽰宽,那么这个长⽅形的⾯积 _____________________,这个长⽅形的周长 _____________________.【随堂练习】⼀、我会省略乘号写出下⾯各式。
a×12=b×b=a×b=x×y×7=5×x=2×c×c=7x×5=2×a×b=⼆、我会判断。
人教版小学数学五年级上册简易方程知识点总结
5简易方程
特别注意:
加号、减号、除号及数与
数之间的乘号不能省略。
提示:
2a与a2的区别:
2a表示a+a,a2表示a×a。
提示:
省略乘号时,一般把数字写
在字母的前面。
举例:x×6可以写成6x。
提示:
1×a省略乘号时,不能写成
1a,要写成a,这里的“1”我们要
省略不写。
温馨提示:
用含有字母的式子表示数
量关系,是加减关系时,如果后
面加单位,必须把这个含有字母
的式子用括号括起来。
注意:
方程必须满足的条件:必须
是等式,必须有未知数,二者缺
一不可。
易错点:
误认为含有未知数的式子
是方程。
举例:
3x-2>18是方程。
( )
正确解答:(✕)
提示:
等式的性质是解方程的重。
人教版五年级上册数学第五单元《简易方程》方程的意义和解方程教学课件
(教材P66 练习十四T5)
2. 如果a=b,根据等式的性质填空。 a+3=b+( 3 ) a-( 9 )=b-9 a×1.5=b×(1.5) a+( m)=b+m a-( c )=b-c a÷(10)=b÷10
课堂小结
同学们,今天的数学课你 们有哪些收获呢?
义务教育人教版五年级上册
5 简易方程
平衡的天平两边的物品数量都缩小到 原来的几分之一,天平仍保持平衡。
等式就像平衡的天平, 也具有同样的性质。
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,
左右两边仍然相等。
巩固运用
(教材P66 练习十四T4)
1. 要保持天平平衡,右边应该添加什么物品?
右边添加一个圆柱。
右边应该添加两个球 或两个长方体或一个 球和一个长方体。
50+50=100 100+x=250
100+x>100 100+x<300
100+x>200 3x=2.4
50+50=100 100+x=250
3x=2.4 等式
100+x>100 100+x>200 100+x<300
不等式
50+50=100 100+x=250
3x=2.4 等式
在这些等式中,有的含有 未知数,有的不含未知数。
(1)x与3的和是16。 x+3=16
(2)x的5倍与20相等。 5x=20
课堂小结
同学们,今天的数学课你 们有哪些收获呢?
义务教育人教版五年级上册
5 简易方程
第6课时 等式的性质
复习导入 在下面的这些式子中,哪些是等式,哪些是方程?
15+x<38 35+12=47 18y=3600 90-a 3b=4c 60-x=28
义务教育人教版五年级上册
人教版五年级数学上册第五单元简易方程 《整理复习》教学课件
深化知识 二、动车的速度为220千米/ 时,普通列车的速度为120 千米/ 时。
(2)行驶x小时,动车比普通列车多行了多少千米? 220x-120x=(220-120)x=100x
深化知识
4、解简易方程
深化知识
二、在( )中填上适当的字母或数。 ( 3 )+b= ( b ) +3 x×(2.6 )=2.6×( x ) 25×a+b×( 25 ) =[( a )+( b )]×25
深化知识
三、连一连。 比 a 多 2的数 比a 少 2 的数 2个a相加的和 2个a相乘的积
a的2倍
a2 2a a+2
一、仓库里有货物96吨,运走了12车,每车运b吨。 (2)根据这个式子,当b等于5时,仓库里剩下的货 物有多少吨? b=5,96-12b=96-12×5=36 (3)这里的b能表示哪些数? b能表示1、2、3、4 等,但应该小于车的 最大载重量。
深化知识 二、动车的速度为220千米/ 时,普通列车的速度为120 千米/ 时。
4x= 6 x= 1.5
7.2x+5.8x=52
16(x+7)=256
解: 13x= 52 x= 4
解: x+7= 16 x= 9
点拨:根据等式的性质解方程。
3.列方程解决问题。 (1)改革开放以来,从粮票、布票、现金、银行卡到
第三方支付,人们的支付方式变得越来越方便。 某店顾客扫码支付的有120单,扫码支付的单数 是现金支付的3倍多15单。有多少单是现金支 付的?
