高等代数第七章 线性变换(北大版)
《高等代数》第七章 线性变换
![《高等代数》第七章 线性变换](https://img.taocdn.com/s3/m/ce3059312b160b4e767fcfe9.png)
线性变换的多项式有以下性质:
1) f (A ) 是一线性变换.
2) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) ,
那么
h(A ) = f (A ) + g(A ) , p(A ) = f (A ) g(A ) .
特别地,
f (A ) g(A ) = g(A ) f (A ) .
定义为 数乘k变A 换= ,K可A用, K 表示. 显然,当 k = 1 时
即
们(k便A得)恒(等) =变K换(,A当(k) =) =0 K时A,便(得) .零变换.
显然,k A 还是线性变换. 2. 运算规律 1) ( kl ) A = k ( l A ) , 2) ( k + l ) A = k A + l A , 3) k (A + B ) = k A + k B , 4) 1 A = A .
证毕
五、线性变换的多项式
下面引进线性变换的多项式的概念.
1. 线性变换的幂
既然线性变换的乘法满足结合律,当若干个线
性变换 A 重复相乘时,其最终结果是完全确定的,
与乘积的结合方式无关. 因此当 n 个( n 是正整数)
线性变换 A 相乘时,我们就可以用 A A ... A
n个
来表示,称为 A 的 n 次幂,简单地记作 A n. 即
对于线性变换,我们已经定义了乘法、加法与 数量乘法三种运算. 由加法与数量乘法的性质可知, 线性空间 V 中全体线性变换,对于如上定义的加法 与数量乘法,也构成数域 P 上一个线性空间.
对于线性变换,我们也可定义逆变换.
四、线性变换的逆变换
1. 定义 定义5 线性空间 V 的线性变换 A 称为可逆的 如果有 V 的变换 B 存在,使
高等代数课件(北大版)第七章-线性变换§7.3
![高等代数课件(北大版)第七章-线性变换§7.3](https://img.taocdn.com/s3/m/28df9803312b3169a451a463.png)
1,2, ,n A B
∴ + 在基 1, 2 , , n下的矩阵为A+B.
§7.3 线性变换的矩阵
② 1,2, ,n 1,2, ,n 1,2, ,n B 1, 2, , n B
1,2, ,n AB
∴ 在基 1, 2 , , n下的矩阵为AB.
③ k 1,2, ,n k 1 , ,k n k 1 , ,k n k 1 , , n
k 1, 2, , n k 1,2, , n A 1,2, ,n kA
∴ k 在基 1, 2 , , n下的矩阵为 kA.
§7.3 线性变换的矩阵
④ 由于单位变换(恒等变换) E对应于单位矩阵E.
所以, E
与 AB=BA=E 相对应.
因此,可逆线性变换 与可逆矩阵A对应,且 逆变换 - 1 对应于逆矩阵 A- 1.
x1
,
n
A
x2
xn
1, 2 ,
y1
,n
y2
1, 2 ,
yn
x1
,
n
A
x2
xn
由于 1, 2 ,
, n线性无关,所以
y1 x1
y2
=A
x2
.
yn xn
§7.3 线性变换的矩阵
4.同一线性变换在不同基下矩阵之间的关系
定理4 设线性空间V的线性变换 在两组基
显然,1,2 , ,n 也是一组基,且 在这组基下的
矩阵就是B.
§7.3 线性变换的矩阵
(3)相似矩阵的运算性质 ① 若 B1 X 1A1X , B2 X 1A2 X , 则 B1 B2 X 1( A1 A2 )X , B1B2 X 1( A1A2 )X . 即, A1 A2 B1 B2 , A1 A2 B1B2 .
高等代数第7章线性变换[1]PPT课件
![高等代数第7章线性变换[1]PPT课件](https://img.taocdn.com/s3/m/fdc6c2e602768e9950e73865.png)
换, 使"aV, 有 (A+B)(a) =A(a)+B(a).
1、A + B 也是V的一个线性变换.
因为对于所有的a,bV和数k,lP,有
(A+B)(ka+lb) = A(ka+lb ) +B(ka+lb ) = kA(a)+lA(b)+kB(a)+lB(b) = k (A+B)(a)+l (A+B)(b)
精选
2、乘法适合结合律,即 (AB)C = A(BC)
因为映射的合成满足结合律 3、乘法不满足交换律,即一般地
AB BA 如求微分变换D 与求积分变换J , 有
DJ = E ,但一般地 JD E 4、单位变换的作用 AE = EA = A 5、零变换的乘法 OA = AO = O
精选
二、线性变换的加法及其性质
精选
2、(1)交换律 A +B =B +A (2)结合律 (A+B)+C =A+(B+C) (3)零变换 A+O =A (4)负变换 A+(-A) = O
其中 (-A)(a)= -A(a), 从而
(A - B) = (A+ (-B)) 3、分配律 A(B+C) = AB +AC
(A+B)C = AC+BC
D是一个线性变换,称为微分变换.
例7 闭区间[a, b]上所有连续函数全体 组成实数域R上的线性空间C0(a, b). 定义变换
x
则J是一个J(线f (性x))变=换精选.a f (t)dt
二、线性变换的简单性质
高等代数北大版第章习题参考答案精修订
![高等代数北大版第章习题参考答案精修订](https://img.taocdn.com/s3/m/08850eb890c69ec3d5bb75f3.png)
高等代数北大版第章习题参考答案SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
高等代数【北大版】7.9
![高等代数【北大版】7.9](https://img.taocdn.com/s3/m/5bff683f5727a5e9856a61b6.png)
LLLLL
0 ≠ 0. ( J aE )k 1 = M O O 0 1 0 L 0
k ∴ J 的最小多项式为 ( x a ) .
§7.9 最小多项式
6.(定理13) A ∈ P n×n与对角矩阵相似 (定理13)
A 的最小多项式是 上互素的一次因式的积. 的最小多项式是P上互素的一次因式的积 上互素的一次因式的积
第七章 线性变换
§1 线性变换的定义 §2 线性变换的运算 §3 线性变换的矩阵 §4 特征值与特征向量 §5 对角矩阵 §6线性变换的值域与核 §7不变子空间 §8 若当标准形简介 §9 最小多项式 小结与习题
§7.9 最小多项式
一,最小多项式的定义 二,最小多项式的基本性质
§7.9 最小多项式
二,最小多项式的基本性质
1.(引理1)矩阵 的最小多项式是唯一的 (引理1 矩阵A的最小多项式是唯一的 的最小多项式是唯一的. 都是A的最小多项式 的最小多项式. 证:设 g1 ( x ), g2 ( x ) 都是 的最小多项式 由带余除法,g1 ( x ) 可表成 由带余除法,
g1 ( x ) = q( x ) g2 ( x ) + r ( x )
∴ g1 ( x ) h( x ), g2 ( x ) h( x ).
从而
g ( x ) h( x ).
的最小多项式. 故 g( x ) 为A的最小多项式 的最小多项式
§7.9 最小多项式
推广: 若A是一个准对角矩阵 是一个准对角矩阵
A1 A2 O As
且 Ai 的最小多项式为 gi ( x ), i = 1,2,..., s 则A的最小多项式是为 [ g1 ( x ), g2 ( x ),..., g s ( x )]. 的最小多项式是为 两两互素, 特别地,若 g1 ( x ), g2 ( x ),..., g s ( x ) 两两互素,即
高等代数课件(北大版)第七章-线性变换§7.7
![高等代数课件(北大版)第七章-线性变换§7.7](https://img.taocdn.com/s3/m/d11b7ba350e79b89680203d8ce2f0066f53364f9.png)
若 V W1 W2 Ws,则
11, ,1n1 , 21, , 2一组基,且在这组基下 的矩阵为准对角阵
A1
A2
.
As
2023/8/17§7.7 不变子空间 数学与计算科学学院
(1)
反之,若 在基 11, ,1n1 , 21, , 2n2 , , s1, , sns 下的矩阵为准对角矩阵(1), 则由 i1, i2 , , ini 生成 的子空间 Wi 为 的不变子空间,且V具有直和分解:
其次,任取 Vi , 设
( i E )ri Wi 0.
1 2 s , i Wi . 即 1 2 (i ) s 0 令 j j , ( j i); i i .
2023/8/17§7.7 不变子空间 数学与计算科学学院
由(2), 有 ( i E)ri (i ) 0, i 1,2, , s. 又 ( i E)ri (i ) ( i E)ri (i )
Wi fi ( )V , 则Wi 是 fi ( ) 的值域, Wi是 的不变子空间.
又 ( i E)ri Wi ( i E)ri fi ( )V
( i E)ri fi ( ) V f V
( i E)ri Wi 0.
(2)
2023/8/17§7.7 不变子空间 数学与计算科学学院
下证 V V1 V2 Vs . 分三步:
1 . 证明 V W1 W2 Ws .
2 . 证明f1(V1),fV2(2), fVs (s是)直和1 .
3∴. 证存明在多Vi 项 W式i
, i
u1 (
1, 2,
), u2(
, s. ),
, us ( ),
使
u1( ) f ( )1 u2( ) f2( ) us ( ) fs ( ) 1
高等代数【北大版】7.4
![高等代数【北大版】7.4](https://img.taocdn.com/s3/m/a4a86479168884868762d6b7.png)
二,特征值与特征向量的求法
的一组基, 分析: 设 dimV = n, ε 1 , ε 2 ,L , ε n 是V的一组基, 的一组基 分析: 在这组基下的矩阵为A. 线性变换 σ 在这组基下的矩阵为 的特征值, 设 λ0是 σ 的特征值,它的一个特征向量 ξ 在基
x01 ε 1 , ε 2 ,L , ε n 下的坐标记为 M , x 0n x01 则 σ (ξ )在基 ε 1 , ε 2 ,L , ε n下的坐标为 A M , x 0n
证:设 A 设
B , 则存在可逆矩阵 ,使得 则存在可逆矩阵X,
B = X 1 AX
于是, 于是, λ E B = λ E X 1 AX
= λ X 1 EX X 1 AX = X 1 ( λ E A) X = X 1 λ E A X
由多项式根与系数的关系还可得
+ L + ( 1) A
n
的全体特征值的和= ① A的全体特征值的和= a11 + a22 + L + ann . 的全体特征值的和 ② A的全体特征值的积= A . 的全体特征值的积=
§7.4 特征值与特征向量称之为A的迹 称之来自 的迹,记作trA. 记作
2. (定理6) 相似矩阵具有相同的特征多项式. (定理 相似矩阵具有相同的特征多项式. 定理6)
§7.4 特征值与特征向量
例2.设线性变换 σ 在基 ε 1 , ε 2 , ε 3 下的矩阵是 设线性变换
1 2 2 A = 2 1 2, 2 2 1
特征值与特征向量. 求 σ 特征值与特征向量 解:A的特征多项式 的特征多项式
λ 1 2 2 λ E A = 2 λ 1 2 = (λ + 1)2 (λ 5) 2 2 λ 1
高等代数第7章线性变换[1]PPT课件
![高等代数第7章线性变换[1]PPT课件](https://img.taocdn.com/s3/m/dbec90e8a32d7375a51780ae.png)
=xcosq - ysinq
同样 y’= xsinq + ycosq )。
精选PPT课件
6
记 A = cosq sinq
sinq
cosq
则rq (a ) = Aa,称为旋转变换.
