成型原理与成型技术

合集下载

快速成型技术及原理

快速成型技术及原理

RP技术简介快速原型制造技术,又叫快速成形技术,(简称RP技术);英文:RAPID PROTOTYPING(简称RP技术),或RAPID PROTOTYPING MANUFACTUREING,简称RPM。

快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。

自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。

RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。

不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。

但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。

形象地讲,快速成形系统就像是一台"立体打印机"。

RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。

RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。

快速成型机的工艺立体光刻成型sla层合实体制造lom熔融沉积快速成型fdm激光选区烧结法SLS多相喷射固化mjs多孔喷射成型mjm直接壳法产品铸造dspc激光工程净成型lens选域黏着及热压成型SAHP层铣工艺lmp分层实体制造som自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。

材料成型原理与工艺

材料成型原理与工艺

04
材料成求极高,需要具备轻质、高强度、 耐高温等特性。材料成型原理与工艺的发展为航空航天领域 提供了更多的选择,如钛合金、复合材料等。
这些新型材料的应用有助于减轻飞机和航天器的重量,提高 其性能和安全性。
汽车工业领域的应用
随着环保意识的提高和新能源汽车的 兴起,汽车工业对轻量化材料的需求 越来越大。
件。
锻造工艺
01
02
03
04
自由锻造
利用自由锻锤或压力机对坯料 进行锻打,形成所需形状和尺
寸的锻件。
模锻
利用模具对坯料进行锻打,使 坯料在模具中形成所需形状和
尺寸的锻件。
热锻
将坯料加热至高温后进行锻打 ,使材料易于塑性变形。
冷锻
在常温下对坯料进行锻打,适 用于塑性较差的材料。
焊接工艺
熔化焊
压力焊
材料成型原理与工艺的发展使得汽车 零部件的制造更加高效、精确,如铝 合金、镁合金等轻质材料的广泛应用 ,有助于降低汽车能耗和排放。
能源领域的应用
能源领域如核能、太阳能等需要大量的特殊材料,如耐高 温、耐腐蚀的材料。
材料成型原理与工艺的进步为能源领域提供了可靠的材料 解决方案,如高温合金、耐腐蚀涂层等,有助于提高能源 利用效率和安全性。
材料成型原理与工艺
• 材料成型原理概述 • 材料成型工艺介绍 • 材料成型原理与工艺的发展趋势 • 材料成型原理与工艺的应用前景
01
材料成型原理概述
材料成型的基本概念
材料成型是通过物理或化学手 段改变材料的形状,以达到所 需的结构和性能的过程。
材料成型涉及多种工艺和技术, 如铸造、锻造、焊接、注塑等。
泡沫金属
通过在金属基体中引入孔洞,制备 出具有轻质、高比强度的泡沫金属 材料。

挤出成型工艺—挤出成型原理(塑料成型加工课件)

挤出成型工艺—挤出成型原理(塑料成型加工课件)

二、挤出成型过程
既有混合过 程,也有成 型过程
树脂原料 加热黏流 塑料熔体
助剂
混合过程
加压 挤出连续体
一定规格的 制品
切割 成型连续体
冷却定型
成型过程
以 管 材 挤 出 原料 成型为例
挤出连续体
熔体
定型连续体
制品
三、挤出成型特点
1. 可以连续化生产,生产效率高。 2. 设备自动化程度高,劳动强度低。 3. 生产操作简单,工艺控制容易。 4. 原料适应性强,适用大多数热塑性树脂和少数热固性 树脂。 5. 可生产的产品广泛,同一台挤出机,只要更换不同的 辅机,就可以生产不同的制品。
挤出成型
挤出成型特点
一、挤出成概述
挤出成型又叫挤出模塑,是利用加热使塑料熔融塑化成 为流动状态,然后在机械力(螺杆或柱塞的挤压)的作用下, 使熔融塑料通过一定形状的口模制成具有恒定截面连续的制 品,适用于绝大部分热塑性树脂和部分热固性树脂。
除了用于挤出造粒、染色、树脂掺和等共混改性,还可用于塑 料薄膜、网材、带包覆层的产品、截面一定、长度连续的管材、板 材、片材、棒材、打包带、单丝和异型材等塑料制品的生产。
料表面接近或达到黏流温度,表面发黏。
要求:输送能力要稍高于熔融段和均化段。
2. 压缩段 (熔融段)
位置:螺杆中部一段。 作用:输送物料,使物料受到热和剪切作用熔 融塑化,并进一步压实和排出气体。 特点:物料逐渐由玻璃态转变为粘流态,在熔 融段末端物料为粘流态。 要求:螺杆结构逐渐紧密,使物料进一步压实。
(3)横流(环流) 由垂直于螺棱方向的分速
度引起的使物料在螺槽内产生翻 转运动。对生产能力没有影响, 但能促进物料的混合和热交换。
(4)漏流 由机筒与螺棱间隙处形成的

