定积分与定积分的近似计算
1 定积分概念
.1 定积分概念定义设函数f(x)在[a,b]上有界,在[a,b]中任意插入若干个分点,把区间[a,b]分成n个小区间,设有常数I,如果对于任意给定的正数ε,总存在一个正数δ,使得对于区间[a,b]的任何分法,不论在中怎样取法,只要,总有成立,则称I是f(x)在区间[a,b]上的定积分,记作。
接下来的问题是:函数f(x)在[a,b]上满足怎样的条件,f(x)在[a,b]上一定可积?以下给出两个充分条件。
定理1设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
如果我们对面积赋以正负号,在x轴上方的图形面积赋以正号,在x轴下方的图形面积赋以负号,则在一般情形下,定积分的几何意义为:它是介于x 轴、函数f(x)的图形及两条直线x = a、x = b之间的各部分面积的代数和。
.2 牛顿-莱步尼兹公式及实例定理如果函数F(x)是连续函数f(x)在区间[a,b]上的一个原函数,则。
(1)证已知函数F(x)是连续函数f(x)的一个原函数,又根据前面的定理知道,积分上限的函数也是f(x)的一个原函数。
于是这两个原函数之差为某个常数(第四章第一节),即。
(2)在上式中令x = a,得。
又由Φ (x)的定义式及上节定积分的补充规定知Φ (a) = 0,因此,C = F(a)。
以F(a)代入(2)式中的C,以代入(2)式中的Φ (x),可得,在上式中令x = b,就得到所要证明的公式(1) 。
由积分性质知,(1)式对a>b的情形同样成立。
为方便起见,以后把F(b) – F(a)记成。
公式(1)叫做牛顿(Newton)-莱步尼兹(Leibniz)公式,它给定积分提供了一种有效而简便的计算方法,也称为微积分基本公式。
例1 计算定积分。
解。
例2计算。
解。
例3计算。
解。
例4计算正弦曲线y = sinx在[0, ]上与x轴所围成的平面图形的面积。
定积分左右端点公式
定积分左右端点公式1.定积分定积分是微积分中的一个重要概念,用来计算曲线所围面积的大小。
给定一个函数f(x),在一个区间[a,b]上计算f(x)与x轴之间的面积。
2.积分区间积分区间是指定积分的范围,包括一个起点和一个终点。
在左右端点公式中,积分区间的起点为a,终点为b。
3.近似计算定积分的计算通常是很复杂的,我们可以通过近似计算的方法来得到一个近似值。
左右端点公式就是一种常用的近似计算方法。
具体来说,将积分区间[a,b]等分为n个子区间,每个子区间的长度为Δx=(b-a)/n。
在左右端点公式中,可以选择使用子区间的左端点或者右端点的函数值来计算定积分的近似值。
1.左端点公式使用子区间的左端点的函数值来计算定积分的方法叫做左端点公式。
在积分区间的每个子区间的左端点处,取函数的值作为近似计算定积分的高度。
然后将所有子区间的面积相加,即可得到定积分的近似值。
定积分的左端点公式可以表示为:∫(a to b)f(x)dx ≈ Δx * (f(x0) + f(x1) + ... + f(xn-1))其中:-Δx=(b-a)/n是每个子区间的长度- f(x0), f(x1), ..., f(xn-1) 是每个子区间的左端点处的函数值使用子区间的右端点的函数值来计算定积分的方法叫做右端点公式。
在积分区间的每个子区间的右端点处,取函数的值作为近似计算定积分的高度。
然后将所有子区间的面积相加,即可得到定积分的近似值。
定积分的右端点公式可以表示为:∫(a to b)f(x)dx ≈ Δx * (f(x1) + f(x2) + ... + f(xn))其中:-Δx=(b-a)/n是每个子区间的长度- f(x1), f(x2), ..., f(xn) 是每个子区间的右端点处的函数值-函数f(x)在积分区间[a,b]上是连续的-子区间的数量n趋于无穷大,即Δx趋于0需要注意的是,定积分左右端点公式只是近似计算定积分的方法之一,计算得到的值只是定积分的近似值,并不是准确值。
定积分黎曼定理
定积分黎曼定理定积分黎曼定理(LebesgueIntegralTheorem),简称为黎曼定理,是20世纪初发现的重要数学定理。
由瑞士数学家黎曼发现,它确定了极限积分和定积分之间的关系,标志着计算数学的起源。
黎曼定理是指定积分可以用极限积分来代替,即定积分的积分范围是无穷多的。
也就是说,在定积分中,当积分范围上的点数量变到无穷多时,可以用极限积分来代替定积分。
这也是传统积分的重要推论,并且表明积分也具有统计意义。
许多现代数学的应用都是建立在黎曼定理的基础之上的,特别是微分几何、拓扑学和数学物理学,都基本可以归结为定积分黎曼定理。
它使得定积分可以用极限积分来替换,从而极大简化了数学分析的不变性,降低计算的复杂度,使用的面更宽。
【定积分的基本概念】定积分是定义在实函数上的积分,也叫定义域积分,是积分理论中重要的概念。
定积分是指积分运算时,函数在指定的区间内定义,其实质是用函数曲线下的面积来表示函数的实际值。
定积分的计算一般分成定积分的确定法与定积分的近似计算法。
定积分确定法是按照函数定义、函数特征,使用函数谱、分类归纳等方法,最终计算出某函数的定积分问题;而定积分的近似计算法是按照特定的积分运算方法,假定积分函数是离散的、有规律的,使用数值近似法,将求解的过程转化为数值运算的过程,从而计算出某函数的定积分问题。
【定积分黎曼定理的重要性】定积分黎曼定理是积分概念的大突破,为计算数学的发展和传统积分统计理论提供了基础。
它使得定积分可以用极限积分来替换,从而简化了数学推导过程,提高了计算效率。
黎曼定理也是微分几何、拓扑学和数学物理学的基础,极大地拓展了科学的发掘和应用领域。
有无数的实例表明,定积分黎曼定理的应用确实十分广泛。
例如,它可以用来证明函数的可微性,也可以用来证明某一函数的导数的可积性,以及证明极限积分和定积分之间的某些关系等。
归结起来,可以说,定积分黎曼定理无疑是科学实践中不可缺少的。
【定积分黎曼定理的计算】根据定积分黎曼定理的定义,定积分的计算一般分为两步:确定积分的范围以及确定积分的函数。
定积分近似计算方法
定积分的近似计算方法摘要 本文主要讨论了一元函数常见的数值积分方法,例如插值型求积公式、龙贝格求积公式、高斯求积公式等近似计算方法,在用这些方法计算定积分时,会产生一些误差,为了减少误差, 可以利用复化求积公式、复化高斯公式等.本文围绕这些方法,系统介绍它们的计算公式以及截断误差,并用例题分析它们产生误差的大小、计算量等.关键词 插值型积分 龙贝格积分 高斯积分 误差分析 近似计算1引言在计算定积分的值()b aI f x dx =⎰时,常常根据微积分学基本定理求出)(x f 的一个原函数)(x F ,再用牛顿-莱布尼茨公式求的积分,()()()baI f x dx F b F a ==-⎰.但在实际应用中,这种方法只限于解决一小部分定积分的求值问题.当函数没有具体表达式,只是一些实验测得数据形成的表格或图形或者是()F x 无法用初等函数表示,例如,2bx ae dx ⎰,2sin ba x dx ⎰等等,这就需要我们用一些近似方法求的积分值.与数值积分一样,把积分区间细分,在每个小区间上,找到简单函数)(x ϕ来近似代替()f x ,且()b a x dx ϕ⎰的值容易求的.这样就把计算复杂的()ba f x dx ⎰转化为求简单的积分值()bax dx ϕ⎰.因此,定积分的近似计算实质上是就是被积函数的近似计算问题.2常见数值方法 2.1牛顿-科茨数值方法牛顿-科茨求积公式是求积节点等距离分布的插值型求积公式.利用插值多项式来构造数值积分公式是最常用、最基本的方法,具体做法是:给定区间[,]a b 上一组节点01...n a x x x b =<<<=,以及节点处函数()(0,1,2,i f x i n =,作()f x 的n 次拉格朗日多项式()()()nn i i i x f x l x ϕ==∑,其中 011011()()()()()()()()()i i n i i i i i i i n x x L x x x x L x x l x x x L x x x x L x x -+-+----=----,将插值公式(1)1()()()()(1)!n n n f f x x x n ξϕω++=++.其中1012()()()()()n n x x x x x x x L x x ω+=----,[,]a b ξ∈,依赖于变量x , 上式积分得(1)1()()()()(1)!n bb bn n aa af f x dx x dx x dx n ξϕω++=++⎰⎰⎰(1)(1)0()()()()(1)!n nb biiin aai f f x l x dx x dx n ξω++==++∑⎰⎰(1)(1)0()()()()(1)!n nbbi i n aai f f x b l x dx x dxn ξω++==++∑⎰⎰若记 (),(0,1,2,bi ia A l x dx i ==⎰….. )n (1)(1)1()[]()(1)!n bn af R f x dxn ξω++=+⎰, (2)则有()()[]nbi i ai f x dx A f x R f ==+∑⎰(3)称式(3)为插值求型公式,其中(0,1,2,i A i =…. )n 与()f x 无关,叫求积系数, i x 为求积节点,[]R f 为求积公式余项,其中求积系数由(1)决定.2.1.1梯形求积公式1梯形公式当插值节点01,x x 分别选取区间端点,a b 时,由式(3)分别求出求积系数10012bb aa x x xb b aA dx dx x x a b ---===--⎰⎰,01102bb aa x x x ab a A dx dx x x b a ---===--⎰⎰.