可以证明旋转变换 rq是一个线性变换。 (如何证明?)
精选PPT课件
7
例4 设A:R3R3, "a =(a1, a2, a3), 定义 A(a) = (a1, a2, 0), 易证A是线性变换. 它是
则 h(A)=f(A)+g(A), p(A)=f(A)g(A), 特别地,
f(A)g(A)=g(A)f(A). 即同一线性变换的多项式的乘法可交换
精选PPT课件
25
例用在D表线示性.空显间然Pn有[l]中,求微商是线性变换,
Dn = O 又变量的平移
f(l) | f(l+a) (aP)
也是线性变换, 用Sa表示. 按Taylor公式
精选PPT课件
17
三、线性变换的数量乘法及其性质
设AL(V), kP, 定义k与A的数量乘 积为V的一个变换, 使得
kA = KA
其中K为由k决定的数乘变换, 即"a V
(kA)(a)= (KA)(a) =K(A(a)) .
1、kA也是线性变换.
精选PPT课件
18
2、(1)1的数乘 1A = A (2)数乘结合律 (kl)A =k(lA) (3)数乘分配律 (k+l)A =kA+lA (4)数乘分配律 k(A +B)=kA+kB
f(l+a)=f(l)+af ’(l)+a 2 f ’’(l)+… +
高等代数(北大版)第7章习题参考答案
![高等代数(北大版)第7章习题参考答案](https://img.taocdn.com/s3/m/3c97d8e4534de518964bcf84b9d528ea81c72f05.png)
第七章 线性变换1.判别下面所定义的变换那些是线性的,那些不是:1〕在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2〕在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3〕在P 3中,A ),,(),,(233221321x x x x x x x +=; 4〕在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5〕在P[x ]中,A )1()(+=x f x f ;6〕在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7〕把复数域上看作复数域上的线性空间,A ξξ=.8〕在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1>当0=α时,是;当0≠α时,不是. 2>当0=α时,是;当0≠α时,不是.3>不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A<)α.4>是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx =k A )(α,故A 是P 3上的线性变换.5>是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换.6>是.因任取][)(],[)(x P x g x P x f ∈∈则.A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f .7>不是,例如取a=1,k=I,则A <ka>=-i , k<A a>=i, A <ka >≠k A <a>. 8>是,因任取二矩阵Y X ,nn P⨯∈,则A <=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,A <k X >=k BXC k kXB ==)()(A X ,故A 是nn P⨯上的线性变换.2.在几何空间中,取直角坐标系oxy,以A 表示将空间绕ox 轴由oy 向oz 方向旋转90度的变换,以B 表示绕oy 轴向ox 方向旋转90度的变换,以C 表示绕oz 轴由ox 向oy 方向旋转90度的变换,证明:A 4=B 4=C 4=E,AB ≠BA,A 2B 2=B 2A 2,并检验<AB >2=A 2B 2是否成立. 解 任取一向量a=<x,y,z>,则有 1) 因为A a=<x,-z,y>, A 2a=<x,-y,-z>,A 3a=<x,z,-y>, A 4a=<x,y,z>,B a=<z,y,-x>, B 2a=<-x,y,-z>,B 3a=<-z,y,x>, B 4a=<x,y,z>,C a=<-y,x,z>, C 2a=<-x,-y,z>,C 3a=<y,-x,z>, C 4a=<x,y,z>, 所以A 4=B 4=C 4=E.2) 因为AB <a>=A <z,y,-x>=<z,x,y>,BA <a>=B <x,-z,y>=<y,-z,-x>, 所以AB ≠BA.3>因为A 2B 2<a>=A 2<-x,y,-z>=<-x,-y,z>,B 2A 2<a>=B 2<x,-y,-z>=<-x,-y,z>, 所以A 2B 2=B 2A 2.3) 因为<AB >2<a>=<AB ><AB <a>>_=AB <z,x,y>=<y,z,x>,A 2B 2<a>=<-x,-y,z>, 所以<AB >2≠A 2B 2.3.在P[x] 中,A ')(f x f =),(x B )()(x xf x f =,证明:AB-BA=E. 证 任取∈)(x f P[x],则有<AB-BA >)(x f =AB )(x f -BA )(x f =A <))(x xf -B <'f ))(x =;)(xf x f +)(x -'xf )(x =)(x f所以 AB-BA=E.4.设A,B 是线性变换,如果AB-BA=E,证明:A kB-BA k=k A 1-k <k>1>.证 采用数学归纳法.当k=2时A 2B-BA 2=<A 2B-ABA>+<ABA-BA 2>=A<AB-BA>+<AB-BA>A=AE+EA=2ª,结论成立. 归纳假设m k =时结论成立,即A mB-BA m=m A 1-m .则当1+=m k 时,有A 1+m B-BA1+m =<A1+m B-A m BA>+<A m BA-BA1+m >=A m<AB-BA>+<A mB-BA m>A=A mE+mA1-m A=)1(+m A m.即1+=m k 时结论成立.故对一切1>k 结论成立. 5.证明:可逆变换是双射.证 设A 是可逆变换,它的逆变换为A1-.若a ≠b ,则必有A a ≠A b,不然设Aa=A b,两边左乘A1-,有a=b,这与条件矛盾.其次,对任一向量b,必有a 使A a=b,事实上,令A 1-b=a 即可.因此,A 是一个双射.6.设1ε,2ε, ,n ε是线性空间V 的一组基,A 是V 上的线性变换.证明:A 是可逆变换当且仅当A 1ε,A 2ε, ,A n ε线性无关.证 因A <1ε,2ε, ,n ε>=<A 1ε,A 2ε, ,A n ε>=<1ε,2ε, ,n ε>A,故A 可逆的充要条件是矩阵A 可逆,而矩阵A 可逆的充要条件是A 1ε,A 2ε, ,A n ε线性无关,故A 可逆的充要条件是A 1ε,A 2ε, ,A n ε线性无关.. 7.求下列线性变换在所指定基下的矩阵:1) 第1题4>中变换A 在基1ε=<1,0,0>,2ε=<0,1,0>,3ε=<0,0,1>下的矩阵;2) [o; 1ε,2ε]是平面上一直角坐标系,A 是平面上的向量对第一和第三象限角的平分线的垂直投影,B 是平面上的向量对2ε的垂直投影,求A,B,AB 在基1ε,2ε下的矩阵; 3) 在空间P [x]n 中,设变换A 为)()1()(x f x f x f -+→, 试求A 在基i ε=!1)1()1(i i x x x +-- <I=1,2, ,n-1>下的矩阵A ; 4) 六个函数1ε=eaxcos bx ,2ε=eaxsin bx ,3ε=x e axcos bx ,4ε=x eaxsin bx ,1ε=221x e ax cos bx ,1ε=21e ax 2x sin bx ,的所有实数线性组合构成实数域上一个六维线性空间,求微分变换D 在基i ε<i=1,2, ,6>下的矩阵; 5) 已知P3中线性变换A 在基1η=<-1,1,1>,2η=<1,0,-1>,3η=<0,1,1>下的矩阵是⎪⎪⎪⎭⎫ ⎝⎛-121011101,求A 在基1ε=<1,0,0>,2ε=<0,1,0>,3ε=<0,0,1>下的矩阵; 6) 在P 3中,A 定义如下:⎪⎩⎪⎨⎧--=-=-=)9,1,5()6,1,0()3,0,5(321ηηηA A A , 其中⎪⎩⎪⎨⎧-==-=)0,1,3()1,1,0()2,0,1(321ηηη, 求在基1ε=<1,0,0>,2ε=<0,1,0>,3ε=<0,0,1>下的矩阵; 7) 同上,求A 在1η,2η,3η下的矩阵.解 1>A 1ε=<2,0,1>=21ε+3ε,A 2ε=<-1,1,0>=-1ε+2ε,A 3ε=<0,1,0>=2ε,故在基1ε,2ε,3ε下的矩阵为⎪⎪⎪⎭⎫ ⎝⎛-001110012.2〕取1ε=〔1,0〕,2ε=〔0,1〕,则A 1ε=211ε+212ε,A 2ε=211ε+212ε,故A 在基1ε,2ε下的矩阵为A=⎪⎪⎪⎪⎭⎫⎝⎛21212121. 又因为B 1ε=0,B 2ε=2ε,所以B 在基1ε,2ε下的矩阵为B =⎪⎪⎭⎫⎝⎛1000,另外,〔AB 〕2ε=A 〔B 2ε〕=A 2ε=211ε+212ε,所以AB 在基1ε,2ε下的矩阵为AB =⎪⎪⎪⎪⎭⎫⎝⎛210210. 3〕因为 )!1()]2([)1(,,!2)1(,,11210----=-===-n n x x x x x x n εεεε, 所以A 0110=-=ε,A 01)1(εε=-+=x x , A )!1()]2([)1()!1()]3([)1(1---------=-n n x x x n n x x x n ε=)!1()]3([)1(----n n x x x {)]2([)1(---+n x x }=2-n ε,所以A 在基0ε,1ε, ,1-n ε下的矩阵为A =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛011010 .4〕因为D 1ε=a 1ε-b 2ε,D 2ε=b 1ε-a 2ε,6ε, D 3ε=1ε+a 3ε-b 4ε, D 4ε=2ε+b 3ε+a 4ε, D 5ε=3ε+a 5ε-b 6ε, D 6ε=4ε+b 5ε+a 6ε,所以D 在给定基下的矩阵为D =⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000000100001000010001a b b a a b b a ab b a. 5〕因为<1η,2η,3η>=<1ε,2ε,3ε>⎪⎪⎪⎭⎫⎝⎛--111101011,所以 <1ε,2ε,3ε>=<1η,2η,3η>⎪⎪⎪⎭⎫⎝⎛---101110111=<1η,2η,3η>X,故A 在基1ε,2ε,3ε下的矩阵为B =X 1-AX=⎪⎪⎪⎭⎫ ⎝⎛--111101011⎪⎪⎪⎭⎫ ⎝⎛-121011101⎪⎪⎪⎭⎫ ⎝⎛---101110111=⎪⎪⎪⎭⎫⎝⎛--203022211. 6〕因为<1η,2η,3η>=<1ε,2ε,3ε>⎪⎪⎪⎭⎫⎝⎛--012110301,所以A <1η,2η,3η>=A <1ε,2ε,3ε>⎪⎪⎪⎭⎫ ⎝⎛--012110301,但已知A <1η,2η,3η>=<1ε,2ε,3ε>⎪⎪⎪⎭⎫ ⎝⎛----963110505,故A <1ε,2ε,3ε>=<1ε,2ε,3ε>⎪⎪⎪⎭⎫ ⎝⎛----963110505⎪⎪⎪⎭⎫ ⎝⎛--0121103011-=<1ε,2ε,3ε>⎪⎪⎪⎭⎫ ⎝⎛----963110505⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---717172717672737371=<1ε,2ε,3ε>⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----72471872772757472072075. 