2017年中考数学真题三角函数汇总

合集下载

2017年中考数学真题三角函数汇总

2017年中考数学真题三角函数汇总

2017年中考数学真题三角函数汇总1、如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,2、18.(7分)如图,为测量某建筑物的高度AB,在离该建筑物底部24米的点C处,目测建筑物顶端A处,视线与水平线夹角∠ADE为39°,且高CD为1.5米,求建筑物的高度AB.(结果精确到0.1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)3、如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE 的长(结果保留根号).4、海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在正西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)5、如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)6、如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()≈1.73)7、如图,根据图中数据完成填空,再按要求答题:A. 40海里 B. 40海里C. 80海里D. 40海里sin2A1+sin2B1= ;sin2A2+sin2B2= ;sin2A3+sin2B3= .(1)观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B= .(2)如图④,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.(3)已知:∠A+∠B=90°,且sinA=,求sinB.8、如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离?(参考数据:sin36.9°≈,tan36.9°≈,sin67.5°≈,tan67.5°≈) B 36.9° C P 67.5°A (第22题图)9、钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B 处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.(参考数据:cos59°≈0.52,sin46°≈0.72)10、如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为()A. 20海里B. 10海里 C. 20海里 D. 30海里2017年中考数学专题复习三角函数一选择题:1.如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米2.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA 与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.2米 B.2米C.(4+22)米 D.(4+4tanθ)米3.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是10° B.斜坡AB的坡度是tan10°米C.AC=1.2tan10°米 D.AB=4.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A. B.2 C. D.5.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A 的距离是()海里.A.25B.25C.50 D.25第 1 页共 1 页2017年中考数学专题复习6.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里 B.45海里 C.20旋转90°后得到△A′O′B.若反比例函数的值为()海里 D.30海里7.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则kA.3 B.4 C.6 D.88.聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米 B.204米 C.240米 D.407米8.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)A.30.6 B.32.1 C.37.9 D.39.4第 2 页共 2 页2017年中考数学专题复习29.已知抛物线y=﹣x﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A. B. C. D.210.如图,△ABC的顶点是正方形网格的格点,则sinA的值为()A. B. C. D.二填空题:11.如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).12.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.13.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC= .AC.14.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,若∠B=56°∠C=45°tan56°≈1.5),,则游客中心A到观景长廊BC的距离AD的长约为米.(sin56°≈0.8,第 3 页共 3 页2017年中考数学专题复习15.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D 是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB 方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.16.如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=43°,求飞机A与指挥台B的距离(结果取整数)=0.68,cos43°=0.73,tan43°=0.93)(参考数据:sin43°17.如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.(1)求证:PF平分∠BFD.(2)若tan∠FBC=,DF=,求EF的长.第 4 页共 4 页2017年中考数学专题复习18.全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为米(参考数据:tan78°12′≈4.8).AM=4米,AB=8米,∠MAD=45°19.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据: =1.41, =1.73).β为任意角时,sinsin=sinα?cosβ+cosα?sinβ;20.一般地,当α、(α+β)与sin(α﹣β)的值可以用下面的公式求得:(α+β)sin=sinα?cosβ﹣cosα?sinβ.=sin+30°=sin60°?cos30°+cos60°?sin30°=(α﹣β)例如sin90°(60°)×+×=1.类似地,可以求得sin15°的值是.21.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度为米.(结果保留根号)2017年中考数学专题复习22.在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A 到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)23.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)24.如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)第 6 页共 6 页2017年中考数学专题复习25.2016年2月1日,我国在西昌卫星发射中心,用长征三号丙运载火箭成功将第5颗新一代北斗星送入预定轨道,如图,火箭从地面L处发射,当火箭达到A点时,从位于地面R处雷达站测得AR的距离是6km,仰角为42.4°;1秒后火箭到达B点,此时测得仰角为45.5°(1)求发射台与雷达站之间的距离LR;(2)求这枚火箭从A到B的平均速度是多少(结果精确到0.01)?(参考数据:son42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02 )26.如图,某城市市民广场一入口处有五级高度相等的小台阶.已知台阶总高1.5米,为了安全现要作一个不锈钢C)扶手AB及两根与FG垂直且长为1米的不锈钢架杆AD和BC (杆子的地段分别为D、,且∠DAB=66.5°.(参考数据:cos66.5°≈0.40,sin66.5°≈0.92)(1)求点D与点C的高度DH;(2)求所有不锈钢材料的总长度(即AD+AB+BC的长,结果精确到0.1米)27.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国还巡警干扰,就请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B 的北偏西30°的方向上,求A、C之间的距离.第 7 页共 7 页2017年中考数学专题复习28.一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A 处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:≈1.732,结果精确到0.1)?29.芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,≈1.732)请求出立柱BH的长.(结果精确到0.1米,30.如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈用根号表示,不取近似值).,计算结果第 8 页共 8 页2017年中考数学专题复习31.如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°,已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号)(2)求旗杆CD的高度.32.如图,埃航MS804客机失事后,国家主席亲自发电进行慰问,埃及政府出动了多艘舰船和飞机进行搜救,其中一艘潜艇在海面下500米的A点处测得俯角为45°的前下方海底有黑匣子信号发出,继续沿原方向直线航行2000米后到达B点,在B处测得俯角为60°的前下方海底有黑匣子信号发出,求海底黑匣子C点距离海面的深度(结果保留根号).33.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.第 9 页共 9 页2017年中考数学专题复习34.如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.(1.414,CF结果精确到米)35.在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基顶端B(和A、E共线)与地面C处固定的绳索的长BC 为80m.她先测得∠BCA=35°,然后从C点沿AC方向走30m到达D 点,又测得塔顶E的仰角为50°,求塔高AE.(人的高度忽略不计,结果用含非特殊角的三角函数表示)36.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)。

2017年中考真题 数学(安徽卷)(含解析)

2017年中考真题 数学(安徽卷)(含解析)

D.
考点: 解一元一次不等式及其解集在数轴上的表示方法.
6.直角三角板和直尺如图放置.若 1 20 ,则 2 的度数为( )
A. 60
【答案】C 【解析】
B. 50
C. 40
D. 30
试题分析:由题意得:
a b 4 50 2 40
3=50
故选答案 C
考点:平行线的性质、外角的性质
7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中 100 名学生进行统计,并绘成
(1)根据以上数据完成下表:
平均数
中位数
方差

8
8

8

6
8
2.2
3
(2)依据表 中数据分析,哪位运动员的成绩最稳定,并简要说明理由;
(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.
【答案】解:(1)
平均数
中位数
方差

2


6
[来源:Z|xx|]
【解析】
试题分析:(1)根据中位数和方差的定义求解;(2)根据方差的意义求解;(3)用列举法求概率.

.由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12 22 32 n2 )
.
因此,12 22 32 n2 =
.
【解决问题】
根据以上发现,计算
12
22 1 2
32 2017 3 2017
2
的结果为
.
【答案】 2n +1 【解析】
(2n +1)×n(n +1)
2
1 n(n +1)(2n +1)

中考数学三角函数公式汇总与解析

中考数学三角函数公式汇总与解析

中考数学三角函数公式汇总与解析1.锐角三角函数锐角三角函数定义:锐角角A的正弦(si n),余弦(c o s)和正切(t a n),余切(c o t)以及正割(se c),余割(c sc)都叫做角A的锐角三角函数。

正弦(si n):对边比斜边,即si n A=a/c余弦(c o s):邻边比斜边,即c o sA=b/c正切(t a n):对边比邻边,即t a n A=a/b余切(c o t):邻边比对边,即c o t A=b/a正割(se c):斜边比邻边,即se c A=c/b余割(c sc):斜边比对边,即c s c A=c/a2.3.互余角的关系s i n(π-α)=c o sα,c o s(π-α)=si nα,t a n(π-α)=c o tα,c o t(π-α)=t a nα.4.平方关系sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)5.积的关系s i nα=t a nα·c o sαc o sα=c o tα·si nαt a nα=si nα·se cαc o tα=c o sα·c s cαs e cα=t a nα·c scαc s cα=se cα·c o tα6.倒数关系t a nα·c o tα=1s i nα·c scα=1c o sα·se cα=17.诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:s i n(2kπ+α)=si nαk∈zc o s(2kπ+α)=c o sαk∈zt a n(2kπ+α)=t a nαk∈zc o t(2kπ+α)=c o tαk∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:s i n(π+α)=-si nαc o s(π+α)=-c o sαt a n(π+α)=t a nα8.两角和差公式(1)si n(A+B)=si n A c o sB+c o sA si n B(2)si n(A-B)=si n A c o s B-si n B c o sA(3)c o s(A+B)=c o sA c o sB-si n A si n B(4)c o s(A-B)=c o sA c o sB+si n A si n B(5)t a n(A+B)=(t a n A+t a n B)/(1-t a n A t a n B)(6)t a n(A-B)=(t a n A-t a n B)/(1+t a n A t a n B)(7)c o t(A+B)=(c o t A c o t B-1)/(c o t B+c o t A)(8)c o t(A-B)=(c o t A c o t B+1)/(c o t B-c o t A)除了以上常考的三角函数公式外,掌握下面半角公式,积化和差和万能公式有利于快速解决选择题,达到事半功倍的效果哦!1.半角公式注:正负由α/2所在的象限决定。

2017中考数学真题汇编----由三角函数值求锐角(pdf版)

2017中考数学真题汇编----由三角函数值求锐角(pdf版)