(2)我国青少年(7~17 岁)在1980 年平均身高x cm, 到2000 年,平均身高增长了6cm。2000年我国青 少年平均身高( x+6 )cm。
人教版五年级上册数学《简易方程单元》知识复习
5 简 易 方 程一、用字母表示数用字母能简洁明了地表示数和数量关系,还能表示运算定律、性质和计算公式。
1.在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
举例:a×b=b×a可以写成a ·b=b ·a ,也可以写成ab=ba 。
2.a×a 可以写作a ·a 或a 2,a 2读作a 的平方。
3.用字母表示运算定律。
加法交换律: a+b=b+a加法结合律: a+b+c=a+(b+c )乘法交换律: a×b=b×a 乘法结合律: a×b×c=a×(b×c ) 乘法分配律: (a±b )×c=a×c±b×c 4.用字母表示计算公式。
长方形的周长公式: C=(a+b )×2 长方形的面积公式: S=ab正方形的周长公式: C=4a正方形的面积公式: S=a 25.用含有字母的式子表示数量关系。
举例:小红今年a 岁,妈妈比小红大23岁,妈妈的年龄是(a+23)岁。
苹果的价钱是m 元/千克,买n 千克苹果的总价是mn 元。
6.有关计算。
举例:每个三角形用3根小棒,每个正方形用4根小棒,摆x 个三角形和x 个正方形一共需要多少根小棒?3x +4x =(3+4)x =7x 二、方程的意义1.方程:含有未知数的等式称为方程。
2.方程与等式的关系。
方程是等式.....,.但等式不一定是方程。
..........举例:下列哪些式子是方程? 35+65=100x .-.23=19..... x +245x +32>12728<32-3特别注意: 加号、减号、除号及数与数之间的乘号不能省略。
提示:2a 与a 2的区别:2a 表示a+a ,a 2表示a×a 。
提示:省略乘号时,一般把数字写在字母的前面。
人教版小学五年级数学上册第五单元《简易方程》知识点梳理
人教版小学五年级数学上册第五单元《简易方程》知识点梳理人教版小学五年级数学上册第五单元《简易方程》知识点梳理一、用字母表示数 1、乘法的简写字母和字母、数字和字母相乘时,“?”可以写成“?”或者直接忽略不写。
数字和字母相乘忽略乘号不写时,一般把数字写在字母前面。
【例1】用字母表示出边长为a 的正方形的面积和周长。
解:2aa a =?=面积,a a 44=?=周长2、含字母的式子的运算(1)当两个式子带的字母不完全相同时,不能直接相加减。
(2)当两个式子含有相同的字母时,可以用乘法分配律进行合并。
【例2】计算b a a 554++解:b a b a b a a 595)54(554+=+?+=++二、简易方程 1、判断方程含有未知数的等式叫做方程。
【例3】下面属于方程的是()A.12+x B.1064=+ C.013>-x D.84=a 解析: A 选项没有等号,不是等式,所以不属于方程;B 选项不含未知数,所以不属于方程;C 选项是大于号,不是等号,所以不属于方程;D 选项有等号,也含有未知数a ,所以属于方程。
所以这题的答案是D 。
2、等式的性质(1)等式两边加上或者减去同一个数,左右两边仍然相等。
(2)等式两边乘以同一个数,或者除以同一个不为0的数,左右两边仍然相等。
【例4】如果b a =,根据等式的性质填空。
)(2+=+b a8)(-=-b ab a ?=)(35)(÷=÷b a解:22+=+b a ; 88-=-b a ; b a ?=33;55÷=÷b a 。
3、解方程的书写规范先写“解”,“=”号要对齐,解出来的未知数写在“=”号左边。
4、解方程的方法逆运算:加法用减法抵消、减法用加法抵消、乘法用除法抵消、除法用乘法抵消。
(1)一步方程用逆运算去掉未知数以外的部分。
【当未知数前面是减号或除以号时,两边先要同时加上或者乘以未知数,计算结果左右两边互换后再继续计算】(2)两步以上的方程①方程中没有括号时,先把能计算的先计算出来后,先逆运算加减法,再逆运算乘除法,最后按一步方程的方法解方程。
2023-2024年小学数学五年级上册期末复习第五单元《简易方程》(人教原卷版)