7〕因为<1ε,2ε,3ε>=<1η,2η,3η>⎪⎪⎪⎭⎫ ⎝⎛--0121103011-,所以A <1η,2η,3η>=<1η,2η,3η>⎪⎪⎪⎭⎫ ⎝⎛--0121103011-⎪⎪⎪⎭⎫⎝⎛----963110505 =<1η,2η,3η>⎪⎪⎪⎭⎫ ⎝⎛---011101532.8.在P22⨯中定义线性变换A1<X >=⎪⎪⎭⎫⎝⎛d c b a X,A 2<X >=X ⎪⎪⎭⎫⎝⎛d c b a , A 2<X >=⎪⎪⎭⎫ ⎝⎛d c b a X ⎪⎪⎭⎫ ⎝⎛d c b a ,求A 1, A 2, A 3在基E 11, E 12, E 21, E 22下的矩阵. 解 因A 1E 11=a E 11+c E 12, A 1E 12=a E 12+c E 22,A 1E 21=b E 11+d E 21, A 1E 22= b E 21+d E 22,故A 1在基E 11, E 12, E 21, E 22下的矩阵为A 1=⎪⎪⎪⎪⎪⎭⎫⎝⎛d cdc b a b a 00000000. 又因A 2E 11=a E 11+b E 12, A 2E 12= c E 11+d E 12, A 2E 21= a E 21+b E 22, A 2E 22= c E 21+d E 22,故A 2在基E 11, E 12, E 21, E 22下的矩阵为A 2=⎪⎪⎪⎪⎪⎭⎫⎝⎛d b c a db ca 00000000.又因A 3E 11= a 2E 11+ab E 12+ac E 21+bc E 22, A 3E 12= ac E 11+ad E 12+c 2E 21+cd E 22, A 3E 21= ab E 11+b 2E 12+ad E 21+bd E 22, A 3E 22 = bc E 11+bd E 12+cd E 21+d 2E 22,故A 3在基E 11, E 12, E 21, E 22下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=22223d bdcd bc cd ad c ac bd b adab bc ab aca A . 9.设三维线性空间V 上的线性变换A 在基321,,εεε下的矩阵为A=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a , 1) 求A 在基123,,εεε下的矩阵; 2) 求A 在基321,,εεεk 下的矩阵,其中且; 3) 求A 在基3221,,εεεε+下的矩阵. 解 1>因A 3ε=333εa +a +223ε13a 1ε, A 2ε=+332εa +222εa 112εa ,A 1ε=+331εa +221εa 111εa ,故A 在基123,,εεε下的矩阵为⎪⎪⎪⎭⎫⎝⎛=1112132122233132333a a a a a a a a a B . 2>因 A 1ε=111εa ++)(221εk ka 331εa , A <k 2ε>=k 112εa +)(222εk a +332εka , A 3ε=13a 1ε+ka 23<2εk >+333εa , 故A 在321,,εεεk 下的矩阵为 ⎪⎪⎪⎪⎭⎫ ⎝⎛=3332312322211312112a ka a k a a k aa ka a B . 3>因A <21εε+>=<1211a a +><31εε+>+<12112221a a a a --+>2ε+<3231a a +>3ε, A 2ε=12a <21εε+>+<1222a a ->2ε+332εa , A 3ε=13a <21εε+>+<1323a a ->2ε+333εa ,故A 基3221,,εεεε+下的矩阵为⎪⎪⎪⎭⎫⎝⎛+----+-=333232311323122212112221131212113a a a a a a a a a a a a a a a a B . 10. 设A 是线性空间V 上的线性变换,如果Aε1-k ≠0,但A εk =0,求证:ε,A ε,, A ε1-k <k >0>线性无关.证 设有线性关系0121=+++-εεεk k A l A l l ,用A1-k 作用于上式,得1l A ε1-k =0<因A 0=εn 对一切n k ≥均成立>,又因为Aε1-k ≠0,所以01=l ,于是有01232=+++-εεεk k A l A l A l ,再用A 2-k 作用之,得2l Aε1-k =0.再由,可得2l =0.同理,继续作用下去,便可得021====k l l l ,即证ε,A ε,, Aε1-k <k >0>线性无关.11.在n 维线性空间中,设有线性变换A 与向量ε使得A ε1-n 0≠,求证A 在某组下的矩阵是⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0101010 . 证 由上题知,ε,A ε,A ε2,, Aε1-n 线性无关,故ε,A ε,A ε2,, A ε1-n 为线性空间V的一组基.又因为A ⋅+⋅+⋅=010εεεA A ε2+⋅+0 Aε1-n ,A <A ε>=ε⋅0+⋅0 A ε+⋅1 A ε2+⋅+0 A ε1-n ,…………………………… A 〔Aε1-n 〕=ε⋅0+⋅0 A ε+⋅0 A ε2+⋅+0 A ε1-n ,故A 在这组基下的矩阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0101010 . 12. 设V 是数域P 上的维线性空间,证明:与V 的全体线性变换可以交换的线性变换是数乘变换.证 因为在某组确定的基下,线性变换与n 级方阵的对应是双射,而与一切n 级方阵可交换的方阵必为数量矩阵kE,从而与一切线性变换可交换的线性变换必为数乘变换K.13. A 是数域P 上n 维线性空间V 的一个线性变换,证明:如果A 在任意一组基下的矩阵都相同,那么是数乘变换.证 设A 在基n εεε,,,21 下的矩阵为A=<ij a >,只要证明A 为数量矩阵即可.设X 为任一非退化方阵,且<n ηηη,,21>=<n εεε,,,21 >X, 则12,,,n ηηη也是V 的一组基,且A 在这组基下的矩阵是AX X 1-,从而有AX=XA,这说明A 与一切非退化矩阵可交换. 若取⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n X 211,则由A 1X =1X A 知ij a =0<i ≠j>,即得A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn a a a2211, 再取2X =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0001100001000010由A 2X =2X A,可得nn a a a === 2211.故A 为数量矩阵,从而A 为数乘变换.14.设321,,εεε,4ε是四维线性空间V 的一组基,已知线性变换A 在这组基下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201,1) 求A 在基42112εεη+-=,4443343222,,3εηεεηεεεη=+=--=下 的矩阵; 2) 求A 的核与值域;3) 在A 的核中选一组基,把它扩充为V 的一组基,并求A 在这组基下的矩阵; 4) 在A 的值域中选一组基, 把它扩充为V 的一组基, 并求A 在这组基下的矩阵. 解 1>由题设,知<4321,,,ηηηη>=<321,,εεε,4ε>⎪⎪⎪⎪⎪⎭⎫⎝⎛---2111011000320001,故A 在基4321,,,ηηηη下的矩阵为B=AX X 1-=12111011000320001-⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201⎪⎪⎪⎪⎪⎭⎫⎝⎛---2111011000320001 =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----87103403403163831031034322332. 2> 先求A1-<0>.设∈ξ A1-<0>,它在321,,εεε,4ε下的坐标为<1χ,432,,χχχ>,且A ε在321,,εεε,4ε下的坐标为<0,0,0,0,>,则⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4321x x x x =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000.因rank<A>=2,故由⎩⎨⎧=+++-=++032024321431x x x x x x x , 可求得基础解系为X 1=)0,1,23,2('--,X 2=)1,0,2,1('--. 若令1α=<321,,εεε,4ε>X 1,2α=<321,,εεε,4ε>X 2, 则12,αα即为A 1-<0>的一组基,所以A1-<0>=12(,)L αα.再求A 的值域A V.因为A 1ε=43212εεεε++-, A 2ε=432222εεε-+, A 3ε=432152εεεε+++, A 4ε3ε=4321253εεεε-++,rank<A>=2,故A 1ε ,A 2ε, A 3ε, A 4ε的秩也为2,且A 1ε ,A 2ε线性无关,故A 1ε ,A 2ε可组成A V 的基,从而A V=L<A 1ε ,A 2ε>.4) 由2>知12,αα是A 1-<0>的一组基,且知,1ε2ε,12,αα是V 的一组基,又<,1ε2ε, a 1, a 2>=<321,,εεε,4ε>⎪⎪⎪⎪⎪⎭⎫⎝⎛---10000100223101201, 故A 在基,1ε2ε,12,αα下的矩阵为B=11000100223101201-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---10000100223101201=⎪⎪⎪⎪⎪⎭⎫⎝⎛-00220021001290025.4> 由2>知A 1ε=43212εεεε++-, A 2ε=432222εεε-+ 易知A 1ε, A 2ε,43,εε是V 的一组基,且<A 1ε, A 2ε,43,εε>=<321,,εεε,4ε>⎪⎪⎪⎪⎪⎭⎫⎝⎛--1021012100210001, 故A 在基A 1ε, A 2ε,43,εε下的矩阵为C=11021012100210001-⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201⎪⎪⎪⎪⎪⎭⎫⎝⎛--1021012100210001 =⎪⎪⎪⎪⎪⎭⎫⎝⎛000000002231291225. 15. 给定P 3的两组基⎪⎩⎪⎨⎧===)1,1,1()0,1,2()1,0,1(321εεε⎪⎩⎪⎨⎧--=-=-=)1,1,2()1,2,2()1,2,1(321ηηη, 定义线性变换A : A i ε=i η<i =1,2,3>,1) 写出由基321,,εεε到基321,,ηηη的过度矩阵; 2) 写出在基321,,εεε下的矩阵; 3) 写出在基321,,ηηη下的矩阵.解 1>由<321,,ηηη>=<321,,εεε>X,引入P 3的一组基1e =<1,0,0>, 2e =<0,1,0>, 3e =<0,0,1>,则<321,,εεε>=<1e ,2e ,3e >⎪⎪⎪⎭⎫ ⎝⎛101110121=<1e ,2e ,3e >A,所以<321,,ηηη>=<1e ,2e ,3e >⎪⎪⎪⎭⎫ ⎝⎛----111122221=<1e ,2e ,3e >B=<1e ,2e ,3e >A 1-B, 故由基321,,εεε到基321,,ηηη的过度矩阵为X= A 1-B=1101110121-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----111122221=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---252112323123232. 