2017中考数学真题汇编----由三角函数值求锐角一.选择题(共8小题)1.为了方便行人推车过某天桥,市政府在10m高的天桥一侧修建了40m长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是()A.B.C.D.2.用计算器计算时,下列说法错误的是()A.计算“﹣1”的按键顺序是B.计算“3×105﹣28”的按键顺序是C.“已知SinA=0.3,求锐角A”的按键顺序是D.计算“()5”的按键顺序是3.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C. D.4.如图,△ABC中,∠ACB=90°,BC=2,AC=3,若用科学计算器求∠A的度数,并用“度、分、秒”为单位表示出这个度数,则下列按键顺序正确的是()A.B.C.D.5.如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC 的长,则下列按键顺序正确的是()A.B.C. D.6.如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC 的长,则下列按键顺序正确的是()A.5÷tan26°= B.5÷sin26°= C.5×cos26°= D.5×tan26°=7.下面四个数中,最大的是()A.B.sin88°C.tan46°D.8.利用计算器求tan45°时,依次按键则计算器上显示的结果是()A.0.5 B.0.707 C.0.866 D.1二.填空题(共12小题)9.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.tan38°15′≈.(结果精确到0.01)10.等腰三角形中,腰和底的长分别是10和13,则三角形底角的度数约为.(用科学计算器计算,结果精确到0.1°)11.用科学计算器计算:+3tan56°≈.(结果精确到0.01)12.如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.13.在平面直角坐标系中,O是坐标原点,点P是第二象限内一点,连接OP.若OP与x轴的负半轴之间的夹角α=50°,OP=13.5,则点P到x轴的距离约为(用科学计算器计算,结果精确到0.01).14.在Rt△ABC中,∠C=90°,∠A=42°,BC=3,则AC的长为.(用科学计算器计算,结果精确到0.01)15.运用科学计算器计算:2cos72°=.(结果精确到0.1)16.计算cos37°15′+≈.(用科学计算器,结果精确到0.01)17.在Rt△ABC中,∠ACB=90°,∠A=41°,BC=3,则AB的长为.(用科学计算器计算,结果精确到0.01)18.等腰三角形ABC中,AB=AC,若AB=3,BC=4,则∠A的度数约为.(用科学计算器计算,结果精确到0.1°)19.用科学计算器计算:﹣tan65°≈(精确到0.01)20.用科学计算器比较大小:4sin44°.三.解答题(共9小题)21.已知:如图,在△ABC中,AB=8,AC=9,∠A=48°.求:(1)AB边上的高(精确到0.01);(2)∠B的度数(精确到1′).22.用计算器求下列各式的值:(1)sin47°;(2)sin12°30′;(3)cos25°18′;(4)tan44°59′59″;(5)sin18°+cos55°﹣tan59°.23.计算:﹣2sin45°﹣32.温馨提示:你只需选择下列一种方式来解答本题.如果两种方式都做,我们将根据做得较好的一种来评分,但你有可能会浪费一部分时间!方式一:(用计算器计算)计算的结果是.按键顺序为:方式二:(不用计算器计算)24.求满足下列条件的锐角θ的度数(精确到0.1°):(1)sinθ=0.1426;(2)cosθ=0.7845.25.已知下列锐角三角函数值,用计算器求锐角A,B的度数.(1)sinA=0.7,sinB=0.01;(2)cosA=0.15,cosB=0.8;(3)tanA=2.4,tanB=0.5.26.(1)通过计算(可用计算器),比较下列各对数的大小,并提出你的猜想:①sin30°2sin15°cos15°;②sin36°2sin18°cos18°;③sin45°2sin22.5°cos22.5°;④sin60°2sin30°cos30°;⑤sin80°2sin40°cos40°.猜想:已知0°<α<45°,则sin2α2sinαcosα.(2)如图,在△ABC中,AB=AC=1,∠BAC=2α,请根据提示,利用面积方法验证结论.27.(1)观察下列各式:=12+3×1+1,=22+3×2+1,=32+3×3+1,猜想=(2)用计算器计算,,,…猜测的结果为.28.(1)用计算器计算并验证sin25°+sin46°与sin71°之间的大小关系:(2)若α、β、α+β都是锐角,猜想sinα+sinβ与sin(α+β)的大小关系:(3)请借助如图的图形证明上述猜想.29.用计算器计算:sin12°30′+cos82°17′5″+tan17°48′.(结果保留四个有效数字)参考答案与解析一.选择题(共8小题)1.为了方便行人推车过某天桥,市政府在10m高的天桥一侧修建了40m长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是()A.B.C.D.【分析】先利用正弦的定义得到sinA=0.25,然后利用计算器求锐角∠A.【解答】解:sinA===0.25,所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为故选A.【点评】本题考查了计算器﹣三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.2.用计算器计算时,下列说法错误的是()A.计算“﹣1”的按键顺序是B.计算“3×105﹣28”的按键顺序是C.“已知SinA=0.3,求锐角A”的按键顺序是D.计算“()5”的按键顺序是【分析】根据计算器上分数、科学计数法、三角函数及乘方的计算方法可得.【解答】解:A、计算“﹣1”的按键顺序是,正确;B、计算“3×105﹣28”的按键顺序是,正确;C、“已知SinA=0.3,求锐角A”的按键顺序是,正确;D、计算“()5”的按键顺序是,错误;故选:D.【点评】本题主要考查计算器的使用,掌握计算器上分数、科学计数法、三角函数及乘方的计算方法是解题的关键.3.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.【分析】简单的电子计算器工作顺序是先输入者先算,其中R﹣CM表示存储、读出键,M+为存储加键,M﹣为存储减键,根据按键顺序写出式子,再根据开方运算即可求出显示的结果.【解答】解:利用该型号计算器计算cos55°,按键顺序正确的是.故选:C.【点评】本题主要考查了利用计算器求数的开方,要求学生对计算器上的各个功能键熟练掌握,会根据按键顺序列出所要计算的式子.借助计算器这样的工具做题既锻炼了学生动手能力,又提高了学生学习的兴趣.4.如图,△ABC中,∠ACB=90°,BC=2,AC=3,若用科学计算器求∠A的度数,并用“度、分、秒”为单位表示出这个度数,则下列按键顺序正确的是()A.B.C.D.【分析】根据正切函数的定义,可得tan∠A=,根据计算器的应用,可得答案.【解答】解:由tan∠A=,得tan∠A=.故选:D.【点评】本题考查了计算器,利用了锐角三角函数,计算器的应用,熟练应用计算器是解题关键.5.如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC 的长,则下列按键顺序正确的是()A.B.C. D.【分析】根据正切函数的定义,可得tan∠B=,根据计算器的应用,可得答案.【解答】解:由tan∠B=,得AC=BC•tanB=5×tan26.故选:D.【点评】本题考查了计算器,利用了锐角三角函数,计算器的应用,熟练应用计算器是解题关键.6.如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC 的长,则下列按键顺序正确的是()A.5÷tan26°= B.5÷sin26°= C.5×cos26°= D.5×tan26°=【分析】根据正切函数的定义,可得tan∠B=,根据计算器的应用,可得答案.【解答】解:由tan∠B=,得AC=BC•tanB=5×tan26.故选:D.【点评】本题考查了计算器,利用了锐角三角函数,计算器的应用,熟练应用计算器是解题关键.7.下面四个数中,最大的是()A.B.sin88°C.tan46°D.【分析】利用计算器求出数值,再计算即可.【解答】解:A、﹣≈2.236﹣1.732≈0.504;B、sin88°≈0.999;C、tan46°≈1.036;D、≈≈0.568.故tan46°最大,故选:C.【点评】本题结合计算器的用法,旨在考查对基本概念的应用能力.8.利用计算器求tan45°时,依次按键则计算器上显示的结果是()A.0.5 B.0.707 C.0.866 D.1【分析】本题要求熟练应用计算器.【解答】解:依次按键则计算器上显示的tan45°的值,即1.故选D.【点评】本题结合计算器的用法,旨在考查特殊角三角函数值,需要同学们熟记有关特殊角的三角函数值.二.填空题(共12小题)9.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为64°.B.tan38°15′≈ 2.03.(结果精确到0.01)【分析】A:由三角形内角和得∠ABC+∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB);B:利用科学计算器计算可得.【解答】解:A、∵∠A=52°,∴∠ABC+∠ACB=180°﹣∠A=128°,∵BD平分∠ABC、CE平分∠ACB,∴∠1=∠ABC、∠2=∠ACB,则∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=64°,故答案为:64°;B、tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.10.等腰三角形中,腰和底的长分别是10和13,则三角形底角的度数约为49.5°.(用科学计算器计算,结果精确到0.1°)【分析】首先画出图形,再利用cosB==,结合计算器求出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵腰和底的长分别是10和13,∴BD=,∴cosB===,∴∠B≈49.5°.故答案为:49.5°.【点评】此题主要考查了计算器求三角函数值,正确应用计算器是解题关键.11.用科学计算器计算:+3tan56°≈7.00.(结果精确到0.01)【分析】正确使用计算器计算即可.按运算顺序进行计算.【解答】解:+3tan56°=5.568+1.732×0.8290≈5.568+1.436≈7.00.故答案为:7.00.【点评】此题考查了使用计算器计算三角函数的有关知识,解题的关键是:正确使用计算器计算.12.如图,AD是正五边形ABCDE的一条对角线,则∠BAD=72°.【分析】利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的读数,进而求得∠BAD的度数.【解答】解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=×540°=108°,∠BAE=108°又∵EA=ED,∴∠EAD=×(180°﹣108°)=36°,∴∠BAD=∠BAE﹣∠EAD=72°,故答案为:72°.【点评】本题考查了正多边形的计算,重点掌握正多边形内角和公式是关键.13.在平面直角坐标系中,O是坐标原点,点P是第二象限内一点,连接OP.若OP与x轴的负半轴之间的夹角α=50°,OP=13.5,则点P到x轴的距离约为10.34(用科学计算器计算,结果精确到0.01).【分析】过点P作PA⊥x轴于点A,根据三角函数求出PA即可.【解答】解:过点P作PA⊥x轴于点A,如图所示∵sinα=,∴PA=OP•sin50°≈13.5×0.766≈10.34;故答案为:10.34.【点评】本题考查了解直角三角形以及点的坐标,由三角函数求出PA是解决问题的关键.14.在Rt△ABC中,∠C=90°,∠A=42°,BC=3,则AC的长为8.16.(用科学计算器计算,结果精确到0.01)【分析】根据计算器的使用,可得答案.【解答】解:tan 42≈0.9004,=0.9004,AC≈8.16,故答案为:8.16.【点评】本题考查了计算器,正确使用计算器是解题关键.15.运用科学计算器计算:2cos72°= 1.1.(结果精确到0.1)【分析】将=1.732和cos72°=0.309代入计算即可.【解答】解:2cos72°=2×1.732×0.309≈1.1,故答案为:1.1.【点评】本题结合计算器的用法,着重考查对基本概念的应用能力,需要同学们熟记精确度的概念.16.计算cos37°15′+≈ 5.90.(用科学计算器,结果精确到0.01)【分析】根据计算器的使用:按键cos 37°15′,按键,26,可得答案.【解答】解:原式=0.796+5.099=5.895≈5.90,故答案为:5.90.【点评】本题考查了计算器,正确使用计算器是解题关键.17.在Rt△ABC中,∠ACB=90°,∠A=41°,BC=3,则AB的长为 1.97.(用科学计算器计算,结果精确到0.01)【分析】根据三角函数定义即可得到结论.【解答】解:∵∠ACB=90°,∠A=41°,BC=3,∴sin41°=,∴AB=BC•sin41°=3×0.656≈1.97,故答案为:1.97.【点评】本题考查了三角函数的定义,用科学计算器计算,熟练掌握三角函数的定义是解题的关键.18.等腰三角形ABC中,AB=AC,若AB=3,BC=4,则∠A的度数约为83.6°.(用科学计算器计算,结果精确到0.1°)【分析】首先画出图形,再利用sin∠BAD==,结合计算器求出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵AB=3,BC=4,∴BD=DC=2,∴sin∠BAD==,∴∠BAD≈41.8°,∴∠BAC≈83.6°.故答案为:83.6°.【点评】此题主要考查了计算器求三角函数值,正确应用计算器是解题关键.19.用科学计算器计算:﹣tan65°≈0.68(精确到0.01)【分析】正确使用计算器计算即可,注意运算顺序.【解答】解:﹣tan65°≈2.828﹣2.145≈0.68.故答案为:0.68.【点评】此题考查了使用计算器计算开方及三角函数,解题的关键是:正确使用计算器.20.用科学计算器比较大小:4sin44°<.【分析】用计算器分别计算,然后比较大小即可.【解答】解:用计算器计算可得4sin44°<.故答案为:<.【点评】本题考查了计算器,熟记计算器的用法是解题关键.三.解答题(共9小题)21.已知:如图,在△ABC中,AB=8,AC=9,∠A=48°.求:(1)AB边上的高(精确到0.01);(2)∠B的度数(精确到1′).【分析】(1)作AB边上的高CH,垂足为H,在Rt△ACH中,利用sinA可求CH;(2)在Rt△ACH中,利用cosA可求AH,在Rt△BCH中,利用tanB=,易求其值,再利用计算器求反三角函数即可.【解答】解:(1)作AB边上的高CH,垂足为H,∵在Rt△ACH中,,∴CH=AC•sinA=9sin48°≈6.69;(2)∵在Rt△ACH中,,∴AH=AC•cosA=9cos48°,∴在Rt△BCH中,,∴∠B≈73°32′.【点评】本题考查了直角三角形中三角函数值的计算、计算器计算三角函数值及反三角函数值.22.用计算器求下列各式的值:(1)sin47°;(2)sin12°30′;(3)cos25°18′;(4)tan44°59′59″;(5)sin18°+cos55°﹣tan59°.【分析】本题要求同学们,熟练应用计算器,对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数.【解答】解:根据题意用计算器求出:(1)sin47°=0.7314;(2)sin12°30′=0.2164;(3)cos25°18′=0.9003;(4)tan44°59′59″=1.0000;(5)sin18°+cos55°﹣tan59=﹣0.7817.【点评】本题结合计算器的用法,旨在考查对基本概念的应用能力,需要同学们熟记有效数字的概念:从一个数的左边第一个非零数字起,到精确到的数位止,所有数字都是这个数的有效数字.23.计算:﹣2sin45°﹣32.温馨提示:你只需选择下列一种方式来解答本题.如果两种方式都做,我们将根据做得较好的一种来评分,但你有可能会浪费一部分时间!方式一:(用计算器计算)计算的结果是﹣9.按键顺序为:方式二:(不用计算器计算)【分析】选择不用计算器计算,简便且节约时间.【解答】方式一:(用计算器计算)计算的结果是﹣9.按键顺序为:(以卡西欧计算器为例)方式二:(不用计算器计算)原式=﹣9=﹣9=﹣9.【点评】主要考查特殊三角函数值和二次根式的运算,比较容易.24.求满足下列条件的锐角θ的度数(精确到0.1°):(1)sinθ=0.1426;(2)cosθ=0.7845.【分析】(1)直接利用计算器求出即可;(2)直接利用计算器求出即可.【解答】解:(1)∵sinθ=0.1426,∴∠θ≈8.2°;(2)∵cosθ=0.7845,∴∠θ≈38.3°.【点评】此题主要考查了利用计算器求角的度数,正确使用计算器是解题关键.25.已知下列锐角三角函数值,用计算器求锐角A,B的度数.(1)sinA=0.7,sinB=0.01;(2)cosA=0.15,cosB=0.8;(3)tanA=2.4,tanB=0.5.【分析】熟练应用计算器,对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数.【解答】解:(1)sinA=0.7,得A=44.4°;sinB=0.01得B=0.57°;(2)cosA=0.15,得A=81.3°;cosB=0.8,得B=36.8°;(3)由tanA=2.4,得A=67.4°;由tanB=0.5,得B=26.5°.【点评】考查了计算器﹣三角函数,本题结合计算器的用法,熟练掌握计算器的用法是解题关键.26.(1)通过计算(可用计算器),比较下列各对数的大小,并提出你的猜想:①sin30°=2sin15°cos15°;②sin36°=2sin18°cos18°;③sin45°=2sin22.5°cos22.5°;④sin60°=2sin30°cos30°;⑤sin80°=2sin40°cos40°.猜想:已知0°<α<45°,则sin2α=2sinαcosα.(2)如图,在△ABC中,AB=AC=1,∠BAC=2α,请根据提示,利用面积方法验证结论.【分析】(1)根据计算器的使用,可得2倍角三角函数;(2)根据同一个三角形面积的不同表示,可得答案.【解答】解:(1)通过计算(可用计算器),比较下列各对数的大小,并提出你的猜想:①sin30°=2sin15°cos15°;②sin36°=2sin18°cos18°;③sin45°=2sin22.5°cos22.5°;④sin60°=2sin30°cos30°;⑤sin80°=2sin40°cos40°.(2)已知0°<α<45°,则sin2α=2sinαcosα,证明:S△ABC =AB•sin2α•AC,S△ABC=×2ABsinα•ACcosα,∴sin2α=2sinαcosα.【点评】本题考查了计算器﹣三角函数,利用计算器得出三角函数值,又利用了三角形的面积公式.27.(1)观察下列各式:=12+3×1+1,=22+3×2+1,=32+3×3+1,猜想=20132+3×2013+1(2)用计算器计算,,,…猜测的结果为1.【分析】(1)根据观察等式,可发现规律:1加上连续4个正自然数的算术平方根等四个连续自然数中最小的自然数的平方加上它的3倍再加上1,可得答案;(2)根据计算,可发现规律:n个9乘n个9与1n个9的和得算平方根等于1后面n个零,根据规律,可得答案.【解答】解:(1)猜想=20132+3×2013+1,(2)=10,=100,=1000,猜测=1,故答案为:20132+3×2013+1,1.【点评】本题考查了计算器,根据计算发现规律是解题关键.28.(1)用计算器计算并验证sin25°+sin46°与sin71°之间的大小关系:(2)若α、β、α+β都是锐角,猜想sinα+sinβ与sin(α+β)的大小关系:(3)请借助如图的图形证明上述猜想.【分析】(1)根据计算器,可得有理数的运算,根据有理数的大小比较,可得答案;(2)根据(1)的结果,可得答案;(3)根据正弦函数,可得+,根据不等式的性质,可得>,根据三角形三边的关系,可得AB+BC>AE,再根据不等式的性质,可得答案.【解答】解:(1)sin25°+sin46°>sin71°sin25°+sin46°=0.423+0.719=1.142,sin71°=0.956,∴sin25°+sin46°>sin71°;(2)sinα+sinβ>sin(α+β);(3)证明:∵sinα+sinβ=+,sin(α+β)=,∵AB>OB,∴>,∴+>+=.∵AB+BC>AE,∴>,∴sinα+sinβ>sin(α+β).【点评】本题考查了计算器,利用计算得出具体角的三角函数值,利用不等式的性质得出>是解题关键.29.用计算器计算:sin12°30′+cos82°17′5″+tan17°48′.(结果保留四个有效数字)【分析】根据计算器的使用方法,可得答案.【解答】解:sin12°30′+cos82°17′5″+tan17°48′=0.21463+0.13425+0.32106=0.66994≈0.6700.【点评】本题考查了计算器,正确使用计算器是解题关键,注意有效数字:从一个数的左边第一个非零数字起,到精确到的数位止,所有数字都是这个数的有效数字.。

2017年中考数学真题分类解析 函数初步(含平面直角坐标系)

2017年中考数学真题分类解析   函数初步(含平面直角坐标系)

一、选择题1. (2017浙江丽水·10·3分)在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系图象.下列说法错误的是( ) A .乙先出发的时间为0.5小时 B .甲的速度是80千米/小时C .甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早121小时答案:D .解析:由图象可知乙先出发0.5小时后两车相距70千米,即乙的速度是60千米/小时,这样乙从B 地出发到达A 地所用时间为32160100=÷小时,由函数图形知此时两车相距不到100千米,即乙到达A 地时甲还没有到达B 地(甲到B 地比乙到A 地迟),故选项D 错误.2. .(2017四川泸州,5,3分)已知点A (a ,1)与点B (-4,b )关于原点对称,则a +b 的值为( )A .5B .-5C .3D .-3答案:C ,解析:关于原点对称的两个点的纵、横坐标均互为相反数,故a =4,b =-1,所以a +b =4-1=3. 3. (2017四川泸州,8,3分)下列曲线中不能表示y 是x 的函数的是( )答案:C ,解析:若y 是x 的函数,那么x 取一个值时,y 有唯一的一个值与x 对应,C 选项图像中,在x 轴上取一点(图像与x 轴交点除外),即确定一个 x 的值,这个点都对应图像上两个点,即一个x 的值有两个y 的值与之对应,故此图像不是y 与x 的函数图像.故选C .4. (2017山东济宁,10,3分)如图,A ,B 是半径为1的⊙O 上两点,且OA ⊥OB .点P 从A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束.设运动时间为x ,弦BP 的长度为y ,那么下面图象中可能..表示y 与x 的函数关系的是A .①B .④C .②或④D .①或③答案:D ,解析:根据“直径是圆中最长的弦”,点P 从A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束,分两种情况:点P 顺时针运动时,BP 长先变大再变小直至0再变大选③;点P 逆时针运动时,BP 长先变小直至0再变大再变小选①.5. (2017四川攀枝花,16,4分)如图1,E 为矩形ABCD 的边AD 上一点,点P 从点B 处出发沿折线BE -ED -DC 运动到点C 停止,点Q 从点B 处出发沿BC 运动到点C 停止,它们运动的速度都是lcm /s .若点P 、点Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 之间的函数图象如图2所示.给出下列结论:①当0<t ≤10时,△BPQ 是等腰三角形;②S ∆ABE =48 cm 2 ;③当14<t <22时,y = 110-5t ;④在运动过程中,使得∆ABP 是等腰三角形的P 点一共有3个;⑤∆BPQ 与∆ABE 相似时,即t =14.5.其中正确结论的序号是 . 答案:①、③、⑤解析:由图8可判断出10BE =,4DE =,当P 点在ED 上运动时40BPQ S ∆=,∴此时PBQ ∆的高为8,级8AB =,∴6AE =,∴10BC AD ==,∴当0<t ≤10时,点P 在BE 上运动,BP BQ =,∴BPQ ∆是等腰三角形;所以①对;1242ABE S AB AE ∆==g ,所以②错;当14<t <22时,点P 在CD 上运动,y = 110-5t ,所以③对;ABP ∆为等腰三角形需要分类讨论,当AB AP =时,ED 存在一个P 点,当BA BP =时,BE 上存在一个P 点,当PA PB =时,点P 在AB 垂直平分线上,所以BE 和CD 上各存在一个P 点,共有4个满足条件的点,所以④错;∆BPQ 与∆ABE 相似时,只存在BPQ BAE ∆∆∽这种情况,此时Q 点与点C 重合,即34PC AE BC AB ==,所以7.5PC =,即t =14.5,所以⑤对. 6. 4.(2017江苏淮安,4,3分)点P (1,-2)关于y 轴对称的点的坐标是( )A .(1,2)B .(-1,2)C .(-1,-2)D .(-2,1)答案:C ,解析:关于y 轴对称的点的坐标规律是“横坐标互为相反数,纵坐标不变”,可知点P (1,-2)关于y 轴对称的点的坐标是(-1,-2).7. 2.(2017江苏无锡,2,3分)函数2xy x=-中自变量x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x >2答案:A .解析:由分母不为0,得2-x ≠0,∴x ≠2 .8. (2017湖南岳阳,9,4分)函数1y 7x =-中自变量x 的取值范围是 . 答案:x ≠7,解析:分母不为0有意义,则x -7≠0,解得,x ≠7.9. 7.(2017浙江义乌,7,4分)均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为折线),这个容器的形状可以是OthA BCA .B .C .D .答案:D ,解析:由均匀地向容器注水可知,单位时间内注水量相同.对于长方体容器,底面积越大,水面高度上升的速度越小,根据图象可得,最上面的容器底面积最小,中间的容器底面积最大.10. (2017湖南邵阳,9,3分)如图(五)所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中 x 表示时间,y 表示小徐离他家的距离.读图可知菜地离小徐家的距离为( )A .1.1 千米B .2 千米C .15 千米D .37 千米答案:A ,解析:由图知从家出发经过15分钟到达菜地.浇水时间为15——25分钟,接着用(37-25)分钟时间去玉米地,第37——第55分钟时在玉米地除草,从55分钟开始回家,故菜地离家的距离为1.1千米,故选A .11.(2017湖南邵阳,10,3分)如图(六)所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30 秒后,飞机P飞到P′ (4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′ (2,3 ),R′ ( 4,1 ) B.Q′ (2,3 ),R′ ( 2,1 )C.Q′ (2,2 ),R′ ( 4,1 ) D.Q′ (3,3 ),R′ ( 3,1 )答案:A,解析:因为保持编队不变,所以由P(-1,1)移动到P′(4,3)知是向右平移了5个单位,向上平移了2个单位,所以Q,R平移后的坐标分别为(2,3),(4,1),故选A.12. 4.(2017呼和浩特,3分)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大答案:D,解析:2012年的增长率最大,为100%。