期末知识大串讲人教版数学五年级上册期末章节考点复习讲义第五单元简易方程知识点01:用字母表示数1. 用字母表示数量关系(1)可以用来表示一个数或表示数量关系;(2)字母与数字相乘时,把省略。
省略乘号时,一般把前面。
含有字母的式子中的不能省略。
2. 用字母表示运算定律和计算公式(1)在含有字母的式子里,只有之间的“×”才能简写成“.”或者省略不写。
注意:省略乘号后,数字必须写在字母的前边。
(2)应用公式求值解决问题的步骤:第一步:写出第二步:把字母表示的数值第三步:计算出结果,记住写单位3. 用字母表示复杂的数量关系(1)不同的式子可以表示相同的(2)将字母的代入含有字母的式子中,即可求得相应式子的值。
4. 化简含有字母的式子并代入数据求值计算含有字母的式子的时候,可以先运用运算定律将含有字母的式子进行。
知识点02:解简易方程1.方程的意义(1)方程的意义:是方程。
(2)方程必须具备的两个条件:一是;二含有。
2.方程一定是;但等式3. 所有的方程都是,但等式4.等式的性质等式的性质1:。
等式的性质2: 。
5.方程的解,叫做方程的解。
叫做解方程。
考点01:用字母表示数1.(2022秋•龙口市月考)静静今年10岁,妈妈比她大a岁,再过m年,妈妈比静静大()岁。
A.10+a B.a C.m2.(2022春•遂平县期末)妈妈今年a岁,比笑笑年龄的3倍少5岁,笑笑今年()岁。
A.3a﹣5 B.(a+5)÷3 C.a÷3﹣s3.(2022•阿荣旗)此图的面积可以表示为,也可以表示为,所以得到等式。
4.(2022春•铜山区期末)为营造温馨的书香氛围,五(1)班捐书x本,五(2)班捐书本数比五(1)班的2倍少12本,五(2)班捐书本,两班共捐书本。
5.(2022•阿荣旗)如果a=b,那么a÷d=b÷d。
(判断对错)6.(2022春•鄠邑区期末)阳阳今年a岁,妈妈的年龄是她的5倍,4年后妈妈的年龄是(a+4)×5岁。
五年级数学上册第5课简易方程必备知识点
五年级数学上册第5课简易方程必备知识点五年级数学上册第5课《简易方程》的必备知识点主要包括以下几个方面:一、用字母表示数1. 基本规则:在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
例如,a×b可以写作a·b或ab。
加号、减号、除号以及数与数之间的乘号不能省略。
数字和字母相乘时,省略乘号后,一般要把数字写在字母的前面。
2. 常见表示:a×a可以写作a·a或a²,读作a的平方。
2a表示a+a或2×a,表示两个a相加。
3. 运算定律的表示:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c二、方程的概念1. 定义:含有未知数的等式称为方程。
方程必须同时满足两个条件:一是必须是等式,二是必须有未知数。
2. 方程与等式的区别:方程一定是等式,但等式不一定是方程。
例如,2+3=5是等式,但它不是方程,因为它不含有未知数。
三、方程的解与解方程1. 方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
2. 解方程:求方程的解的过程叫做解方程。
四、等式的性质与解方程的原理1. 等式的性质:等式两边同时加上(或减去)同一个数,等式仍然成立。
等式两边同时乘(或除以)同一个不等于0的数,等式仍然成立。
2. 解方程的原理:基于天平的平衡原理或四则运算内部的数量关系来解方程。
五、解方程的基本步骤与书写格式1. 基本步骤:写“解”字,并冒号。
根据等式的性质,对方程进行变形,使未知数逐步接近解。
求解未知数。
检验解的正确性,将解代入原方程进行验证。
2. 书写格式:解方程时,一般要每一行写一个方程,上下方程的等号要对齐。
解方程后,方程的解末尾一般不写单位名称。
新人教版五年级上册数学知识点(4)——第五单元《简易方程》
新人教版五年级上册数学知识点(4)——第五单元《简易方程》1、用字母表运算定律。
加法交换律: a+b=b+a加法结合律: a+b+c=a+(b+c)乘法交换律: a×b=b×a乘法结合律:a×b×c=a×(b×c)乘法分配律: (a±b)×c=a×c±b×c2、用字母表示计算公式。
长方形的周长公式: c=(a+b)×2长方形的面积公式: s=ab正方形的周长公式: c=4a正方形的面积公式: s= aa3、2读作:的平方,表示:两个相乘。