从而的求积公式()[()()]2bab a f x dx f a f b -≈+⎰. (4) 称求积公式(4)为梯形求积公式,简称梯形公式.2梯形公式截断误差: 3*()[](),12b a R f f ξ-''=- *[,]a b ξ∈. (5) 3梯形求积公式的代数精度:1 当()1f x =时,式(5)中 1(1)2bab adx b a x b a -=-=+=-⎰. 精确成立.2.1.2 辛普森求积公式1辛普森求积公式当选取节点为012,,2a bx a x x b +===时,由式(1)求下列求积系数 1200102()()()()2()()6()()2b b a a a b x x b x x x x b a A dx dx a b x x x x a a b +-----===+----⎰⎰,0211002()()()()2()()()3()()22bb aa x x x x x a xb b a A dx dx a b a b x x x x a b -----===++----⎰⎰.0122021()()()()2()()6()()22b b a a a bx a x x x x x b a A dx dx a b a b x x x x a b +-----===++----⎰⎰ .从而求积公式()[()4()()]62bab a a bf x dx f a f f b -+≈++⎰. (6)称式(6)为抛物线积分公式或辛普森积分公式.2抛物线求积公式误差估计定理1.若()f x 在[,]a b 上有四阶连续导数,则抛物线公式(6)的余项为:5(4)**()[](),[,]2880b a R f f a b ξξ--=∈. (7) 3抛物线公式的代数精度为3.易验证,当23()1,,,f x x x x =时,式(6)精确成立,而当4()f x x =时,式(6)不能精确成立.2.1.3 牛顿-科茨公式1牛顿-科茨公式在等距离节点i x a ih =+下,其中(0,1,2b ah i n-==…. )n .作为变量替换x a th =+,那么由求积公式(1),得系数:10(1)(1)(1)()!(1)(1)!ni n t t t i t i t n A h dt i n ---+---==--⎰10(1)(1)...(1)(1)...()(0,1,2,...)!(1)!n nb a t t t i t i t n dt i n n i n -----+---=-⎰ (8)则 ()()n i i A b a C =- (9) 于是差值求积公式为:()0()()()[]nbn i i ai f x dx b a C f x R f ==-+∑⎰(10)称公式(10)为牛顿-科茨求积公式,其中()n iC 称为科茨系数.显然,科茨系数与被积函数()f x 及积分区间[,]a b 无关,它指依赖于n ,且为多项式积分.因此,只要给出n ,就能看出i A ,并写出相应地牛顿-科茨公式.2牛顿-科茨公式的截断误差与代数精度.当1n =与2n =情况分析牛顿-科茨公式的截断误差为(1)()[]()()()(1)!n b b bn aaaf R f f x dx x dx x dxn ξϕω+=-=+⎰⎰⎰牛顿-科茨公式的截断误差还可以写成(2)*1()[]()((2)!n bn a f R f x dx n n ξω++=+⎰为偶数)(1)*1()[]()(1)!n bn a f R f x dx n ξω++=+⎰ (n 为奇数) (11) 其中*[,]a b ξ∈,且不依赖于x ,101()()()...()n n x x x x x x x ω+=---,对()f x 为任何并不超过n 次多项式,均有(1)()0n fx +≡,因而[]0R f ≡,即0()()nbi i ai f x dx A f x ==∑⎰精确成立,也就是说,牛顿-科茨公式的代数精度至少为n ,牛顿-科茨公式在n 为偶数时,至少具有1n +次代数精度,在n 为奇数情况时,至少具有n 次代数精度.2.1.4复化梯形求积公式将区间[,]a b 等分,节点为i x a ih =+ (步长b ah n-=),0,1,2...,i n =)在每个小区间1[,]i i x x -上采用梯形公式(4)得11111()()[(()()]2ii nnbx i i i i ax i i x x f x dx f x dx f x f x ---==-=≈+=∑∑⎰⎰11[()()]2ni i i hf x f x +=+=∑11[()2()()]2n i n i hf a f x f b T -=++=∑ (12)称式(12)为复化梯形公式. 复化梯形公式余项为()2()()()12i n b a R f h f η-''=-(13) 2.1.5复化辛普森求积公式在每个小区间],[1+i i x x 上,辛普森公式(6)得11102()[()4()()]6n bi i ai i hf x dx f x f x f x -++==++∑⎰(14)111012[()4()2((6)]6n n i i i i hf a f x f x f --+===+++∑∑记 )]()(2)(4)([6111021b f x f x f a f hS n i i n i i n +++=∑∑-=-=+ (15)式中,21+i x为],[1+i i x x 的中点,即h x x i i 2121+=+.式(15)称为复化辛普森公式,其余项为∑-=-=-=10)4(4)()2(180)()(n i i n n f h h S f I f R η, 1(,).i i i x x η+∈故 ),(),()2(180)(R )4(4b a f h a b f n ∈--=ηη (16) 为复化辛普森的截断误差. 2.1.6复化科茨求积公式将区间[,]a b n 等分, 4n m =,m 为正整数,在每个子区间444[,]k k x x -上用科茨求积公式得到复化求积公式:412()[7()7()32()45mbk ak hf x dx f a f b f x -≈++∑⎰14241411112()32()14()mmm k k k N k k k f xf x f x C ---===+++=∑∑∑ (17)其中 4b a b a h n m--==, k x a kh =+ 其截断误差为6(6)2()[,](),()945n b a R f C h f a b ηη-=-<. 2.1.7 变步长复化求积方法复化求积公式虽然计算简单,也达到了提高精度的目的,但为了满足精度要求必须顾及误差,利用误差公式往往很困难,因为误差表达式中含有未知函数的导数,而估计各阶导数的最大值不太容易.我们可以采取把积分的区间[,]a b 细分的办法,在计算积分时将步长逐步折半,利用前后两次结果进行误差估计,如此继续,直到相邻两次结果相差不大,取最小的步长算出的结果为积分值,这种方法称为变步长积分法.以复化梯形公式为例,把区间[,]a b 分成n 等分,设复化梯形公式的近似值为n T ,原积分值为I ,由复化梯形公式误差公式(14)知:2"11()()()n b a b a I T f a b N N ηη--=-<<再把区间[,]a b 分成2n 等分,得近似值2n T ,则2222()()()122k b a b a I T f a b nηη--''=-<< 假定()f x ''在[,]a b 上变化不大,既有12()()f f ηη''''≈. 由上式得 .24kkI T I T -≈-于是 222211()()341n n n n n n I T T T T T T ≈+-=+-- (18) 式(18)表明若用2n T 作为I 的近似值,其截断误差约为2()3n n T T - (19)2.2 龙贝格求积公式龙贝格积分法的基本思想是采用复化梯形求积方法不断折半步长过程中,在积分结果中加入时候误差估计值进行补偿,使积分计算的收敛性加速,就可以加工出,,,...n n n S C R 精度较高的积分结果.由式(19), 2n T 的误差大致为23n nT T -,因此,可用这个误差值作为2n T 的一种补偿,加到2n T 上,则可得到积分准确值I ,比2n T 的更好近似值~T .222141()333n n n n nT T T T T T =+-=- 2221(2)21n n T T =-- (20)式(20)左端1n =时 记122121141()333S T T T T T =+-=- 112()()332a b T b a f +=+- [()4()()]62b a a b f a f f b -+=++恰好为[,]a b 上应用辛普生公式(16)的结果.在每个小区间应用辛普生公式:11[()2()()]2n n k k hT f a f x f b -==++∑121()112[()2()()2()]4n n n k k k k hT f a f x f b f x --===+++∑∑代入式(20)的左端得11111[()2()()2()32n nk k k k h f a f x f b f x -==+++--∑∑ 11[()2()()]2n k k h f a f x f b -++∑11111[()4()2()()]62n n k k k k f a f x f x f b -===+-++∑∑n S =从而复化辛普森公式与复化梯形公式公式有以下关系式2441n nn T T S -=- (21)类似也可以推证,在辛普森序列基础上,利用以下关系式22242161151541n n n n n S S C S S -=-=- (22)可以造出收敛速度更快的科茨序列12,...,...n C C C 将此推行下去,在科茨序列基础上,通过243431n nn C C R -=- (23)构造出收敛速度比科茨序列更快的龙贝格序列12,,......n R R R .