2017年中考数学真题分类汇编 三角函数

2017年中考数学真题分类汇编 三角函数

三角函数一、选择题1.(2017·天津)的值等于( ) AB. C .D . 【答案】D.2.(2017·重庆A 卷)如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为40°,若3米,2米,平行于江面,迎水坡的坡度1:0.75,坡长10米,则此时的长约为( )(参考数据:40°≈0.64,40°≈0.77,40°≈0.84).A .5.1米B .6.3米C .7.1米D .9.2米【答案】A.【解析】试题解析:如图,延长交延长线于点P ,作⊥于点Q ,060cos 312221∵140.753 CQBQ==,∴设4x、3x,由222可得(4x)2+(3x)2=102,解得:2或﹣2(舍),则8,6,∴11,在△中,∵11tan tan40DPA=∠︒≈13.1,∴﹣﹣13.1﹣6﹣2=5.1,故选A.考点:解直角三角形的应用.3.(2017·重庆B卷)如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡行走195米至坡顶D处,斜坡的坡度(或坡比)1:2.4,在D 处测得该建筑物顶端A的俯视角为20°,则建筑物的高度约为(精确到0.1米,参考数据:20°≈0.342,20°≈0.940,20°≈0.364)( )A .29.1米B .31.9米C .45.9米D .95.9米【答案】A .【解析】试题分析:作⊥于E 点,作⊥于F 点,如图,设,2.4,由勾股定理,得x 2+(2.4x )2=1952,解得x ≈75m ,75m ,2.4180m ,﹣306﹣180=126m .∵∥,∴∠1=∠20°,∠1∠ =0.364.126m ,∠10.364,0.3640.364×126=45.9,﹣75﹣45.9≈29.1m ,故选A .考点:解直角三角形的应用﹣坡度坡角问题.4.(2017·山东烟台)如图,数学实践活动小组要测量学校附近楼房的高度,在水平地面A 处安置测倾器测得楼房顶部点D 的仰角为45°,向前走20米到达A′处,测得点D 的仰角为67.5°,已知测倾器的高度为1.6米,则楼房的高度约为(结果精确到0.1米,≈1.414)( )sin 20cos 20DF AFA.34.14米B.34.1米C.35.7米D.35.74米【考点】:解直角三角形的应用﹣仰角俯角问题.【分析】过B作⊥于F,于是得到′B′1.6米,解直角三角形即可得到结论.【解答】解:过B作⊥于F,∴′B′1.6米,在△′中,B′,在△中,,∵′′=20,∴﹣B′﹣=20,∴≈34.1米,∴35.7米,答:楼房的高度约为35.7米,故选C.二、填空题1.(2017·山西)如图,创新小组要测量公园内一棵树的高度,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高1.5米,则这颗树的高度约为米(结果保留一位小数.参考数据:54°≈0.8090,54°≈0.5878,54°≈1.3764).【答案】15.3.【解析】试题分析:如图,在△中,•54°≈10×1.3764=13.764米,≈1.5+13.764≈15.3米.故答案为:15.3米.考点:解直角三角形的应用﹣仰角俯角问题.2.(2017·江苏无锡)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,与相交于O,则∠的值等于.【答案】3.【解析】试题解析:平移到C′D′交于O′,如图所示,则∠′D′=∠,∴∠∠′D′,设每个小正方形的边长为a ,则O′,O′D′=,′=3a , 作⊥O′D′于点E ,则, ∴O′, ∴′, ∴∠3.考点:解直角三角形. 3.(2017·山东烟台)在△中,∠90°,2,,则 . 【考点】T5:特殊角的三角函数值.【分析】根据∠A 的正弦求出∠60°,再根据30°的正弦值求解即可.【解答】解:∵, ∴∠60°,∴30°=. 22(2)5a a a +=22(2a)(2)22a a +=3a 232222BD O F a a O D a''==''2222322(5)()22a a O B BE a '-=-=32a2322BE O E a=='故答案为:.三、解答题1.(2017·安徽)如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600AB BD m ==,75α=︒,45β=︒,求DE 的长.(参考数据:sin750.97︒≈,cos750.26︒≈,2 1.41≈)【答案】579DE DF EF =+=【解析】试题分析:两次利用三角函数求解即可.试题解析:解:在Rt BDF △中,由sin DF BD b =得, 2sin 600sin 4560030024232DF BD b =???°≈(m).在Rt ABC △中,由cos BC AB a =可得, cos 600cos756000.26156BC AB a =???°(m).所以423156579DE DF EF DF BC =+=+=+=(m).考点: 三角函数的实际应用.2.(2017·山东青岛)如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需要绕行B 地,已知B 位于A 地北偏东67°方向,距离A地520,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长(结果保留整数)(参考数据:)[来源]【答案】596【解析】试题分析:作⊥于点D,利用67°和520,求480;利用67°和520,求200;最后利用30°和200,求116;最终得到的长.∴在△中,∠30°,∴∴答:之间的距离约为596。

三角函数中考真题(2017)

三角函数中考真题(2017)