2表示:两个相加,或者是2乘。
4、①含有未知数的等式称为方程。
②使方程左右两边相等的未知数的值叫做方程的解。
③求方程的解的过程叫做解方程。
5、把下面的数量关系补充完整。
路程=(速度)×(时间)速度=(路程)÷(时间)时间=(路程)÷(速度)总价=(单价)×(数量)单价=(总价)÷(数量)数量=(总价)÷(单价)总产量=(单产量)×(数量)单产量=(总产量)÷(数量)数量=(总产量)÷(单产量 )工作总量=(工作效率)×(工作时间)工作效率=(工作总量)÷(工作时间)工作时间=(工作总量)÷(工作效率)大数-小数=相差数大数-相差数=小数小数+相差数=大数一倍量×倍数=几倍量几倍量÷倍数=一倍量几倍量÷一倍量=倍数被减数=减数+差减数=被减数-差加数=和-另一个加数被除数=除数×商除数=被除数÷商因数=积÷另一个因数解方程方法一:消项(如果消+3,方程两边就同时-3 ;如果消×3,方程两边就同时÷3)1:把方程里的“括号”全部去掉,两种去括号的方法任选其一2:如果两边都有几 , 要先消去其中一边的几(如果有“-几”,就把“-几”消去,如果没有“-几”,就把较小的消去掉)3:消去“-几”,消去“÷”4:把这边的数字全部消掉,先消“+ -”再消“÷”最后消“×”(注意:无论解到哪一步,数字+几都要写成几+数字)解方程方法二:移项(+3移到另一边就变成-3,×3移到另一边就变成÷3)1:把方程里的“括号”全部去掉,两种去括号的方法任选其一2:如果两边都有几 ,就把其中一边的几移到另一边(如果有“-几”,就把“-几”移到另一边。
人教版数学五年级上册第五章简易方程知识点
第五单元《简易方程》一.用字母表示数1.用字母表示数。
在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
数和字母相乘时,省略乘号后,一律将数写在字母前面。
加号、减号除号以及数与数之间的乘号不能省略。
2.用字母表示运算定律。
加法交换律是a+b=b+a;加法结合律是(a+b)+c=a+(b+c);乘法交换律是ab=ba;乘法结合律是(ab)c=a(bc);乘法分配律是(a+b)c=ac+bc。
3.用字母表示常见的数量关系及计算公式。
用含有字母的式子表示指定的数量,再把字母的取值代入式子中求值,只要在答中写出得数即可。
4、a×a可以写作a•a或a2,a2 读作a的平方。
2a表示a+a二.方程的意义1.方程与等式的区别。
含有未知数的等式叫做方程;方程一定是等式,而等式不一定是方程。
2.等式的性质。
等式两边同时加上或减去相同的数,同时乘或除以相同的数(0除外),左右两边仍然相等。
3、两个数相加,和都相同,一个加数越小,另一个加数就越大。
两个数相减,差都相同,减数越大,被减数也越大。
两个数相乘,积都相同,一个因数越小,另一个因数就越大。
两个数相除,商都相同,除数越大,被除数就越大。
三.解方程1.方程的解与解方程。
“方程的解”是一个数,是使等号左右两边相等的未知数的值;“解方程”是指演算过程。
2.解形如±a=b 和 a=b 的方程。
依据等式性质来解此类方程。
解方程时要注意写清步骤,等号对齐。
3.验算。
检验是不是方程的解,把解代入原方程的左边算出得数,再算出右边的得数,如果左右两边的得数相等,那么这个解就是原方程的解。
4、解方程原理:1)、等式两边同时加或减相等的数,等式不变。
2)、等式两边同时乘或除以相同的数(0 除外),等式不变。
5、在列方程解决问题时,我们应统一单位,在方程求出的解的后面不写单位名称。
“三看两原则”三看:一看含有未知数的式子前面是否有“ - ”(减号),若有,先处理;二看含有未知数的式子前面是否有“÷”(除号),若有,先处理;三看是否含有小括号“()”,若有优先选择整体法;两原则:1、未知数前面的符合要为“ + ”(加号);2、未知数前面的数字(系数)要为“ 1 ”。
人教版五年级数学上册 简易方程 知识点归纳
简易方程知识点归纳
知识点一、用字母表示数
1、在含有字母的式子中,字母与字母、数字与字母之间的乘号可以记为“.” ,也可以省略不写。
加号、减号、除号不能省略,数字与数字之间的乘号也不能省略。
例:2×a 可以写作2a ;a ×b 可以写作ab ;但2×3不能..写作2.3,也不能..