以上这种通过逐步构造龙贝格序列的积分近似值法就称为龙贝格积分法.2.3高斯求积公式由定理()()()baf x F b F a =-⎰知,插值型求积公式的代数精度与求积节点的个数有关,具有1n +个节点的插值型求积公式至少具有n 次代数精度.不仅如此,代数精度与节点的选取有关,在构造牛顿-科茨求积公式时,为了简化处理过程,限定用等分节点作为求积节点,这样做,虽然公式确实得到简化,但同时也限制了公式的代数精度. 设积分,1,1=-=b a 本段讨论如下求积公式11()()ni i i f x A f x -==∑⎰(24)对任意积分区间[,]a b ,通过变 22ba t ab x ++-= 可以转换到区间]1,1[-上,这时11()()222bab a b a a bf x dx f t dt ---+=+⎰⎰ 此时,求积公式写为0()()222n bii ai b a a b b af x dx A f t =-+-=+∑⎰若一组节点]1,1[.....,10-∈n x x x 使插值型求积公式(24)具有21n +次代数精度,则称此组节点为高斯点,并称相应求积公式(24)为高斯求积公式.2.3.1 高斯求积公式的余项(2)2()[]()()()(22)!n nbb k k aa k f R f f x dx A f x x dx n ηω+==-=+∑⎰⎰ 其中01()()()...(),[,]n x x x x x x x a b ωη=---∈,且不依赖于x .2.3.2 复化高斯求积公式复化高斯求积公式的基本思想是:将积分区间[,]a b 分成n 个等长小区间1[,](1,...)i i t t i m -=,然后在低阶(2n =)高斯求积公式算出近似值,最后将他们相加的积分()baf t dt ⎰的近似值m G ,即11111111()()[]222ii mmbt i i i i i i at i i t t t t t t f t dt f t dt dt -----==-+-==+∑∑⎰⎰⎰1111[()]222m i h ha i h x dx-==+-+∑⎰101[()]222m n j j mi j h hA f a i h x G ==≈+-+≈∑∑ (25)其中mab h -=,j A 与(0,1,2,...,)j t j n =可由书中表中查出. 3 应用3.1插值型积分的应用例1 用牛顿-科茨公式(1,2,4n =)计算积分12211I x =+⎰. 解 1n =时2210112[]0.4512101()2I -≈+=++2n =时22211112[4]0.463725116101()1()42I -≈++=+++4n =时2222111112[7321232]0.46363311390101()1()1()848I =++++≈++++例2 利用复化梯形求积公式计算积分 12211I dx x =+⎰解 设211)(xx f +=,分点个数为n =1,2,4,5时,求出相应积分n T , 111[(()())],21,2(),.n n i i i i i T f a f b f h b a h n n f x f x a ih ih -=⎧=++⎪⎪-⎪==⎨⎪=⎪⎪=+=⎩∑列表如下:n =1的计算结果见表1-1所列 n h0x 1x 0f1f1T10.50.00.51.00.80.45n =2的表格如下 n h0x1x2x0f1f 2f 2T20.250.000.250.501.000.941765 0.800.460294n =4时计算结果如下表 n h 0x1x2x3x4x40.1250.000.1250.250.3750.500f1f2f3f4f4T1.000.98461540.94117650.8767120.800.462813n = 5时计算结果如下 n h0x1x2x3x4x5x50.10.00.10.20.30.40.50f1f2f3f4f5f5T1.00.9900990.96153850.917430.8620690.80.463114例3 利用复化求积公式120x e dx ⎰,问积分区间为多少等分才能得证有5位有效数字?解 由式(14)知322()[],()()1212n b a b a R f h f n f n n--''''=-=- 有1(),(),2x xf x e f x e b a ''==-=,当]21,0[∈x 时,在12|()|f x e ''≤,所以122|[]|96n eR f n≤ 由于120x e dx ⎰的准确值具有一位整数,所以要使近似值具有5位有效数字,n 必须满足4242211048,102196⨯≥⨯≤-e n n e 或 取对数有 19=n .即将区间]21,0[19等分可满足给定的精度要求.例4 利用复化抛物线求积公式计算 120211I dx x =+⎰. 解 设11)(2+=x x f ,取m =1,2, 3时,公式()⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++=+=====-=+++=+---=-=+∑∑.)12(,2),(),(),(,,242[31221212221111,1222h i a x ih a x x f f x f f b f f a f f m a b n f f f f h S i i i i i i b a m i m i i b a m当m =1,2,3时结果如下表所示 当m =1时m h(0.0)f )25.0(f )5.0(f2S1 0.25 1.0 0.9411765 0.80 0.463725当m =2时mh(0.0)f(0.125)f (0.025)f (0.35)f )5.0(f4S20.125 1.0 0.9846154 0.9411765 0.8767123 0.80 0.463653当m =3时mh(0.0)f(0.08333)f (0.16667)f (0.35)f(0.33333)f (0.14166667)f )5.0(f4S30.83331.00.99310340.9729730.9411760.90.852070.80.4636例5 用复化梯形公式,辛普森公式和科茨公式计算积分10sin xdx x ⎰的近似值.解按精度要求确定]1,0[分多少等分,即确定步长,要使6441021)1(28801|],[|-⨯≤≤M m S f R n ,只需.4642880102M m ⨯≥令10sin ()cos xf x txdt x==⎰, 则1()0sin ()()(cos )k kk k k d xd fx tx dt dx xdx ==⎰1cos().2k t tx kdt π=+⎰dt ktx t x f k k |)2cos(|max )(|max 10)(π+≤⎰11.1k t d t t≤=+⎰)10(≤≤x (4)1max |()| 5.f x ≤所以只要,9.13831288010264=⨯⨯≥-m 取m =4即可, 当4n =时,在每个子区间上用式(25),或(14),或(17),结果.9460829.0,9460833.0,9456911.0888===C S T3.2 龙贝格积分公式应用例6 用龙贝格算法计算积分1241I dx x=+⎰的近似值,要求误差小于510-. 解 .3,0,14)(2==+=b a x x f 步骤如下:2)1(,4)0()1(==f f 得.3)]1()0([211=+=f f T )2(计算,1.3)]21([21,516)21(12=+==f T T f 由此得 301333334121=-=T T S . (3)算出),(43),41(f f 从而,3013118)]43()41([412124=++=f f T T,14157.334242=-=T T S.30142121516121=-=S S C (4)计算),87(),85(),83(),81(f f f f 从而得到:13899.3)]87()85()83()81([812148=++++=f f f f T T ,,14159.334482=-=T T S,14059.31516242=-=S S C .1458.36364121=-=C C R(5)再计算),1615(),1613(),1611(),169(),167(),165(),163(),161(f f f f f f f f从而得到: 14094.316=T30141598=S ,,14159.3,14159.324==R C 51210||-≤-R R , 所以12043.14159.1dx x ≈+⎰3.3高斯求积公式的应用例7 用两点复化高斯求积公式计算10,x I e dx =⎰要求允许误差.106-=ε解 在本算法中取21=+n 时,,110==A A 其中;,)(mab h e x f x -== =++--=∑=)22(2201j jj b a x a b f A a b G.87189637800.1][21)32121()32121(=++-eem =2时, h =21, ]4121)21([4120202j i j j x i f A G +⨯-=∑∑==.57182571650.1)(41341333413341333413=+++=++--eeee m =3时, h =31. .37182769352.1]631)21([6130203=+⨯-=∑∑==j i j j x i f A G .101027.71||||56323--<⨯≈+-G G G3.4 几种方法的比较分析例8 计算积分211ln 2dx x =⎰,精确到0.001.(1)利用矩形公式计算, 因为对于x x f 1)(=,有320()2f x x''<=<(如果1<x <2),所以按照公式0)2(S =+-dx b a x ba . 0<n R <2112n . 