塑料成型原理与工艺

塑料成型原理与工艺
1—凸模固定板 2—上凸模 3—凹模 4—下凸模 5—凸模固定板 6—垫板
压缩成型与注射成型相比的优点是: (1)无浇注系统,耗料少; (2)设备使用及模具较简单; (3)易于成型流动性较差如以纤维为填料的塑料; (4)制品收缩率小,变形小,各向性能比较均匀; (5)能成型面积大、厚度又比较小的大型扁平制品。
缺点是: (1)生产周期长,效率低; (2)不易成型尺寸精度要求较高、形状复杂、壁厚 相差较大及带有精细易断嵌件的制品; (3)劳动强度大,难以实现自动化,劳动条件较差; (4)模具寿命较短。
2.2.2 压缩成型工艺过程
压缩成型工艺过程主要包括预压、预热和 干燥、嵌件的安放、加料、闭模、排气、固化、 脱模、清理模具、制品后处理等。
但模温也不能过低,过低的模温不仅使 固化速度慢,而且效果差,也会造成制品的 灰暗,甚至表面发生肿胀,这是因为固化不 完全的外层受不住内部挥发物压力作用的结 果。
成型厚度较大的制品时,宜采用降低模 具温度,延长成型时间的工艺规程。
3.压缩成型时间
成型时间是指从闭模加压起,物料在模具 内升温到固化脱模为止的这段时间。它直接 影响制品的成型周期和固化度。
1.压缩成型前的准备工作
(1)预压
在压缩成型前,将松散的粉状或纤维状的 热固性塑料在室温下预先用冷压法(即模具不 加热)压成重量一定、形状一致的密实体的过 程称为预压,所得到的物体称为预压物(或压 锭、型坯、压片)。
预压的作用主要有:
(1)加料快而准确。避免加料过多或不足而造成 的残次品。
(2)减小模具的加料室,降低模具制造成本。
(1)加料 (2)塑化 (3)加压注射 (4)保压 (5)冷却定型 (6)脱模
3. 塑件的后处理 塑件经注射成型后,除去浇口凝料,修饰浇口处余料

五金模具成型原理

五金模具成型原理

五金模具成型原理一、引言五金模具成型是一种常见的制造工艺,广泛应用于各个领域的产品制造中。

本文将介绍五金模具成型的原理,包括模具的基本构造、成型工艺以及常见的成型方式。

二、模具的基本构造五金模具是由上模和下模组成的,它们通过模具底座相互连接并固定在成型机上。

上模和下模的形状及尺寸与最终产品的形状和尺寸相对应。

在成型过程中,上模和下模会相互融合并形成产品的外形。

三、成型工艺五金模具成型的基本工艺包括注塑、压铸、冲压等。

下面将分别介绍这些工艺的原理。

1. 注塑成型注塑成型是将熔化的塑料注入模具中,经过冷却和固化后得到最终产品的一种成型工艺。

注塑成型的原理是利用注塑机将塑料加热熔化后,通过压力将熔化的塑料注入到模具腔中,然后冷却和固化,最后取出成品。

2. 压铸成型压铸成型是将熔化的金属注入模具中,经过冷却和固化后得到最终产品的一种成型工艺。

压铸成型的原理是利用压铸机将熔化的金属注入到模具腔中,然后通过高压将金属充分填充模具腔,冷却和固化后取出成品。

3. 冲压成型冲压成型是利用冲压机将金属板材或带材在模具中进行冲剪、弯曲、拉伸等变形,最终得到所需形状的成型工艺。

冲压成型的原理是通过冲压机使冲头对工件进行冲击,使工件产生塑性变形,最终得到所需形状的成品。

四、常见的成型方式根据产品的形状和尺寸不同,五金模具成型可以采用不同的方式。

下面将介绍常见的成型方式。

1. 单腔成型单腔成型是指模具中只有一个腔,每次只能成型一个产品。

这种成型方式适用于产品的生产量较小的情况。

2. 多腔成型多腔成型是指模具中有多个腔,每次可以同时成型多个产品。

这种成型方式适用于产品的生产量较大的情况。

3. 分模成型分模成型是指模具中的上模和下模可以分开成型。

这种成型方式适用于产品的形状复杂、内部结构复杂的情况。

4. 滑块成型滑块成型是指模具中的滑块可以在成型过程中进行上下或前后移动,以实现特殊的成型要求。

这种成型方式适用于产品的形状特殊、内部结构复杂的情况。

注塑成型的工作原理

注塑成型的工作原理

注塑成型的工作原理注塑成型是一种常见的塑料加工技术,通过将熔化的塑料注入模具中,并在固化后得到所需形状的制品。

本文将详细介绍注塑成型的工作原理,并探讨其具体步骤及相关特点。

一、工作原理注塑成型的工作原理基于热塑性塑料的特点,其主要包括以下几个步骤:1. 塑料熔化:首先,将塑料颗粒加入注射机的料斗中。

然后,通过外加热源,调节注射机的温度,使塑料颗粒迅速熔化成为黏稠的熔融塑料。

2. 注射:在塑料熔化的同时,注射机会将熔融塑料注入模具中。

注射机通过螺杆运动,将熔融塑料推动到注射筒前端,并通过喷嘴进入模具的腔体。

3. 塑料充填:一旦熔融塑料进入模具腔体,它会填充整个腔体,包括模具中所定义的产品形状。

在此过程中,注射机保持一定的压力,以确保塑料充分填充模具。

4. 塑料固化:一旦塑料充填完成,它会开始在模具中逐渐冷却,并渐渐固化。

注射机会保持模具一定的冷却时间,以确保塑料完全固化。

5. 产品脱模:当塑料完全固化后,模具会打开并释放成形的产品。

产品的脱模可以通过模具的自动弹出装置或人工操作实现。

释放后,可以开始进行下一次注射循环。

二、特点与优势注塑成型作为一种成熟的塑料加工技术,具有以下特点与优势:1. 精度高:注塑成型产品的尺寸精度高,可以满足不同行业的严格要求,如医疗器械、汽车零部件等。