9. 三角函数中考真题( 2017)一.选择题(共 18 小题)1.如图,一艘海轮位于灯塔 P 的东北方向距离灯塔 30 海里的 A 处,它沿正南方向航行一段时间后,到达位于 灯塔 P 的南偏东 30°方向上的 B 处,则海轮行驶的路程 AB 的值为( )C . 30( +1)海里 B . 30( + )海里D . 60 海里2.如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度) ,把一根长 5m 的竹竿 AC 斜靠在石坝旁,量出杆长 1m 处的 D 点离地面的高度 DE =0.6m ,又量得杆底与坝脚的距离 AB = 3m ,则石坝的坡 度为( )3.如图,一艘轮船在 A 处测得灯塔 P 位于其北偏东 60°方向上,轮船沿正东方向航行 30 海里到达 B 处后,此时测得灯塔 P 位于其北偏东 30°方向上,此时轮船与灯塔 P 的距离是( )A .15 海里B .30 海里C . 45 海里D . 30 海里4.某楼梯的侧面如图所示,已测得 BC 的长约为 3.5 米,∠ BCA 约为 29°,则该楼梯的高度 AB 可表示为( )A .3.5sin29°米B . 3.5cos29°米C .3.5tan29°米D . 米如图,在距离铁轨 200 米的 B 处,观察由南宁开往百色的“和谐号”动车,当动车车头在 A处时,恰B .3C .D .4 5. 6.7. 8.A . 在 A . sin α=cos α Rt △ABC 中,∠B .tanC =2 C = 90°, AB =4, B . 如图,一艘海轮位于灯塔 达位于灯塔 P 的北偏东 30°方向上的 A .60 nmileB .60 如图,在平面直角坐标系中,点 A . B .C . sin β= cos β AC =1,则 cosB 的值为D .)D . 45°方向,距离灯塔 60nmile 的 A 处,它沿正北方向航行一段时间后,到 B 处,这时, B 处与灯塔 P 的距离为( nmile C .30 nmile D . 30 A 的坐标为( 3, 4),那么 sin α的值是( )nmile ) C . D .A . 30( +1 )海里 T8好位于处的北偏东 60°方向上; 10 秒钟后,动车车头到达 C 处,恰好位于 B 处的西北方向上,则这时段动车的平均速度是()米 /秒.A .20( +1)B.20(﹣ 1)C.200 D.300△ABC 在网格中的位置如图所示(每个小正方形边长为 1),AD⊥BC 于D,下列四个选项中,错误的是(10.如图,学校环保社成员想测量斜坡 CD 旁一棵树 AB的高度,他们先在点 C 处测得树顶 B的仰角为60°,然后在坡顶 D测得树顶 B的仰角为 30°,已知斜坡 CD 的长度为 20m,DE的长为 10m,则树 AB的高度是()9.同一条直线上) ( )14.如图,数学实践活动小组要测量学校附近楼房 CD 的高度,在水平地面 A 处安置测倾器测得楼房 CD 顶部点 D的仰角为 45°,向前走 20 米到达 A ′处,测得点 D 的仰角为 67.5°,已知测倾器 AB 的高度为 1.6 米,则楼房A .34.14 米B .34.1 米C .35.7 米D .35.74 米15.如图,已知点 C 与某建筑物底端 B 相距 306 米(点 C 与点 B 在同一水平面上) ,某同学从点 C 出发,沿同一剖 面的斜坡 CD 行走 195 米至坡顶 D 处,斜坡 CD 的坡度(或坡比) i = 1: 2.4,在D 处测得该建筑物顶端 A 的俯角为 20°,则建筑物 AB 的高度约为(精确到 0.1 米,参考数据: sin20°≈ 0.342,cos20°≈ 0.940 ,tan20°≈ 0.364 ) ( ) A .29.1 米 B .31.9 米 C .45.9 米 D .95.9 米16.如图,小王在长江边某瞭望台 D 处,测得江面上的渔船 A 的俯角为 40°,若 DE =3 米, CE =2 米, CE 平行 于江面 AB ,迎水坡 BC 的坡度 i = 1:0.75,坡长 BC = 10 米,则此时 AB 的长约为( )(参考数据: sin40° ≈0.64,cos40°≈ 0.77, tan40°≈ 0.84).A .5.1 米B .6.3 米C .7.1 米D .9.2 米17.如图,在△ ABC 中, AC ⊥ BC ,∠ ABC = 30°,点 D 是 CB 延长线上的一点,且 BD =BA ,则 tan ∠ DAC 的值为 ()A .2+B .2C . 3+D . 318.如图,在 Rt △ ABC 中,斜边 AB 的长为 m ,∠ A = 35°,则直角边 BC 的长是( )二.填空题(共 20 小题) 19.如图所示,小芳在中心广场放风筝,已知风筝拉线长 100 米(假设拉线是直的) ,且拉线与水平地面的夹角为60°,若小芳的身高忽略不计,则风筝离水平地面的高度是 米(结果保留根号) .20.如图,在 Rt △ ABC 中,∠ C =90°,点 D 是 AB 的中点, ED ⊥AB 交 AC 于点 E .设∠ A =α,且m .A .5 米B .6 米C . 6.5 米D . 12 米13.如图,电线杆 CD 的高度为 h ,两根拉线 AC 与 BC 相互垂直,∠ CAB = α,则拉线 BC 的长度为( A 、D 、B 在 A .B .C .D .h?cos αA . msin35°B .mcos35°C .D . A .20 B .30 C . 30 D . 4011.如图,在△ ABC 中,AB =AC ,BC = 12,E 为 AC 边的中点,线段 BE 的垂直平分线交边 BC 于点D .设 BD =x , tan ∠ ACB = y ,则( )12.如图,一辆小车沿倾斜角为 α的斜坡向上行驶 13 米,已知 cos α= ,则小车上升的高度是( )CD 的高度约为(结果精确到 0.1 米, ≈ 1.414)()tanα=,则tan2α=21.如图所示,某拦水大坝的横断面为梯形 ABCD ,AE 、DF 为梯形的高,其中迎水坡 AB 的坡角 α=4522.如图,从楼 AB 的 A 处测得对面楼 CD 的顶部 C 的仰角为 37°,底部 D 的俯角为 45°,两楼的水平距离 BD 为 24m ,那么楼 CD 的高度约为 m .(结果精确到 1m ,参考数据: sin37°≈ 0.6;cos37°≈0.8; tan37°≈0.75)23.如图,某城市的电视塔 AB 坐落在湖边,数学老师带领学生隔湖测量电视塔 AB 的高度,在点 M 处测得塔尖点 A 的仰角∠ AMB 为 22.5°,沿射线 MB 方向前进 200 米到达湖边点 N 处,测得塔尖点 A 在湖中的倒影 A ′的俯 角∠ A ′NB 为 45°,则电视塔 AB 的高度为 米(结果保留根号) . A 处测得灯塔 P 在它的北偏东 60 °方向,继续航行到达 B 处,测得灯塔 P 在它的C 处是港口,点 A ,B , C 在一条直线上,则这艘货轮由 A 到 B 航行的路25.△ ABC 中, AB =12,AC = ,∠ B = 30°,则△ ABC 的面积是 26.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ ABC 中,BD 和CE 是△ ABC 的两条角平分线.若∠ A =52°,则∠ 1+∠ 2的度数为B. tan38°15′≈ .(结果精确到 0.01)27.如图,一艘海轮位于灯塔 P 的北偏东 60°方向,距离灯塔 86n mile 的 A 处,它沿正南方向航行一段时间后, 到达位于灯塔 P 的南偏东 45°方向上的 B 处,此时, B 处与灯塔 P 的距离约为 n mile .(结果取整数,参 考数据: ≈1.7, ≈ 1.4)28.如图,已知一条东西走向的河流,在河流对岸有一点 A ,小明在岸边点 B 处测得点 A 在点 B 的北偏东 30°方向上,小明沿河岸向东走 80m 后到达点 C ,测得点 A 在点 C 的北偏西 60°方向上,则点 A 到河岸 BC 的距离 为.29.为加强防汛工作,某市对一拦水坝进行加固.如图,加固前拦水坝的横断面是梯形 ABCD.已知迎水坡,坡长 AB = 米,背水坡 CD 的坡度 i =1: (i 为 DF 与FC 的比值),则背水坡 CD 的坡长为 米. T21 T22 T2324.一艘货轮由西向东航行,在 东北方向,若灯塔 P 正南方向 4 海里的 程为 海里(结果保留根号) .面 AB=12 米,背水坡面 CD=12 米,∠ B= 60°,加固后拦水坝的横断面为梯形ABED,tanE =,则 CE 的长为米.30.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在 A 处测得塔顶的仰角为 α,在 B 处测得塔顶的仰角为 β,又测量出 A 、B 两点的距离为 s 米,则塔高为 米.31.如图所示,为了测量出一垂直水平地面的某高大建筑物 AB 的高度,一测量人员在该建筑物附近 C 处,测得建筑物顶端 A 处的仰角大小为 45°,随后沿直线 BC 向前走了 100 米后到达 D 处,在 D 处测得 A 处的仰角大小为32.如图,创新小组要测量公园内一棵树的高度 AB ,其中一名小组成员站在距离树 10 米的点 E 处,测得树顶 A 的仰角为 54°.已知测角仪的架高 CE = 1.5 米,则这棵树的高度为sin54°= 0.8090, cos54°= 0.5878, tan54°= 1.3764)33.在如图的正方形方格纸中, 每个小的四边形都是相同的正方形, A ,B ,C ,D 都在格点处, AB 与 CD 相交于 O , 则 tan ∠ BOD 的值等于 .34.如图,在一笔直的沿湖道路 l 上有 A 、 B 两个游船码头,观光岛屿 C 在码头 A 北偏东 60°的方向,在码头 B北偏西 45°的方向, AC =4km .游客小张准备从观光岛屿 C 乘船沿 CA 回到码头 A 或沿 CB 回到码头 B ,设开往码头 A 、 B 的游船速度分别为 v 1、v 2,若回到 A 、B 所用时间相等,则 = 米.(结果保留一位小数.参考数据:T32结果保留根号)35.如图, Rt △ ABC 中,∠ C = 90°, BC =15,t anA = ,则 AB = T36 T3730°,则建筑物 AB 的高度约为米T38 36.如图所示,运载火箭从地面 L 处垂直向上发射,当火箭到达 A 点时,从位于地面 R 处的雷达测得 AR 的距离是40km ,仰角是 30°. n 秒后,火箭到达 B 点,此时仰角是 45°,则火箭在这 n 秒中上升的高度是37.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从 A 滑行至 B,已知 AB= 500 米,则这名滑雪运动员的高度下降了米.(参考数据: sin34°≈0.56,cos34°≈0.83,tan34°≈ 0.67)38.如图,把 n 个边长为 1 的正方形拼接成一排,求得 tan∠BA1C=1, tan∠BA2C=,tan∠BA3C=,计算 tan∠ BA4C=,⋯按此规律,写出 tan∠ BA n C=(用含 n 的代数式表示).三.解答题(共 2 小题)39.如图 1,一种折叠式小刀由刀片和刀鞘两部分组成.现将小刀打开成如图 2 位置,刀片部分是四边形ABCD ,其中 AD∥BC,AB⊥BC,CD=15mm,∠C=53°,刀鞘的边缘 MN∥PQ,刀刃 BC与刀鞘边缘 PQ 相交于点O,点 A 恰好落在刀鞘另一边缘 MN 上时,∠ COP= 37°, OC=50mm,( 1)求刀片宽度 h.( 2)若刀鞘宽度为 14mm,求刀刃 BC 的长度.(结果精确到 0.1mm)(参考数据: sin37°≈ ,cos37°≈ ,40.如图,光明中学一教学楼顶上竖有一块高为AB 的宣传牌,点 E和点 D 分别是教学楼底部和外墙上的一点(A,B,D,E在同一直线上),小红同学在距 E点9米的 C处测得宣传牌底部点 B的仰角为 67°,同时测得教学楼外墙外点 D的仰角为 30°,从点 C沿坡度为 1:的斜坡向上走到点 F时,DF 正好与水平线CE平行.(1)求点 F到直线 CE 的距离(结果保留根号);( 2)若在点 F 处测得宣传牌顶部 A 的仰角为 45°,求出宣传牌 AB 的高度(结果精确到0.01).(注: sin67°≈ 0.92,tan67°≈ 2.36,≈ 1.41,≈1.73)三角函数中考真题( 2017)参考答案与试题解析一.选择题(共 18 小题)1.如图,一艘海轮位于灯塔 P 的东北方向距离灯塔 30 海里的 A 处,它沿正南方向航行一段时间后,到达位于灯塔 P 的南偏东 30°方向上的 B 处,则海轮行驶的路程 AB 的值为( )∵∠ B =30°, PC =AC =40,tanB = ,∴BC = = 30 ,∴AB = AC+BC =30+30 =30(1+ )(海里) 故选: C .2.如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度) ,把一根长 5m 的竹竿 AC 斜靠在石坝旁,量出杆长 1m 处的 D 点离地面的高度 DE =0.6m ,又量得杆底与坝脚的距离 AB = 3m ,则石坝的坡 度为( )解答】 解:如图,过 C 作CF ⊥AB 于F ,则 DE ∥CF,A . 30( +1 )海里 C . 30( +1)海里 【解答】 解:由题意得,∠ APC = 45B . 30( + )海里 D . 60 海里 PA = 30 ,∵sin ∠ APC = ,A .B .3C .D .4∴ = ,即 = , ∴ = ,即 = ,解得 CF = 3, ∴Rt △ACF 中, AF = =4,又∵ AB = 3, ∴BF = 4﹣3=1,∴石坝的坡度为 = = 3, 故选: B .3.如图,一艘轮船在 A 处测得灯塔 P 位于其北偏东 60°方向上,轮船沿正东方向航行 30 海里到达 B 处后,此时测得灯塔 P 位于其北偏东 30°方向上,此时轮船与灯塔 P 的距离是( )A .15 海里B .30 海里C . 45 海里D . 30 海里【解答】 解:作 BD ⊥AP ,垂足为 D根据题意,得∠ BAD =30°, BD =15 海里, ∴∠ PBD = 60°,则∠ DPB = 30°, BP =15×2= 30(海里), 故选: B .4.某楼梯的侧面如图所示,已测得 BC 的长约为 3.5米,∠ BCA 约为 29°,则该楼梯的高度 AB 可表示为( )A .3.5sin29 °米 C .3.5tan29°米B .3.5cos29°米 D .【解答】 解:在 Rt △ABC 中,∵ sin ∠ ACB = ,∴AB = BCsin ∠ ACB =3.5sin29°, 故选: A .5.如图,在距离铁轨 200 米的 B 处,观察由南宁开往百色的“和谐号”动车,当动车车头在 A 处时,恰好位于 B 处的北偏东 60°方向上; 10 秒钟后,动车车头到达 C 处,恰好位于 B 处的西北方向上,则这时段动车的平均速A .20( +1)B .20( ﹣ 1)C .200D .300 【解答】 解:作 BD ⊥AC 于点 D .∵在 Rt △ABD 中,∠ ABD =60°, ∴AD =BD?tan ∠ABD =200 (米), 同理, CD =BD =200(米).则 AC = 200+200 (米). 则平均速度是 = 20( +1)米 /秒.6.△ ABC 在网格中的位置如图所示(每个小正方形边长为 1),AD ⊥BC 于D ,下列四个选项中,错误的是( )A .sin α=cos αB .tanC =2 C . sin β= cos βD .tan α= 1【解答】 解:观察图象可知,△ ADB 是等腰直角三角形, BD =AD =2,AB =2 ,AD =2,CD =1, AC = ,tan α= 1,故 D 正确, ∵ sin β= = , cos β= ,∴ sin β≠ cos β,故 C 错误. 故选: C.sin α= cos α=故 A 正确,tanC = = 2,故 B 正确,故选:7.在 Rt△ABC 中,∠ C= 90°, AB= 4,AC=1,则 cosB的值为(A.B.C.解答】解:∵在 Rt△ ABC 中,∠ C=90°,AB=4,AC=1,∴ BC==,则 cosB ==,故选: A .8.如图,一艘海轮位于灯塔P 的南偏东 45°方向,距离灯塔 60nmile 的 A 处,它沿正北方向航行一段时间后,到达位于灯塔 P的北偏东 30°方向上的 B处,这时, B 处与灯塔 P的距离为()A . 60 nmileB . 60 nmile C.30 nmile D . 30 nmile【解答】解:如图作 PE⊥ AB 于 E.在 Rt△PAE 中,∵∠ PAE= 45°,PA=60nmile,∴PE= AE=×60=30 nmile ,在 Rt△ PBE 中,∵∠ B= 30°,∴PB= 2PE=60 nmile ,故选: B .9.如图,在平面直角坐标系中,点 A 的坐标为( 3, 4),那么 sinα的值是()解答】 解:作 AB ⊥x 轴于 B ,如图, ∵点 A 的坐标为( 3, 4), ∴ OB = 3,AB = 4, ∴OA == 5,在 Rt △AOB 中, sin α= = . 故选: C .10.如图,学校环保社成员想测量斜坡 CD 旁一棵树 AB 的高度,他们先在点 C 处测得树顶 B 的仰角为 60° 在坡顶 D 测得树顶 B 的仰角为 30°,已知斜坡 CD 的长度为 20m ,DE 的长为 10m ,则树 AB 的高度是( m .∠ DCE = 30°∠ BDF = 30° ∠ DBF = 60° ∠ DBC = 30°∴AB =BC?sin60°= 20 × =30m .故选: B .方法二:可以证明△ DGC ≌△ BGF ,所BC == = 20 m ,A .B .C .D .,然后 )A .20B .30 【解答】 解:在 Rt △ CDE 中, ∵ CD = 20m ,DE = 10m ,∴ sin ∠ DCE = = , C . 30 D . 40∠ ACB = 60°DF ∥ AE , ∠ ABC = 30° ∠ DCB =90° BF =DC = 20,所以 AB = 20+10=30,以故选: B .tan ∠ ACB = y ,则( )过A 作AQ ⊥BC 于Q ,过E 作EM ⊥BC 于M ,连接 DE , ∵BE 的垂直平分线交 BC 于 D ,BD =x , ∴ BD = DE = x ,∵AB = AC ,BC =12,tan ∠ ACB =y ,= =y ,BQ =CQ = 6, ∴ AQ = 6y , ∵AQ ⊥BC ,EM ⊥BC , ∴AQ ∥EM ,∵E 为 AC 中点, ∴ CM = QM = CQ = 3, ∴ EM = 3y ,∴ DM = 12﹣ 3﹣ x = 9﹣ x , 在 Rt△ EDM 中,由勾股定理得: 2即 2x ﹣ y 2= 9, 故选:B .A .5 米B .6 米 【解答】 解:如图 AC = 13,作 CB ⊥ AB ,11.如图,在△ ABC 中, AB =AC ,BC = 12,E 为 AC 边的中点,线段 BE 的垂直平分线交边 BC 于点 D .设 BD =x ,12.如图,一辆小车沿倾斜角为 α的斜坡向上行驶 13 米,已知 cos α= ,则小车上升的高度是(B .2x ﹣y 2=92C .3x ﹣ y =D .4x ﹣ y 2= 21解答】 解:2 2 2x 2=( 3y )2+(9﹣ x )C . 6.5 米 D . 12 米∵ cosα==,∴AB=12,∴ BC=== 5,∴小车上升的高度5m.故选: A .13.如图,电线杆CD的高度为 h,两根拉线 AC 与 BC 相互垂直,∠CAB=α,则拉线 BC 的长度为( A、D、B 在同一条直线上))解答】解:∵∠ CAD+∠ACD= 90°,∠ ACD+∠BCD=90°,∴∠ CAD=∠ BCD ,在 Rt△BCD 中,∵ cos∠ BCD =,BC=故选: B .14.如图,数学实践活动小组要测量学校附近楼房CD 的高度,在水平地面 A 处安置测倾器测得楼房 CD 顶部点 D的仰角为 45°,向前走 20 米到达 A′处,测得点 D 的仰角为 67.5°,已知测倾器 AB 的高度为 1.6 米,则楼房 CD 的高度约为(结果精确到 0.1 米,≈ 1.414)()A .34.14 米B .34.1 米C. 35.7 米【解答】解:过 B 作 BF⊥CD 于 F,作 B′ E⊥BD,∵∠BDB'=∠ B'DC= 22.5°,∴EB'=B'F,∵∠ BEB′= 90°,∴EB′= B′ F=10 ,∴DF = 20+10 ,∴DC =DF+FC=20+10 +1.6≈35.74=35.7.故选: C .C.D.h?cosαD.35.74米A.B.15.如图,已知点 C与某建筑物底端 B相距 306米(点 C与点 B在同一水平面上),某同学从点 C出发,沿同一剖面的斜坡 CD 行走 195米至坡顶 D 处,斜坡 CD 的坡度(或坡比) i = 1: 2.4,在 D 处测得该建筑物顶端 A的俯角为 20°,则建筑物 AB 的高度约为(精确到 0.1 米,参考数据:sin20°≈ 0.342,cos20°≈ 0.940 ,tan20°≈ 0.364 )()A .29.1 米B .31.9 米C. 45.9 米D. 95.9 米【解答】解:作 DE⊥AB于E点,作 AF⊥DE于F 点,如图,设 DE = xm, CE=2.4xm,由勾股定理,得2 2 2x 2+(2.4x)2= 1952,解得 x≈ 75m,DE= 75m, CE=2.4x=180m,(方法二:由 i= 1:2.4=5:12,设 DE=5xm,CE= 12xm,由勾股定理,得 CD =13x,∴ 13x= 195 ,∴ x= 15,∴ DE = 75m,CE= 180m) EB=BC﹣CE=306﹣180=126m.∵AF∥ DG,∴∠ 1=∠ ADG= 20°,tan∠1= tan∠ADG==0.364.AF=EB=126m,tan∠1== 0.364,DF= 0.364AF=0.364×126=45.9, AB=FE=DE﹣DF=75﹣ 45.9≈ 29.1m,故选: A .16.如图,小王在长江边某瞭望台D 处,测得江面上的渔船 A 的俯角为 40°,若 DE=3米, CE=2米,CE平行于江面 AB,迎水坡 BC 的坡度 i= 1:0.75,坡长 BC= 10 米,则此时 AB 的长约为()(参考数据: sin40° ≈0.64,cos40°≈ 0.77, tan40°≈ 0.84).B .6.3 米C .7.1 米D .9.2 米 交 AB 延长线于点 P ,作 CQ ⊥AP 于点 Q ,∵CE ∥AP , ∴DP ⊥AP ,∴四边形 CEPQ 为矩形, ∴CE =PQ =2,CQ =PE , ∵ i = = = , ∵ i == = ,∴设 CQ = 4x 、 BQ =3x ,由 BQ 2+CQ 2=BC 2 可得( 4x )2+(3x )2=102, 解得: x =2 或 x =﹣ 2(舍), 则 CQ =PE = 8,BQ =6, ∴DP =DE+PE =11,∴AB = AP ﹣BQ ﹣PQ =13.1﹣6﹣2=5.1, 故选: A .17.如图,在△ ABC 中, AC ⊥ BC ,∠ ABC = 30°,点 D 是CB 延长线上的一点,且 BD =BA ,则 tan ∠ DAC 的值为 ()A .2+B .2C . 3+D . 3 【解答】 解:如图,∵在△ ABC 中, AC ⊥BC ,∠ ABC =30°, ∴AB = 2AC ,BC == AC .∵BD =BA ,∴DC =BD+BC =( 2+ )AC , ∴tan ∠ DAC = = =2+ . 故选: A .A . 5.1 米【解答】 解:如图,延长在 Rt △ ADP 中,∵ AP =≈ 13.1,m,∠ A= 35°,则直角边 BC 的长是(C.D.【解答】解: sin∠ A=,∵ AB= m,∠ A= 35°,∴BC= msin35°,故选: A .二.填空题(共20 小题)19.如图所示,小芳在中心广场放风筝,已知风筝拉线长100 米(假设拉线是直的),且拉线与水平地面的夹角为50 米(结果保留根号)60°,若小芳的身高忽略不计,则风筝离水平地面的高度是【解答】解:如图,作 AC⊥ OB 于点 C,∵AO= 100米,∠ AOC = 60°,∴AC=OA?sin60°= 100× =米.20.如图,在 Rt△ ABC 中,∠ C=90°,点 D 是 AB 的中点, ED⊥AB 交 AC 于点 E.设∠ A=α,且tanα=,则tan2α=∵点 D 是 AB 的中点, ED ⊥AB ,∠ A =α, ∴ ED 是 AB 的垂直平分线, ∴EB = EA ,∴∠ EBA =∠ A = α, ∴∠ BEC = 2α,∵ tan α= ,设 DE = a , ∴ AD = 3a , AE = , ∴ AB = 6a , BC =,AC =∴ tan2α=故答案为: .21.如图所示,某拦水大坝的横断面为梯形 ABCD ,AE 、DF 为梯形的高,其中迎水坡 AB 的坡角 α=45°,坡长AB = 米,背水坡 CD 的坡度 i =1: (i 为 DF 与 FC 的比值),则背水坡 CD 的坡长为 12 米.【解答】 解:∵迎水坡 AB 的坡角 α=45°,坡长 AB = 米, ∴AE = 6 × sin45°= 6(m ),∴∠ C = 30°, 则 DC =2DF =2AE =12m , 故答案为: 12.22.如图,从楼 AB 的 A 处测得对面楼 CD 的顶部 C 的仰角为 37°,底部 D 的俯角为 45°,两楼的水∴CE = AC ﹣AE =∵背水坡 CD 的坡度 i =1: ( i 为 DF 与 FC 的比值), ∴ tan ∠ C = =,=,平距离 BD 为 24m,那么楼 CD 的高度约为 42 m.(结果精确到 1m,参考数据: sin37°≈ 0.6;cos37°≈ 0.8; tan37°≈0.75)【解答】解:在 Rt△ ACE 中,∵ AE= 24,∠ CAE=37°,∴CE=AE?tan37°≈ 24×0.75=18,在 Rt△ AED 中,∵∠ EAD= 45°,∴AE= ED=24,∴DC=CE+DE=18+24≈42.故楼 DC 的高度大约为 42m.23.如图,某城市的电视塔 AB 坐落在湖边,数学老师带领学生隔湖测量电视塔A 的仰角∠ AMB 为 22.5°,沿射线 MB 方向前进 200 米到达湖边AB 的高度,在点 M 处测得塔尖点测得塔尖点 A 在湖中的倒影A′的俯连接 AN,由题意知, BM⊥ AA',BA=BA' ∴AN=A'N,∴∠ ANB=∠ A'NB =45°,∵∠ AMB = 22.5°,∴∠ MAN =∠ ANB﹣∠ AMB =22.5°=∠ AMN,∴ AN= MN= 200 米,在 Rt△ABN 中,∠ ANB =45°,故答案为 100 .24.一艘货轮由西向东航行,在A处测得灯塔 P 在它的北偏东 60°方向,继续航行到达 B处,测得灯塔 P 在它的东北方向,若灯塔 P正南方向 4海里的 C 处是港口,点 A,B,C在一条直线上,则这艘货轮由 A到B 航行的路程为(4 ﹣ 4)海里(结果保留根号).【解答】解:根据题意得: PC=4海里,∠ PBC=90°﹣45°=45°,∠ PAC=90°﹣60°=30°,在直角三角形 APC 中,∵∠ PAC= 30°,∠ C= 90°,∴ AC= PC= 4 (海里),在直角三角形 BPC 中,∵∠ PBC= 45°,∠ C= 90°,∴BC=PC=4 海里,∴ AB= AC= BC=( 4 ﹣4)海里;故答案为:(4 ﹣ 4).25.△ ABC中, AB=12,AC=,∠ B= 30°,则△ ABC的面积是 21 或 15 .【解答】解:① 如图 1,作 AD⊥ BC,垂足为点 D,在 Rt△ABD 中,∵ AB=12、∠ B=30°,在 Rt △ACD 中, CD = = = ,∴BC = BD+CD = 6 + =7 ,则 S △ABC = × BC ×AD = ×7 × 6=21 ;【解答】 解: A 、∵∠ A = 52°,∴∠ ABC+∠ ACB = 180°﹣∠ A =128°, ∵BD 平分∠ ABC 、 CE 平分∠ ACB , ∴∠ 1= ∠ABC 、∠ 2= ∠ ACB ,则∠ 1+∠2= ∠ABC+ ∠ACB = (∠ ABC+∠ACB)= 64 故答案为: 64°; B 、tan38°15′≈ 2.5713× 0.7883≈ 2.03,故答案为: 2.03.27.如图,一艘海轮位于灯塔 P 的北偏东 60°方向,距离灯塔 86n mile 的 A 处,它沿正南方向航行一段时间后, 到达位于灯塔 P 的南偏东 45°方向上的 B 处,此时, B 处与灯塔 P 的距离约为 102 n mile .(结果取整数,参 考数据: ≈1.7, ≈ 1.4)∴AD = AB =6, BD = ABcosB = 12 × =6 ,由① 知, AD =6、BD =6 、CD = ,则 BC =BD ﹣ CD =5 ,∴ S △ABC = × BC ×AD = × 5 × 6=15 ,故答案为: 21 或 15 .26.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ ABC 中,BD 和 CE 是△ ABC 的两条角平分线.若∠A =52°,则∠ 1+∠2 的度数为 64°② 如图 2,作 AD ⊥BC ,交 BC 延长线于点 D ,解答】解:过 P 作 PD⊥AB,垂足为 D,∵一艘海轮位于灯塔 P的北偏东 60°方向,距离灯塔 86nmile 的 A处,∴∠ MPA=∠ PAD =60°,∴PD = AP?sin∠ PAD=86×= 43 ,∵∠ BPD= 45°,∴∠ B= 45°.在 Rt△ BDP 中,由勾股定理,得BP===43 × ≈ 102( nmile ).故答案为: 102.28.如图,已知一条东西走向的河流,在河流对岸有一点A,小明在岸边点 B 处测得点 A 在点 B 的北偏东 30°方向上,小明沿河岸向东走 80m后到达点 C,测得点 A在点 C的北偏西 60°方向上,则点 A到河岸 BC 的距离为20 米.【解答】解:方法 1、过点 A 作 AD⊥BC 于点 D.根据题意,∠ ABC=90°﹣ 30°= 60°,∠ ACD =30°,设 AD=x 米,在 Rt△ ACD 中,tan∠ACD =,DG = 6 米,∴CD = = = x ,在 Rt △ABD 中, tan ∠ABC = , ∴BD === x ,∴BC = CD+BD = x+ x =80∴ x = 20 答:该河段的宽度为 20 米. 故答案是: 20 米.方法 2、过点 A 作AD ⊥BC 于点 D .根据题意,∠ ABC =90°﹣ 30°= 60°,∠ ACD =30°, ∴∠ BAC =180°﹣∠ ABC ﹣∠ ACB = 90 °, 在 Rt △ABC 中, BC =80m ,∠ACB =30°, ∴AB = 40m ,AC =40 m ,∴ S △ABC= AB × AC = × 40×40 =800 ,∵ S △ABC = BC ×AD = × 80× AD = 40AD = 800 , ∴AD = 20 米答:该河段的宽度为 20 米. 故答案是: 20 米.29.为加强防汛工作,某市对一拦水坝进行加固.如图,加固前拦水坝的横断面是梯形 =12 米,背水坡面 CD =12 米,∠ B = 60°,加固后拦水坝的横断面为梯形【解答】 解:分别过 A 、D 作 AF ⊥BC ,DG ⊥BC ,垂点分别为 F 、G ,如图所示. ∵在 Rt △ABF 中,AB =12米,∠ B =60°, ∴sin ∠ B = , ∴AF = 12× =6 ,∴DG =6 .∵在 Rt △ DGC 中, CD = 12,ABCD .已知迎水坡面 AB ABED ,tanE = ,则 CE 的长为 8 米.∴CE =GE ﹣CG =26﹣18= 8. 即 CE 的长为 8 米. 故答案为 8.解答】 解:在 Rt △ BCD 中,∵ tan ∠ CBD = , ∴BD =在 Rt △ ACD 中,∵ tan ∠ A = = ∴ tan α=解得: CD = 故答案为:.筑物顶端 A 处的仰角大小为 45°,随后沿直线 BC 向前走了 100 米后到达 D 处,在 D处测得 A 处的仰角大小为注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:30.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在 A 处测得塔顶的仰角为仰角为 β,又测量出 A 、B 两点的距离为 s 米,则塔高为 米.α,在 B 处测得塔顶的31.如图所示,为了测量出一垂直水平地面的某高大建筑物 AB 的高度,一测量人员在该建筑物附近 C 处,测得建 30°,则建筑物 AB 的高度约为 137 米. ≈1.41, ≈ 1.73)【解答】解:设 AB=x 米,在 Rt△ABC 中,∵∠ ACB= 45°,∴BC= AB= x 米,则 BD =BC+CD =x+100 (米),在 Rt△ABD 中,∵∠ ADB =30°,∴tan∠ ADB==,即=,解得: x= 50+50 ≈137,即建筑物 AB的高度约为 137 米故答案为: 137.32.如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10 米的点 E处,测得树顶 A 的仰角为 54°.已知测角仪的架高 CE=1.5 米,则这棵树的高度为15.3 米.(结果保留一位小数.参考数据:sin54°= 0.8090, cos54°= 0.5878, tan54°= 1.3764)【解答】解:如图,过点 C 作 CD ⊥AB,垂足为 D.则四边形 CEBD 是矩形, BD=CE=1.5m,在Rt△ACD 中,CD=EB=10m,∠ ACD=54°,∵tan∠ ACE=,∴AD=CD?tan∠ACD ≈10×1.38=13.8m.∴AB= AD+BD=13.8+1.5 =15.3m.答:树的高度 AB 约为 15.3m.故答案为 15.333.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D 都在格点处, AB 与 CD 相交于 O,则 tan∠ BOD 的值等于 3 .∴ tan ∠ BOD = 3 , 故答案为: 3. 方法二:连接 AM 、 NL , 在△ CAH 中, AC = AH , 则 AM ⊥CH ,同理,在△ MNH 中, NM = NH , 则 NL ⊥MH , ∴∠ AMO =∠ NLO =90°, ∵∠ AOM =∠ NOL , ∴△ AOM ∽△ NOL , ∴, ∴,设图中每个小正方形的边长为则 AM =2 a ,NL = a , ∴ = 2, ∴= 2,∵NL = LM , ∴, ∴,∴tan ∠ BOD =tan ∠ NOL = =3, 故答案为: 3.方法三:连接 AE 、 EF ,如右图所示,【解答】 解:方法一:平移 CD 到C ′D ′交 AB 于 O ′,如右图所示, 则∠ BO ′D ′=∠ BOD ,∴tan ∠ BOD = tan ∠ BO ′D ′, 设每个小正方形的边长为 a , 则 O ′ B =,O ′D ′=, BD ′= 3a ,作 BE ⊥ O ′ D ′于点 E , 则 BE = ,∴O ′E == ,∴ tanBOE = ,a ,则 AE∥ CD,∴∠ FAE=∠ BOD,设每个小正方形的边长为 a,则 AE=,AF=,EF =a,∵,∴△ FAE 是直角三角形,∠ FEA= 90°,∴tan∠FAE=,34.如图,在一笔直的沿湖道路 l 上有 A、 B 两个游船码头,观光岛屿 C 在码头 A 北偏东 60°的方向,在码头 B 北偏西 45°的方向, AC=4km.游客小张准备从观光岛屿 C乘船沿 CA回到码头 A或沿CB回到码头 B,设开往码头 A、B 的游船速度分别为 v1、v2,若回到 A、B 所用时间相等,则=(结果保留根号)【解答】解:作 CD⊥AB 于点 B.∵在 Rt△ACD 中,∠ CAD=90°﹣ 60°= 30°,∴CD =AC?sin∠CAD =4× =2(km),∵Rt △BCD 中,∠ CDB =90∴BC = CD =2 (km ),∴ = = =故答案是: .【解答】 解:∵ Rt △ABC 中,∠ C =90°, tanA = , BC = 15,∴=,∴=,解得 AC = 8,根据勾股定理得, AB = = =17 .故答案为: 17.36.如图所示,运载火箭从地面 L 处垂直向上发射,当火箭到达 A 点时,从位于地面 R 处的雷达测得40km ,仰角是 30°.n 秒后, 火箭到达 B 点, 此时仰角是 45 °,则火箭在这 n 秒中上升的高度是km .【解答】 解:在 Rt △ ARL 中,∵LR = AR?cos30°= 40× =20 35.如图, Rt △ABC 中,∠ C =90°, BC =15,tanA = ,则 AB =17AR 的距离是 20 ﹣ 20)km ),AL =AR?sin30°= 20( km ),在 Rt△BLR 中,∵∠ BRL= 45°,∴RL= LB=20 ,∴AB=LB﹣AL=( 20 ﹣ 20)km,故答案为( 20 ﹣ 20)km.37.如图,一名滑雪运动员沿着倾斜角为 34°的斜坡,从 A 滑行至 B ,已知 AB = 500 米,则这名滑雪运动员的高度下降了 280 米.(参考数据: sin34°≈0.56,cos34°≈0.83,tan34°≈ 0.67)【解答】 解:如图在 Rt △ABC 中,AC = AB?sin34°= 500×0.56≈280m , ∴这名滑雪运动员的高度下降了 280m .【解答】 解:作 CH ⊥ BA 4于 H ,由勾股定理得, BA 4= = ,A 4C = ,△ BA 4C 的面积= 4﹣ 2 ﹣∴ × ×CH = ,解得, CH = ,则 A 4H = = ,∴tan ∠ BA 4C = = ,4C = = ,21= 12﹣1+1,3= 22﹣2+1,38.如图,把 n 个边长为 1 的正方形拼接成一排,求得 tan ∠BA 1C =1, tan ∠BA 2C = ,tan ∠BA 3C =,计算 tan ∠ BA 4C = ⋯按此规律,写出 tan ∠BA n C = (用含 n 的代数式表示) .27= 3 ﹣3+1,∴tan∠ BA n C=故答案为:;三.解答题(共 2 小题)39.如图 1,一种折叠式小刀由刀片和刀鞘两部分组成.现将小刀打开成如图 2 位置,刀片部分是四边形ABCD ,其中 AD∥BC,AB⊥BC,CD=15mm,∠C=53°,刀鞘的边缘 MN∥PQ,刀刃 BC 与刀鞘边缘 PQ 相交于点O,点 A 恰好落在刀鞘另一边缘 MN 上时,∠ COP= 37°, OC=50mm,( 1)求刀片宽度 h.( 2)若刀鞘宽度为 14mm,求刀刃 BC 的长度.(结果精确到 0.1mm)(参考数据: sin37°≈ ,cos37°≈ ,【解答】解:( 1)作 DE⊥BC 于 E,在 Rt△DEC 中,∠ CDE =90°﹣ 53°= 37°,∴DE=DC?cos37°= 15× =12,即:刀片的宽度 h 为 12mm;2)作 AF⊥PQ 于 F,延长 AB 交 PQ于 G,∵∠ COP= 37°,∴∠ BOG=∠ FAG=37°,在 Rt△AFG 中, AF=14,∴∠ OBG= 90°,在 Rt△BOG 中, BO=∴ AG =,BG=AG﹣AB=, AB⊥ BC ,∴BC= OC+OB= 50+ ≈57.3.40.如图,光明中学一教学楼顶上竖有一块高为AB的宣传牌,点 E和点 D 分别是教学楼底部和外墙上的一点( A,B,D,E在同一直线上),小红同学在距 E点9米的 C处测得宣传牌底部点 B的仰角为 67°,同时测得教学楼外墙外点 D的仰角为 30°,从点 C沿坡度为 1:的斜坡向上走到点 F时,DF 正好与水平线CE平行.(1)求点 F到直线 CE 的距离(结果保留根号);( 2)若在点 F 处测得宣传牌顶部 A 的仰角为 45°,求出宣传牌 AB 的高度(结果精确到0.01).(注: sin67°≈ 0.92,tan67°≈ 2.36,≈ 1.41,≈1.73)【解答】解:(1)过点 F作 FH⊥CE 于H.∵FD ∥CE,∵ FH ∥ DE,DF ∥ HE ,∠ FHE=90°,∴四边形 FHED 是矩形,则 FH =DE,在 Rt△CDE 中, DE = CE ?tan∠ DCE = 9× tan30°= 3 (米),∴FH =DE=3 (米).答:点 F 到 CE 的距离为 3 米.(2)∵ CF 的坡度为 1:,∴在 Rt△FCH 中, CH= FH = 9(米),∴EH=DF=18(米),在 Rt△BCE 中, BE=CE?tan∠BCE=9×tan67°≈21.24(米),∴AB= AD+DE﹣BE=18+3 ﹣21.24≈1.95(米),答:宣传牌 AB 的高度约为 1.95 米.。