写作23 。
2、如果字母前面的数字是1,则省略这个1。
例:1a 要写成a ;1x 要写成x 。
知识点二、方程的概念
1、含有未知数的等式叫做方程。
2、使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
知识点三、天平原理
1、等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
2、等式的性质2:等式两边乘以同一个数,或除以同一个不为0的数,左右两边仍然相等。
知识点四、解简易方程的步骤
①去括号
②运用等式的性质,将带有未知数的放在左边,不带未知数的放在右边
③合并
④求出未知数的值
解方程格式的注意事项:①一开始要写上“解”字、②上下的“=”要对齐。
温馨提示:如果时间充裕,解完方程后可以将未知数的值代入原方程进行验算。
知识点五、运用方程解应用题
解题步骤:
①设x来表示未知数。
一般可以设“是”、“比”、“占”后面的量为x,或者“的”字前面的量为x,有时候也可以根据题目问什么,就设什么为x 。
②找出等量关系,列方程。
③解答。
第五单元 简易方程--五年级上册数学单元总结归纳知识讲义(人教版)
第五单元简易方程思维导图重难点梳理典例解析典例1(易错题—混淆a²和2a表示的意义)判断:当a=2时,a²=2×2=4,2a=2×2=4,所以,a²一定等于2a。
()解析不要混淆了a²和2a表示的意义,a²表示两个a相乘,可以写成a×a;2a表示两个a相加,可以写成a+a,a可以表示任何数,只有当a等于0或2时,才能得出a²=2a,所以a²不一定等于2a。
解答×典例2(易错点—对含有字母的式子理解不正确)判断:x+x+x=3+x。
()解析3个x相加,不应该写成3+x,而应写成3与x相乘的形式,即3x。
几个相同的字母相加,简写时应写成相同字母的个数与字母相乘的形式。
解答×典例3(易错点—年龄差不变)选择:小亮今年a岁,小丽今年(a-5)岁,b年后两人年龄相差()岁。
A、bB、5+bC、5解析已知小亮今年a岁,小丽今年(a-5)岁,可以求出两人的年龄相差5岁。
b年后,两人的年龄差仍是5岁。
解答 C典例3 (用含字母的式子表示图形的面积)教材P57第13题在右图中(1)哪一部分的面积是ac?(2)哪一部分的面积是bc?(3)整格图形的面积是多少?解析题中有三个长方形,只要分别找出三个长方形的长宽,再根据“长×宽=长方形的面积”,就可以表示出每个长方形的面积。
解答(1)左边长方形的面积是ac。
(2)右边长方形的面积是bc。
(3)整个图形的面积是(a+b)或ac+bc。
典例4 (用含有字母的式子解决实际问题)小彤家、小涵家和学校在一条直线上,已知小彤家和小涵家相距x千米,小彤家和学校相距y千米(x>y),用字母表示小涵家到学校的距离。
解析(1)小彤家和小涵家在学校的同侧:(2)小彤家和小涵家在学校的两侧:解答小涵家到学校的距离为(x+y)千米或(x-y)千米。
典例5(含有字母的式子带入求值)教材P61第11题当x=6时,x²和2x各等于多少?当x的值时多少时,x²和2x正好相等?解析x²表示两个x相乘,2x表示2和x相乘。
新课标人教版小学数学五年级上册 第五单元“简易方程”易错知识点解析
新课标人教版小学数学五年级上册第五单元“简易方程”易错知识点解析易错点1没有用字母准确表示出数量关系【错例1】灵灵家有20千克大米,已经吃了a千克,还剩多少千克?【错误答案】还剩20-a千克。
【错误原因】错误解答错在没有准确地表示出剩下的量。
【正确答案】还剩(20-a)千克。
【解题思路】用20减去a千克,这里的“千克”只表示a的单位名称。
所以这里的单位名称“千克”要写在括号外,即(20-a)千克,表示剩下的量。
加上小括号再写单位名称是把“20-a”看作一个整体,这样才符合题目要求。
错题闯关1.今年爸爸39岁,欢欢(39-a)岁,5年后,爸爸比欢欢大__________岁。
【答案】a2.甲乙两城相距s千米,一辆小汽车从甲城出发,每时行m千米,4时以后离乙地还有__________千米。