2. 产品种类多样:注塑成型可以加工各种形状的产品,从小到大,从简单到复杂,包括零件、容器、玩具等。

3. 生产效率高:注塑成型具有高效连续生产的能力,可以快速完成成形循环,满足大批量生产的需求。

4. 自动化程度高:注塑成型设备智能化程度高,可以实现自动化操作,提高生产效率和产品质量。

5. 材料选择广泛:注塑成型可适用于热塑性塑料、热固性塑料和橡胶等材料,具有较广泛的应用范围。

三、应用领域注塑成型技术广泛应用于众多行业,例如:1. 汽车工业:注塑成型可制造汽车内部和外部的零部件,如仪表盘、门把手、保险杠等。

2. 电子电器:注塑成型可制造电子产品的外壳,如手机壳、电视遥控器等。

混凝土挤出成型方法

混凝土挤出成型方法

混凝土挤出成型方法一、引言混凝土挤出成型方法是一种较为先进的建筑材料生产技术,具有高效、环保、节能、节材等优点。

本文将详细介绍混凝土挤出成型方法的原理、工艺流程、生产设备和注意事项。

二、混凝土挤出成型原理混凝土挤出成型技术是利用泵送装置将混凝土通过模具挤出,形成所需的混凝土构件,其原理主要包括以下几个方面:1.混凝土挤出成型采用高压泵,将混凝土输送到模具中,利用模具的形状和尺寸限制混凝土的流动方向和形态,使其在模具内部不断挤压、密实,最终成型。

2.混凝土挤出成型过程中,混凝土的流动性和压缩性是关键,必须保证混凝土的流动性和压缩性良好,才能保证挤出成型的质量和效率。

3.混凝土挤出成型技术还需要配备专门的控制系统,控制混凝土的流量、压力、速度等参数,以保证挤出成型的准确度和稳定性。

三、混凝土挤出成型工艺流程混凝土挤出成型的工艺流程主要包括原料准备、混凝土配制、模具设计、挤出成型和后处理等环节。

1.原料准备:混凝土挤出成型所用原料主要包括水泥、砂、石子、添加剂等,需要进行准确的称量和混合,以确保混凝土的配合比例和质量。

2.混凝土配制:将混凝土原料按照一定比例混合,加水搅拌成糊状物,保证混凝土的均匀性和流动性。

3.模具设计:根据工程需要和混凝土特性,设计合适的模具形状和尺寸,以实现所需的混凝土构件。

4.挤出成型:利用高压泵将混凝土输送到模具中,通过模具的形状和尺寸限制混凝土的流动方向和形态,使其在模具内部不断挤压、密实,最终成型。

5.后处理:将挤出成型的混凝土构件进行表面处理、养护等,确保其质量和使用寿命。

四、混凝土挤出成型生产设备混凝土挤出成型生产设备主要包括高压泵、模具、控制系统等。

1.高压泵:高压泵是混凝土挤出成型的核心设备,其作用是将混凝土输送到模具中,保证混凝土的流量、压力、速度等参数,以实现挤出成型。

2.模具:模具是混凝土挤出成型的重要组成部分,其作用是限制混凝土的流动方向和形态,使其在模具内部不断挤压、密实,最终成型。

挤出成型的原理和工艺流程

挤出成型的原理和工艺流程

挤出成型的原理和工艺流程
挤出成型是一种常见的塑料加工工艺,通过将加热熔化的塑料挤压至模具中,使其快速冷却凝固并形成所需产品。

本文将介绍挤出成型的原理和工艺流程。

原理
挤出成型的原理基于塑料的热塑性特性,塑料在一定温度下能够熔化并具有流动性。

在挤出机中,塑料颗粒被加热熔化成为熔体,然后通过螺杆将熔体加压,推动熔体流经模具口向外挤出。

随着熔体在模具中迅速冷却,最终形成固化的塑料制品。

工艺流程
1.塑料颗粒加料:首先将塑料颗粒放入挤出机的料斗中,经过加热系统加热,使其
熔化成为熔体。

2.挤出过程:熔化的塑料经过螺杆的推动,被压入模头中,经过交变的高压和高温
使得熔体形成流态,流经挤出模的成型孔。

3.冷却固化:熔体在挤出口挤压而出后,迅速接触冷却水或风冷,使其迅速冷却凝
固。

4.切割成型:冷却后的塑料制品经过切割装置,按照所需长度进行切割,最终形成
成型的塑料制品。

工艺优势
挤出成型具有以下优点:
•高效率:生产速度快,生产成本相对较低。

•适用性广泛:可以加工各种形状和规格的塑料制品。

•制品质量稳定:产品表面光滑,尺寸精确。

•生产自动化程度高:无需过多人工干预,生产稳定可靠。

应用领域
挤出成型广泛应用于塑料制品生产行业,如管道、板材、型材、薄膜、包装材料等领域。

其高效率、高质量的特点使其成为塑料制品生产中不可或缺的一环。

总的来说,挤出成型作为一种常见的塑料加工工艺,通过简单高效的操作流程,可以生产出质量稳定的塑料制品,在工业生产中发挥着重要作用。

四种典型的快速成型技术的成型原理

四种典型的快速成型技术的成型原理

四种典型的快速成型技术的成型原理一、激光烧结成型原理激光烧结成型(Selective Laser Sintering,简称SLS)是一种快速成型技术,其成型原理是利用激光束对粉末材料进行烧结,逐层堆积形成所需的三维实体。

激光烧结成型的过程主要包括以下几个步骤:首先,利用计算机辅助设计(CAD)软件将待制造的物体进行三维建模,并将模型数据转化为机器能够识别的格式。

然后,将烧结材料粉末均匀地铺在工作台上,使其表面平整。

接下来,利用激光束控制系统,将激光束按照预定的路径和参数扫描在粉末层表面,使其局部熔融烧结。

激光束的能量使粉末颗粒之间发生熔融和烧结,形成一层固体物质。

再次铺上一层新的粉末材料,重复上述步骤,逐层堆积,直至形成整个三维实体。

最后,将成品从未熔融的粉末中清理出来,并进行后续处理,如热处理或表面处理。

激光烧结成型技术具有成型速度快、制作精度高、制造复杂度高等优点。

由于其成型过程中无需使用支撑材料,可以制造出具有复杂内部结构的零件,因此被广泛应用于航空航天、汽车、医疗器械等领域。

二、光固化成型原理光固化成型(Stereolithography,简称SLA)是一种常见的快速成型技术,其成型原理是利用紫外线激光束对光固化树脂进行逐层固化,最终形成所需的三维实体。