2017年中考应用题(含三角函数,浙江为主)

2017年中考应用题(含三角函数,浙江为主)

2017年中考应用题(浙江为主)一、选择题1.(2017湖南长沙第11题)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里2.(2017山东临沂第8题)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.90606x x=+B.90606x x=+C.90606x x=-D.90606x x=-3.(2017浙江台州第9题)滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟 C. 15分钟D.19分钟二、填空题1.(2017北京)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为__________.2.(2017山东滨州第9题)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27-x) B.16x=22(27-x)C .2×16x =22(27-x )D .2×22x =16(27-x )3.(2017辽宁沈阳第15题)某商场购进一批单价为20元的日用商品.如果以单价30元销售,那么半月内可销售出 400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 元时,才能在半月内获得最大利润.4.(2017江苏苏州第17题)如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60的方向,在码头B 北偏西45的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).5. (2017浙江金华)在一空旷场地上设计一落地为矩形ABCD 的小屋,10AB BC +=m .拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进人小屋内的条件下活动,其可以活动的区域面积为S m 2. (1)如图1,若4BC =m ,则S = m 2.(2)如图2,现考虑在(1)中的矩形ABCD 小屋的右侧以CD 为边拓展一正CDE ∆区域,使之变成落地为五边ABCDE 的小屋,其它条件不变.则在BC 的变化过程中,当S 取得最小值时,边长BC 的长为 m .6. (2017浙江台州第14题)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少定为 元/千克.三、解答题1.(2017天津第22题)如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数). 参考数据:05.264tan ,44.064cos ,90.064sin 0≈≈≈,2取414.1.2.(2017天津第23题)用4A 纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:(2)设在甲复印店复印收费1y 元,在乙复印店复印收费2y 元,分别写出21y y ,关于x 的函数关系式; (3)当70>x 时,顾客在哪家复印店复印花费少?请说明理由.3.(2017福建第20题)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.4.(2017河南第19题)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45︒方向,B 船测得渔船C 在其南偏东53︒方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:4sin 535︒≈,3cos535︒≈,4tan 533︒≈,)1.415.(2017河南第21题)学校“百变魔方”社团准备购买A,B两种魔方.已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.6.(2017广东广州第21题)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.7.(2017湖南长沙第22题)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东060方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东030方向上.(1)求APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?8.(2017湖南长沙第24题)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件BA,型商品的进价分别为多少元?(2)若该欧洲客商购进BA,型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,设购进A型商品m件,求该客商销售这批商品的利润y与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献资金后获得的最大收益.9. (2017山东临沂第22题)如图,两座建筑物的水平距离30m BC =,从A 点测得D 点的俯角α为30︒,测得C 点的俯角β为60︒,求这两座建筑物的高度.10. (2017山东临沂第24题)某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y (元)与每月用水量x (3m )之间的关系如图所示. (1)求y 关于x 的函数解析式;(2)若某用户二、三月份共用水340m (二月份用水量不超过325m ),缴纳水费79.8元,则该用户二、三月份的用水量各是多少3m ?11. (2017山东青岛第19题)(本小题满分6分)如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需要绕行B 地,已知B 位于A 地北偏东67°方向,距离A 地520km ,C 地位于B 地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长(结果保留整数) (参考数据:73.1351267tan 13567cos 131267sin ≈≈︒≈︒≈︒;;;)12. (2017山东青岛第20题)(本小题满分8分)A 、B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发.图中21,l l 表示两人离A 地的距离S (km )与时间t (h )的关系,结合图像回答下列问题:(1)表示乙离开A 地的距离与时间关系的图像是________(填21l l 或); 甲的速度是__________km/h ;乙的速度是________km/h 。

09-17年陕西中考数学正题副题三角函数与三角形相似汇编

09-17年陕西中考数学正题副题三角函数与三角形相似汇编

09-17年陕西中考数学正题副题三角函数与三角形相似汇编09年:20.(本题满分8分)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼在墙上的影子高度 1.2CD =m ,0.8CE =m ,30CA =m (点A E C 、、在同一直线上). 已知小明的身高EF 是1.7m ,请你帮小明求出楼高AB (结果精确到0.1m ).10年20 再一次测量活动中,同学们要测量某公园的码头A 与他正东方向的亭子B 之间的距离,如图他们选择了与码头A 、亭子B 在同一水平面上的点P 在点P 处测得码头A 位于点P 北偏西方向30°方向,亭子B 位于点P 北偏东43°方向;又测得P 与码头A 之间的距离为200米,请你运用以上数据求出A 与B 的距离。

11年:20.(本题满分8分)一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些坑道对河道的影响,如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①、先测出沙坑坑沿的圆周长34.54米;②、甲同学直立于沙坑坑沿的圆周所在的平面上,经过适当调整自己所处的位置,当他位于B时恰好他的视线经过沙坑坑沿圆周上一点A看到坑底S(甲同学的视线起点C与点A,点S三点共线),经测量:AB=1.2米,BC=1.6米,(π取3.14,结果精确到0.1米)S12年20.(本题满分8分)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65︒方向,然后,他从凉亭A处沿湖岸向正东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45︒方向(点A B C、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据:,,,sin250.4226cos250.9063tan250.4663sin650.9063︒≈︒≈︒≈︒≈,,)cos650.4226tan65 2.1445︒≈︒≈13年:20.(本题满分8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立向高AM 与其影子长AE 正好相等;接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB=1.25m.已知李明直立时的身高为1.75m ,求路灯的高度CD 的长.(精确到0.1m )14年:20、(本题满分8分) 某一天,小明和小亮来到一河边,想用遮阳帽和皮尺来测量这一条河流的大致宽度,两人在确保无安全隐患的情况下,现在河岸边选择了一点B(点B 与河对岸岸边上的一棵树的底部点D 所确定的直线垂直于河岸)①小明在B 点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D 处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB 延长线上的点E 处,此时小亮测得BE=9.6米,小明的眼睛距离地面的距离CB=1.2米。

2017全国中考数学真题分类- 函数初步(含平面直角坐标系) (选择题+填空题+解答题)解析版

2017全国中考数学真题分类- 函数初步(含平面直角坐标系) (选择题+填空题+解答题)解析版

2017全国中考数学真题分类知识点15函数初步(含平面直角坐标系)(选择题+填空题+解答题)解析版一、选择题1. (2017浙江丽水·10·3分)在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系图象.下列说法错误的是( ) A .乙先出发的时间为0.5小时 B .甲的速度是80千米/小时C .甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早121小时答案:D .解析:由图象可知乙先出发0.5小时后两车相距70千米,即乙的速度是60千米/小时,这样乙从B 地出发到达A 地所用时间为32160100=÷小时,由函数图形知此时两车相距不到100千米,即乙到达A 地时甲还没有到达B 地(甲到B 地比乙到A 地迟),故选项D 错误.2. .(2017四川泸州,5,3分)已知点A (a ,1)与点B (-4,b )关于原点对称,则a +b 的值为( )A .5B .-5C .3D .-3答案:C ,解析:关于原点对称的两个点的纵、横坐标均互为相反数,故a =4,b =-1,所以a +b =4-1=3. 3. (2017四川泸州,8,3分)下列曲线中不能表示y 是x 的函数的是( )答案:C ,解析:若y 是x 的函数,那么x 取一个值时,y 有唯一的一个值与x 对应,C 选项图像中,在x 轴上取一点(图像与x 轴交点除外),即确定一个 x 的值,这个点都对应图像上两个点,即一个x 的值有两个y 的值与之对应,故此图像不是y 与x 的函数图像.故选C .4. (2017山东济宁,10,3分)如图,A ,B 是半径为1的⊙O 上两点,且OA ⊥OB .点P 从A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束.设运动时间为x ,弦BP 的长度为y ,那么下面图象中可能..表示y 与x 的函数关系的是A .①B .④C .②或④D .①或③答案:D ,解析:根据“直径是圆中最长的弦”,点P 从A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束,分两种情况:点P 顺时针运动时,BP 长先变大再变小直至0再变大选③;点P 逆时针运动时,BP 长先变小直至0再变大再变小选①.5. (2017四川攀枝花,16,4分)如图1,E 为矩形ABCD 的边AD 上一点,点P 从点B 处出发沿折线BE -ED -DC 运动到点C 停止,点Q 从点B 处出发沿BC 运动到点C 停止,它们运动的速度都是lcm /s .若点P 、点Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 之间的函数图象如图2所示.给出下列结论:①当0<t ≤10时,△BPQ 是等腰三角形;②S ∆ABE =48 cm 2 ;③当14<t <22时,y = 110-5t ;④在运动过程中,使得∆ABP 是等腰三角形的P 点一共有3个;⑤∆BPQ 与∆ABE 相似时,即t =14.5.其中正确结论的序号是 . 答案:①、③、⑤解析:由图8可判断出10BE =,4DE =,当P 点在ED 上运动时40BPQ S ∆=,∴此时PBQ ∆的高为8,级8AB =,∴6AE =,∴10BC AD ==,∴当0<t ≤10时,点P 在BE 上运动,BP BQ =,∴BPQ ∆是等腰三角形;所以①对;1242ABE S AB AE ∆==,所以②错;当14<t <22时,点P 在CD 上运动,y = 110-5t ,所以③对;ABP ∆为等腰三角形需要分类讨论,当AB AP =时,ED 存在一个P 点,当BA BP =时,BE 上存在一个P 点,当PA PB =时,点P 在AB 垂直平分线上,所以BE 和CD 上各存在一个P 点,共有4个满足条件的点,所以④错;∆BPQ 与∆ABE 相似时,只存在BPQ BAE ∆∆∽这种情况,此时Q 点与点C 重合,即34PC AE BC AB ==,所以7.5PC =,即t =14.5,所以⑤对. 6. 4.(2017江苏淮安,4,3分)点P (1,-2)关于y 轴对称的点的坐标是( )A .(1,2)B .(-1,2)C .(-1,-2)D .(-2,1)答案:C ,解析:关于y 轴对称的点的坐标规律是“横坐标互为相反数,纵坐标不变”,可知点P (1,-2)关于y 轴对称的点的坐标是(-1,-2).7. 2.(2017江苏无锡,2,3分)函数2xy x=-中自变量x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x >2答案:A .解析:由分母不为0,得2-x ≠0,∴x ≠2 .8. (2017湖南岳阳,9,4分)函数1y 7x =-中自变量x 的取值范围是 . 答案:x ≠7,解析:分母不为0有意义,则x -7≠0,解得,x ≠7.9. 7.(2017浙江义乌,7,4分)均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为折线),这个容器的形状可以是OthA BCA .B .C .D .答案:D ,解析:由均匀地向容器注水可知,单位时间内注水量相同.对于长方体容器,底面积越大,水面高度上升的速度越小,根据图象可得,最上面的容器底面积最小,中间的容器底面积最大.10. (2017湖南邵阳,9,3分)如图(五)所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中 x 表示时间,y 表示小徐离他家的距离.读图可知菜地离小徐家的距离为( )A .1.1 千米B .2 千米C .15 千米D .37 千米答案:A,解析:由图知从家出发经过15分钟到达菜地.浇水时间为15——25分钟,接着用(37-25)分钟时间去玉米地,第37——第55分钟时在玉米地除草,从55分钟开始回家,故菜地离家的距离为1.1千米,故选A. 11.(2017湖南邵阳,10,3分)如图(六)所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30 秒后,飞机P飞到P′ (4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′ (2,3 ),R′ ( 4,1 ) B.Q′ (2,3 ),R′ ( 2,1 )C.Q′ (2,2 ),R′ ( 4,1 ) D.Q′ (3,3 ),R′ ( 3,1 )答案:A,解析:因为保持编队不变,所以由P(-1,1)移动到P′(4,3)知是向右平移了5个单位,向上平移了2个单位,所以Q,R平移后的坐标分别为(2,3),(4,1),故选A.12. 4.(2017呼和浩特,3分)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大答案:D,解析:2012年的增长率最大,为100%。