如果取n =10,则我们公式的余项的余数得31010.84101200R -<<⨯,我们还必须加进由于在计算函数值实行四舍五入所产生的误差的界限相差于0.16⨯310-,为了这个目的只要计算1x的值到四位小数精确到0.00005就够了.我们有1232527292132152172192 1.051.151.251.351.551.651.751.851.95x x x x x x x x x =========5128.05405.05714.06061.06897.07407.08.08696.09524.02192172152132927252321=========y y y y y y y y y 和6.928469284.0109284.6=(2) 按照梯形公式作同样的计算,在这种情况下,作公式 210,||6n n R R n<<在这儿也试一试取n =10,虽然此时仅可以证3107.16001||-⨯<<n R ,纵坐标是9.18.17.16.15.14.13.12.11.1987654321=========x x x x x x x x x 5263.05556.05882.06250.06667.07143.07692.08333.09091.0987654321=========y y y y y y y y y和1877.669377.01877.621500101=+)( (3) 用辛普森公式做同样的计算作公式 .0))(()2(180)()4(45<≤≤⨯--=n n R b a f n a b R ξξ 并且n =5时有55104.1||-⨯<R .实行计算到五位数字,精确到0.0000058.16.14.12.14321====x x x x 45636.555556.062500.071429.083333.04321和====y y y y 9.17.15.13.11.12927252321=====x x x x x83820.1352632.058824.066667.076923.090909.029********和=====y y y y y.20.150==x x 50000.150000.060000.150和==y y6931525.083820.345636.550000.1301=++)(. 由此可见,用辛普森公式计算得到的值误差最小,计算量相对一般;而用矩形公式计算得到的值误差较大,计算量也比较大;用梯形公式计算的值误差比用矩形公式得到的值要误差小,计算量也是如此.所以我们计算定积分时用辛普森公式往往得到的值误差小,而对没有要求误差大小的,则可以选择辛普森或者是梯形公式,因为这两种方法计算量相对较小.结 束 语本文只讨论了一些一维数值积分方法及其它们的应用,误差分析等有关内容.其中最常用的方法是插值型积分以及复化方法、龙贝格积分方法和高斯积分方法,并讨论了相关求积方法的代数精度和误差分析,并给出了一些例题,分析各种方法的近似值,得出误差分析最小的近似方法.由于篇幅有限,对于高维数值积分方法本文便不再讨论.参考文献[1] 华东师范大学数学系,数学分析(第一版)[M],北京:高等教育出版社,2001. [2] 李庆阳,关治,白峰杉,数值计算原理(第二版)[M],北京: 清华大学出版社, 2008. [3] 肖筱南,现代数值计算方法(第一版)[M],北京: 北京大学出版社, 1999.[4] 菲赫金格尔茨,微积分学教程(第三版)[M],北京: 高等教育出版社, 2005. [5] 裴礼文,数学分析中的典型问题与方法(第一版)[M] ,北京: 北京大学出版社,2004. [6] 李桂成,计算方法(第三版)[M],北京: 高等教育出版社,2010.[7] Yin Y uezhu ,Yang Zhonglian.Calculating Skillfully the Curve Integral and Surface Integral Type 2 bySymmetry, SCIENCE & TECHNOLOGY INFORMATION ,2008(30)The Approximate Numerical Method of the Definite IntegralAbstract This paper mainly discusses common numerical methods of unary function, such as approximate calculation method of interpolation integral, Lebesgue integral and Gauss integration. With these methods in calculating the integral, it will produce some error. In order to reduce the error, we can use after the formula for product and after the Gauss formula. This paper focus on these methods introducing formula of introduction and truncation errors .In addition they can provide examples to analysis size of the error and computation.Keywords interpolation integral Lebesgue integral Gauss integral error analysis approximate computation。
大专定积分知识点总结
大专定积分知识点总结一、初等函数的不定积分1. 一元函数的不定积分(1)定义:设f(x)是定义在一个区间上的函数,F(x)是它的一个原函数,则在这个区间上有F'(x)=f(x),记为∫f(x)dx=F(x)+C,其中C为任意常数,这个过程称为不定积分,或者原函数的求法。
(2)基本积分公式:① ∫kdx=kx+C② ∫xⁿdx=x^(n+1)/(n+1)+C,n≠-1③ ∫dx=x+C④ ∫(1/x)dx=ln|x|+C⑤ ∫e^xdx=e^x+C⑥ ∫aˣdx=aˣ/ln(a)+C(3)分部积分法:2. 函数的定积分(1)定义:设f(x)是定义在[a,b]上的函数,P:{a=x₀<x₁<...<xₙ=b}是[a,b]的一个分划,则δxᵢ=xᵢ-xᵢ₋₁, ξᵢ∈[xᵢ-₁,xᵢ],S(P,f)=Σf(ξᵢ)δxᵢ称为f(x)在[a,b]上P的积分和。
(2)引入定义:如果有两个数I*,I使得|S(P,f)-I|<ε对任意的分划P均成立,即对任意的ε>0,总存在一个正数δ,对任意的分划P的细分P',当δ(P')<δ时,有|S(P',f)-I|<ε,则称函数f(x)在[a,b]上可积,且I是f(x)在[a,b]上的定积分,记作∫f(x)dx。
(3)定积分的性质:① ∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx② ∫(kf(x))dx=k∫f(x)dx③ 若f(x)≤g(x),则∫f(x)dx≤∫g(x)dx3. 定积分的计算(1)牛顿-莱布尼兹公式:设F(x)是f(x)在[a,b]上的一个原函数,则∫[a,b]f(x)dx=F(b)-F(a)(2)变上限积分:设f(x)在区间[a,b]上连续,则Ψ(x)=∫[a,x]f(t)dt是F(x)的一个原函数,即Ψ'(x)=f(x)。
(3)定积分的几何意义:设f(x)在[a,b]上连续,则∫[a,b]f(x)dx表示曲线y=f(x),直线x=a,x=b和y轴所围成的平面图形的面积。
定积分的概念与性质
用直线
将曲边梯形分成 n 个小曲边梯形;
2) 常代变.
在第i 个窄曲边梯形上任取
作以
为底 ,
为高的小矩形,
并以此小
矩形面积近似代替相应
窄曲边梯形面积
得
3) 近似和.
4) 取极限.
令
则曲边梯形面积
2. 变速直线运动的路程
设某物体作直线运动,
已知速度
求在运动时间内物体所经过的路程 s.
解决步骤: 1) 大化小.
定积分
换元积分法 分部积分法
一、定积分的换元法 二、定积分的分部积分法
一、定积分的换元法
定理1. 设函数
单值函数
满足:
1)
2) 在
上
则
证: 所证等式两边被积函数都连续, 且它们的原函数也存在 .
则
是
的原函数 ,
因此积分都存在 , 因此有
n 个小段
过的路程为
2) 常代变.
且
将它分成 在每个小段上物体经
得
3) 近似和.
4) 取极限 .
上述两个问题的共性:
• 解决问题的方法步骤相同 :
“大化小 , 常代变 , 近似和 , 取极限 ”
• 所求量极限结构式相同:
特殊乘积和式的极限
二、定积分定义 (P225 )
任一种分法 任取
总趋于确定的极限 I , 上的定积分,
可积的充分条件:
定理1. 定理2.
例1. 利用定义计算定积分 解: 将 [0,1] n 等分, 分点为
取
且只有有限个间断点
(证明略)
注 注. 当n 较大时, 此值可作为
的近似值
注
例2. 用定积分表示下列极限:
第一节定积分的概念和性质
cos
1 n
2 n
cos
2 n
n
n
1
cos
n
n
1
cos1.
解
原极限
lim
n
n i 1
i n
cos
i n
1 n
易见,若取
xi
i n
,
O
1 n
2 n
...
i n
...
n 1 n
1
x
则
xi
1 n
,
i
i n
[
xi
1
,
xi
],
n
原极限
lim
n
i
i 1
cos i xi
由此可见,被积函数应取为 f ( x) x cos x,
例2 利用定积分表示以下极限.
lim
n
n
1 n
cos
1 n
2 n
cos
2 n
n
n
1
cos
n
n
1
cos1.