【答案】(s-4m)3.东东今年a岁,妈妈今年36岁,5年后妈妈比东东大__________岁。
【答案】(36-a)4.今年丁丁a岁,昕昕b岁(a<b),2年后丁丁比昕昕小__________岁。
【答案】(b-a)5.小刚在测试中,语文、数学和英语三科的平均分是a分,语文和英语共得b分,数学得__________分。
【答案】(3a-b)易错点2解方程时,等式的性质运用错误【错例2】解方程:x-25=15。
x-=【错误答案】解:1525x-+=+15152525x=。
50【错误原因】本题错在左边加16,右边加24,致使计算结果错误。
x-=【正确答案】解:1525x-+=+15152515x=。
40【解题思路】本题考查等式的性质1,等式两边加上或减去同一个数,左右两边仍然相等。
因此,方程的两边应同时加上15,方程仍然成立。
错题闯关6.解方程。
(1)4.2×5+3x=30(2)6x-1.4x=0.46【答案】(1)4.2×5+3x=30解:21+3x=303x=30-213x=9x=9÷3x=3(2)6x-1.4x=0.46解:4.6x=0.46x=0.46÷4.6x=0.17.解方程。
人教版五年级上册数学简易方程知识点总结及5份练习
五年级上册第五单元简易方程一、用字母表示数(代数式)。
用字母可以简明地表达数和数量关系、运算定律和计算公式;在一个含有字母的式子里.数字与字母、字母与字母相乘,字母与数字相乘,中间的乘号可以用小圆点代替或者省略。
二、简易方程1.方程的概念(1)含有未知数的等式叫做方程。
方程的特征是:它含有未知数,同时又是—个等式。
用等号连接的两个式子,叫做等式。
(2)方程与等式有什么联系和区别:方程一定是等式,但等式不一定是方程。
(3)等式的性质1:在等号的两边同时加上(或减去)同一个数,等式不变。
等式的性质2:在等号的两边同时乘以(或除以)同一个数(0除外),等式不变。
(4)方程的解”与“解方程”的区别。
2、解方程的方法:在解方程的过程中,可以运用等式的基本性质,主要还是应用加、减、乘、除法的逆运算。
求一个加数=和-另一个加数被减数=差 + 减数减数=被减数-差求一个因数=积÷另一个因数被除数=商×除数除数=被除数÷商3、列方程解应用题的方法(1)综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程,这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
(2)分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式,进而列出方程,这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
4、列方程解应用题的步骤:(1)分析题意,弄清已知条件和所求问题;(2)根据分析设定未知数;(3)利用等量关系列出方程;(4)求解方程:(5)将结果代回原题检验,答。
【我能行】1.名士小学现有学生2000人,民航小学现有学生人数的3倍比名士学校少800人,民航小学现有学生多少人?2.甲、乙两个车间共生产420个零件,计划7小时完成,如果甲车间每小时生产28个,乙车间每小时应生产多少个?3.五年级一班的图书柜中文艺书的本数比科技书的5倍少18本,两种书共有222本,科技书有多少本?4.白兔和黑兔一共180只,白兔是黑兔的3倍,白兔和黑兔各多少只?5.甲仓所存的粮食是乙仓的3倍,若从甲仓取出1200千克存入乙仓,则两仓所存的粮食相等,两仓各存粮多少千克?6.一条公路长360米,甲乙两支施工队同时从公路的两端往中间铺柏油。
人教版小学五年级数学上册知识点:简易方程
人教版小学五年级数学上册知识点:简易方程
人教版小学五年级数学上册知识点:简易方程数学是一门基础学科, 被誉为科学的皇后。
对于我们的广大小学生来说,数学水平的高低,直接影响到以后的学习,查字典数学网特地为大家整理了人教版小学五年级数学上册知识点,希望对大家有用!