光固化成型的过程主要包括以下几个步骤:首先,利用计算机辅助设计(CAD)软件将待制造的物体进行三维建模,并将模型数据转化为机器能够识别的格式。

然后,将液态光固化树脂均匀地铺在工作台上。

接下来,利用紫外线激光束扫描器,将激光束按照预定的路径和参数照射在树脂表面,使其局部固化。

激光束的能量使树脂中的光敏物质发生聚合反应,从而使树脂由液态变为固态。

再次涂覆一层新的液态光固化树脂,重复上述步骤,逐层固化,最终形成整个三维实体。

最后,将成品从未固化的树脂中清洗出来,并进行后续处理,如烘干或光刻。

光固化成型技术具有成型速度快、制造精度高、制造复杂度高等优点。

材料成型技术基础

材料成型技术基础

材料成型技术基础材料成型技术基础材料成型技术是现代工业的核心技术之一,是将材料加工成所需形状、结构和性能的过程。

材料成型技术分为传统成型技术和先进成型技术两种。

前者包括热加工、冷加工、焊接等,后者则包括快速成型、激光加工、注塑成型等。

无论是哪种成型技术,都需要掌握材料成型技术基础知识才能熟练地操作和完成任务。

1.材料成型技术原理材料成型技术在原理上是通过施加压力,改变材料外观和性质。

采用不同的成型方法和工艺流程,可获得所需的形态和性能。

例如,金属冷加工依靠的是材料的塑性变形,而激光切割则是利用激光的高能量和热量来割断材料。

因此,不同成型技术的原理不同,工艺流程也不同。

2.材料成型技术分类材料成型技术主要可以分为常规材料成型技术和高级材料成型技术两类。

常规材料成型技术包括热加工、冷加工、铸造、焊接、切削等。

这些技术在工业生产中应用广泛,可以制造出各种形态的零部件和产品。

高级材料成型技术是在常规成型技术基础上,运用现代科技和工程技术发展起来的成型技术。

例如,金属材料的选择性激光烧结技术(SLS)、三维打印技术、激光切割技术和注塑成型技术等。

这些技术通常被用于制造高性能、高单价、高品质的工业产品。

3.常规材料成型技术热加工热加工技术是利用高温对材料进行塑性变形的加工方式。

通过热处理,可以使金属变得更加容易软化和延展。

热加工适合于制造大量的同样尺寸和形状的零件,例如轴、齿轮等机械元件。

冷加工冷加工技术是不需要高温处理的制造加工方法。

冷加工一般用于金属加工,由于没有热变形,冷加工一般具有更好的精度和表面光洁度。

冷加工应用广泛,例如冷拔、冷轧、冷环等。

铸造铸造是利用熔化的金属,将其注入模具中成型制品的加工方法。

铸造可以生产出各种不同尺寸和形状的零件,应用范围广泛,例如钢铁、铝合金、铜、铜合金等材料。

焊接焊接是将两个物体连接在一起的加工方式。

焊接广泛应用在车辆工业、建筑工业、航空航天工业等领域,例如电弧焊、气体保护焊、激光焊等技术。

热成型的原理和方法

热成型的原理和方法

热成型的原理和方法热成型是一种超级有趣的制造工艺呢!一、热成型的原理。

热成型的原理其实就像是给材料做一个热“SPA”。

咱们先来说说材料,通常是塑料片材或者板材。

这些材料在常温的时候啊,是硬邦邦的,不太好改变形状。

但是呢,当我们给它加热的时候,情况就大不一样啦!就像冰受热会化成水一样,塑料受热后就会变得软软的,像橡皮泥一样听话。

这是因为热量让塑料分子活跃起来,它们之间的连接不再那么紧密,分子可以相对自由地移动啦。

这时候呢,我们就可以利用这个柔软的状态,通过一些模具或者外力,把它塑造成我们想要的形状。

等它冷却下来,就会保持住这个新的形状,就像记忆一样,很神奇吧?二、热成型的方法。

1. 真空成型法。

这是一种比较常见的热成型方法哦。

想象一下,我们把加热变软的塑料片材放在一个模具上面,这个模具就像是一个大模型,有我们想要的形状。

然后呢,我们在模具下面抽真空,就像用吸管把杯子里的空气吸走一样。

这时候,外界的大气压就会把软软的塑料片材紧紧地压在模具上,让它贴合模具的形状。

就好像大气在说:“小塑料片,你就按照这个模具的样子变吧!”这样就完成了一次简单的真空热成型啦。

2. 压力成型法。

这个方法和真空成型有点像,但不是抽真空,而是施加压力。

我们把加热好的塑料放在模具之间,然后通过机械装置给它施加压力,就像用力把两块东西压在一起一样。

这个压力会让塑料乖乖地填充到模具的每一个角落,形成我们想要的形状。

这就好比是强迫小塑料按照我们的想法变形,不过效果可是很棒的呢!3. 吹塑成型法。

吹塑就更有趣啦。

我们先把塑料加热变软,然后把空气吹进这个软软的塑料里面,就像吹气球一样。

不过这个“气球”是按照我们预先设计好的模具形状来膨胀的。

空气的力量会让塑料不断地扩张,直到它贴紧模具的内壁,这样就得到了我们想要的形状。

是不是感觉像在玩魔法一样呢?热成型在我们的生活中可是无处不在的哦。

像我们用的一些塑料包装盒、汽车内饰的一些塑料部件,很多都是通过热成型制作出来的。

快速成型专业技术及原理

快速成型专业技术及原理

RP技术简介快速原型制造技术,又叫快速成形技术,(简称RP技术);英文:RAPID PROTOTYPING(简称RP技术),或RAPID PROTOTYPING MANUFACTUREING,简称RPM。