n
解
原极限
lim
n
i
i 1
cos i xi
i
i n
(i 1, 2,, n)
故
1 0
x 2dx
lim
n
1 n3
(12
22
Hale Waihona Puke 32 n2 )
定积分的近似计算之矩形法
知识文库 第14期189定积分的近似计算之矩形法李 喆一、新课导入上节课我们学习了定积分的定义,由定积分的定义可知,通过求特定和式的极限,可以计算定积分,然而在许多实际应用中,被积函数没有解析表达式,仅仅是一组离散采样值,这时只能利用近似方法计算定积分的近似值,计算定积分的近似值方法非常多,本节课学习其中最基础的一种方法,矩形法。
二、引例首先看一个具体的例子,汽车做直线运动,用84s 的时间从起点到终点,每隔6s 用雷达测速仪测速度(见下表), 求起点到终点的距离。
it iv分析:汽车从起点到终点的运动过程分为14个小时间段,每个时间段都是6s, 总距离为这14个小时间段所走过的距离之和。
在每个小时间段,汽车做变速直线运动,仅知道左端点和右端点的瞬时速度,方案一:用每个时间段左端点的速度近似这个小时间段的平均速度,左端点速度乘以小时间段的长度近似代替该小时间段汽车所走过的距离,求和累加,从而得到总距离的近似值。
方案二:用每个小时间段右端点的速度近似这个小时间段的平均速度,右端点速度*小时间段的长度,近似代替该小时间段汽车所走过的距离,求和累加,得到总距离的近似值。
借助于这种方法,来解决连续量的定积分的近似计算问题。
三、知识点回顾回顾定积分的定义,由定积分的定义给出定积分的近似计算公式,1()()nbi i ai f x dx f x ξ=≈∆∑⎰问题[a, b]如何划分,i ξ如何选取?四、讲授新课1、左矩形法和右矩形法通常将区间[a, b]n 等分, h 为每个小区间的长度, 取1i i x ξ-= ,得出定积分近似计算的左矩形法11()()nbi ai f x dx h f x -=≈∑⎰。
取i i x ξ= ,得出定积分近似计算的左矩形法1()()nbi ai f x dx h f x =≈∑⎰。
几何上,左矩形法和右矩形法是分别用这样的红色小矩形的面积近似代替第i 个小曲边梯形的面积,整体上用台阶形的面积作为曲边梯形面积的近似值。
第32讲 定积分的分部积分法与近似计算
1 2
1
又 f x dx e C ,所以 f x e
x2
' 2 xe
x2
x2
,
再令 u1 x, v1 ' f ' x
2 0
2
I 1 2 sin xdx 1
0
续 当 n 2k 1 时,
n 1 n 3 4 2 In I1 n n2 5 3 n 1 n 3 4 2 n n2 5 3
当n 2k 时, n 1 n 3 3 1 In I0 n n2 4 2
n 1 n 3 3 1 n n2 4 2 2
令x
2
t 可得第二式显然也成立。
e 例4 设 f x 的一个原函数是
2
x2
,求 x 2 f " x dx
0
1
解 令 u x , v' f " x , 则 u ' 2 x, v f ' x
其误差分别为:
b a 2
2n
y ' ,
b a 3
12n 2
y" ,
b a 5
180n 4
y 4
a b
小结:
全面理解分部积分公式
熟练使用分部积分公式求积分
了解定积分的近似计算方法
作业:第P306Fra bibliotek习题5-5
4e 2e 2e
实验二:定积分的近似计算
实验二:定积分的近似计算实验目标:1、 熟悉MATLAB 的程序设计方法;2、 熟悉MATLAB 下命令文件和函数文件的建立和使用;3、 学习定积分的三种近似计算方法:矩形法、梯形法、辛普生法;4、 理解数值计算的误差分析。
问题背景:求定积分的近似值的数值方法就是用被积函数的有限个抽样值的离散或加权平均近似值代替定积分的值。
求某函数的定积分时,在多数情况下,被积函数的原函数很难用初等函数表达出来, 因此能够借助牛顿-莱布尼兹公式计算定积分的机会是不多的。
另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解。
由于以上原因,数值积分的理论与方法一直是计算数学研究的基本课题。
定积分的近似解的简单方法包括:矩形公式、梯形公式和辛普生公式。
根据定积分的定义,每个积分和都可以看做是定积分的近似值,即⎰∑=∆=ba ni i i x f dx x f 1)()(ζ在几何意义上,这是用一系列小块区域的面积近似小曲边梯形的面积。
当然,只有当积分区间被分割的很细时,计算结果才具有一定的精确度。
● 矩形法:设积分区间被等分为若干份,第i 份是由][1+i i x x 表示,则该小块区域面积为:)(*1i i i x f x x -+ 或)(*11++-i i i x f x x 或)(*211++-i i i x f x x● 梯形法:设积分区间被等分为若干份,第i 份是由][1+i i x x 表示,取)(i x f 和)(1+i x f 的加权平均值作为平均高度)(i f ζ,则该小块区域面积为:2)()(*11+++-i i i i x f x f x x ● 辛普生法:设积分区间被等分为若干份,第i 份是由][1+i i x x 表示,中点为21+i x ,取函数)(x f 在i x ,1+i x ,21+i x 这是三点的函数值的加权平均值作为平均高度的近似值,则该小块区域面积为:6)()(4)(*1211+++++-i i i i i x f x f x f x x实验内容:1、 试推导定积分的三种近似计算方法的迭代公式(矩形法、梯形法、辛普生法)。
定积分近似计算方法
定积分的近似计算方法摘要 本文主要讨论了一元函数常见的数值积分方法,例如插值型求积公式、龙贝格求积公式、高斯求积公式等近似计算方法,在用这些方法计算定积分时,会产生一些误差,为了减少误差, 可以利用复化求积公式、复化高斯公式等.本文围绕这些方法,系统介绍它们的计算公式以及截断误差,并用例题分析它们产生误差的大小、计算量等.关键词 插值型积分 龙贝格积分 高斯积分 误差分析 近似计算1引言在计算定积分的值()b aI f x dx =⎰时,常常根据微积分学基本定理求出)(x f 的一个原函数)(x F ,再用牛顿-莱布尼茨公式求的积分,()()()baI f x dx F b F a ==-⎰.但在实际应用中,这种方法只限于解决一小部分定积分的求值问题.当函数没有具体表达式,只是一些实验测得数据形成的表格或图形或者是()F x 无法用初等函数表示,例如,2bx ae dx ⎰,2sin ba x dx ⎰等等,这就需要我们用一些近似方法求的积分值.与数值积分一样,把积分区间细分,在每个小区间上,找到简单函数)(x ϕ来近似代替()f x ,且()bax dx ϕ⎰的值容易求的.这样就把计算复杂的()baf x dx ⎰转化为求简单的积分值()bax dx ϕ⎰.因此,定积分的近似计算实质上是就是被积函数的近似计算问题.2常见数值方法 2.1牛顿-科茨数值方法牛顿-科茨求积公式是求积节点等距离分布的插值型求积公式.利用插值多项式来构造数值积分公式是最常用、最基本的方法,具体做法是:给定区间[,]a b 上一组节点01...n a x x x b =<<<=,以及节点处函数()(0,1,2,i f x i n =,作()f x 的n 次拉格朗日多项式()()()nn i i i x f x l x ϕ==∑,其中 011011()()()()()()()()()i i n i i i i i i i n x x L x x x x L x x l x x x L x x x x L x x -+-+----=----,将插值公式(1)1()()()()(1)!n n n f f x x x n ξϕω++=++. 其中 1012()()()()()n n x xx x xx x L x x ω+=----,[,]a b ξ∈,依赖于变量x , 上式积分得(1)1()()()()(1)!n bb bn n aa af f x dx x dx x dx n ξϕω++=++⎰⎰⎰(1)(1)0()()()()(1)!n nb biiin aai f f x l x dx x dx n ξω++==++∑⎰⎰(1)(1)0()()()()(1)!n nb bi i n aai f f x b l x dx x dxn ξω++==++∑⎰⎰若记 (),(0,1,2,bi ia A l x dx i ==⎰….. )n (1)(1)1()[]()(1)!n bn af R f x dxn ξω++=+⎰, (2)则有()()[]nbi i ai f x dx A f x R f ==+∑⎰(3)称式(3)为插值求型公式,其中(0,1,2,i A i =…. )n 与()f x 无关,叫求积系数, i x 为求积节点,[]R f 为求积公式余项,其中求积系数由(1)决定.2.1.1梯形求积公式1梯形公式当插值节点01,x x 分别选取区间端点,a b 时,由式(3)分别求出求积系数10012bb aa x x xb b aA dx dx x x a b ---===--⎰⎰,01102bb aa x x x ab a A dx dx x x b a ---===--⎰⎰.从而的求积公式()[()()]2bab af x dx f a f b -≈+⎰. (4) 称求积公式(4)为梯形求积公式,简称梯形公式.2梯形公式截断误差: 3*()[](),12b a R f f ξ-''=- *[,]a b ξ∈. (5) 3梯形求积公式的代数精度:1 当()1f x =时,式(5)中 1(1)2bab adx b a x b a -=-=+=-⎰. 精确成立.2.1.2 辛普森求积公式1辛普森求积公式当选取节点为012,,2a bx a x x b +===时,由式(1)求下列求积系数 1200102()()()()2()()6()()2b b a a a b x x b x x x x b a A dx dx a b x x x x a a b +-----===+----⎰⎰,0211002()()()()2()()()3()()22bb aa x x x x x a xb b a A dx dx a b a b x x x x a b -----===++----⎰⎰.0122021()()()()2()()6()()22b b a a a bx a x x x x x b a A dx dx a b a b x x x x a b +-----===++----⎰⎰ .从而求积公式()[()4()()]62bab a a bf x dx f a f f b -+≈++⎰. (6)称式(6)为抛物线积分公式或辛普森积分公式.2抛物线求积公式误差估计定理1.若()f x 在[,]a b 上有四阶连续导数,则抛物线公式(6)的余项为:5(4)**()[](),[,]2880b a R f f a b ξξ--=∈. (7) 3抛物线公式的代数精度为3.易验证,当23()1,,,f x x x x =时,式(6)精确成立,而当4()f x x =时,式(6)不能精确成立.2.1.3 牛顿-科茨公式1牛顿-科茨公式在等距离节点i x a ih =+下,其中(0,1,2b ah i n-==…. )n .作为变量替换x a th =+,那么由求积公式(1),得系数:10(1)(1)(1)()!(1)(1)!ni n t t t i t i t n A h dt i n ---+---==--⎰10(1)(1)...(1)(1)...()(0,1,2,...)!