2017全国部分省市中考数学真题汇编----正弦、余弦(含解析)

2017全国部分省市中考数学真题汇编----正弦、余弦(含解析)

2017全国部分省市中考数学真题汇编----正弦、余弦一.选择题(共10小题)1.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35°B.mcos35° C.D.2.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.3.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值是()A.B.C.D.4.△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列四个选项中,错误的是()A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=15.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.6.如图,△ABC的项点都在正方形网格的格点上,则cosC的值为()A.B.C.D.7.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是()A.B.C.D.8.将一张矩形纸片ABCD(如图)那样折起,使顶点C落在C'处,测量得AB=4,DE=8.则sin∠C'ED为()A.2 B.C.D.9.在Rt△ABC中,∠B=90°.若AC=2BC,则sinC的值是()A.B.2 C.D.10.在△ABC中,∠C=90°,∠B的平分线交AC于D.则=()A.sinB B.cosB C.tanB D.cotB二.填空题(共8小题)11.如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为.12.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是.13.正方形网格中,∠AOB如图放置,则cos∠AOB的值为.14.在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于.15.如图,△ABC的三个顶点都在正方形网格的格点上,则sin∠ACB的值为.16.在Rt△ABC中,∠C=90°,若sinA=,则cosB=.17.若α为锐角,化简=.18.在Rt△ABC中,∠C=Rt∠,a,b,c分别是∠A,∠B和∠C的对边,如果a=3,sinA=,则c=.三.解答题(共10小题)19.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.20.如图,点A(t,4)在第一象限,OA与x轴所夹的锐角为α,sinα=,求t 的值.21.如图,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,我们把∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA=.当c=2,a=1时,求cosA.22.在△ABC中,已知∠C=90°,sinA+sinB=,求sinA﹣sinB的值.23.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cosB的值.24.下列关系式是否成立(0<α<90°),请说明理由.(1)sinα+cosα≤1;.(2)sin2α=2sinα25.在△ABC中,∠C=90°,BC=24cm,cosA=,求这个三角形的周长.26.在Rt△ABC中,∠C=90°,若,求cosA,sinB,cosB.27.如图所示,在平面直角坐标系xoy中,四边形OABC是正方形,点A的坐标为(m,0).将正方形OABC绕点O逆时针旋转α角,得到正方形ODEF,DE与边BC交于点M,且点M与B、C不重合.(1)请判断线段CD与OM的位置关系,其位置关系是;(2)试用含m和α的代数式表示线段CM的长:;α的取值范围是.28.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AC=8,AB=10,求cos∠BCD 的值.参考答案与解析一.选择题(共10小题)1.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35°B.mcos35° C.D.【分析】根据正弦定义:把锐角A的对边a与斜边c的比叫做∠A的正弦可得答案.【解答】解:sin∠A=,∵AB=m,∠A=35°,∴BC=msin35°,故选:A.【点评】此题主要考查了锐角三角函数,关键是掌握正弦定义.2.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.【分析】根据勾股定理求出BC,根据正弦的概念计算即可.【解答】解:在Rt△ABC中,由勾股定理得,BC==12,∴sinA==,故选:B.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c的比叫做∠A的正弦是解题的关键.3.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值是()A.B.C.D.【分析】根据余弦的定义解答即可.【解答】解:在Rt△ABC中,BC=3,AB=5,∴cosB==,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的邻边a与斜边c的比叫做∠A的余弦是解题的关键.4.△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列四个选项中,错误的是()A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=1【分析】观察图形可知,△ADB是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=,利用锐角三角函数一一计算即可判断.【解答】解:观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=,∴sinα=cosα=,故A正确,tanC==2,故B正确,tanα=1,故D正确,∵sinβ==,cosβ=,∴sinβ≠cosβ,故C错误.故选C.【点评】本题考查锐角三角函数的应用.等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.【分析】利用锐角三角函数定义求出cosB的值即可.【解答】解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cosB==,故选A【点评】此题考查了锐角三角函数定义,熟练掌握锐角三角函数定义是解本题的关键.6.如图,△ABC的项点都在正方形网格的格点上,则cosC的值为()A.B.C.D.【分析】先构建格点三角形ADC,则AD=2,CD=4,根据勾股定理可计算出AC,然后根据余弦的定义求解.【解答】解:在格点三角形ADC中,AD=2,CD=4,∴AC===2,∴cosC===.故选B.【点评】本题考查了锐角三角函数的定义:在直角三角形中,一锐角的余弦等于它的邻边与斜边的比值.也考查了勾股定理.7.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是()A.B.C.D.【分析】根据勾股定理求出OA,根据正弦的定义解答即可.【解答】解:由题意得,OC=2,AC=4,由勾股定理得,AO==2,∴sinA==,故选:A.【点评】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.8.将一张矩形纸片ABCD(如图)那样折起,使顶点C落在C'处,测量得AB=4,DE=8.则sin∠C'ED为()A.2 B.C.D.【分析】由折叠可知,C′D=CD.根据在直角三角形中,一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°,由特殊角的三角函数选择答案.【解答】解:∵△CDE≌△C′DE,∴C′D=CD.∵AB=4,DE=8,∴C′D=4.∴sin∠C'ED===.故选B.【点评】本题可以考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边.9.在Rt△ABC中,∠B=90°.若AC=2BC,则sinC的值是()A.B.2 C.D.【分析】利用已知表示出各边长,进而利用锐角三角函数关系得出答案.【解答】解:如图所示:∵AC=2BC,∴设BC=x,则AC=2x,故AB=x,故sinC==.故选:C.【点评】此题主要考查了锐角三角函数关系,正确表示出各边长是解题关键.10.在△ABC中,∠C=90°,∠B的平分线交AC于D.则=()A.sinB B.cosB C.tanB D.cotB【分析】根据角平分线上的任意一点到角的两边距离相等计算.【解答】解:过点D作DE⊥AB于E.则DE=DC.可证△BED≌△BCD,∴BE=BC.∴AB﹣BC=AB﹣BE=AE,又∵∠A+∠ADE=90°,∠A+∠ABC=90°,∴∠ADE=∠ABC,∵sin∠ADE==∴sin∠ABC=.故选A.【点评】此题主要考查角平分线的性质和三角函数的定义.二.填空题(共8小题)11.如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为.【分析】利用图形构造直角三角形,进而利用sinA=求出即可.【解答】解:如图所示:延长AC交网格于点E,连接BE,∵AE=2,BE=,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴SinA==.故答案为:.【点评】本题考查了锐角三角函数的定义,解答本题的关键在于利用图形构造直角三角形,进而利用sinA=求解.12.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是.【分析】先利用勾股定理求出AC的长,再根据锐角的余弦等于邻边比斜边求解即可.【解答】解:∵在△ABC中,∠C=90°,AB=5,BC=3,∴AC==4,∴cosA==.故答案为.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.也考查了勾股定理.13.正方形网格中,∠AOB如图放置,则cos∠AOB的值为.【分析】找出OB边上的格点C,连接AC,利用勾股定理求出AO、AC、CO的长度,再利用勾股定理逆定理证明△AOC是直角三角形,然后根据余弦=计算即可得解.【解答】解:如图,C为OB边上的格点,连接AC,根据勾股定理,AO==2,AC==,OC==,所以,AO2=AC2+OC2=20,所以,△AOC是直角三角形,cos∠AOB===.故答案为:.【点评】本题考查了锐角三角函数的定义,勾股定理,勾股定理逆定理,找出格点C并作辅助线构造出直角三角形是解题的关键.14.在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于.【分析】直接利用勾股定理得出AB的长,再利用锐角三角函数关系得出答案.【解答】解:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∴sinB==.故答案为:.【点评】此题主要考查了锐角三角函数关系,正确记忆边角关系是解题关键.15.如图,△ABC的三个顶点都在正方形网格的格点上,则sin∠ACB的值为.【分析】根据勾股定理,可得BC、AC的长,求出△ABC的面积,求出高AN,解直角三角形求出即可.【解答】解:设小正方形的边长为1,则由勾股定理得:BC==5,AC==,∵S△ABC=S△BDC﹣S正方形EAFD﹣S△AFC﹣S△BEA=﹣1×1﹣﹣=,∴=,∴AN=1,∴sin∠ACB===,故答案为:.【点评】本题考查了锐角三角函数的定义和勾股定理,能构造直角三角形是解此题的关键,注意:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.16.在Rt△ABC中,∠C=90°,若sinA=,则cosB=.【分析】根据一个角的余弦等于它余角的正弦,可得答案.【解答】解:由∠C=90°,若sinA=,得cosB=sinA=,故答案为:.【点评】本题考查了互余两角的三角函数,利用一个角的余弦等于它余角的正弦是解题关键.17.若α为锐角,化简=1﹣sinα.【分析】根据二次根式的性质化简二次根式需要考虑被开方数的底数的取值范围,因为α为锐角,所以α的正弦值小于1.【解答】解:∵α为锐角,∴0<sinα<1,∴==1﹣sinα.【点评】此题主要考查锐角的正弦值小于1的性质.18.在Rt△ABC中,∠C=Rt∠,a,b,c分别是∠A,∠B和∠C的对边,如果a=3,sinA=,则c=9.【分析】根据∠C=Rt∠,得出sinA=,再把a的值代入,即可求出c的值.【解答】解:∵∠C=Rt∠,∴sinA==,∵a=3,∴c=9;故答案为:9.【点评】此题考查了锐角三角函数的定义,熟练掌握锐角三角函数的含义是解题的关键,是一道基础题.三.解答题(共10小题)19.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.【分析】依题意设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x,先证明△CEM是直角三角形,再利用三角函数的定义求解.【解答】解:设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x,∴EC==5x,EM==x,CM==2x,∴EM2+CM2=CE2,∴△CEM是直角三角形,∴sin∠ECM==.【点评】本题考查了锐角三角函数值的求法.关键是利用勾股定理的逆定理证明直角三角形,把问题转化到直角三角形中求解.20.如图,点A(t,4)在第一象限,OA与x轴所夹的锐角为α,sinα=,求t 的值.【分析】过A作AB⊥x轴于B,根据正弦的定义和点A的坐标求出AB、OA的长,根据勾股定理计算即可.【解答】解:过A作AB⊥x轴于B.∴,∵,∴,∵A(t,4),∴AB=4,∴OA=6,∴.【点评】本题考查的是锐角三角函数的定义、坐标与图形的性质,掌握在直角三角形中,锐角的正弦为对边比斜边是解题的关键.21.如图,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,我们把∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA=.当c=2,a=1时,求cosA.【分析】根据勾股定理求出b,根据余弦的定义计算即可.【解答】解:∵∠C=90°,c=2,a=1,∴b==,∴cosA==.【点评】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.22.在△ABC中,已知∠C=90°,sinA+sinB=,求sinA﹣sinB的值.【分析】直接利用完全平方公式以及结合互余两角的关系得出答案.【解答】解:∵sinA+sinB=,∴(sinA+sinB)2=,∴sin2A+sin2B+2sinA?sinB=,∵sinB=cosA,∴sin2A+cos2A+2sinA?sinB=,∴2sinA?sinB=,∴(sinA﹣sinB)2=1﹣=,∴sinA﹣sinB=±.【点评】此题主要考查了完全平方公式以及互余两角的关系,正确应用完全平方公式是解题关键.23.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cosB的值.【分析】根据AA可证△AMN∽△ABC,根据相似三角形的性质得到==,设AC=3x,AB=4x,由勾股定理得:BC=x,在Rt△ABC中,根据三角函数可求cosB.【解答】解:∵∠C=90°,MN⊥AB,∴∠C=∠ANM=90°,又∵∠A=∠A,∴△AMN∽△ABC,∴==,设AC=3x,AB=4x,由勾股定理得:BC==x,在Rt△ABC中,cosB===.【点评】此题考查了锐角三角函数的定义,相似三角形的性质勾股定理,本题关键是表示出BC,AB.24.下列关系式是否成立(0<α<90°),请说明理由.(1)sinα+cosα≤1;.(2)sin2α=2sinα【分析】(1)利用三角函数的定义和三角形的三边关系得到该结论不成立;(2)举出反例进行论证.【解答】解:(1)该不等式不成立,理由如下:如图,在△ABC中,∠B=90°,∠C=α.则sinα+cosα=+=>1,故sinα+cosα≤1不成立;(2)该等式不成立,理由如下:×=1,假设α=30°,则sin2α=sin60°=,2sinα=2sin30°=2∵≠1,不成立.∴sin2α≠2sinα,即sin2α=2sinα【点评】本题考查了同角三角函数的关系.解题的关键是掌握锐角三角函数的定义和特殊角的三角函数值.25.在△ABC中,∠C=90°,BC=24cm,cosA=,求这个三角形的周长.【分析】首先根据锐角三角函数的定义求出AB、AC,然后求出周长.【解答】解:可设AC=5xcm,AB=13xcm,则BC=12xcm,由12x=24得x=2,∴AB=26,AC=10,∴△ABC的周长为:10+24+26=60cm.【点评】本题主要考查锐角三角函数的定义,不是很难.26.在Rt△ABC中,∠C=90°,若,求cosA,sinB,cosB.【分析】先根据sin2α+cos2α=1计算出cosA=,然后根据互余两角三角函数的关系求解.【解答】解:∵∠C=90°,sinA=,∴cosA==,∵∠A+∠B=90°,∴sinB=cosA=,cosB=sinA=.【点评】本题考查了互余两角三角函数的关系:在直角三角形中,∠A+∠B=90°时,sinA=cosB或sinB=cosA.也考查了同角三角形函数的关系.27.如图所示,在平面直角坐标系xoy中,四边形OABC是正方形,点A的坐标为(m,0).将正方形OABC绕点O逆时针旋转α角,得到正方形ODEF,DE与边BC交于点M,且点M与B、C不重合.(1)请判断线段CD与OM的位置关系,其位置关系是垂直;(2)试用含m和α的代数式表示线段CM的长:CM=m?tan;α的取值范围是0°<α<90°.【分析】(1)连接CD,OM.根据旋转的性质得出MC=MD,OC=OD,再证明△COM≌△DOM,得出∠COM=∠DOM,然后根据等腰三角形三线合一的性质得出CD⊥OM;(2)首先用含α的代数式表示∠COM,然后在Rt△COM中,根据正切函数的定义即可得出CM的长度;由OD与OM不能重合,且只能在OC右边,得出α的取值范围.【解答】解:(1)连接CD,OM.根据旋转的性质可得,MC=MD,OC=OD,又OM是公共边,∴△COM≌△DOM,∴∠COM=∠DOM,又∵OC=OD,∴CD⊥OM;(2)由(1)知∠COM=∠DOM,∴∠COM=,在Rt△COM中,CM=OC?tan∠COM=m?tan;因为OD与OM不能重合,且只能在OC右边,故可得α的取值范围是0°<α<90°.【点评】解答本题要充分利用正方形的特殊性质,注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,有助于提高解题速度和准确率.28.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AC=8,AB=10,求cos∠BCD 的值.【分析】根据三角形的内角和定理求出∠BCD=∠A,得出cos∠BCD=cosA,求出cosA即可.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠BDC=∠ACB=90°,∴∠B+∠BCD=90°,∠BCD+∠ACD=90°,∴∠BCD=∠A,∵AB=10,AC=8,∴cos∠BCD=cosA===.【点评】本题考查了锐角三角函数值和三角形的内角和定理,注意:在Rt△ACB 中,∠C=90°,则sinA=,cosA=,tanA=.。

2017年浙江中考数学真题分类汇编--三角形(解析版)

2017年浙江中考数学真题分类汇编--三角形(解析版)

2017年浙江中考数学真题分类汇编--三角形(解析版)DBE,CF两两相交于D,E,F三点(D,E,F三点不重合)。

(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;(2)△DEF是否为正三角形?请说明理由;(3)进一步探究发现,△ABD的三边存在一定的等量关系,设,,,请探索,,满足的等量关系。

10、(2017•绍兴)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=________°,β=________°.②求α,β之间的关系式.________(2)是否存在不同于以上②中的α,β之间的关系式?若存在,请求出这个关系式(求出一个即可);若不存在,说明理由.11、(2017·台州)如图,已知等腰直角△ABC,点P 是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求的值12、(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.13、(2017•温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.答案解析部分一、单选题1、【答案】C【考点】三角形三边关系【解析】【解答】解:A.2+3>4,故能组成三角形;B.5+7>7,故能组成三角形;C.5+6<12,故不能组成三角形;D.6+8>10,故能组成三角形;故答案为C。

专题09 三角形-2017年中考数学试题分项版解析汇编(解析版)

专题09 三角形-2017年中考数学试题分项版解析汇编(解析版)