2>因A <321,,εεε>=<321,,ηηη>=<321,,εεε>⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---252112323123232, 故A 在基321,,εεε下的矩阵为A=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---252112323123232. 4) 因A <321,,ηηη>=A <321,,εεε>X=<321,,ηηη>X,故A 在基321,,ηηη下的矩阵仍为X..16.证明⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21与⎪⎪⎪⎪⎪⎭⎫⎝⎛n i ii λλλ21相似,其中<n i i i ,,,21 >是1,2,n , 的一个排列.证 设有线性变换A ,使A )21,,,(n εεε =)21,,,(n εεε ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21=)21,,,(n εεε D 1, 则A < ,,21i i εε,n i ε>=< ,,21i i εε,n i ε>⎪⎪⎪⎪⎪⎭⎫⎝⎛n i ii λλλ21=< ,,21i i εε,n i ε>D 2, 于是D 1与D 2为同一线性变换A 在两组不同基下的矩阵,故⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21与⎪⎪⎪⎪⎪⎭⎫⎝⎛n i ii λλλ21相似. 17.如果A 可逆,证明AB 与BA 相似. 证 因A 可逆,故A1-存在,从而A1-<AB>A=< A 1-A>BA=BA,所以AB 与BA 相似.18.如果A 与B 相似,C 与D 相似,证明:0000A B B D ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭与相似.证 由已知,可设B=X 1-AX, D=Y 1-CY ,则⎪⎪⎭⎫ ⎝⎛--1100Y X ⎪⎪⎭⎫⎝⎛C A 00⎪⎪⎭⎫ ⎝⎛Y X0=⎪⎪⎭⎫⎝⎛D B 00,这里⎪⎪⎭⎫ ⎝⎛--1100Y X =⎪⎪⎭⎫⎝⎛Y X001-,故⎪⎪⎭⎫ ⎝⎛C A 00与⎪⎪⎭⎫⎝⎛D B 00相似. 19.求复数域上线性变换空间V 的线性变换A 的特征值与特征向量.已知A 在一组基下的矩阵为:1>A=⎪⎪⎭⎫ ⎝⎛2543 2>A=⎪⎪⎭⎫ ⎝⎛-00a a 3>A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------111111*********1 4>A=⎪⎪⎪⎭⎫⎝⎛---121101365 5>A=⎪⎪⎪⎭⎫ ⎝⎛001010100 6>A=⎪⎪⎪⎭⎫ ⎝⎛---031302120 7>A=⎪⎪⎪⎭⎫ ⎝⎛----284014013解 1>设A 在给定基1ε,2ε下的矩阵为A,且A 的特征多项式为A E -λ=2543----λλ=2λ-5λ-14=<7-λ><2+λ>,故A 的特征值为7,-2.先求属于特征值λ=7的特征向量.解方程组⎩⎨⎧=+-=-0550442121x x x x ,它的基础解系为⎪⎪⎭⎫ ⎝⎛11,因此A 的属于特征值7的全部特征向量为k 1ξ <k 0≠>,其中1ξ=1ε+2ε.再解方程组⎩⎨⎧=--=--0450452121x x x x ,它的基础解系为⎪⎪⎭⎫ ⎝⎛-54,因此A 的属于特征值-2的全部特征响向量为k 2ξ<k 0≠>,其中2ξ=41ε-52ε.2>设A 在给定基1ε,2ε下的矩阵为A,且当a=0时,有A=0,所以AE -λ=λλ00=2λ, 故A 的特征值为1λ=2λ=0.解方程组⎩⎨⎧=+=+0000002121x x x x ,它的基础解系为⎪⎪⎭⎫ ⎝⎛01,⎪⎪⎭⎫⎝⎛10,因此A 的属于特征值0的两个线性无关特征向量为1ξ=1ε,2ξ=2ε,故A 以V 的任一非零向量为其特征向量.当a ≠0时,AE -λ=λλa a -=2λ+a 2=<ai +λ><ai -λ>,故 A 的特征值为1λ=ai ,2λ= -ai .当1λ=ai 时,方程组⎩⎨⎧=+=-002121aix ax ax aix 的基础解系为⎪⎪⎭⎫⎝⎛-1i ,故A 的属于特征值ai 的全部特征向量为k 1ξ<k 0≠>,其中1ξ=-1εi +2ε.当2λ= -ai 时,方程组⎩⎨⎧=-=--002121aix ax ax aix 的基础解系为⎪⎪⎭⎫⎝⎛1i ,故A 的属于特征值-ai 的全部特征向量为k 2ξ <k 0≠>,其中2ξ=1εi +2ε.3>设A 在 给定基1ε,2ε,3ε,4ε下的矩阵为A,因为A E -λ=<2-λ>3<2+λ>,故A 的特征值为1λ=2λ=2,243-==λλ.当2=λ时,相应特征方程组的基础解系为X ⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1001,0101,0011321X X ,故A 的属于特征值2的全部特征向量为11εk +22k ε+k33ε <k 321,,k k 不全为零>,其中1ξ=1ε+2ε,2ξ=1ε+3ε,3ξ=1ε+4ε.当2-=λ时,特征方程组的基础解系为X =4⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1111,故A 的属于特征值-2的全部特征向量为k 4ξ <k 0≠>,其中4ξ=1ε-2ε-43εε-. 4) 设A 在给定基321,,εεε下的矩阵为A,因A E -λ==+-----12111365λλλ43-λ422++λλ=<2-λ><31--λ><31+-λ>,故A 的特征值为1λ=2,2λ=3λ.当1λ=2时, 方程组⎪⎩⎪⎨⎧=+--=-+=+--032020363321321321x x x x x x x x x 的基础解系为⎪⎪⎪⎭⎫⎝⎛-012,故A 的属于特征值2的全部特征向量为k 1ξ <k 0≠>,其中1ξ=12ε-2ε.当λ=1+3时, 方程组⎪⎩⎪⎨⎧=++--=-++=+-+-0)32(20)31(036)34(321321321x x x x x x x x x 的基础解系为⎪⎪⎪⎭⎫⎝⎛--3213,故A的属于特征值1+3的全部特征向量为k 2ξ <k 0≠>,其中2ξ=13ε-2ε+<23->3ε.当λ=1-3时, 方程组⎪⎩⎪⎨⎧=-+--=--+=+---0)32(20)31(036)34(321321321x x x x x x x x x 的基础解系为⎪⎪⎪⎭⎫ ⎝⎛+-3213,故A的属于特征值13-的全部特征向量为k 3ξ <k 0≠>,其中3ξ=13ε-2ε+<23+>3ε. 5) 设A 在给定基321,,εεε下的矩阵为A,因A E -λ=λλλ0101010---=<1-λ>2<1+λ>,故A 的特征值为1,1321-===λλλ.当121==λλ,方程组⎩⎨⎧=+-=-003131x x x x 的基础解系为,101⎪⎪⎪⎭⎫ ⎝⎛010⎛⎫⎪⎪ ⎪⎝⎭,故A 的属于特征值1的全部特征向量为112212(,)k k k k ξξ+不全为零,其中311εεξ+=,22εξ=.当13-=λ时,方程组⎪⎩⎪⎨⎧=--=-=--002031231x x x x x 的基础解系为101⎛⎫ ⎪⎪ ⎪-⎝⎭,故A 的属于特征值-1的全部特征向量为)0(3≠k k ξ,其中313εεξ-=. 6) 设A 在给定基321,,εεε下的矩阵为A,因A E -λ==---λλλ313212)14(2+λλ=)14)(14(i i +-λλλ,故A 的特征值为i i 14,14,0321-===λλλ.当01=λ时,方程组⎪⎩⎪⎨⎧=+=-=--0303202213132x x x x x x 的基础解系为312⎛⎫⎪- ⎪ ⎪⎝⎭,故A 的属于特征值0的全部特征向量为)0(1≠k k ξ,其中321123εεεξ+-=.当i 142=λ时,该特征方程组的基础解系为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+-+101432146ii ,故A 的属于特征值i 14的全部特征向量为)0(2≠k k ξ,其中321210)1432()146(εεεξ-+-++=i i .当i 14-=λ时,该特征方程组的基础解系为⎪⎪⎪⎪⎪⎭⎫⎝⎛----101432146ii ,故A 的属于特征值i 14-的全部特征向量为)0(3≠k k ξ,其中321310)1432()146(εεεξ---+-=i i .7) 设A 在给定基321,,εεε下的矩阵为A,因A E -λ=28414013+-+--λλλ=<1-λ>2<2+λ>,故A 的特征值为2,1321-===λλλ.当121==λλ,该特征方程组的基础解系为3620⎛⎫ ⎪- ⎪ ⎪⎝⎭,故A 的属于特征值1的全部特征向量为)0(1≠k k ξ,其中32112063εεεξ+-=.当23-=λ,该特征方程组的基础解系为001⎛⎫ ⎪⎪ ⎪⎝⎭,故A 的属于特征值-2的全部特征向量为)0(2≠k k ξ,其中32εξ=.20.在上题中,哪些变换的矩阵可以在适当的基下变成对角形?在可以化成对角形的情况下,写出相应的基变换的过度矩阵T,并验算T1-AT.解已知线形变换A 在某一组基下为对角形的充要条件是有n 个线形无关的特征向量,故上题中1>~6>可以化成对角形,而7>不能.下面分别求过渡矩阵T. 1) 因为12(,)ξξ=<21,εε>⎪⎪⎭⎫⎝⎛-5141,所以过渡矩阵T=⎪⎪⎭⎫⎝⎛-5141,T 1-AT=⎪⎪⎪⎪⎭⎫ ⎝⎛-91919495⎪⎪⎭⎫ ⎝⎛2543⎪⎪⎭⎫ ⎝⎛-5141=⎪⎪⎭⎫ ⎝⎛-2007. 2)0,a =当时已是对角型.⎪⎪⎭⎫ ⎝⎛-=≠11),(),(,02121i i a εεξξ有时当,过渡矩阵T=⎪⎪⎭⎫⎝⎛-11i i , T 1-AT=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎭⎫⎝⎛-ai ai i i a a i i001100212212. 3>因为<4321,,,ξξξξ>=<4321,,,εεεε>⎪⎪⎪⎪⎪⎭⎫⎝⎛---1100101010011111,过渡矩阵T=⎪⎪⎪⎪⎪⎭⎫⎝⎛---1100101010011111, T 1-AT=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2222. 4>因为<),,321ξξξ=<⎪⎪⎪⎭⎫ ⎝⎛+----32320111332),,321εεε, 过渡矩阵T=⎪⎪⎪⎭⎫ ⎝⎛+----32320111332,T ⎪⎪⎪⎭⎫⎝⎛-+=-313121AT .5>因为 <),,321ξξξ=<321,,εεε>⎪⎪⎪⎭⎫⎝⎛-101010101,过渡矩阵T=⎪⎪⎪⎭⎫⎝⎛-101010101,11100011011002201001001001011100101001022T AT -⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭-⎪⎝⎭.6>因为 <⎪⎪⎪⎪⎭⎫ ⎝⎛----+---+=101021432143211461463),,(),,321321i i i i εεεξξξ,即过渡矩阵为 T=⎪⎪⎪⎪⎭⎫⎝⎛----+---+101021432143211461463i i i i ,且T ⎪⎪⎪⎭⎫ ⎝⎛-=-i i AT 140001401. 21.