快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。

自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。

RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。

不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。

但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。

形象地讲,快速成形系统就像是一台"立体打印机"。

RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。

RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。

快速成型机的工艺立体光刻成型sla层合实体制造lom熔融沉积快速成型fdm激光选区烧结法SLS多相喷射固化mjs多孔喷射成型mjm直接壳法产品铸造dspc激光工程净成型lens选域黏着及热压成型SAHP层铣工艺lmp分层实体制造som自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。

快速成型技术的原理工艺过程及技术特点

快速成型技术的原理工艺过程及技术特点

快速成型技术的原理、工艺过程及技术特点:快速成型属于离散/堆积成型。

它从成型原理上提出一个全新的思维模式维模型,即将计算机上制作的零件三维模型,进行网格化处理并存储,对其进行分层处理,得到各层截面的二维轮廓信息,按照这些轮廓信息自动生成加工路径,由成型头在控制系统的控制下,选择性地固化或切割一层层的成型材料,形成各个截面轮廓薄片,并逐步顺序叠加成三维坯件.然后进行坯件的后处理,形成零件。

快速成型的工艺过程具体如下:l )产品三维模型的构建。

由于 RP 系统是由三维 CAD 模型直接驱动,因此首先要构建所加工工件的三维CAD 模型。

该三维CAD模型可以利用计算机辅助设计软件(如Pro/E , I-DEAS , Solid Works , UG 等)直接构建,也可以将已有产品的二维图样进行转换而形成三维模型,或对产品实体进行激光扫描、CT 断层扫描,得到点云数据,然后利用反求工程的方法来构造三维模型。

2 )三维模型的近似处理。

由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理,以方便后续的数据处理工作。

由于STL格式文件格式简单、实用,目前已经成为快速成型领域的准标准接口文件。

它是用一系列的小三角形平面来逼近原来的模型,每个小三角形用3 个顶点坐标和一个法向量来描述,三角形的大小可以根据精度要求进行选择。

STL 文件有二进制码和 ASCll 码两种输出形式,二进制码输出形式所占的空间比 ASCII 码输出形式的文件所占用的空间小得多,但ASCII码输出形式可以阅读和检查。

典型的CAD 软件都带有转换和输出 STL 格式文件的功能。

3 )三维模型的切片处理。

根据被加工模型的特征选择合适的加工方向,在成型高度方向上用一系列一定间隔的平面切割近似后的模型,以便提取截面的轮廓信息。

间隔一般取0.05mm~0.5mm,常用 0.1mm 。

间隔越小,成型精度越高,但成型时间也越长,效率就越低,反之则精度低,但效率高。

挤出成型原理及工艺

挤出成型原理及工艺

挤出成型原理及工艺挤出成型是目前比较普遍的塑料成型方法之一,适用于所有的热塑性塑料及部分热固性塑料,可以成型各种塑料管材,棒材,板材、电线电缆及异形截面型材等,还可以用于塑料的着色、造料和共混等。

挤出型材的质量取决于挤出模具,挤出模具主要是由机头和定型装置两部分组成,其结构设计的合理性是保证塑件成型质量的决定性因素。

一挤出成型原理及特点1.挤出成型原理挤出成型主要用于成型热量性塑料,其成型原理如图2-4所示(以管材的挤出为例)。

首先将粒状或粉状塑料加入料斗中,在挤出机旋转螺杆的作用下,加热的塑料沿螺杆的螺旋槽向前方输送。

在此过程中,塑料不断地接受外加热和螺杆与物料之间、物料与物料之间及物料与料筒之间的剪切磨擦热,逐渐熔融呈粘流态,然后在挤压系统的作用下,塑料熔体通过具有一定形状的挤出模具(机头)口模以及一系列辅助装置(定型、冷却、牵引、切割等装置),从而获得截面形状一定的塑料型材。

图2-4挤出成型原理1-挤出机料筒;2-机头;3-定径装置;4-冷却装置;5-牵引装置;6-塑料管;7-切割装置2.挤出成型特点挤出成型所用的设备为挤出机,结构比较简单,操作方便,应用非常广泛,所成型的塑件均为具有恒定截面形状的连续型材。