专题9:三角形一、选择题1.(2017天津第2题)060cos 的值等于( )A 3B .1C .22D .21 【答案】D.2.(2017天津第9题)如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD = 【答案】C.3. (2017天津第11题)如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC 【答案】B. 【解析】试题分析:在ABC ∆中,AC AB =,AD 是ABC ∆的中线,可得点B 和点D 关于直线AD 对称,连结CE ,交AD 于点P ,此时EP BP +最小,为EC 的长,故选B.4. (2017湖南长沙第5题)一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形 【答案】B 【解析】试题分析:根据三角形的内角和为180°,可知最大角为90°,因式这个三角形是直角三角形. 故选:B. 考点:直角三角形5.(2017山东滨州第7题)如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( ) A .2+3B .23C .3+3D .33【答案】A.6.(2017山东滨州第8题)如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为( )A .40°B .36°C .80°D .25°【答案】B.【解析】设∠B=x ,因AB=AC,根据等腰三角形的性质可得∠B=∠C=x ,因AD=CD ,根据等腰三角形的性质可得∠DAC=∠C=x ,因BD=BA ,根据等腰三角形的性质和三角形外角的性质可得∠BAD=∠ADB=2x ,在△ABD 中,根据三角形的内角和定理可得x+2x+2x=180°,解得x=36°,即∠B=36°,故选B.8. (2017山东滨州第11题)如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补.若∠MPN 在绕点P 旋转的过程中,其两边分别与OA ,OB 相交于M 、N 两点,则以下结论:(1)PM =PN 恒成立,(2)OM +ON 的值不变,(3)四边形PMON 的面积不变,(4)MN 的长不变,其中正确的个数AB CD为()A.4 B.3 C.2 D.1PAONBM【答案】B.9. (2017山东日照第4题)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.【答案】B.试题分析:在Rt△ABC中,根据勾股定理求得BC=12,所以sinA=1213BCAB=,故选B.考点:锐角三角函数的定义.10.(2017江苏宿迁第8题)如图,在Rt C∆AB中,C90∠=,C6A=cm,C2B=cm.点P在边CA 上,从点A向点C移动,点Q在边C B上,从点C向点B移动,若点P、Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接QP,则线段QP的最小值是A.20cm B.18cm C.25cm D.32cm【答案】C.11. (2017山东菏泽第5题)如图,将t ABC ∆R 绕直角顶点C 顺时针旋转90,得到''A B C ∆,连接'AA ,若125∠=,则'BAA ∠的度数是( )A .55B .60 C.65 D .70 【答案】C. 【解析】试题分析:根据旋转的性质可得∠BAC=∠B 'A 'C,AC=CA ', ∠A 'CA=90°,即可得△ACA '是等腰直角三角形,∴所以∠BAC=∠B 'A 'C=45°-25°,即可得'BAA ∠=65,故选C.12. (2017浙江金华第3题)下列各组数中,不可能成为一个三角形三边长的是( ) A .2,3,4 B .5,7,7 C .5,6,12 D .10,8,6 【答案】C. 【解析】试题分析:根据三角形的三边关系:三角形任意两边的和大于第三边,可得:选项A ,2+3>4,能组成三角形;选项B ,5+7>7,能组成三角形;选项C ,5+6<12,不能组成三角形;选项D ,6+8>10,能组成三角形,故选C.13. (2017浙江湖州第3题)如图,已知在Rt C ∆AB 中,C 90∠=,5AB =,C 3B =,则cos B 的值是( ) A .35 B .45 C .34 D .43【答案】A 【解析】试题分析:根据根据余弦的意义cosB=B ∠的邻边斜边,可得conB=BC AB =35.故选:A 考点:余弦14. (2017浙江舟山第2题)长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( ) A .4 B .5 C .6 D .9 【答案】C. 【解析】试题分析:根据三角形的两边之大于第三边,两边这差小于第三边,可得7-2<x<2+7,即5<x<9,所以x 可以取6.故选C.考点:三角形的三边关系.15. (2017浙江金华第4题)在t ABC ∆R 中,90,5,3C AB BC ∠===,则tan A 的值是( ) A .34 B .43 C.35 D .45【答案】A. 【解析】试题分析:在△ABC 中,∠C=90°,AB=5,BC=3, 根据勾股定理可求得AC=4, 所以tanA=34BC AC =,故选A.16. (2017浙江台州第5题)如图,点P 是AOB ∠平分线OC 上一点,PD OB ⊥,垂足为D .若2PD =,则点P 到边OA 的距离是 ( )A .1B . 2 C. 3 D .4 【答案】B 【解析】试题分析:过P 作PE ⊥OA 于点E ,根据角平分线上的点到角两边的距离相等即可得到PE=PD.从而得出点P 到OA 的距离是2cm. 故选:B.学科网 考点:角平分线的性质17. (2017浙江湖州第6题)如图,已知在Rt C ∆AB 中,C 90∠=,C C A =B ,6AB =,点P 是Rt C ∆AB 的重心,则点P 到AB 所在直线的距离等于( ) A .1 B .2 C.32D .2【答案】A考点:1、三角形的重心,2、等腰直角三角形,3、相似三角形的判定与性质18. (2017浙江台州第8题)如图,已知等腰三角形,ABC AB AC =,若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE EC =B .AE BE = C. EBC BAC ∠=∠D .EBC ABE ∠=∠ 【答案】C 【解析】试题分析:根据AB=AC,BE=BC ,可以得出∠ABC=∠C,∠BEC=∠C,从而得出∠ABC=∠BEC,∠A=∠EBC. 故选:C.考点:1、三角形的外角性质,2、等腰三角形的性质19. (2017浙江湖州第9题)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )【答案】C 【解析】试题分析:根据勾股定理,可判断边长之间的关系,可知构不成C 图案,能构成A 、B 、D 图案.故选:C 考点:勾股定理二、填空题1.(2017北京第13题)如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S ∆=,则ABNM S =四边形 .【答案】3.考点:相似三角形的性质.2.(2017福建第12题)如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .【答案】6【解析】∵E 、F 分别是AB 、AC 的中点,∴BC=2EF=6.3.(2017河南第15题)如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MBC ∆为直角三角形,则BM 的长为 .【答案】1或212+. 【解析】试题分析:在Rt ABC ∆中,90A ∠=︒,AB AC =,可得∠B=∠C=45°,由折叠可知,BM='MB ,若使'MBC ∆为直角三角形,分两种情况:①0'90MB C ∠=,由∠C=45°可得'MB ='CB ,设BM=x ,则'MB ='CB =x ,MC=2x ,所以x+2x =21BC =+,解得x=1,即BM=1;②0'90B MC ∠=,此时点B 和点C 重合,BM=12122BC +=.所以BM 的长为1或212+. 考点:折叠(翻折变换).4.(2017广东广州第14题)如图7,Rt ABC ∆中,01590,15,tan 8C BC A ∠===,则AB = .【答案】17 【解析】试题分析:因为1515,tan 8BC BC A AC ===,所以,AC =8,由勾股定理,得:AB =17. 考点: 正切的定义.5.(2017山东临沂第16题)已知AB CD ∥,AD 与BC 相交于点O .若23BO OC =,10AD =,则AO = .【答案】4 【解析】试题分析:根据平行线分线段成比例定理,由AB ∥CD 可得BO OAOC OD=,然后根据AD=10,可知OD=10-OA ,代入可得2103BO OA OC OA ==-,解得OA=4. 故答案为:4考点:平行线分线段成比例定理6.(2017四川泸州第16题)在ABC ∆中,已知BD 和CE 分别是边,AC AB 上的中线,且BD CE ⊥,垂足为O ,若2,4OD cm OE cm ==,则线段AO 的长为 cm . 【答案】45. 【解析】试题分析:如图,由BD 和CE 分别是边,AC AB 上的中线,可得DE ∥BC ,且12DE OD OE BC OB OC === , 因BD CE ⊥,2,4OD cm OE cm ==,根据勾股定理可得DE=25 ,又因12DE OD OE BC OB OC ===,可得BC=45,连结AO 并延长AO 交BC 于点M ,由BD 和CE 分别是边,AC AB 上的中线交于点M ,可知AM 也是△ABC 的边BC 上的中线,在Rt △BOC 中,根据斜边的中线等于斜边的一半可得OM= 12BC=25,最后根据三角形重心的性质可得AO=2OM=45.7. (2017江苏宿迁第12题)如图,在C ∆AB 中,C 90∠A B =,点D 、E 、F 分别是AB 、C B 、C A 的中点.若CD 2=,则线段F E 的长是 .【答案】2. 【解析】试题分析:因在C ∆AB 中,C 90∠A B =,点D 是AB 的中点,CD 2=,根据直角三角形中斜边的中线等于斜边的一半可得AB=4,又因,点E 、F 分别是C B 、C A 的中点,根据三角形的中位线定理可得EF=12AB=2. 8. (2017江苏苏州第17题)如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60的方向,在码头B 北偏西45的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).【答案】2 . 【解析】试题分析:作CD AB ⊥ ,垂足为D6302AC CAB CD =∠=︒∴=,,在Rt BCD ∆ 中,45CBD ∠=︒ ,22BC ∴=开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,∴12v v =4222=D.考点:特殊角三角函数的应用 .9. (2017浙江湖州第14题)如图,已知在C ∆AB 中,C AB =A .以AB 为直径作半圆O ,交C B 于点D .若C 40∠B A =,则D A 的度数是 度.【答案】140考点:圆周角定理10. (2017湖南湘潭第14题)如图,在ABC ∆中,D E 、分别是边AB AC 、的中点,则ADE ∆与ABC ∆的面积比:ADE ABC S S ∆∆= .【答案】41 【解析】试题分析:已知D E 、分别是边AB AC 、的中点,即可得DE 是三角形的中位线,所以DE ∥BC,即可判定ADE ∆∽ABC ∆,根据相似三角形的性质可得:ADE ABCS S ∆∆=412122=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛AB AD .11. (2017湖南湘潭第15题)如图,在Rt ABC ∆中,90C ∠=°,BD 平分ABC ∠交AC 于点D ,DE 垂直平分AB ,垂足为E 点,请任意写出一组相等的线段 .【答案】BC=BE 或DC=DE 【解析】试题分析:已知90C ∠=°,BD 平分ABC ∠,DE 垂直平分AB ,利用角平分线性质定理可知DC=DE ;根据已知条件易证BCD ∆≌BED ∆,根据全等三角形的性质可得BC=BE.12. (2017浙江舟山第16题)一副含030和045的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,cm EF BC 12==(如图1),点G 为边)(EF BC 的中点,边FD 与AB 相交于点H ,现将三角板DEF 绕点G 按顺时针方向旋转(如图2),在CGF ∠从00到060的变化过程中,观察点H 的位置变化,点H 相应移动的路径长为 (结果保留根号).【答案】123-18. 【解析】试题分析:如图2和图3,在 ∠ C G F 从 0 ° 到 60 ° 的变化过程中,点H 先向AB 方向移,在往BA 方向移,直到H 与F 重合(下面证明此时∠CGF=60度),此时BH 的值最大,如图3,当F 与H 重合时,连接CF ,因为BG=CG=GF ,所以∠BFC=90度,∵∠B=30度,∴∠BFC=60度,由CG=GF 可得∠CGF=60度.∵BC=12cm ,所以BF=32BC=63;如图2,当GH ⊥DF 时,GH 有最小值,则BH 有最小值,且GF//AB ,连接DG ,交AB 于点K ,则DG ⊥AB ,∵DG=FG ,∴∠DGH=45度,则KG=KH=22GH=22×(12×62)=3,BK=3KG=33,则BH=BK+KH=33+3则点H运动的总路程为63-(33+3)+[12(3-1)-(33+3)]=123-18(cm ).考点:旋转的性质.三、解答题1.(2017北京第19题)如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D . 求证:AD BC =.【答案】见解析. 【解析】考点:等腰三角形性质.2. (2017北京第28题)在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M . (1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.【答案】(1)【解析】分析:(1)由直角三角形性质,两锐角互余,可得∠AMQ=180°-∠AHM-∠PAM ,解得∠AMQ=45°+α.(2)由题意得AP=AQ=QM,再证RT △APC ≌RT △QME,.全等三角形对应边相等得出PC=ME ,得出△MEB 为等腰直角三角形,则PQ=2BM. 本题解析:(1) ∠AMQ=45°+α.理由如下:∵∠PAC=α,△ACB 是等腰直角三角形, ∴∠PAB =45°-α,∠AHM=90°,∴∠AMQ=180°-∠AHM-∠PAM =45°+α .(2)线段MB 与PQ 之间的数量关系:PQ=2 MB. 理由如下:连接AQ ,过点M 做ME ⊥QB ,∵AC ⊥QP,CQ=CP, ∴∠QAC=∠PAC=α,∴∠QAM=α+45°=∠AMQ, ∴AP=AQ=QM,在RT △APC 和RT △QME中,MQE PAC ACP QEM AP QM∠=⎧⎪∠=∠⎨⎪=⎩∴RT △APC ≌RT △QME, ∴PC=ME, ∴△MEB 是等腰直角三角形,∴1222PQ MB =, ∴PQ=2 MB.考点:全等三角形判定,等腰三角形性质 .3. (2017天津第22题)如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数). 参考数据:05.264tan ,44.064cos ,90.064sin 0≈≈≈,2取414.1.【答案】BP=153;BA=161. 【解析】试题分析:如图,过点P 作PC ⊥AB ,垂足为C ,由题意可知,∠A=64°,∠B=45°,PA=120,在Rt △APC 中,求得PC 、AC 的长;在Rt △BPC 中,求得BP 、BC 的长,即可得BA 的长. 试题解析:如图,过点P 作PCAB ,垂足为C , 由题意可知,∠A=64°,∠B=45°,PA=120, 在Rt △APC 中,sin ∠A=,cos PC ACA PA PA=, ∴PC=PA ·sin ∠A=120×sin64°, AC=PA ×cos ∠A=120×cos64°,在Rt △BPC 中,sin ∠B=,tan PC PCB BP BC=, ∴BP=00120sin 641200.90153sin sin 4522PC B ⨯⨯=≈≈ BC=120sin 64tan tan 45PC PC PC B ===⨯ ∴BA=BC+AC=120×sin64°+120×cos64°≈120×0.90+120×0.44≈161. 答:BP 的长约有153海里,BA 的长约有161海里.4. (2017福建第18题)如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CF ===.求证:A D ∠=∠.【答案】证明见解析. 【解析】试题分析:利用SSS 证明△ABC 与△DEF 全等即可得.试题解析:∵BE=CF ,∴BE+EC=CF+EC ,即BC=EF ,在△ABC 和△DEF 中AB DEAC DF BC EF =⎧⎪=⎨⎪=⎩,∴△ABC≌△DEF(SSS ),∴∠A=∠D .5. (2017福建第19题)如图,ABC ∆中,90,BAC AD BC ∠=⊥o,垂足为D .求作ABC ∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)【答案】作图见解析;证明见解析. 【解析】6. (2017河南第19题)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45︒方向,B 船测得渔船C 在其南偏东53︒方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:4sin 535︒≈,3cos535︒≈,4tan 533︒≈,2 1.41≈)【答案】C 船至少要等待0.94小时才能得到救援.【解析】试题分析:过点C 作CD AB ⊥交AB 的延长线于点D ,可得∠CDA=90°,根据题意可知∠CDA=45°,设CD=x ,则AD=CD=x ,在Rt △BDC 中,根据三角函数求得CD 、BC 的长,在Rt △ADC 中,求得AC 的长,再分别计算出B 船到达C 船处约需时间和A 船到达C 船处约需时间,比较即可求解. 试题解析:过点C 作CD AB ⊥交AB 的延长线于点D ,则∠CDA=90° 已知∠CDA=45°,设CD=x ,则AD=CD=x ∴BD=AD-AB=x-5在Rt △BDC 中,CD=BD ·tan53°,即x=(x-5)·tan53°∴0455tan 533204tan 53113x ⨯=≈=-- ∴BC=0042025sin 53sin 535CD x =≈÷=∴B 船到达C 船处约需时间:25÷25=1(小时) 在Rt △ADC 中,AC=2x ≈1.41×20=28.2∴A 船到达C 船处约需时间:28.2÷30=0.94(小时) 而0.94<1,所以C 船至少要等待0.94小时才能得到救援. 考点:解直角三角形的应用.7. (2017河南第22题)如图1,在R t A B C ∆中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明把ADE ∆绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN ∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN ∆面积的最大值. 【答案】(1)PM=PN ,PM PN ⊥;(2)等腰直角三角形,理由详见解析;(3)492. 【解析】试题分析:(1)已知 点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得11,22PM EC PN BD ==,//PM EC ,//PN BD ,根据平行线的性质可得∠DPM=∠DCE ,∠NPD=∠ADC ,在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE =,可得BD=EC ,∠DCE+∠ADC=90°,即可得PM=PN ,∠DPM+∠NPD=90°,即PM PN ⊥;(2)PMN ∆是等腰直角三角形,根据旋转的性质易证△BAD ≌△CAE ,即可得BD=CE ,∠ABD=∠ACE ,根据三角形的中位线定理及平行线的性质(方法可类比(1)的方法)可得PM=PN, ∠MPD=∠ECD ,∠PNC=∠DBC ,所以∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD ,∠DPN=∠PNC+∠PCN =∠DBC+∠PCN ,即可得∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN 为等腰直角三角形;(3)把ADE ∆绕点A 旋转到如图的位置,此时PN=12(AD+AB)=7, PM=12(AE+AC)=7,且PN 、PM 的值最长,由(2)可知PM=PN ,PM PN ⊥,所以PMN ∆面积的最大值为1497722⨯⨯= .试题解析:(1)PM=PN ,PM PN ⊥; (2)等腰直角三角形,理由如下: 由旋转可得∠BAD=∠CAE , 又AB=AC,AD=AE ∴△BAD ≌△CAE∴BD=CE ,∠ABD=∠ACE ,∵点M ,P 分别为DE ,DC 的中点 ∴PM 是△DCE 的中位线∴PM=12CE ,且//PM CE , 同理可证PN=12BD ,且//PN BD∴PM=PN, ∠MPD=∠ECD ,∠PNC=∠DBC , ∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD , ∠DPN=∠PNC+∠PCN =∠DBC+∠PCN ,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°, 即△PMN 为等腰直角三角形. (3)492. 考点: 旋转和三角形的综合题.8. (2017广东广州第18题)如图10,点,E F 在AB 上,,,AD BC A B AE BF =∠=∠=. 求证:ADF BCE ∆≅∆.【答案】详见解析 【解析】试题分析:先将AE BF =转化为AF =BE ,再利用SAS 证明两个三角形全等 试题解析:证明:因为AE =BF ,所以,AE +EF =BF +EF ,即AF =BE , 在△ADF 和△BCE 中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩所以,ADF BCE ∆≅∆考点:用SAS 证明两三角形全等9. (2017广东广州第20题) 如图12,在Rt ABC ∆中,0090,30,23B A AC ∠=∠==.(1)利用尺规作线段AC 的垂直平分线DE ,垂足为E ,交AB 于点D ;(保留作图痕迹,不写作法) (2)若ADE ∆的周长为a ,先化简()()211T a a a =+--,再求T 的值. 【答案】(1)详见解析;(2)3310+ 【解析】试题分析:(1)尺规作图——作线段的垂直平分线;(2)化简求值,利用三角函数求其余两边的长度。