在P[x]n <n>1>中,求微分变换D 的特征多项式,并证明D 在任何一组基下的矩阵都不可能是对角阵.解 取P[x]n 的一组基1,x,21,...,2(1)!n x x n --,则D 在此基下的矩阵为 D=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0 (00)01...000...............0...1000 (010),从而n D E λλλλλ=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=-...0001...000...............0...100 01, 故D 的特征值是n (0=λ重>,且D 的属于特征值0的特征向量ξ只能是非零常数.从而线性无关的特征向量个数是1,它小于空间的维数n,故D 在任一组基下的矩阵都不可能是对角形.22.设 A=142034043⎛⎫ ⎪- ⎪ ⎪⎝⎭,求A k.解:因为=---+---=-34430241λλλλA E <)5)(5)(1+--λλλ,故A 的特征值为5,5,1321-===λλλ,且A 的属于特征值1的一个特征向量为X '1)0,0,1(=,A 的属于特征值5的一个特征向量为X '2)2,1,2(=,A 的属于特征值-5 的一个特征向量为X '3)1,2,1(-=.于是只要记T=<X ⎪⎪⎪⎭⎫ ⎝⎛-=120210121),,321X X ,则T B AT =⎪⎪⎪⎭⎫ ⎝⎛-=-5000500011,且 B ⎪⎪⎪⎭⎫ ⎝⎛-=k kk )5(00050001. 于是A ==-1T TB k k ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-5152052510101)5(00050001120210121k k =[][][][][][]⎪⎪⎪⎭⎫⎝⎛-+⋅-+⋅⋅-+⋅⋅-+⋅--+⋅-+⋅⋅-+-+---+-k K k k k k k k k k k k )1(45)1(1520)1(152)1(41501)1(45)1(1521111111111. 23.设εεε,,2143,ε是四维线性空间V 的一个基,线性变换A 在这组基下的矩阵为A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------=711310252921323133425.1) 求A 的基432112εεεεη+++=,321232εεεη++=,33εη=,44εη=下的矩阵; 2) 求A 的特征值与特征向量; 3) 求一可逆矩阵T,使TAT 1-成对角形.解 1>由已知得<X ),,,(1001011100320021),,,(),,,432143214321εεεεεεεεηηηη=⎪⎪⎪⎪⎪⎭⎫⎝⎛=, 故求得A 在基4321,,,ηηηη下的矩阵为B=X ⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-2500232700450056001AX .2> A 的特征多项式为=)(λf )1)(21(2--=-=-λλλλλB E A E ,所以A 的特征值为1,21,04321====λλλλ. A 的属于特征值0=λ的全部特征向量为2211ξξk k +,其中21,k k 不全为零,且4212εεεξ+--=.A 的属于特征值21=λ的全部特征向量为33ξk ,其中 03≠k ,且321324εεεξ+--=+64ε.A 的属于特征值1=λ的全部特征向量为44ξk ,其中04≠k ,且4321423εεεεξ-++=.3〕因为〔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=2610110112133412),,,(),,,43214321εεεεξξξξ,所求可逆阵为 T=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----2610110112133412,且 T ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=-121001AT 为对角矩阵. 24.1>设21,λλ是线性变换A 的两个不同特征值,21,εε是分别属于21,λλ的特征向量,证明:21εε+不是A 的特征向量;2>证明:如果线性空间V 的线性变换A 以V 中每个非零向量作为它的特征向量,那么A 是数乘变换.证 1>由题设知A 111)(ελε=, A 222)(ελε=, 且21λλ≠,若21εε+是A 的特征向量,则存在0≠λ使 A 〔21εε+〕=)(21εελ+=21λελε+, A 〔21εε+〕=2211ελελ+=21λελε+, 即 0)()(2211=-+-ελλελλ.再由21,εε的线性无关性,知021=-=-λλλλ,即21λλλ==,这是不可能的. 故21εε+不是A 的特征向量.2〕设V 的一组基为12,,...,n εεε,则它也是A 的n 个线性无关的特征向量,故存在特征值λλ,12,,...,n λ 使A i i i ελε=)(),...,2,1(n i =.由1〕即知12...n k λλλ====.由已知,又有A ααk =)()(V ∈∀α,即证A 是数乘变换.25.设V 是复数域上的n 维线性空间,A ,B 是V 上的线性变换,且AB =BA .,证明: 1) 如过0λ是A 的一个特征值,那么0λV 是B 的不变子空间; 2) A ,B 至少有一个公共的特征向量.证 1>设0λαV ∈,则A 0αλα=,于是由题设知 A <B α>=B <A α>=B <=)0αλ0λ<B α>, 故B α∈0λV ,即证0λV 是B 的不变子空间.3) 由1>知0λV 是B 的不变子空间,若记B|0λV =B 0,则B 0也是复数域上线性空间0λV 的一个线性变换,它必有特征值,0μ使B 0B =0μB <B ∈0λV ,且B 0≠>, 显然也有A <B >=0μB ,故B 即为A 与B 的公共特征向量.26. 设V 是复数域上的n 维线性空间,而线性变换A 在基n εεε,...,,21下的矩阵是一若当块.证明:1) V 中包含1ε的A -子空间只有V 自身; 2) V 中任一非零A -子空间都包含n ε;3) V 不能分解成两个非平凡的A -子空间的直和.证 1>由题设,知A <n εεε,...,,21>=<n εεε,...,,21>⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋅λλλ1.....1,即⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=--n n nn n a A A A λεεελεεελεεελεε11322211.........................,设W 为A -子空间,且∈1εW,则∈1εA W, 进而有∈-=112λεεεA W ∈⇒2εA W, ∈-=223λεεεA W ∈⇒3εA W,………………………………….∈-=--11n n n A λεεεW,故W=L{n εεε,...,,21}=V.2>设W 为任一非零的A -子空间,对任一非零向量∈αW,有 不妨设01≠κ,则A nn A A A εκεκεκα+++= (2211)=1κ<21ελε+>+2κ<32ελε+>+…+n n λεκ =∈++++-n n εκεκεκλα13221...W 于是 ∈+++-n n εκεκεκ13221...W同理可得 ∈+++-n n εκεκεκ24231...W,…,∈n εκ1W 从而∈n εW,即证V 中任一非零的A -子空间W 都包含n ε. 3〕设W ,1W 2是任意两个非平凡的A -子空间,则由2〕知∈n εW 1且∈n εW 2,于是∈n εW ⋂1W 2,故V 不能分解成两个非平凡的A -子空间的直和. 27.求下列矩阵的最小多项式:⎪⎪⎪⎭⎫⎝⎛001010100)1, 2>⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------3131131331311313 解 1>设=A ⎪⎪⎪⎭⎫⎝⎛001010100,因为A 2-E =0,是所以12-λA 的零化多项式,但A -E 0≠,A +E 0≠,故A 的最小多项式为1)(2-=λλA m .2>因为4)(λλλ=-=A E f ,所以A 的最小多项式为432,,,λλλλ之一,代入计算可得A的最小多项式为2)(λλ=A m .二 补充题参考解答1. 设A,B 是线性变换, A 2= A, B 2=B 证明:1) 如果<A+B >2 =A+B 那么AB=0; 2) 如果, AB=BA 那么<A+B-AB>2=A+B-AB. 证 1>因为A 2= A, B 2=B, <A+B >2=A+B 由<A+B >2 =<A+B> <A+B>= A 2 +AB+BA+ B 2, 故A+B= A +AB+BA+ B, 即AB+BA=0.又2AB=AB+AB=AB-BA= A 2B-B 2A= A 2B+ABA= A <AB+BA>= A0=0 所以AB=0.2> 因为A 2= A, B 2=B, AB=BA所以<A+B-AB>2= <A+B-AB> <A+B-AB>= A 2+BA- AB A+ AB+ B 2- AB 2-A 2B-BAB +ABAB = A+AB - AA B + AB+ B- AB-AB-ABB +AABB = A+AB - A B + AB+ B- AB-AB-AB +AB = A+B- AB .2. 设V 是数域P 上维线性空间,证明:由V 的全体变换组成的线性空间是2n 维的.证 21112121n n n n n n n nn E E E E E E P P n ⨯⨯因,,,,,,,是的一组基,是维的.V 的全体线性变换与n n P ⨯同构,故V 的全体线性变换组成的线性空间是2n 维的. 3. 设A 是数域P 上n 维线性空间V 的一个线性变换,证明:1) 在][x P 中有一次数2n ≤的多项式)(x f ,使0)(=A f ; 2) 如果)(,0)(==A g A f ,那么)(=A d ,这里.)()()(的最大公因式与是x g x f x d ;3) A 可逆的充分必要条件是:有一常数项不为零的多项式()()0f x f A =使.证 1>因为P 上的n 维线性空间V 的线性变换组成的线性空间是2n 维的,所以2n +1个线性变换A2n ,A12-n ,、、、,A,E,一定线性相关,即存在一组不全为零的数22101,,,,n n a a a a -使2n a A 2n +12-n a A12-n ++1a A+0a E=0,令22221101()n nn n f x a xa x a x a --=++++,且22(0,1,2,,)i a i n f x n =∂≤不全为零,(()).这就是说,在][x P 中存在一次数2n ≤的多项式)(x f ,使0)(=A f .即证. 2>由题设知)()()()()(x g x v x f x u x d +=因为0)(,0)(==A g A f , 所以)()()()()(A g A v A f A u A d +==0.3>必要性.由1>知,在][x P 中存在一次数2n ≤的多项式)(x f ,使0)(=A f .即2n a A 2n +12-n a A 12-n++1a A+0a E=0,若则,00≠a 22221101()n nn n f x a x a xa x a --=++++即为所求.若00a =,2n a A 2n +12-n a A 12-n++1a A+0a E=0,因 A 可逆,故存在右乘等式两边也存在,用1111)()()(,----=j j j A A A A ,得2n a Ajn-2+12-n a A12--j n+…+j a E=0令=)(x f 2n a jnx-2+12-n a 12--j nx +…+)0(≠j j a a ,即)(x f 为所求.