(1)!n nb a t t t i t i t n dt i n n i n -----+---=-⎰ (8)则 ()()n i iA b a C =- (9)于是差值求积公式为:()0()()()[]nbn i i ai f x dx b a C f x R f ==-+∑⎰(10)称公式(10)为牛顿-科茨求积公式,其中()n iC 称为科茨系数.显然,科茨系数与被积函数()f x 及积分区间[,]a b 无关,它指依赖于n ,且为多项式积分.因此,只要给出n ,就能看出i A ,并写出相应地牛顿-科茨公式.2牛顿-科茨公式的截断误差与代数精度.当1n =与2n =情况分析牛顿-科茨公式的截断误差为(1)()[]()()()(1)!n b b bn aaaf R f f x dx x dx x dxn ξϕω+=-=+⎰⎰⎰牛顿-科茨公式的截断误差还可以写成(2)*1()[]()((2)!n bn a f R f x dx n n ξω++=+⎰为偶数)(1)*1()[]()(1)!n bn af R f x dx n ξω++=+⎰ (n 为奇数) (11) 其中*[,]a b ξ∈,且不依赖于x ,101()()()...()n n x x x x x x x ω+=---,对()f x 为任何并不超过n 次多项式,均有(1)()0n fx +≡,因而[]0R f ≡,即0()()nbi i ai f x dx A f x ==∑⎰精确成立,也就是说,牛顿-科茨公式的代数精度至少为n ,牛顿-科茨公式在n 为偶数时,至少具有1n +次代数精度,在n 为奇数情况时,至少具有n 次代数精度.2.1.4复化梯形求积公式将区间[,]a b 等分,节点为i x a ih =+ (步长b ah n-=),0,1,2...,i n =)在每个小区间1[,]i i x x -上采用梯形公式(4)得11111()()[(()()]2ii nnbx i i i i ax i i x x f x dx f x dx f x f x ---==-=≈+=∑∑⎰⎰11[()()]2ni i i hf x f x +=+=∑11[()2()()]2n i n i hf a f x f b T -=++=∑ (12)称式(12)为复化梯形公式. 复化梯形公式余项为()2()()()12i n b a R f h f η-''=-(13) 2.1.5复化辛普森求积公式在每个小区间],[1+i i x x 上,辛普森公式(6)得11102()[()4()()]6n bi i ai i hf x dx f x f x f x -++==++∑⎰(14)111012[()4()2((6)]6n n i i i i hf a f x f x f --+===+++∑∑记 )]()(2)(4)([6111021b f x f x f a f hS n i i n i i n +++=∑∑-=-=+ (15)式中,21+i x为],[1+i i x x 的中点,即h x x i i 2121+=+.式(15)称为复化辛普森公式,其余项为∑-=-=-=10)4(4)()2(180)()(n i i n n f h h S f I f R η, 1(,).i i i x x η+∈ 故 ),(),()2(180)(R )4(4b a f h a b f n ∈--=ηη (16) 为复化辛普森的截断误差. 2.1.6复化科茨求积公式将区间[,]a b n 等分, 4n m =,m 为正整数,在每个子区间444[,]k k x x -上用科茨求积公式得到复化求积公式:412()[7()7()32()45mbk ak hf x dx f a f b f x -≈++∑⎰14241411112()32()14()mmm k k k N k k k f xf x f x C ---===+++=∑∑∑ (17)其中 4b a b ah n m--==, k x a kh =+ 其截断误差为6(6)2()[,](),()945n b a R f C h f a b ηη-=-<. 2.1.7 变步长复化求积方法复化求积公式虽然计算简单,也达到了提高精度的目的,但为了满足精度要求必须顾及误差,利用误差公式往往很困难,因为误差表达式中含有未知函数的导数,而估计各阶导数的最大值不太容易.我们可以采取把积分的区间[,]a b 细分的办法,在计算积分时将步长逐步折半,利用前后两次结果进行误差估计,如此继续,直到相邻两次结果相差不大,取最小的步长算出的结果为积分值,这种方法称为变步长积分法.以复化梯形公式为例,把区间[,]a b 分成n 等分,设复化梯形公式的近似值为n T ,原积分值为I ,由复化梯形公式误差公式(14)知:2"11()()()n b a b a I T f a b N N ηη--=-<<再把区间[,]a b 分成2n 等分,得近似值2n T ,则2222()()()122k b a b a I T f a b nηη--''=-<< 假定()f x ''在[,]a b 上变化不大,既有12()()f f ηη''''≈. 由上式得 .24kkI T I T -≈-于是 222211()()341n n n n n n I T T T T T T ≈+-=+-- (18) 式(18)表明若用2n T 作为I 的近似值,其截断误差约为2()3n n T T - (19)2.2 龙贝格求积公式龙贝格积分法的基本思想是采用复化梯形求积方法不断折半步长过程中,在积分结果中加入时候误差估计值进行补偿,使积分计算的收敛性加速,就可以加工出,,,...n n n S C R 精度较高的积分结果.由式(19), 2n T 的误差大致为23n nT T -,因此,可用这个误差值作为2n T 的一种补偿,加到2n T 上,则可得到积分准确值I ,比2n T 的更好近似值~T .222141()333n n n n nT T T T T T =+-=-2221(2)21n n T T =-- (20)式(20)左端1n =时 记122121141()333S T T T T T =+-=- 112()()332a b T b a f +=+- [()4()()]62b a a b f a f f b -+=++恰好为[,]a b 上应用辛普生公式(16)的结果.在每个小区间应用辛普生公式:11[()2()()]2n n k k hT f a f x f b -==++∑121()112[()2()()2()]4n n n k k k k hT f a f x f b f x --===+++∑∑代入式(20)的左端得11111[()2()()2()32n nk k k k h f a f x f b f x -==+++--∑∑ 11[()2()()]2n k k h f a f x f b -++∑11111[()4()2()()]62n n k k k k f a f x f x f b -===+-++∑∑nS =从而复化辛普森公式与复化梯形公式公式有以下关系式2441n nn T T S -=- (21)类似也可以推证,在辛普森序列基础上,利用以下关系式22242161151541n n n n n S S C S S -=-=- (22)可以造出收敛速度更快的科茨序列12,...,...n C C C 将此推行下去,在科茨序列基础上,通过243431n nn C C R -=- (23)构造出收敛速度比科茨序列更快的龙贝格序列12,,......n R R R .以上这种通过逐步构造龙贝格序列的积分近似值法就称为龙贝格积分法.2.3高斯求积公式由定理()()()baf x F b F a =-⎰知,插值型求积公式的代数精度与求积节点的个数有关,具有1n +个节点的插值型求积公式至少具有n 次代数精度.不仅如此,代数精度与节点的选取有关,在构造牛顿-科茨求积公式时,为了简化处理过程,限定用等分节点作为求积节点,这样做,虽然公式确实得到简化,但同时也限制了公式的代数精度. 设积分,1,1=-=b a 本段讨论如下求积公式11()()ni i i f x A f x -==∑⎰(24)对任意积分区间[,]a b ,通过变 22ba t ab x ++-= 可以转换到区间]1,1[-上,这时11()()222bab a b a a bf x dx f t dt ---+=+⎰⎰ 此时,求积公式写为0()()222n bii ai b a a b b af x dx A f t =-+-=+∑⎰若一组节点]1,1[.....,10-∈n x x x 使插值型求积公式(24)具有21n +次代数精度,则称此组节点为高斯点,并称相应求积公式(24)为高斯求积公式.2.3.1 高斯求积公式的余项(2)2()[]()()()(22)!n nbb k k aa k f R f f x dx A f x x dx n ηω+==-=+∑⎰⎰ 其中 01()()()...(),[,]n x x x x x x x ab ωη=---∈,且不依赖于x .2.3.2 复化高斯求积公式复化高斯求积公式的基本思想是:将积分区间[,]a b 分成n个等长小区间1[,](1,...)i i t t i m -=,然后在低阶(2n =)高斯求积公式算出近似值,最后将他们相加的积分()baf t dt ⎰的近似值m G ,即11111111()()[]222ii mmbt i i i i i i at i i t t t t t t f t dt f t dt dt -----==-+-==+∑∑⎰⎰⎰1111[()]222m i h ha i h x dx-==+-+∑⎰101[()]222m n j j mi j h hA f a i h x G ==≈+-+≈∑∑ (25)其中mab h -=,j A 与(0,1,2,...,)j t j n =可由书中表中查出. 3 应用3.1插值型积分的应用例1 用牛顿-科茨公式(1,2,4n =)计算积分12211I x =+⎰. 解 1n =时2210112[]0.4512101()2I -≈+=++2n =时22211112[4]0.463725116101()1()42I -≈++=+++4n =时2222111112[7321232]0.46363311390101()1()1()848I =++++≈++++例2 利用复化梯形求积公式计算积分 12211I dx x =+⎰解 设211)(xx f +=,分点个数为n =1,2,4,5时,求出相应积分n T , 111[(()())],21,2(),.n n i i i i i T f a f b f h b a h n n f x f x a ih ih -=⎧=++⎪⎪-⎪==⎨⎪=⎪⎪=+=⎩∑列表如下:n =1的计算结果见表1-1所列 n h0x 1x 0f1f1T10.50.00.51.0 0.8 0.45n =2的表格如下 n hx1x2xf1f2f2T20.250.00 0.25 0.50 1.00 0.941765 0.80 0.460294n =4时计算结果如下表 n h 0x1x2x3x4x40.1250.00 0.125 0.25 0.375 0.50f1f2f3f4f4T1.00 0.9846154 0.9411765 0.876712 0.80 0.462813n = 5时计算结果如下 n hx1x2x3x4x5x50.10.0 0.1 0.2 0.3 0.40.5f1f2f3f4f5f5T1.0 0.990099 0.9615385 0.91743 0.862069 0.80.463114例3 利用复化求积公式120x e dx ⎰,问积分区间为多少等分才能得证有5位有效数字?