挤出成型的特点如下:1)生产过程连续,可以挤出任意长度的塑件,生产效率高。

2)模具结构也较简单,制造维修方便,投资少、收效快。

3)塑件内部组织均衡紧密,尺寸比较稳定准确。

4)适应性强,除氟塑料外,所有的热塑性塑料都可采用挤出成型,部分热固性塑料也可采用挤出成型。

变更机头口模,产品的截面形状和尺寸可相应改变,这样就能生产出各种不同规格的塑件。

二挤出成型工艺热塑性塑料的挤出成型工艺过程可分为三个阶段。

第一阶段是塑料原料的塑化塑料原料在挤出机的机筒温度和螺杆的旋转压实及混合作用下,由粉准或粒状变成粘流态物质。

第二阶段是成型粘流态塑料熔体在挤出机螺杆螺旋力的推动作用下,通过具有一定形状的机头口模,得到截面与口模形状一致的连续型材。

挤出成型的基本原理及应用

挤出成型的基本原理及应用

挤出成型的基本原理及应用1. 挤出成型的基本原理挤出成型是一种常见的塑料加工工艺,通过将塑料料料加热到熔化状态,然后将其挤压通过模具,使其形成所需形状的工件。

其基本原理如下:1.塑料熔融:将塑料原料通过加热的方式进行熔融处理,使其变为可流动的熔融塑料物料。

2.挤出机构:熔融的塑料物料经过挤出机构的螺杆等装置,通过机械作用被推送到模具中。

3.挤出模具:挤出模具是用来形成所需形状的工件的装置。

通过挤出机构的压力,塑料物料被挤压通过模具的孔口,形成工件的截面形状。

4.冷却固化:挤出后的热塑性塑料物料通过空气或水冷却,迅速降温并固化,使其保持所需的形状。

挤出成型的基本原理是通过控制塑料物料的熔融状态、挤出机构的作用以及模具的形状,实现将熔融的塑料物料挤压成所需形状的工件。

2. 挤出成型的应用挤出成型技术在各个领域有着广泛的应用,下面列举其中几个常见的应用领域及实例:2.1 塑料制品挤出成型技术在塑料制品领域应用广泛。

通过该技术可以生产出各种形状的塑料制品,如管道、板材、薄膜、条材等。

例如,家庭用水管、塑料薄膜包装、塑料门窗等产品都是通过挤出成型技术制造的。

2.2 橡胶制品挤出成型技术也适用于橡胶制品的生产。

通过挤出成型,可以生产出橡胶密封条、橡胶管、橡胶密封圈等产品。

这些橡胶制品在汽车、建筑等行业都有广泛的应用。

2.3 金属制品除了塑料和橡胶制品外,挤出成型技术还可以应用于金属制品的生产。

通过金属的加热和挤压,可以制造出各种形状的金属材料,如铝型材、铜管等。

这些金属制品在建筑、航空等领域有着重要的应用价值。

2.4 食品加工挤出成型技术还在食品加工领域得到了应用。

通过该技术可以制造出各种形状的食品,如面条、膨化食品等。

通过挤出成型技术,可以将食材挤出成形,使其具有特定的形状和口感。

3. 挤出成型的优势挤出成型技术具有以下几个优势:•生产效率高:挤出成型是一种连续生产工艺,可以实现高效的批量生产。

•成本较低:挤出成型所需的设备和模具相对较简单,成本较低。

注塑成型的原理和工艺过程

注塑成型的原理和工艺过程

注塑成型的原理和工艺过程
注塑成型是利用注塑机将熔融的塑料材料注入到模具中,使其冷却后形成所需要的塑料制品的加工过程。

注塑成型的工艺过程包括以下几个步骤:
1. 模具制备:根据所需产品的尺寸和形状,设计和制造模具。

2. 加料:将塑料料粒或颗粒状塑料料料放进注塑机的料斗中,通过加热和搅拌使塑料熔化。

3. 注射:在模具的一侧安装注塑机的喷嘴,将已经熔化的塑料以高压状态注射到模具中,填充整个模具腔。

4. 冷却:注射完成后,待塑料在模具中冷却固化。

5. 开模脱模:模具中的塑料已经冷却固化后,打开模具并将成品从模具中取出。

6. 加工处理:根据需要,对成品进行后续的加工处理,如切割、打孔、喷涂等。

注塑成型是一种高效的加工方式,适用于生产大批量的复杂形状的塑料产品。

它的优点包括生产效率高、生产成本低、产品质量稳定,因此得到了广泛应用。

材料成型原理及工艺第一章液态成型工艺基础理论

材料成型原理及工艺第一章液态成型工艺基础理论

态 陷产生,导致成型件力学性能,
成 特别是冲击性能较低。
型 2. 涉及的工序很多,难以精确控
的 制,成型件质量不稳定。
缺 3.由于目前仍以砂型铸造为主,
点:
自动化程度还不很高,且属于热 加工行业,因而工作环境较差。
4.大多数成型件只是毛坯件,需 经过切削加工才能成为零件。
液态成型原理及工艺
冲天炉出铁
液态成型原理及工艺
绪论:
金属液态成型又称为铸造,
金 它是将固态金属熔炼成符合
属 液 态 成 型:
一定要求的液态金属,然后 将液态金属在重力或外力作 用下充填到具有一定形状型 腔中,待其凝固冷却后获得 所需形状和尺寸的毛坯或零 件,即铸件的方法。
制造毛坯或机器零件的重要方法。
液态成型原理及工艺
绪论:
的 游离原子
级,在此范围 内仍具有一定


的规律性。原


子集团间的空

空穴或裂纹 穴或裂纹内分
布着排列无规
有 序

则的游离的原
子。
液态成型原理及工艺
这样的结构不是静止的,而是 处于瞬息万变的状态,即原子 集团、空穴或裂纹的大小、形 态及分布及热运动的状态都处 于无时无刻不在变化的状态。 液态中存在着很大的能量起伏。
液 液态成型件在机械产品中占有重 态 要比例:
成 在机床、内燃机、重型机器中铸 型 件约占70%-90%;在风机、压
的 缩机中占60%-80%;在拖拉机
重 中占50%-70%;在农业机械中
要 占40%-70%;汽车中占20%-30
性 %。
液态成型原理及工艺
液 态 成 型 的 优 点:
(1) 适应性广,工艺灵活性大