充分性.设有一常数项不为零的多项式22221101()n n n n f x a x a xa x a --=++++)0(0≠a 使0)(=A f ,即00111=++++--E a A a Aa A a m m m m , 所以E a A a Aa A a m m m m 0111-=+++-- , 于是E A E a A a a m m =⋅++--)(1110, 又⋅A E E a A a a m m =++--)(1110, 故A 可逆.4. 设A 是线性空间V 上的可逆线性变换.1) 证明: A 的特征值一定不为0;2) 证明:如果λ是的A 特征值,那么λ1是1-A 的特征值. 证 1>设可逆线性变换A 对应的矩阵是A,则矩阵A 可逆,A 的特征多项式)(λf 为A a a a f n n nn n )1()()(12211-+++++-=- λλλ,A 可逆 ,故0≠A .又因为A 的特征值是的全部根,其积为0≠A ,故A 的特征值一定不为0. 2>设λ是的A特征值,那么存在非零向量ξ,使得111111,A A A A A ξλξξλξξξλλ----===用作用之,得(),于是,即是的特征值.5.设A 是线性空间V 上的线性变换,证明;A 的行列式为零的充要条件是A 以零作为一个特征值.证:设线性变换A 矩阵为A,则 A 的特征值之积为A .必要性,设0=A ,则A 的特征值至少有一个为零,即一另为一个特征值. 充分性,设A 有一个特征值00=λ,那么0=A .6. 设A 是一个n 阶下三角矩阵,证明:1) 如果)2,1,,(n j i j i a a jj ii =≠≠,那么A 相似于一对角矩阵;2) 如果a aa nn === 2211,而至少有一)(00000j i a j i >≠,那么A 不与对角矩阵相似.证:1>因为A 的多项式特征是()f λ=)())((2211a a a nn A E ---=-λλλλ ,又因)2,1,,(n j i j i aa jjii=≠≠,故A 有n 个不同的特征值,从而矩阵A 一定可对角化,故A 似于对角矩阵.2>假定 A=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛a a aa j i1111110与对角矩阵B=⎪⎪⎪⎪⎪⎭⎫⎝⎛λλλn21相似, 则它们有相同的特征值λλλn,,,21,因为A 的特征多项式()f λ=()na 11-λ,所以a n 1121====λλλ ,由于 B=⎪⎪⎪⎪⎪⎭⎫⎝⎛a aa 111111=E a11是数量矩阵,它只能与自身相似,故A 不可能与对角矩阵相似.7.证明:对任一n n ⨯复系数矩阵A ,存在可逆矩阵T,使AT T 1- 证:存在一组基εεεεsr s r ,,,,11111 ,,,使与矩阵A 相应的线性变换A 在该基下的矩阵成若尔当标准形J,且⎪⎪⎩⎪⎪⎨⎧=+=ελεεελεr r A A 111111211111, ⎪⎪⎩⎪⎪⎨⎧=+=ελεεελεr r A A s s s s s s s s 1211 ,若过度矩阵为P,则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-S J J J J AP P211, 重排基向量的次序,使之成为一组新基1111,,,,,,1s sr r s εεεε ,则由新基到旧基的过渡矩阵为Q=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛s r r r B B B21,其中B j r =jr ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛111 , 于是 A 1111,,,,,,(1s sr r s εεεε >=1111,,,,,,(1s sr r s εεεε >J ', 故A 在此新基下的矩阵即为上三角形 即存在可逆矩阵T=PQ,使AT T 1-成上三角形.8. 如果s A A A ,,,21 是线性空间V 的两两不同的线性变换,那么在V 中必存在向量a ,使a A a A a A s ,,,21 也两两不同.证 令V }{a A A V jiij =∈=ααα, <s j i ,2,1,=>,因为ij j i V A A ∈==0,000,故`ij V 非空.又因为s A A A ,,,21 两两不同,所以对于每两个j i A A ,而言,总存在一个向量β,使ββj i A A ≠,故ij V 是V 的非空真子集.设则,,ij V ∈βαββααj i i A A A A ==,,于是)()(βαβα+=+j i A A ,即ij V ∈+βα.又)()(ααααk A kA kA k A j j i i ===,于是ij V k ∈α,故ij V 是V 的真子空间. 1>如果ij V 都是V 的非平凡子空间,在V 中至少有一个向量不属于所有的ij V ,设),,,2,1,(s j i V ij =∉α则ααj i A A ≠<s j i ,,2,1, =>,即证: 存在向量α使αααs A A A ,,,21 两两不同.2>如果{ij V }中有V 的平凡子空间00j i V ,则00j i V 只能是零空间.对于这种00j i V ,只要取0α≠,就有ααj i A A ≠,故这样的00j i V 可以去掉.因而问题可归于1>,即知也存在向量α使αααs A A A ,,,21 两两不同.,.,:A V W V AW W 9.设是有限维线性空间的线性变换是的子空间表示由中向量的像组成的子空间证明)dim ())0(dim ()dim (1W W A AW =⋂+-.证 因为故上的线形变换也是,W A W A ⋂-)0(1是.的子空间W 设W A ⋂-)0(1的维数 为r,W 的维数为s.今在W A ⋂-)0(1中取一组基,,,21r εεε 把它扩充成W 的一组基,,,21r εεε s r εε ,1+, 则),,,,(121s r r A A A A A L AW εεεεε +==),(1s r A A L εε +,且s r A A εε,1 +线性无关,所以)dim ())0(dim ()dim (1W W A AW =⋂+-. 10.设,,A B n V 是维线性空间的两个线性变换证明:rank <AB >rank ≥<A >+n B rank -)(.证 在分别为在这组基下对应的矩阵设线性变换中取一组基B A V ,,A,B,则线性变换对应的矩阵为AB AB.因为B A ,线性变换,的秩分别等于矩阵AB A,B,AB 的秩,所以对于矩阵A,B,AB 有rank <AB>rank ≥<A>+n rank -)B (,故对于B A ,线性变换,也有ABrank <AB >rank ≥<A >+n B rank -)(.11.设22,,A A B B ==证明:1>,A B AB B BA A ==与有相同值域的充要条件是; 2>,A B AB A BA B ==与有相同的核充要条件是. 证1>必要性,若βαβααA B V AV BV B V BV AV =∈=∈∈=使故存在向量则任取,,,,,于是αβββB A A AB ===2,ββα=A 故有的任意性由,.同理可证 A A =β. 充分性,若=AB B ,A BA =,任取则有,V AV Aa ⊂∈BV Aa B BAa Aa ∈==)(,于是BV AV ⊂,同理可证AV BV ⊂,故BV AV =.。
高等代数【北大版】7.6
![高等代数【北大版】7.6](https://img.taocdn.com/s3/m/17ec772b3169a4517723a3b6.png)
σ 2)由1), 的秩等于基象组 σ (ε 1 ),σ (ε 2 ),L ,σ (ε n ) ) ),
的秩, 的秩,又
(σ (ε 1 ),σ (ε 2 ),L ,σ (ε n ) ) = (ε 1 , ε 2 ,L , ε n, ) A.
由第六章§ 由第六章§5的结论3知, σ (ε 1 ),σ (ε 2 ),L ,σ (ε n ) 的秩 结论 知 等于矩阵A的秩 等于矩阵 的秩. 的秩 ∴ 秩(σ ) =秩 ( A).
σ (V ) + σ 1 (0) 未必等于 未必等于V.
如在例1中 如在例 中,
D ( P[ x ]n ) + D 1 ( 0 ) = P[ x ]n1 ≠ P[ x ]n
§7.6 线性变换的值域与核
3. 设 σ 为n 维线性空间 的线性变换,则 维线性空间V的线性变换 的线性变换,
ⅰ) σ 是满射 σ (V ) = V
σ ( ε 1 , ε 2 ,L , ε n , ) = (ε 1 , ε 2 ,L , ε n , ) A
§7.6 线性变换的值域与核
A2 = A, 知 σ 2 = σ . 由
任取 α ∈ σ (V ), 设 α = σ ( β ), β ∈ V ,
σ (α ) = σ (σ ( β )) = σ 2 ( β ) = σ ( β ) = α 则
σ ( kα ) = kσ (α ) = k 0 = 0, α + β ∈ σ 1 (0), kα ∈ σ 1 (0), 即
k ∈ P
∴ σ (0) 对于 的加法与数量乘法封闭. 对于V的加法与数量乘法封闭 的加法与数量乘法封闭
1
的子空间. 故 σ (0) 为V的子空间 的子空间
1
高等代数(北大版)第7章习题参考答案
![高等代数(北大版)第7章习题参考答案](https://img.taocdn.com/s3/m/81c75e1f852458fb770b5660.png)
第七章线性变换1.判别下面所定义的变换那些是线性的,那些不是:1)在线性空间V中,A,其中V是一固定的向量;2)在线性空间V中,A其中V是一固定的向量;3)在P 322 中,A(,,)(,,)x1xxxxxx;2312334)在P 3中,A(,,)(2,,)x1xxxxxxx2312231;5)在P[x]中,A f(x)f(x1);6)在P[x]中,A()(),fxfx其中0 x P是一固定的数;07)把复数域上看作复数域上的线性空间,A。
nn中,A X=BXC其中B,CP 8)在P解1)当0时,是;当0时,不是。
nn是两个固定的矩阵.2)当0时,是;当0时,不是。
3)不是.例如当(1,0,0),k2时,k A()(2,0,0),A(k)(4,0,0), A(k)k A()。
4)是.因取(x1,x2,x3),(y1,y2,y3),有A()=A(x1y1,x2y2,x3y3)=(2x12y1x2y2,x2y2x3y3,x1y1)=(2x1x2,x2x3,x1)(2y1y2,y2y3,y1)=A+A,A(k)A(kx1,kx2,kx3)(2kx1 k x2,k x2k x,3k x)1(2kx1 k x2,k x2k x,3k x)1=k A(),3故A是P上的线性变换。
5)是.因任取f(x)P[x],g(x)P[x],并令u(x)f(x)g(x)则A(f(x)g(x))=A u(x)=u(x1)=f(x1)g(x1)=A f(x)+A(g(x)),再令v(x)kf(x)则A(kf(x))A(v(x))v(x1)kf(x1)k A(f(x)),故A为P[x]上的线性变换。
6)是.因任取f(x)P[x],g(x)P[x]则.A(f(x)g(x))=f(x0)g(x0)A(f(x))A(g(x)),A(kf(x))kf(x0)k A(f(x))。
7)不是,例如取a=1,k=I,则A(ka)=-i,k(A a)=i,A(ka)k A(a)。
高等代数【北大版】7.2
![高等代数【北大版】7.2](https://img.taocdn.com/s3/m/f6d70ed7c1c708a1284a44b4.png)
β = k1σ (ε 1 ) + k2σ (ε 2 ) + + knσ (ε n ),
即有 σ ( k1ε 1 + k 2ε 2 + + k nε n ) = β .