2017年天津中考各区一模、二模、三模真题汇编--三角函数专题.docx

2017年天津中考各区一模、二模、三模真题汇编--三角函数专题.docx

2017年天津中考模拟真题汇编•-三角函数专题22.(和平一模)如图,某幢大楼顶部有一块广告牌CD,在A 处测得D 点的仰角为45。

,在B 处测得C 点的仰角为60。

,A, B, E 三点在一条直线上,且与地而平行,若AB=8m, BE=15m, 求这块广告牌CD 的高度.(取辰1.73,保留整数)答:这块广告牌的高度约为3m.22.(和平二模)如图,长方形广告牌架在楼房顶部,已知CD=2m,经测量得到ZCAH=37°, ZDBH=60°, AB=10m,求 GH 的长.(参考数据:tan37°~0.75,需V732,结果精确到 0.1m ) 10w B H答:GH 的长为7.8m.22.(和平三模)(10分)如图,大楼AB 高16m,远处有一塔CD,某人在楼底B 处测得塔顶 C 的仰角为39。

,在楼顶A 处测得塔顶的仰角为22。

,求塔高CD 的高.(结果保留小数后一 位)参考数据:sin22°a0.37, cos22° = 0.93, tan22°^0.40, si39° = 0.63, cos39°~0.78, tan39° ^0.81.BD答:塔高CD 是31.6米. □□□□□□□□22.(河北一模)(10分)如图,某渔船航行至B处时,侧得一海岛位于B处的正北方向20 (1+V3)海里的C处,为了防止意外,渔船请求A处的渔监船前往C处护航,已知C位于A处的北偏东45。

方向上,A位子B的北偏西300的方向上,求A, C之间的距离.答:A、CZ间的距离为20血每里.22.(河北二模)(10分)如图,某社会实践活动小组地测量两岸互相平行的一段河的宽度, 在河的南岸边点A处,测得河的北岸点B在其北偏东45。

方向,然后向西走60m到达C点,测得点B在点C的北偏东60。

方向(I )求ZCBA的度数(II )求出这段河的宽(结果精确到lm,备用数据V2^1.41, 73^1.73)答:ZCBA=15°;这段河的宽是82m.22.(河东一模)(10分)如图,小东在教学楼距地面9米高笊窗口C处,测得正前方旗杆顶部A点的仰角为37。

2017年天津市中考数学试题(含解析)

2017年天津市中考数学试题(含解析)

2017年天津市中考数学试卷满分:120分版本:人教版第Ⅰ卷(选择题,共36分)一、选择题(第小题3分,共12小题,合计36分)1.(2017天津)计算(-3)+5的结果等于A.2 B.-2 C.8 D.-8答案:A,解析:根据有理数的加法法则“绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

”可得,(-3)+5=+(5-3)=2,故选A.2.(2017天津)cos60°的值等于A B.1C.2D.12答案:D,解析:根据余弦的定义及特殊角度的三角函数值,可得cos60°=12,故选D.3.(2017天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是礼迎全运A.B.C.D.答案:C,解析:根据轴对称图形的定义“将一个图形沿着某条直线对折后,直线两旁的部分能够完全重合的图形叫做轴对称图形”,可知“全”是轴对称图形,故选C.4.(2017天津)据《天津日报》报道,天津市社会保障制度更加成熟完善,截至2017年4月末,累计发放社会保障卡12 630 000张.将12 630 000用科学记数法表示为A.0.1263×108B.1.263×107C.12.63×106D.126.3×105答案:B,解析:根据科学记数法的定义“将一个大于1的数表示成a×10n(其中1≤|a|<10,n为整数,且等于原数的整数位数减去1)的形式,可知12 630 000=1.263×107,故选B. 5.(2017天津)右图是一个由4个相同的正文体组成的立体图形,它的主视图是A B第5题C D答案:D,解析:从正面看立体图形,有两行三列,从下往上数,个数分别是3,1,且第二层的正方形在第一层的正中间,故选D.6.(2017天津)A.4和5之间B.5和6之间C.6和7之间D.7和8之间答案:C,解析:由36<38<49,可得67,故选C.7.(2017天津)计算111aa a+++的结果为A.1B.aC.a+1 D.11 a+答案:A,解析:根据同分母分式的加法法则“分母不变,分子相加”可得,原式=11 aa+ +=1,故选A.8.(2017天津)方程组2315y xx y=⎧⎨+=⎩的解是A.23xy=⎧⎨=⎩B.43xy=⎧⎨=⎩C.48xy=⎧⎨=⎩D.36xy=⎧⎨=⎩答案:D,解析:运用“代入消元法”,将方程①代入方程②可得:3x+2x=15,解得x=3,将x=3代入方程①中可得y=6,故选D.9.(2017天津)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点恰好落在AB的延长线上,连接A D.下列结论一定正确的是A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC第9题答案:C,解析:根据旋转的性质,可得AB=DB,CB=EB,∠ABD=∠CBE=60°,所以△ABD 是等边三角形,所以∠DAB=∠CBE=60°,根据“同位角相等,两直线平行”可得:AD∥BC,故选C.10.(2017天津)若点A(-1,y1),B(1,y2),C(3,y3)在反比例函数y= -3x的图象上,则y1,y2,y3的大小关系是A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3答案:B,解析:将x=-1,1,3分别代入函数解析式,可得y1=3,y2=-3,y3=-1,所以y2<y3<y1,故选B.11.(2017天津)如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是A.BC B.CE C.AD D.AC第11题答案:B,解析:由AB=AC,可得△ABC是等腰三角形,根据“等腰三角形的三线合一性质”可知点B与点C关于直线AD对称,BP=CP,因此连接CE,BP+CP的最小值为CE,故选B. 12.(2017天津)已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M’落在x轴上,点B平移后的对应点B’落在y轴上.则平移后的抛物线解析式为A.y=x2+2x+1 B.y=x2+2x-1C.y=x2-2x+1 D.y=x2-2x-1答案:A ,解析:令y =0可得x 2-4x +3=0,解得x 1=1,x 2=3,可得A (1,0),B (3,0),根据抛物线顶点坐标公式可得M (2,-1),由M 平移后的对应点M ’落在x 轴上,点B 平移后的对应点B ’落在y 轴上,可知抛物线分别向左平移3个单位,再向上平移1个单位,根据抛物线平移规律,可知平移后的抛物线为y =(x +1)2=x 2+2x +1,故选A .第Ⅱ卷(非选择题,共84分)二、填空题(每小题3分,共6小题,合计18分) 13.(2017天津)计算x 7÷x 4的结果等于________.答案:x 3,解析:根据同底数幂的除法法则“底数不变,指数相减”,可得x 7÷x 4=x 3.14.(2017天津)计算的结果等于________.答案:9,解析:根据平方差公式,可得2-2=16-7=9.15.(2017天津)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是________.答案:56,解析:依题意可知,共有6种等可能结题,其中取出1个球是红球的可能结果有5种,因此它是红球的概率是56.16.(2017天津)若正比例函数y =kx (k 是常数,k ≠0)的图象经过第二、第四象限,则k 的值可以是________(写出一个即可).答案:-1(答案不唯一,只需小于0即可),解析:根据正比例函数的性质,若函数图象经过第二、第四象限,则k <0,因此k 的值可以是任意负数.17.(2017天津)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为________. 第17题G F A第17题GF BAD(如图),延长GE 交AB 于点N ,过点P 作PM ⊥GN 于M .由正方形的性质可知:AN =AB -BN =AB -EF =2,NE =GN -GE =BC -FC =2.根据点P 是AE 的中点及PM ∥AN ,可得PM 为△ANE的中位线,所以ME=12NE=1,PM=12AN=1,因此MG=2.根据勾股定理可得:PG18.(2017天津)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)AB的长等于________;(Ⅱ)在△ABC的内部有一点P,满足S△P AB:S△PBC:S△PCA=1:2,请在如图所示的网格中,用无刻..度.的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)________.答案:(Ⅰ;(Ⅱ)解析:(Ⅰ)根据勾股定理可得=(Ⅱ)如图,AC与网络线相交,得点D、E,取格点F,连结FB并延长,与网格线相交,得点M、N,连结DN、EM,DN与EM相交于点P,点P即为所求.三、解答题(共7小题,合计66分)19.(2017天津)(本小题满分8分)解不等式组,.1≥2 ①5≤43②x x x +⎧⎨+⎩,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得________; (Ⅱ)解不等式②,得________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:12345(Ⅳ)原不等式组的解集为______________.答案:(Ⅰ)x ≥1;(Ⅱ)x ≤3;(Ⅲ)123450;(Ⅳ)1≤x ≤3.解析:(Ⅰ)移项,可得x ≥1;(Ⅱ)移项,可得5x -4x ≤3;合并同类项,可得x ≤3;(Ⅲ)根据解集在数轴上的表示方法“大于向右,小于向左;有等号实心点,无等号空心圈”,可表示,详图见答案;(Ⅳ)根据不等式解集的定义“不等式解集的公共部分”可得原不等式的解集为1≤x ≤3.20.(2017天津)(本小题8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:图②31211104人数年龄/岁12108642(Ⅰ)本次接受调查的跳水运动员人数为________;图①中m 的值为________;(Ⅱ)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.答案:(Ⅰ)40;30;(Ⅱ)15;16;15.解析:(Ⅰ)从两副统计图中可知:13岁的运动员共4人,占10%,因此接受调查的跳水运动员人数为4÷10%=40;由于16岁的运动员共12人,因此16岁运动员所占百分比为12÷40×100%=30%,故m =30;(Ⅱ)根据平均数的计算方法,可知13414101511161217340x ⨯+⨯+⨯+⨯+⨯==15,因此这组数据的平均数为15;由于在这组数据中,16出现了12次,出现的次数最多,故这组数据的众数为16;将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,根据中位数的定义,取中间两个数的平均数,可得这组数据的中位数为15.21.(2017天津)(本小题10分)已知AB 是⊙O 的直径,AT 是⊙O 的切线,∠ABT =50°,BT 交⊙O于点C ,E 是AB 上一点,延长CE 交⊙O 于点D.第21题图②图①(Ⅰ)如图①,求∠T 和∠CDB 的大小; (Ⅱ)如图②,当BE =BC 时,求∠CDO 的大小.思路分析: (Ⅰ)①根据切线的性质,可知∠BAT =90°, 结合已知条件∠ABT =50°,利用三角形的内角和定理,可得∠T =40°; ②连接AC ,根据直径所对的圆周角是直角,可得∠BCA =50°, 结合已知条件∠ABT =50°,利用三角形的内角和定理,可得∠BAC =40°,由同弧所对的圆周角相等,可得∠CDB 为40°.(Ⅱ)①连接AD ,根据BE =BC 及∠ABT =50°可计算出∠BCE ;②由同弧所对的圆周角相等,可计算出∠OAD 及∠ADC 的度数;③由OA=OD 可得∠ODA 的度数;④根据∠CDO =∠ODA -∠CDA 可得.解:(Ⅰ)如图,连接AC ,∵AB 是⊙O 的直径,AT 是⊙O 的切线, ∴AT ⊥AB ,即∠TAB =90°. ∵∠ABT =50°,∴∠T=90°-∠ABT=40°∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABC=40°∴∠CDB=∠CAB=40°.图①(Ⅱ)如图,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°∵OA=OD∴∠ODA=∠OAD=65°∵∠ADC=∠ABC=50°∴∠CDO=∠ODA-∠ADC=15°.图②22.(2017天津)(本小题10分)如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B片.求BP 和BA的长(结果取整数)参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05取1.414.思路分析:过点P 作PM ⊥AB 于M ,由题意可知,∠A =64°,∠B =45°,P A =120米,在Rt △APM 中利用三角函数可求得PM ,AM 的长;在Rt △BPM 中利用三角函数可求得BM 、PB 的长;根据线段之和求得AB 的长.M解:过点P 作PM ⊥AB 于M ,由题意可知,∠A =64°,∠B =45°,P A =120.在Rt △APM 中PM =P A ·sin ∠A =P A ·sin64°≈108,AM =P A ·cos ∠A =P A ·cos64°≈52.8. 在Rt△BPM 中∵∠B=45°∴BM =PM ≈108,PM ≈153 ∴BA =BM +AM ≈108+52.8≈161答: BP 长约为153海里,BA 长约为161海里.23.(2017天津)(本小题10分)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元. 设在同一家复印店一次复印文件的页数为x (x 为非负整数).(Ⅰ)根据题意,填写下表:(Ⅱ)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式;(Ⅲ)当x>70时,顾客在哪家复印店复印花费少?请说明理由. 解:(Ⅰ)根据题意得:(Ⅱ)依题意得:y1与x的函数关系式为:y1=0.1x(x≥0).y2与x的函数关系式为:当0≤x≤20时,y2=0.12x;当x>20时,y2=0.12×20+0.09(x-20)=0.09x+0.6;综上所述,y2与x的函数关系式为:y2=0.12 (020) 0.090.6 (20)x xx x≤≤⎧⎨+>⎩.(Ⅲ)顾客在乙复印店复印花费少.当x>70时,有y1=0.1x,y2=0.09x+0.6∴y1- y2=0.1x-(0.09x+0.6)=0.01x-0.6记y= 0.01x-0.6由0.01>0,y随x的增大而增大,又x=70时,有y=0.1.∴x>70时,有y>0.1,即y>0∴y1>2y∴当x>70时,顾客在乙复印店复印花费少.24.(2017天津)(本小题10分)将一个直角三角形纸片ABO放置在平面直角坐标系中,点A0),点B(0,1),点O(0,0).P是AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.(Ⅰ)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;(Ⅱ)如图②,当P为AB中点时,求A'B的长;(Ⅲ)当∠BP A'=30°时,求点P的坐标(直接写出结果即可).x y x y第24题图②A'BA OA'B A O PP 解:(Ⅰ)∵A (3,0),点B (0,1),∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A'OP ≌△AOP . ∴OA'=OA =3,由A 'B ⊥OB ,得∠A 'BO =90°.在Rt △A 'OB 中,A 'B =22'OA OB -=2,∴点A'21).(Ⅱ) 在Rt △AOB 中,OA 3,OB =1,∴22OA OB +∵当P 为AB 中点,∴AP =BP =1,OP =12AB =1.∴OP =OB =BP ,∴△BOP 是等边三角形∴∠BOP =∠BPO =60°,∴∠OP A =180°-∠BPO =120°.由(Ⅰ)知,△A'OP ≌△AOP ,∴∠OP A'=∠OP A =120°,P'A =P A =1,又OB =P A ’=1,∴四边形OP A ’B 是平行四边形.∴A 'B =OP =1. (Ⅲ)3333(,)22--或2333(,)22- . 25.(2017天津)(本小题10分)已知抛物线y =x 2+bx -3(b 是常数)经过点A (-1,0).(Ⅰ) 求该抛物线的解析式和顶点坐标;(Ⅱ) P (m ,t )为抛物线上的一个动点,P 关于原点的对称点为P '.①当点P '落在该抛物线上时,求m 的值;②当点P '落在第二象限内,P 'A 2取得最小值时,求m 的值.解:(1)∵抛物线y =x 2+bx -3经过点A (-1,0),∴0=1-b -3,解得b =-2.∴抛物线的解析式为y =x 2-2x -3,∵y =x 2-2x -3=(x -1)2-4,∴顶点的坐标为(1,-4).(2)①由点P (m ,t )在抛物线y =x 2-2x -3上,有t =m 2-2m -3.∵P 关于原点的对称点为P ',有P ’(-m ,-t ).∴-t=(-m)2-2(-m)-3,即t =-m 2-2m +3∴m 2-2m -3=-m 2-2m +3.解得m 1=3,m 2=-3②由题意知,P '(-m ,-t )在第二象限,∴-m <0,-t >0,即m >0,t <0.又∵抛物线y =x 2-2x -3的顶点坐标为(1,-4),得-4≤t <0.过点P '作P 'H ⊥x 轴于H ,则H (-m ,0)又A (-1,0),t = m 2-2m -3则P 'H 2=t 2,AH 2= (-m +1)2=m 2-2m +1=t +4当点A 和H 不重合时,在Rt △P ’AH 中,P 'A 2= P 'H 2+AH 2当点A 和H 重合时,AH =0,P 'A 2= P 'H 2,符合上式.∴P 'A 2= P 'H 2+AH 2,即P 'A 2= t 2+t +4(-4≤t ≤0)记y '=t 2+t +4(-4≤t ≤0),则y '=(t +12)2+154, ∴当t =-12时,y '取得最小值.把t=-12代入t=m2-2m-3,得-12=m2-2m-3解得m1m2.由m>0,可知m不符合题意.∴m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年中考数学真题三角函数汇总
1、如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.
(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).
(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)
2、18.(7分)如图,为测量某建筑物的高度AB,在离该建筑物底部24米的点C处,目测建筑物顶端A处,视线与水平线夹角∠ADE为39°,且高CD为1.5米,求建筑物的高度AB.(结果精确到0.1米)(参考数据:sin39°=0.63,cos39°=0.78,
tan39°=0.81)
3、如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).
4、海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在正西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)
5、如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)
(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)
6、如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()
A . 40海里
B . 40海里
C . 80海里
D . 40海里
7、如图,根据图中数据完成填空,再按要求答题:
sin2A1+sin2B1= ;sin2A2+sin2B2= ;sin2A3+sin2B3= .
(1)观察上述等式,猜想:在Rt △ABC 中,∠C=90°,都有sin2A+sin2B= .
(2)如图④,在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,利用三角函数的定义和勾股定理,证明你的猜想.
(3)已知:∠A+∠B=90°,且sinA=
,求sinB .
8、如图某天上午9时,向阳号轮船位于A 处,观测到某港口城市P 位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B 处,这时观测到城市P 位于该船的南偏西36.9°方向,求此时轮船所处位置B 与城市P 的距离?(参考数据:sin36.9°≈
,tan36.9°≈,sin67.5°≈,tan67.5°≈)
(第22题图)
A P C
B 36.9° 67.5°
9、钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.
(参考数据:cos59°≈0.52,sin46°≈0.72)
10、如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为()
A.20海里B.
10海里C.
20海里
D.30海里。

相关文档
最新文档