材料成型原理材料成型技术

材料成型原理材料成型技术

材料成型原理材料成型技术材料成型原理及材料成型技术材料成型原理材料成型是通过制造工艺将原材料转化为所需的形状和尺寸的过程。

在材料成型的过程中,需要了解和应用材料成型原理,以确保最终产品的质量和性能。

1. 塑性成型原理塑性成型是指通过在一定温度下施加力来改变金属材料形状的方法。

在塑性成型过程中,材料受到的作用力使其发生塑性变形,从而得到所需的形状。

常见的塑性成型方法包括轧制、挤压、拉伸、冷冲压等。

2. 粉末冶金原理粉末冶金是指将金属或非金属粉末经过成型和烧结等工艺制成所需产品的方法。

在粉末冶金过程中,首先将粉末与有机增塑剂混合,然后通过成型工艺将其压制成所需形状,最后进行烧结使其结合成整体。

3. 注塑成型原理注塑成型是将塑料通过加热溶融后,通过高压注入模具中,并通过冷却使其固化成为所需形状的方法。

注塑成型广泛应用于塑料制品的生产过程中,如塑料杯、塑料零件等。

4. 焊接成型原理焊接成型是通过热能使两个或多个工件相互结合的过程。

焊接成型可以分为熔化焊接和非熔化焊接两种类型。

熔化焊接是利用能量将工件加热至熔化状态,使其相互结合,如电弧焊、气焊等;非熔化焊接是通过压力或热传导使工件相互结合,如电阻焊、激光焊接等。

材料成型技术在材料成型的过程中,常用的成型技术有许多种类,以下是其中几种常见的成型技术。

1. 压力成型技术压力成型技术是通过施加压力改变材料形状的技术。

压力成型技术包括锻造、挤压、冲压等。

锻造是将金属材料置于模具中,并通过锤击、压力等力量改变其形状。

挤压是通过在模具中施加高压使材料产生塑性变形,并得到所需形状和尺寸。

冲压是通过模具的剪切和冲击力将金属材料剪切或冲击成所需的形状。

2. 热处理技术热处理技术是通过加热或冷却材料以改变其组织结构和性能的技术。

热处理技术包括退火、淬火、回火等。

退火是通过加热材料至一定温度后缓慢冷却至室温,以改变其组织结构和性能。

淬火是将材料加热至一定温度后迅速冷却,以使材料达到高强度和硬度。

材料成型原理与工艺

材料成型原理与工艺
2 机器人技术
利用机器人系统进行生产操作,减少人力投入,提高安全性和稳定性。
3 自动化装备
使用自动化设备和机械装置进行生产操作,提高生产效率和精度。
计算机辅助制造
计算机辅助设计
利用计算机软件进行产品设计和模具设计,提高设计效率和精度。
计算机辅助加工
利用计算机控制系统进行数控加工和自动化加工,提高加工效率和精度。
计算机辅助检测
利用计算机设备进行产品检测和质量控制,提高产品质量和稳定性。
通过外力使材料在超过其弹性极限的条件下发生形变,达到所需形状。
2 热变形
利用高温使材料达到可塑性,并通过外力使其变形,实现成型。
3 剪切成形
通过剪切力将材料切割成所需形状。
材料成型的工艺流程
1
进料和送料
2
将原材料送入成型设备,准备进行下
一步的成型过程。
3
后处理
4
对成型后的材料进行必要的处理,如 修整、清洁、检验等。
材料成型原理与ቤተ መጻሕፍቲ ባይዱ艺
本演示文稿旨在介绍材料成型的原理与工艺。通过深入了解材料成型的分类、 重要性和应用等方面,帮助您更好地理解这一领域。让我们开始探索吧!
材料成型的定义
材料成型是指通过外力和热力使原材料改变形状和性质的加工过程。它是材 料加工的重要环节,广泛应用于制造业各个领域。
材料成型的原理
1 塑性变形
力将其挤压成所需形状。
3
橡胶挤压
将橡胶材料置于挤压机内,通过挤压 力将其挤压成所需形状。
模具的设计和制造
模具是材料成型过程中的重要工具,它决定了成品的形状和质量。模具的设计和制造需要考虑材料特性、 工艺要求和设备条件等因素。
生产成型的自动化技术
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.6注射成型
注射成型是将瓷粉和有机粘结剂混合后, 经注射成型机,在130~300℃温度下将瓷
料注射到金属模腔内。待冷却后,粘结剂固化, 便可取出毛坯而成型。(P51,图18-1)
注射成型的特点
注射成型法可以成型形状复杂的制品。毛坯
尺寸和烧结后实际尺寸的精确度高,尺寸公差 在1%以内,而干压成型为±1%~2%,注浆成 型法±5%。注射成型工艺的周期为10~90s, 工艺简单,成本低,压坯密度均匀,适于复杂 零件的自动化大批量生产。但是它脱脂时间较 长,金属模具昂贵,设计较困难。
(2)湿式等静压容器内可同时放入几个模具, 压制不同形状的坯体。
(3)可以任意调节成型压力。 (4)压制产品质量高,烧成收缩小,坯件致 密,不易变形。
(5)设备成本高,湿式等静压成型不易自动 化生产,生产效率不高。
11.5挤压成型
挤压成型是将经真空练制的泥料,置于挤制 机(挤坯机)内,只需更换挤制机的机嘴, 就能挤压出各种形状的坯体。(P52,图18-2, 3)
轧膜成型用塑化剂
轧膜成型用塑化剂由粘合剂、增塑剂和溶剂 所组成(P23,表13-4)。