1、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
2、a×a 可以写作a·a 或 a ,a 读作 a 的平方。
2a 表示 a+a
3、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0 除外),等式依然成立。
、
5、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数
减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数
除法:商=被除数÷除数被除数=商×除数除数=被除数÷商
(x=1.2□x=12.8□) 8.1+x=9.9
(x=1.8□x=18□)
x-200=210
(x=10□x=410□)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五单元《简易方程》
一.用字母表示数
1.用字母表示数。
在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
数和字母相乘时,省略乘号后,一律将数写在字母前面。
加号、减号除号以及数与数之间的乘号不能省略。
2.用字母表示运算定律。
加法交换律是a+b=b+a;
加法结合律是(a+b)+c=a+(b+c);
乘法交换律是ab=ba;
乘法结合律是(ab)c=a(bc);
乘法分配律是(a+b)c=ac+bc。
3.用字母表示常见的数量关系及计算公式。
用含有字母的式子表示指定的数量,再把字母的取值代入式子中求值,只要在答中写出得数即可。
4、a×a可以写作a•a或a2,a2 读作a的平方。
2a表示a+a
二.方程的意义
1.方程与等式的区别。
含有未知数的等式叫做方程;方程一定是等式,而等式不一定是方程。
2.等式的性质。
等式两边同时加上或减去相同的数,同时乘或除以相同的数(0除外),左右两边仍然相等。
3、两个数相加,和都相同,一个加数越小,另一个加数就越大。
两个数相减,差都相同,减数越大,被减数也越大。
两个数相乘,积都相同,一个因数越小,另一个因数就越大。
两个数相除,商都相同,除数越大,被除数就越大。
三.解方程
1.方程的解与解方程。
“方程的解”是一个数,是使等号左右两边相等的未知数的值;“解方程”是指演算过程。
2.解形如±a=b 和 a=b 的方程。
依据等式性质来解此类方程。
解方程时要注意写清步骤,等号对齐。
3.验算。
检验是不是方程的解,把解代入原方程的左边算出得数,再算出右边的得数,如果左右两边的得数相等,那么这个解就是原方程的解。
4、解方程原理:
1)、等式两边同时加或减相等的数,等式不变。
2)、等式两边同时乘或除以相同的数(0 除外),等式不变。
5、在列方程解决问题时,我们应统一单位,在方程求出的解的后面不写单位名称。
“三看两原则”
三看:
一看含有未知数的式子前面是否有“ - ”(减号),若有,先处理;
二看含有未知数的式子前面是否有“÷”(除号),若有,先处理;
三看是否含有小括号“()”,若有优先选择整体法;
两原则:
1、未知数前面的符合要为“ + ”(加号);
2、未知数前面的数字(系数)要为“ 1 ”。
四.实际问题与方程
1.列方程解决问题的步骤。
(1)求什么设什么(个别除外)
(2)找出等量关系,列方程;
(3)解方程;
(4)检验,作答。
2.算术解法与方程解法的区别。
(1)列方程解决问题时,未知数用字母表示,参加列式;算术解法中未知数不参加列式。
(2)列方程解决问题是根据题中的数量关系,列出含有未知数的等式,求未知数的过程由解方程来完成。
算术解法是根据题中已知数和未知数间的关系,确定解答步骤,再列式计算。
3.验算。
把未知数的值代人方程检验。