解 由式(14)知322()[],()()1212n b a b a R f h f n f n n--''''=-=- 有1(),(),2x x f x e f x e b a ''==-=,当]21,0[∈x 时,在12|()|f x e ''≤,所以122|[]|96n eR f n≤ 由于120x e dx ⎰的准确值具有一位整数,所以要使近似值具有5位有效数字,n 必须满足4242211048,102196⨯≥⨯≤-e n n e 或 取对数有 19=n .即将区间]21,0[19等分可满足给定的精度要求.例4 利用复化抛物线求积公式计算 120211I dx x =+⎰. 解 设11)(2+=x x f ,取m =1,2, 3时,公式()⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++=+=====-=+++=+---=-=+∑∑.)12(,2),(),(),(,,242[31221212221111,1222h i a x ih a x x f f x f f b f f a f f m a b n f f f f h S i i i i i i b a m i m i i b a m当m =1,2,3时结果如下表所示 当m =1时m h(0.0)f )25.0(f )5.0(f2S1 0.25 1.0 0.9411765 0.80 0.463725当m =2时mh(0.0)f(0.125)f (0.025)f (0.35)f )5.0(f4S20.125 1.0 0.9846154 0.9411765 0.8767123 0.80 0.463653当m =3时mh(0.0)f(0.08333)f (0.16667)f (0.35)f(0.33333)f (0.14166667)f )5.0(f4S30.83331.00.99310340.9729730.9411760.90.852070.80.4636例5 用复化梯形公式,辛普森公式和科茨公式计算积分10sin xdx x ⎰的近似值.解按精度要求确定]1,0[分多少等分,即确定步长,要使6441021)1(28801|],[|-⨯≤≤M m S f R n ,只需.4642880102M m ⨯≥令10sin ()cos xf x txdt x==⎰,则1()0sin ()()(cos )k kk k k d xd fx tx dt dx x dx==⎰ 1cos().2k t tx kdt π=+⎰dt ktx t x f k k |)2cos(|max )(|max 10)(π+≤⎰11.1k t d t t≤=+⎰)10(≤≤x (4)1max |()| 5.f x ≤所以只要,9.13831288010264=⨯⨯≥-m 取m =4即可, 当4n =时,在每个子区间上用式(25),或(14),或(17),结果.9460829.0,9460833.0,9456911.0888===C S T3.2 龙贝格积分公式应用例6 用龙贝格算法计算积分1241I dx x=+⎰的近似值,要求误差小于510-. 解 .3,0,14)(2==+=b a x x f 步骤如下:2)1(,4)0()1(==f f 得.3)]1()0([211=+=f f T )2(计算,1.3)]21([21,516)21(12=+==f T T f 由此得301333334121=-=T T S . (3)算出),(43),41(f f 从而,3013118)]43()41([412124=++=f f T T,14157.334242=-=T T S .30142121516121=-=S S C(4)计算),87(),85(),83(),81(f f f f 从而得到:13899.3)]87()85()83()81([812148=++++=f f f f T T ,,14159.334482=-=T T S ,14059.31516242=-=S S C.1458.36364121=-=C C R (5)再计算),1615(),1613(),1611(),169(),167(),165(),163(),161(f f f f f f f f 从而得到: 14094.316=T30141598=S ,,14159.3,14159.324==R C 51210||-≤-R R , 所以12043.14159.1dx x ≈+⎰3.3高斯求积公式的应用例7 用两点复化高斯求积公式计算10,x I e dx =⎰要求允许误差.106-=ε解 在本算法中取21=+n 时,,110==A A 其中;,)(mab h e x f x-== =++--=∑=)22(2201j jj b a x a b f A a b G.87189637800.1][21)32121()32121(=++-eem =2时, h =21, ]4121)21([4120202j i j j x i f A G +⨯-=∑∑==.57182571650.1)(41341333413341333413=+++=++--eeee m =3时, h =31. .37182769352.1]631)21([6130203=+⨯-=∑∑==j i j j x i f A G.101027.71||||56323--<⨯≈+-G G G3.4 几种方法的比较分析例8 计算积分211ln 2dx x =⎰,精确到0.001.(1)利用矩形公式计算, 因为对于x x f 1)(=,有320()2f x x''<=<(如果1<x <2),所以按照公式0)2(S =+-dx ba xb a . 0<n R <2112n . 如果取n =10,则我们公式的余项的余数得31010.84101200R -<<⨯,我们还必须加进由于在计算函数值实行四舍五入所产生的误差的界限相差于0.16⨯310-,为了这个目的只要计算1x的值到四位小数精确到0.00005就够了.我们有1232527292132152172192 1.051.151.251.351.551.651.751.851.95x x x x x x x x x =========5128.05405.05714.06061.06897.07407.08.08696.09524.02192172152132927252321=========y y y y y y y y y和6.928469284.0109284.6= (2) 按照梯形公式作同样的计算,在这种情况下,作公式 210,||6n n R R n<<在这儿也试一试取n =10,虽然此时仅可以证3107.16001||-⨯<<n R ,纵坐标是9.18.17.16.15.14.13.12.11.1987654321=========x x x x x x x x x 5263.05556.05882.06250.06667.07143.07692.08333.09091.0987654321=========y y y y y y y y y和1877.669377.01877.621500101=+)( (3) 用辛普森公式做同样的计算作公式 .0))(()2(180)()4(45<≤≤⨯--=n n R b a f n a b R ξξ 并且n =5时有55104.1||-⨯<R .实行计算到五位数字,精确到0.0000058.16.14.12.14321====x x x x 45636.555556.062500.071429.083333.04321和====y y y y 9.17.15.13.11.12927252321=====x x x x x83820.1352632.058824.066667.076923.090909.029********和=====y y y y y.20.150==x x 50000.150000.060000.150和==y y6931525.083820.345636.550000.1301=++)(. 由此可见,用辛普森公式计算得到的值误差最小,计算量相对一般;而用矩形公式计算得到的值误差较大,计算量也比较大;用梯形公式计算的值误差比用矩形公式得到的值要误差小,计算量也是如此.所以我们计算定积分时用辛普森公式往往得到的值误差小,而对没有要求误差大小的,则可以选择辛普森或者是梯形公式,因为这两种方法计算量相对较小.结 束 语本文只讨论了一些一维数值积分方法及其它们的应用,误差分析等有关内容.其中最常用的方法是插值型积分以及复化方法、龙贝格积分方法和高斯积分方法,并讨论了相关求积方法的代数精度和误差分析,并给出了一些例题,分析各种方法的近似值,得出误差分析最小的近似方法.由于篇幅有限,对于高维数值积分方法本文便不再讨论.参考文献[1] 华东师范大学数学系,数学分析(第一版)[M],北京:高等教育出版社,2001. [2] 李庆阳,关治,白峰杉,数值计算原理(第二版)[M],北京: 清华大学出版社, 2008. [3] 肖筱南,现代数值计算方法(第一版)[M],北京: 北京大学出版社, 1999.[4] 菲赫金格尔茨,微积分学教程(第三版)[M],北京: 高等教育出版社, 2005. [5] 裴礼文,数学分析中的典型问题与方法(第一版)[M] ,北京: 北京大学出版社,2004. [6] 李桂成,计算方法(第三版)[M],北京: 高等教育出版社,2010.[7] Yin Y uezhu ,Yang Zhonglian.Calculating Skillfully the Curve Integral and Surface Integral Type 2 bySymmetry, SCIENCE & TECHNOLOGY INFORMATION ,2008(30)The Approximate Numerical Method of the Definite IntegralAbstract This paper mainly discusses common numerical methods of unary function, such as approximate calculation method of interpolation integral, Lebesgue integral and Gauss integration. With these methods in calculating the integral, it will produce some error. In order to reduce the error, we can use after the formula for product and after the Gauss formula. This paper focus on these methods introducing formula of introduction and truncation errors .In addition they can provide examples to analysis size of the error and computation.Keywords interpolation integral Lebesgue integral Gauss integral error analysis approximate computation。
综合实验一 定积分的近似计算
a
f ( x )dx ≈ ∑ f ( xi )xi = h ∑ f ( xi )
i =1 i =1
n
中点法:
b
a
f ( x )dx ≈ ∑
i =1
n
n xi 1 + xi xi 1 + xi f( )xi = h ∑ f ( ) 2 2 i =1
矩形法举例
数学实验
例:用不同的矩形法计算下面的定积分 ( 取 n=100 ), 并比较这三种方法的相对误差.