∴ σ 为满射 为满射.
§7.2 线性变换的运算
其次, 其次,任取 α , β ∈ V , 设 α = ∑ aiε i , β = ∑ biε i ,
1
(α + β ) = σ
1 1
1
1
1
1
1
1
1
σ 1 ( kα ) = σ 1 k ( σσ 1 ) (α ) = σ 1 k σ ( σ 1 (α ) )
= σ 1 σ k σ 1 ( α )
§7.2 线性变换的运算
= σ 1 ( α ) + σ 1 ( β )
( (
(
(
)))
)
((
)
))
= k σ 1 (α ) = kσ 1 (α )
线性变换的加法与数量乘法构成数域P上的一个线性 线性变换的加法与数量乘法构成数域 上的一个线性 空间,记作 L(V ). 空间,
§7.2 线性变换的运算
四, 线性变换的逆
1.定义
为线性空间V的线性变换 若有V的变换 的线性变换, 设 σ 为线性空间 的线性变换,若有 的变换 τ 使
στ = τσ = E
§7.2 线性变换的运算
2.基本性质
(1)满足交换律:σ + τ = τ + σ )满足交换律: (2)满足结合律:(σ + τ ) + δ = σ + (τ + δ ) )满足结合律: 为零变换. (3) 0 + σ = σ + 0 = σ , 0为零变换 ) 为零变换 (4)乘法对加法满足左,右分配律: )乘法对加法满足左,右分配律:
(完整版)高等代数(北大版)第7章习题参考答案
![(完整版)高等代数(北大版)第7章习题参考答案](https://img.taocdn.com/s3/m/8c7ff6bceefdc8d376ee32e6.png)
第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
高等代数【北大版】76
![高等代数【北大版】76](https://img.taocdn.com/s3/m/07f4ac0f336c1eb91a375dd1.png)
等于矩阵A的秩.
∴ 秩( )=秩 ( A).
§7.6 线性变换的值域与核
2. 设 为n 维线性空间V的线性变换,则
的秩+ 的零度=n 即 dim (V ) dim 1(0) n.
证明:设 的零度等于r ,在核 1(0)中取一组基 1, 2 ,L , r
线性无关.
设 kr1 ( r1 ) L kn ( n ) 0
则有 kr1 r1 L kn n 0
kr1 r1 L kn n 1(0) 即 可被 1, 2 ,L , r 线性表出.
§7.6 线性变换的值域与核
设 k11 k2 2 L kr r 于是有 k11 k22 L kr r, kr1 r1 L kn n 0 由于为 1, 2 ,L , n V的基.
二、有关性质
1. (定理10) 设 是n 维线性空间V的线性变换,
1, 2 ,L , n 是V的一组基, 在这组基下的矩阵是A,
则
1) 的值域 (V )是由基象组生成的子空间,即
(V ) L (1), ( 2 ),L , ( n )
2) 的秩=A的秩.
§7.6 线性变换的值域与核
证:1) V , 设 x11 x2 2 L xn n , 于是 ( ) x1 (1) x2 ( 2 ) L xn ( n )
第七章 线性变换
§1 线性变换的定义 §6 线性变换的值域与核
§2 线性变换的运算 §7不变子空间
Байду номын сангаас
§3 线性变换的矩阵 §8 若当标准形简介
§4 特征值与特征向量 §9 最小多项式
§5 对角矩阵
小结与习题
§7.6 线性变换的值域与核
北京大学数学系《高等代数》(第3版)【教材精讲+考研真题解析】第7章 线性变换 【圣才出品】
![北京大学数学系《高等代数》(第3版)【教材精讲+考研真题解析】第7章 线性变换 【圣才出品】](https://img.taocdn.com/s3/m/e932a75b16fc700abb68fc67.png)
第7章线性变换[视频讲解]7.1本章要点详解本章要点■线性变换的定义及其运算■线性变换的矩阵■特征值与特征向量■对角矩阵■线性变换的值域与核■不变子空间■若当标准型■最小多项式重难点导学一、线性变换的定义1.线性变换的定义线性空间V的一个变换A称为线性变换,如果对于V中任意的元素α、β和数域P中任意数k,有2.线性变换的简单性质(1)设A是V的线性变换,则;(2)线性变换保持线性组合与线性关系式不变,如果β是α1,α2,…,αr的线性组合则经过线性变换A之后,是的线性组合又如果之间有一线性关系式则(3)线性变换把线性相关的向量组变成线性相关的向量组.二、线性变换的运算1.线性变换的乘积(1)定义设A ,B 是线性空间V 的两个线性变换,定义它们的乘积AB 为注:①线性变换的乘法适合结合律,即.②线性变换的乘法一般是不可交换的.(2)基本性质①满足结合律:()()στδστδ=;②,E E E σσσ==为单位变换;③交换律一般不成立,即一般地,στστ≠.2.线性变换的和(1)定义设A ,B 是线性空间V 的两个线性变换,则称为A +B 的和.(2)基本性质①满足交换律:σττσ+=+;②满足结合律:()()στδτσδ++=++;③线性变换的和还是线性变换;④零变换与所有线性变换A 的和仍等于A ,A +0=A ;⑤线性变换的乘法对加法有左右分配律,即(3)负变换设σ为线性空间V 的线性变换,定义变换σ-为()()(),V σασαα-=-∀∈则σ-也为V 的线性变换,称之为σ的负变换.3.线性变换的数量乘法(1)定义数域P 中的数与线性变换的数量乘法为,即(2)基本性质4.线性变换的逆(1)定义V的变换A称为可逆的,如果有V的变换B存在,使AB=BA=E,则变换B称为A的逆变换,记为A-1.注:如果线性变换A是可逆的,它的逆变换A-1也是线性变换.(2)基本性质σ-也是V的线性变换.①可逆变换σ的逆变换1②线性变换σ可逆⇔线性变换σ是一一对应.5.线性变换的多项式(1)线性变换的幂当n个(n是正整数)线性变换A相乘时,可以用来表示,称为A的n次幂,简单地记作A n.指数法则:当线性变换可逆时,的负整数幂为(n是正整数).注:线性变换乘积的指数法则不成立,即一般说来,(2)线性变换的多项式设f(x)=a m x m+a m-1x m-1+…+a0是P[x]中一多项式,是V的一线性变换,定义.f ()是一线性变换,它称为线性变换的多项式.注:同一个线性变换的多项式的乘积是可交换的.三、线性变换的矩阵1.线性变换与基(1)设ε1,ε2,…,εn 是线性空间V 的一组基,σ为V 的线性变换,则对任意V ξ∈存在唯一的一组数12,,...,n x x x P ∈,使1122...n n x x x ξ=+++εεε,则1122()()()...()n n x x x σσσσ=+++ξεεε(2)设ε1,ε2,…,εn 是线性空间V 的一组基,如果线性变换与在这组基上的作用相同,即。
高等代数(第7章)
![高等代数(第7章)](https://img.taocdn.com/s3/m/97fafb2ebd64783e09122b65.png)
例如,零变换将线性无关的向量组变成线性相关 的向量组.
§7.2 线性变换的运算
设V是数域P上的线性空间, 、是V的两个线 性变换. 1.线性运算 (1)加法: 与的和定义为 ( +)()=()+() ( V) (2)数量乘法:数域P中的数k与的数量乘法定义为 (k)( ) =k(()) ( V) (3) 负变换:的负变换 -定义为 (-)()= - () ( V) 结论:线性空间V上的线性变换的全体,对于如上定 义的加法与数乘运算构成数域P上的线性空间.即
例2 设是几何空间中一个固定的非零向量, 将每个 向量变到它在上的内射影的变换
( , ) ( ) ( , ) .
( )
是一个线性变换.
2.线性变换的简单性质 设 是数域P上线性空间V的一个变换. (i)(0)=0, (-)= - (), V. (ii)(k11+…+ kmm)= k1(1) +…+ km(m) i V, ki P (i=1,2,…,m) (iii) 设i V, (i=1,2,…,m) .若 1,2,…,m线性相关,则 (1),(2),…,(m)线性相关;反之不然.
线性变换被基向量的像唯一确定!
定理1: 设1, 2,…,n是数域P上n维线性空间V 的一组 基, 1,2,…,n是V中任意n个向量,则存在唯一的线性 变换使 (j)= j , j=1,2,…,n.
证明:(i)存在性
x i i V , 定义V的变换: x i i .
