课题《数学归纳法及其应用》

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:数学归纳法及其应用举例

【教学目标】

知识与技能:

1. 了解由有限多个特殊事例得出的一般结论不一定正确,使学生深入认识归纳法, 理解数学归纳法的原理与实质;

2. 掌握数学归纳法证题的两个步骤;初步会用“数学归纳法”证明简单的与自然数有关的命题(如恒等式等).

3. 培养学生观察、分析、论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历数学归纳法原理的构建过程, 体会类比的数学思想.过程与方法:

1.努力创设和谐融洽的课堂情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.让学生体验知识的构建过程, 体会源于生活的数学思想;

2. 通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生由特殊到一般的思维方式和严格规范的论证意识,并初步掌握论证方法;

3. 让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力.

情感、态度、价值观:

1. 通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神;

2. 让学生通过对数学归纳法原理和本质的理解,感受数学内在美的震撼力,从而使学生喜欢数学,激发学生的学习热情,使学生初步形成做数学的意识和科学精神;

3. 学生通过置疑与探究,培养学生独立的人格与敢于创新的精神;

4. 持续增进师生互信,生生互助,共创教学相长的教与学的氛围和习惯. 【教学重点】

归纳法意义的认识和数学归纳法产生过程的分析,初步理解数学归纳法的原理并能简单应用.

【教学难点】

数学归纳法中递推思想的理解,初步明确用数学归纳法证明命题的两个步骤.

【教学方法】师生互动讨论、共同探究的方法

【教学手段】多媒体辅助课堂教学

【教学过程】

一、创设情境,启动思维

情境一、财主儿子学写字的笑话、“小明弟兄三个,大哥叫大毛……”的脑筋急转弯等;

教师总结:财主的儿子很傻很天真,但他懂一样思想方法,是什么?以上都

是由特殊情况归纳出一般情况的方法---归纳法,这就是今天的课题. 人们通常也会用归纳法思考问题,小孩也会由此总结出什么年龄人该叫爷爷,什么年龄人叫阿姨,叫哥哥或姐姐.

情境二:华罗庚的“摸球实验”

1、这里有一袋球共12个,我们要判断这一袋球是白球,还是黑球,请问怎么判断?

启发回答:

方法一:把它全部倒出来看一看.特点:方法是正确的,但操作上缺乏顺序性.

方法二:一个一个拿,拿一个看一个.

比如结果为:第一个白球,第二个白球,第三个白球,……,第十二个白球,由此得到:这一袋球都是白球.特点:有顺序,有过程.

2、如果想象袋子有足够大容量,球也无限多?要判断这一袋球是白球,还是黑球,上述方法可行吗?

情境三: 回顾等差数列{}n a 通项公式推导过程:

11

213143123(1)n a a a a d

a a d

a a d

a a n d ==+=+=+=+-

设计意图:首先设计情境一,分析情境,自然引出课题----归纳法,谈笑间进入正题.再通过情境二的交流激发学生的兴趣,调动学生学习的积极性.情境三点出两种归纳法的不同特点.通过梳理我们熟悉的一些问题,很自然为本节课主题与重点引出打下伏笔.

二、师生互动,探究问题

承上启下:以上问题的思考和解决,用的都是归纳法.什么是归纳法? 归纳法

特点是什么?上述归纳法有什么不同呢?

学生回答以上问题,得出结论:

1. 归纳法:由一些特殊事例推出一般结论的推理方法. 特点:由特殊→一般;

2. 完全归纳法: 把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法;

3. 不完全归纳法: 根据事物的部分(而不是全部)特例得出一般结论的推理方法.

在生活和生产实际中,归纳法有着广泛的应用.例如气象工作者、水文工作者,地震工作者依据积累的历史资料作气象预测,水文预报,地震预测用的就是归纳法.

4. 引导学生举例:

⑴不完全归纳法实例:如欧拉发现立体图形的欧拉公式:2V E F -+=(V 为顶点数,E 为棱数,F 为面数)

⑵ 完全归纳法实例: 如证明圆周角定理时,分圆心在圆周角内部、外部及一边上三种情况讨论.

设计意图:从生活走向数学,与学生一起回顾以前学过的数学知识,并在这里我安排学生举完全归纳法的实例和不完全归纳法实例,进一步体会归纳意识,同时让学生感受到我们以前的学习中其实早已接触过归纳法,并引导学生积极投入到探寻论证方法过程的氛围中.

三 、借助史料, 引申思辨

问题1: 已知n a =22)55(+-n n (n ∈N ),

(1) 分别求1a ;2a ;3a ;4a .

(2) 由⑴你会有怎样的一个猜想?这个猜想正确吗?

问题2: 费马(Fermat )是17世纪法国著名的数学家,他是解析几何的发明者之一,是对微积分的创立作出贡献最多的人之一,是概率论的创始者之一,他对数论也有许多贡献.他曾认为,当n ∈N 时,122+n

一定都是质数,这是他对n =0,1,2,3,4作了验证后得到的.后来,18世纪伟大的瑞士科学家欧拉(Euler )却证明了1252+=4 294 967 297=6 700 417×641,从而否定了费马的推测.没想到当n =5这一结论便不成立.

教师总结: 有人说,费马为什么不再多算一个数呢?今天我们是无法回答的.但是要告诉同学们,失误的关键不在于多算一个数上!

问题3:41

n

f, 当n∈N时,)

n

=n

)

(2+

+

f是否都为质数?

(n

验证:f(0)=41,f(1)=43,f(2)=47,f(3)=53,f(4)=61,f(5)=71,f(6)=83,f(7)=97,f(8)=113,f(9)=131,f(10)=151,…,f(39)=1 601.但是f(40)=1 681=2

41,是合数.承上启下:这里算了39个数不算少了吧,但还是不行!我们介绍以上两个资料,不是说世界级大师还出错,我们有错就可以原谅,也不是说归纳法不行,不去学了,而是要找出运用归纳法出错的原因,并研究出对策来, 寻求数学证明.

教师设问:,不完全归纳法为什么会出错?如何弥补不足?怎么给出证明呢?

设计意图:在生活引例与已学数学知识的基础上,进一步引导学生看数学史料,能够让学生多方位多角度体会归纳法,感受使用归纳法的普遍性.同时引导学生进行思辨:在数学中运用不完全归纳法常常会得到错误的结论,不管是我们还是数学大师都有可能如此.那么,不完全归纳法价值体现在哪里?不足之处如何去弥补呢?结论正确性怎样给出证明?学生一定会带着许多问题进入下一阶段探究.

四、实例再现,激发兴趣

1、演示多米诺骨牌游戏视频.

师生共同探讨多米诺骨牌全部依次倒下的条件:

⑴第一块要倒下;

⑵当前面一块倒下时,后面一块必须倒下;

当满足这两个条件后,多米诺骨牌全部都倒下.

再举例:再举几则生活事例:推倒自行车, 早操排队对齐等.

2、学生类比多米诺骨牌依顺序倒下的原理,探究出证明有关正整数命题的方法(建立数学模型).

设计意图:布鲁纳的发现学习理论认为,“有指导的发现学习”强调知识发生发展过程.这里通过类比多米诺骨牌过程,让学生发现数学归纳法的雏形,是

相关文档
最新文档