轧膜成型对粉料粒度的要求是越细越圆润,含 粘合剂量越多,轧辊的精度要求也越高。
轧膜成型的特点
轧膜成型具有工艺简单、生产效率高、膜片厚 度均匀、生产设备简单、粉尘污染小、能成 型厚度很薄的膜片等优点。但用该法成型的 产品干燥收缩和烧成收缩较干压制品的大。
11.7轧膜成型
轧膜成型是将准备好的陶瓷粉料,拌以一定 量的有机粘结剂(如聚乙烯醇等)和溶剂, 通过粗轧和精轧成膜后再进行冲片成型。
轧膜成型的工艺流程如下:
粗轧是将粉料、粘结剂和溶剂等成分置于 两辊轴之间充分混合混练均匀,伴随着吹风, 使溶剂逐渐挥发,形成一层厚膜。精轧是逐步 调近轧辊间距,多次折叠,90°转向反复轧练, 以达到良好的均匀度、致密度、光洁度和厚度。 轧好的坯片,在一定湿度的环境中储存,防止 干燥脆化,最后在冲片机上冲压成型。
11.5.1挤压成型泥料的性能要求
(1)粉料有足够的细度和圆润的外形,以保 证必要的流动性。
(2)溶剂、增塑剂等用量要适当。
11.5.2挤压成型的特点
挤压成型适于连续化批量生产,生产效率 高,环境污染小,易于自动操作。但机嘴结 构复杂,加工精度要求高,耗泥量多,制品 烧成收缩大。挤压成型适于挤制直径1~ 30mm的管、棒形制品(细管壁厚小至 0.2mm),或用以挤制径幅800mm 、100~ 200孔/cm2的蜂窝状、筛格式穿孔瓷筒。
注浆成型法 :
(1)空心注浆
(2)实心注浆 11.2热压铸成型
利用含蜡料浆加热熔化后具有流动性和塑性, 冷却后在金属模中凝固成一定形状。
1.蜡浆的制备
熟瓷粉 石蜡 表面活性物质
预热 熔化
搅拌
除气、进热压铸机 浇成蜡饼存放
熟瓷粉是预先煅烧的瓷料。目的,除使反应充分 均匀之外,还可减少石蜡用量,降低烧结收缩和 变形。
11.3.1塑化与造粒工艺
通过造粒工艺,把陶瓷粉料制成具有良好 流动性和一定强度的颗粒(同时具有一定的
粘性),以便干压成型。
1.机械(人工)造粒
加入粘合剂溶液的粉料,在陶瓷研钵或轮辗
机中均匀混合,进行塑化。
2.喷雾干燥造粒
喷雾干燥造粒是适用于大批量、自动化生产。 喷雾干燥造粒的过程是:制备混有粘合剂的料 浆,然后用泵将浆打入造粒塔雾化,热空气对 料浆进行干燥处理形成球颗粒。
11.4.2干式等静压成型
干式等静压成型的模具是半固定式的,坯料的 添加与坯件的取出都是在干燥状态下操作。干 式等静压成型模具,两头(垂直方向)并不加 压,适于压制长型、薄壁、管状产品。
13.4.3热等静压成型
对坯体加温加压同时进行,陶瓷致密度更高。
热等静压成型的特点:
(1)适于压制形状复杂、大件且细长的新型 陶瓷制品。
适用于外形复杂、精密度高的中小型制品。 其成型设备不复杂,模具磨损小,操作方便, 生产效率高。热压铸成型的缺点是,工序较繁, 耗能大,工期长,对于壁薄、大而长的制品不 宜采用。
11.3干压成型
将陶瓷粉体经过塑化、造粒,制备成流动性 好、粒配合适的粉料,装入模具内,通过压 机的柱塞施以外加压力,使粉料压制成一定 形状的坯体。
石蜡是作为增塑剂使用,具有很好的热流动性、 润滑性和冷凝性。
表面活性物质—油酸、硬脂酸、蜂蜡等,使瓷粉 与石蜡更好地结合。这些表面活性物质不仅能提 高蜡浆的热流动性和冷凝蜡坯的强度,而且可以 减少石蜡的用量,防止瓷粉分层。
2.蜡浆的性能 (1)稳定性好 (2)可铸性好 (3)收缩率低 3.热压铸成型的特点
第十一章 成型原理与成型技术
11.1 注浆成型
它是利用石膏吸水性的一种成形方法。此法 适于生产一些形状复杂且不规则、外观尺寸要 求不严格、壁薄及大型厚胎的制品。
对注浆成型所用的料浆,必须具备如下性能: 流动性、稳定性(即不易沉淀和分层)、触 变性要小、含水量尽可能少、渗透性要好、脱 膜性要好、尽可能不含气泡。
控制因素:
(1)成型压力的大小 (2)加压速度与保压时间
11.3.4干压成型的特点
由于坯料中含水或其它粘合剂比较少,干 压成型的坯体致密度高,尺寸比较精确,烧 成收缩小,瓷件的机械强度高,电性能好。 主要用于圆形、薄片状的简单形状制品。
11.4等静压成型
等静压成型又称静水压成型,它是利用液 体介质不可压缩性和均匀传递压力性的一种 成型方法 。 冷等静压成型
热等静压成型
11.4.1湿式等静压成型
先将配好的坯料装入塑料或橡胶做成的弹 性模具内,置于高压容器内,密封后,注入 高压液体介质,压力传递至弹性模具对坯料 加压。然后释放压力取出模具,并从模具取 出成型好的坯件。
传压液体可用水、甘油或重油等。弹性模 具材料应选用弹性好、抗油性好的橡胶或类
似的塑料。
3.干压成型对粒料的工艺要求
粒度和粒度分布 压制大的坯件,粒料可适当粗些,较小的坯件,
粒料需稍细。粒度不当,成型的坯件密度低,强 度差。粒料过来自,坯件易出现起层(层裂)现象。
粒料的流动性 粒料的自然息角α越小,流动性越好。
11.3.2干压成型方法 (1)单向加压 (2)双向加压
11.3.3干压成型应注意的问题 坯件的密度称为成型密度。成型密度愈均匀 愈好。
相关文档
最新文档