仍是线性变换
()()=(()) ( V)
运算律: (i)()= () (ii) (+) = + , (+)+= +(+) (iii)k()=(k)= (k) 注意:线性变换的乘积一般是不可交换的,即 . 例1 在P22中,定义线性变换、 、为
高等代数第7章线性变换PPT课件
![高等代数第7章线性变换PPT课件](https://img.taocdn.com/s3/m/b43fc5a1541810a6f524ccbff121dd36a32dc42c.png)
特征向量定义
对应于特征值m的非零向量x称为A的对应于特征值 m的特征向量。
设A是n阶方阵,如果存在数m和非零n维列向 量x,使得Ax=mx成立,则称m是A的一个特 征值。
求解方法
通过求解特征多项式f(λ)=|A-λE|的根得到特 征值,再代入原方程求解对应的特征向量。
特征多项式及其性质分析
特征多项式定义
量子力学
在量子力学中,特征值和特征向量用 于描述微观粒子的状态和能量级别。
图像处理
在图像处理中,特征值和特征向量可 以用于图像压缩和图像识别等任务。
经济学
在经济学中,特征值和特征向量可以 用于分析和预测经济系统的稳定性和 发展趋势。
04
线性变换对角化条
件及步骤
可对角化条件判断方法
判断矩阵是否可对角化
线性变换的性质与 矩阵性质对应
线性变换的性质如保持加法、 数乘等运算可以通过其对应的 矩阵性质来体现。例如,两个 线性变换的和对应两个矩阵的 和;线性变换的复合对应两个 矩阵的乘积等。
02
线性变换矩阵表示
法
标准基下矩阵表示法
定义
设V是n维线性空间,e1,e2,...,en 是V的一个基,T是V上的一个线 性变换,则T在基e1,e2,...,en下的 矩阵A称为T在基e1,e2,...,en下的 标准矩阵表示。
计算矩阵的高次幂
对于可对角化的矩阵A,可以利用对角化公式A=PDP^(-1)将A的高次幂转化为对角矩阵D的高次幂, 从而简化计算过程。
求解线性方程组
对于系数矩阵为可对角化矩阵的线性方程组,可以通过对角化将系数矩阵转化为对角矩阵,进而 简化方程组的求解过程。
计算行列式和逆矩阵
对于可对角化的矩阵A,其行列式值等于对角矩阵D的行列式值,逆矩阵可以通过对角化公式求得, 从而简化相关计算。
第七章 线性变换
![第七章 线性变换](https://img.taocdn.com/s3/m/f4fed55f3b3567ec102d8ab2.png)
, ε n ,写出
,ε n
高等代数
东北大学秦皇岛分校
例 2 设线性变换A 在基 ε 1 , ε 2 , ε 3 下的矩阵是
⎛1 2 2⎞ ⎜ ⎟ A = ⎜ 2 1 2⎟, ⎜2 2 1⎟ ⎝ ⎠
求A 的特征值与特征向量. 线性变换A 的属于 λ0 的全部特征向量再添上零向量所 成的集合,是V的一个子空间,称为A 的一个特征子空间,记为
高等代数
东北大学秦皇岛分校
例 设V是数域P上一个二维线性空间,
ε 1 , ε 2是一组基线性变换A 在 ε 1 , ε 2 下的矩阵是
⎛ 2 1⎞ ⎜ ⎟. ⎝ −1 0 ⎠ 对V的另一组基 η1 ,η 2 ,有
⎛ 1 −1 ⎞ (η1 ,η 2 ) = (ε 1 , ε 2 ) ⎜ ⎟, ⎝ −1 2 ⎠ k ⎛ 2 1⎞ 求 ⎜ ⎟ . ⎝ −1 0 ⎠
高等代数
东北大学秦皇岛分校
定理 2 设 ε 1 , ε 2 ,
, ε n 使数域P上n维 ,ε n ) A
线性空间V的一组基,在这组基下,每个线性变换按
A (ε 1 , ε 2 ,
, ε n ) = (ε 1 , ε 2 ,
都对应一个 n × n 矩阵,这个对应具有以下的性质: 1) 线性变换的和对应于矩阵的和; 2) 线性变换的乘积对应于矩阵的乘积; 3) 线性变换的数量乘积对应与矩阵的数量乘积; 4) 可逆的线性变换与可逆矩阵对应,且逆变换对 应于逆矩阵.
高等代数
东北大学秦皇岛分校
利用线性变换的矩阵计算向量的像: 定理 3 设线性变换A 在基 ε 1 , ε 2 , 矩阵是A,向量 ξ 在基 ε 1 , ε 2 , 则 A ξ 在基 ε 1 , ε 2 ,
, ε n 下的 , ε n下的坐标是 ( x1 , x2 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-6-12§7.2 线性变换的运算
f t dt f x f 0
数学与应用数学
nn P 例2. 设A、B 为两个取定的矩阵,定义变换
( X ) AX ,
( X ) XB,
X P nn
则 , 皆为 P nn 的线性变换,且对 X P nn , 有
C a , b 上的变换
J : C a , b C a , b , J f x f t dt
x a
是一个线性变换.
2015-6-12§7.1 线性变换的定义
数学与应用数学
二、 线性变换的简单性质
1. 为V的线性变换,则
(0) 0, ( ) ( ).
( )( X ) ( ( X )) ( XB ) A( XB ) AXB, ( )( X ) ( ( X )) ( AX ) ( AX ) B AXB.
.
2015-6-12§7.2 线性变换的运算
数学与应用数学
二、 线性变换的和
故 为一一对应.
2015-6-12§7.2 线性变换的运算
数学与应用数学
√ √
2 f ( x ) f ( x ). 2.在 P[ x ]n中,
, V 非零固定. 3.在线性空间V中,
nn 固定. X AX , A P 4.在 P 中,
n n
√
√
( x) x . 5.复数域C看成是自身上的线性空间,
1 1 1 1 1
数学与应用数学
1
1
1 是V的线性变换.
2015-6-12§7.2 线性变换的运算
(2) 线性变换 可逆 线性变换 是一一对应. 证:" " 设 为线性空间V上可逆线性变换. 任取 , V , 若 ( ) ( ), 则有
数学与应用数学
三、 线性变换的数量乘法
1.定义
设 为线性空间V的线性变换,k P , 定义 k 与 的数量乘积 k 为:
k k ,
则 k 也是V的线性变换.
V
2015-6-12§7.2 线性变换的运算
数学与应用数学
2.基本性质
(1) ( kl ) k ( l ) (2) ( k l ) k l (3) k ( ) k k (4) 1
1.定义
设 , 为线性空间V的两个线性变换,定义它们 的乘积 为: , V 则 也是V的线性变换.
事实上, ( )( ) ( ( )) ( ( ) ()) ( )( ) ( )( ), ( )( k ) ( ( k )) ( k ( )) k ( ( )) k ( )( )
数学与应用数学
2015-6-12§7.2 线性变换的运算
3.负变换
设 为线性空间V的线性变换,定义变换 为:
,
V
则 也为V的线性变换,称之为 的负变换.
注: ( ) 0
2015-6-12§7.2 线性变换的运算
2015-6-12§7.2 线性变换的运算
数学与应用数学
2.基本性质
(1)满足结合律:
(2) E E ,E为单位变换 (3)交换律一般不成立,即一般地,
.
2015-6-12§7.2 线性变换的运算
数学与应用数学
例1. 线性空间 R[ x] 中,线性变换
6.C看成是实数域R上的线性空间, ( x ) x .
2015-6-12§7.1 线性变换的定义
数学与应用数学
§7.2 线性变换的运算
一、线性变换的乘积 二、线性变换的和 三、线性变换的数量乘法 四、线性变换的逆 五、线性变换的多项式
2015-6-12§7.2 线性变换的运算
数学与应用数学
一、 线性变换的乘积
1.定义
设 , 为线性空间V的两个线性变换,定义它们 的和 为: , V
则 也是V的线性变换.
事实上, ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )( ), ( )( k ) ( k ) ( k ) k ( ) k ( ) k ( ( ) ( )) k ( )( ).
2015-6-12§7.2 线性变换的运算
数学与应用数学
2.基本性质
(1)满足交换律: (2)满足结合律: (3) 0 0 , 0为零变换. (4)乘法对加法满足左、右分配律:
2.线性变换保持线性组合及关系式不变,即 若 k11 k2 2
kr r , kr ( r ).
则 ( ) k1 (1 ) k2 ( 2 )
3.线性变换把线性相关的向量组的变成线性相关 的向量组. 即
2015-6-12§7.1 线性变换的定义
注: 线性空间V上的全体线性变换所成集合对于
线性变换的加法与数量乘法构成数域P上的一个线性 空间,记作 L(V ).
2015-6-12§7.2 线性变换的运算
数学与应用数学
四、 线性变换的逆
1.定义
设 为线性空间V的线性变换,若有V的变换 使
E
则称 为可逆变换,称 为 的逆变换,记作 1 .
注:几个特殊线性变换
单位变换(恒等变换):E : V V , 零变换: 0 : V V ,
0, V k , V
, V
K :V V , 由数k决定的数乘变换:
事实上, , V ,
m P ,
K k ( ) k k K K , K m km mk mK .
( 1 )( ) 1 ( ( )) 1 ( ( ))
( 1 )( ) .
为单射.
其次,对 V , 令 1 ( ), 则 V ,且
( ) ( 1 ( )) 1 ( ) . 为满射.
数学与应用数学
若 1 , 2 , 也线性相关.
, r 线性相关,则 1 , 2 ,
, kr 使
, r
事实上,若有不全为零的数 k1 , k2 ,
k11 k2 2
kr r 0
kr r 0.
则由2即有,k1 1 k2 2 线性相关, 1 , 2 ,
第七章 线性变换
§1 线性变换的定义 §2 线性变换的运算 §3 线性变换的矩阵 §4 特征值与特征向量
§5 对角矩阵
2015-6-12 数学与应用数学
§6线性变换的值域与核 §7不变子空间
§8 若当标准形简介
§9 最小多项式 小结与习题
§7.1 线性变换的定义
一、线性变换的定义
二、线性变换的简单性质
1
1 1 1
1
1
1 1
1
k
1
k k k k k
2015-6-12§7.1 线性变换的定义
数学与应用数学
( )
例3.V P[ x ]或P[ x ]n上的求微商是一个 线性变换, 用D表示,即
D : V V , D( f ( x )) f ( x ), f ( x ) V
例4. 闭区间 [a , b]上的全体连续函数构成的线性空间
2.基本性质
(1) 可逆变换 的逆变换 1 也是V的线性变换.
2015-6-12§7.2 线性变换的运算
数学与应用数学
证:对 , V , k P ,
1 1 1 1
D f x f x
J f x f t dt
x
DJ f x D 0 f t dt
x
0
f x,
x
即 DJ E .
而,
JD f x J f x 0
2015-6-12§7.1 线性变换的定义
数学与应用数学
例1. V R 2(实数域上二维向量空间),把V中每 一向量绕坐标原点旋转 角,就是一个线性变换,
用 T 表示,即
2
x cos sin x 这里, y sin cos y
T : R R ,
2
x y
x y
易验证: , R , k R
2
T T T T k kT
2015-6-12§7.1 线性变换的定义
数学与应用数学
例2. V R3 , V 为一固定非零向量,把V中每 一个向量 变成它在 上的内射影是V上的一个线
注意:3的逆不成立,即 1 , 2 , , r
, r 未必线性相关.
事实上,线性变换可能把线性无关的向量组变成
线性相关的向量组. 如零变换.
2015-6-12§7.1 线性变换的定义
数学与应用数学
练习:下列变换中,哪些是线性变换?