解: a=0, b=1, n=100 ==> h =1/100=0.01, xi = i*h,
dx ≈ h f ( x ) = h 1 左点法:∫0 ∑ i1 ∑ 1 + x 2i1 1 + x2 i =1 i =1
1
1 n
dx ∫0 1 + x 2
1
n
n
(i = 0,1,2,...,100)
dx ≈ h ∑ f ( xi ) ≈ 0.78289399673078 右点法: ∫0 2 1+ x i =1
二重积分的计算
抛物线法计算二重积分: dblquad
数学实验
dblquad(f,a,b,c,d,tol)
∫∫
a
b
ห้องสมุดไป่ตู้
d
c
f ( x, y )dxdy
tol 为计算精度,若不指定,则缺省精度为 10-6 f(x,y) 可以由 inline 定义,或通过一个函数句柄传递 [a,b] 是第一积分变量的积分区间,[c,d] 是第二积分变量 的积分区间 按字母顺序,大写字母排在小写字母的前面
实验二, 实验二,定积分的近似计算
矩形法
高等数学公式汇总(大全)
高等数学公式汇总(大全)导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式:·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
微积分公式大全
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
定积分计算法则范文
定积分计算法则范文一、基本积分法:基本积分法是指通过查表或记忆直接计算出一些常见函数的积分,常见的基本积分公式有如下几个:1. ∫x^n dx = (x^(n+1))/(n+1) + C 其中n不等于-12. ∫(1/x) dx = ln,x, + C3. ∫e^x dx = e^x + C4. ∫a^x dx = (a^x)/lna + C通过这些基本积分公式,可以直接求解出很多简单的定积分。
二、换元积分法:换元积分法是通过变量替换的方式将原积分式转化为另一个形式的积分式,从而使得计算更简单。
具体步骤如下:1. 设 u = g(x),则 du = g'(x) dx2. 将原积分式中的dx用du替代3.将原积分区间中的x用新的变量u表示4.求得新的定积分式,进行计算5.将结果转换回原变量x三、分部积分法:分部积分法是对于乘积的函数进行积分的一种方法,通过反复应用积分公式,将原积分式化为简单的基本积分形式。
具体步骤如下:1. 将原积分式分解为两个函数相乘的形式∫u dv2. 设 u 为一个函数,dv为另一个函数,且du和v可以求导或求积出来3. 根据分部积分公式∫u dv = uv - ∫v du,进行计算4.反复应用分部积分直到得到简单的基本积分形式四、分式积分法:分式积分法是对于有理函数进行积分的一种方法,通过将有理函数拆分为部分分式的形式,然后对每个部分分式进行积分计算。
具体步骤如下:1.对有理函数进行部分分数分解2.对每个部分分式进行积分计算3.简化结果并合并得到最终的积分结果五、定积分中值定理:定积分中值定理是针对连续函数在闭区间上的积分,通过介值定理可以得到存在一个介于区间上下限之间的点,使得该点的函数值等于其在区间上的平均值。
具体表达式如下:∫a^b f(x) dx = f(c) * (b - a),其中a ≤ c ≤ b这个定理可以用于求解一些特殊类型的定积分,例如平均值定理、计算面积和体积等。
定积分的近似计算
第六节 定积分的近似计算1. 分别用梯形法和抛物线法近似计算⎰21x dx (将积分区间十等份) 解 (1)梯形法⎰21x dx ≈412.111.1121(1012+⋯⋯+++-)6938.0≈(2)抛物线法 ⎰21xdx =⎢⎣⎡++-(42113012])8.116.114.112.11(2)9.117.115.113.111.11++++++++6932.0≈ 2. 用抛物线法近似计算dx xx ⎰π0sin 解 当n=2时,dx x x ⎰π0sin ≈12π⎥⎦⎤⎢⎣⎡∙+++πππ22)32222(41≈1.8524. 当n=4时,dx x x ⎰π0sin ≈24π⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++++πππππππππππ322222287sin 7885sin 5883sin 388sin 841 ≈1.8520.当n=6时,dx x x ⎰π0sin ≈⎢⎢⎣⎡⎝⎛+++++⎪⎪⎭⎫ ⎝⎛+∙+++++πππππππππππππππ54332233321211sin 11122234127sin 712125sin 5122212sin 124136≈1.8517.3..图10-27所示为河道某一截面图。
试由测得数据用抛物线法求截面面积。
解 由图可知n=5,b-a=8. ⎰b a x f )(dx ≈()()[]864297531100245*68y y y y y y y y y y y ++++++++++=()()[]85.075.165.185.0255.02.10.230.15.0400154++++++++++ =()2.102.22154+=8.64(m 2)(1)按积分平均⎰-b a t d t f ab )(求这一天的平均气温,其中定积分值由三种近视法分别计算;(2)若按算术平均∑=-1211121i i c 或∑=121121i i c 求得平均气温,那么它们与矩形法积分平均和梯形法积分平均各有什么联系?简述理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六讲 定积分与定积分的近似计算实验目的1.通过本实验加深理解积分理论中分割、近似、求和、取极限的思想方法. 2.学习并掌握用matlab 求不定积分、定积分、二重积分、曲线积分的方法. 3.学习matlab 命令sum 、symsum 与int. 4. 了解定积分近似计算的矩形法、梯形法。
(***) 实验内容1. 学习matlab 命令(1)求和命令sum 调用格式.sum(x),给出向量x 的各个元素的累加和,如果x 是矩阵,则sum(x)是一个元素为x 的每列列和的行向量.例4.1.x=[1,2,3,4,5,6,7,8,9,10];↵ sum(x)↵ ans=55例4.2.x=[1,2,3;4,5,6;7,8,9]↵ x=1 2 3 4 5 6 7 8 9 sum(x)↵ans=12 15 18 (2)求和命令symsum 调用格式.symsum(s,n), 求∑nssymsum(s,k,m,n),求∑=nm k s当x 的元素很有规律,比如为表达式是)(k s 的数列时,可用symsum 求得x 的各项和,即 symsum ),1),((n k s =)()2()1(n s s s +++symsum )()1()(),,),((n s m s m s n m k k s ++++=例4.3.syms k n ↵ symsum(k,1,10)↵ ans=55symsum(k^2,k,1,n)↵ans=1/3*(n+1)^3-1/2*(n+1)^2+1/6*n+1/6 (3)matlab 积分命令int 调用格式 int (函数)(x f ) 计算不定积分⎰dx x f )(int (函数),(y x f ,变量名x ) 计算不定积分⎰dx y x f ),(int (函数b a x f ,),() 计算定积分⎰badxx f )(int (函数),,(y x f 变量名b a x ,,) 计算定积分⎰badxy x f ),(1.计算不定积分 例4.4.计算xdxx ln 2⎰解:输入命令:int(x^2*log(x))可得结果:ans=1/3*x^3*log(x)-1/9*x^3 注意设置符号变量.例4.5.计算下列不定积分: 1.dx x a ⎰-222.⎰++dx x x 31313.⎰xdx x arcsin 2解:首先建立函数向量.syms xsyms a realy=[sqrt(a^2-x^2),(x-1)/(3*x-1)^(1/3),x^2*asin(x)]; 然后对y 积分可得对y 的每个分量积分的结果. int(y,x)↵ans =[1/2*x*(a^2-x^2)^(1/2)+1/2*a^2*asin((1/a^2)^(1/2)*x), -1/3*(3*x-1)^(2/3)+1/15*(3*x-1)^(5/3),1/3*x^3*asin(x)+1/9*x^2*(1-x^2)^(1/2)+2/9*(1-x^2)^(1/2)]3.定积分的概念.定积分是一个和的极限.取xe xf =)(,积分区间为]1,0[,等距划分为20个子区间.x=linspace(0,1,21);选取每个子区间的端点,并计算端点处的函数值. y=exp(x);取区间的左端点乘以区间长度全部加起来. y1=y(1:20);s1=sum(y1)/20 s1=1.6757s1可作为⎰10dx e x 的近似值.若选取右端点:y2=y(2:21);s2=sum(y2)/20 s2=1.7616s2也可以作为⎰10dx e x 的近似值.下面我们画出图象.plot(x,y);hold onfor i=1:20fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i),y(i),0],’b’) end如果选取右端点,则可画出图象. for i=1:20;fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i+1),y(i+1),0],’b’) hold on endplot(x,y,’r’)在上边的语句中,for … end 是循环语句,执行语句体内的命令20次,fill 命令可以填充多边形,在本例中,用的是兰色(blue)填充.从图上看211s dx e s x <<⎰,当分点逐渐增多时,12s s -的值越来越小,读者可试取50个子区间看一看结果怎样.下面按等分区间计算∑∑=∞→=∞→=∆ξni n in ni i n n ex f 111lim)(limsyms k ns=symsum(exp(k/n)/n,k,1,n); limit(s,n,inf) 得结果ans=exp(1)-1 4.计算定积分和广义积分.例4.6.计算⎰10dx e x .解:输入命令:int(exp(x),0,1)得结果ans=exp(1)-1.这与我们上面的运算结果是一致的.例4.7.计算⎰-201dxx解:输入命令:int(abs(x-1),0,2)得结果ans =1.本例用mathematica 软件不能直接求解.例4.8.判别广义积分⎰+∞11dx x p 、⎰+∞∞--πdx e x 2221与⎰-202)1(1dx x 的敛散性,收敛时计算积分值.解:对第一个积分输入命令:syms p real;int(1/x^p,x,1,inf)得结果ans =limit(-1/(p-1)*x^(-p+1)+1/(p-1),x = inf).由结果看出当1<p 时,x^(-p+1)为无穷,当1>p 时,ans=1/(p-1),这与课本例题是一致的. 对第二个积分输入命令:int(1/(2*pi)^(1/2)*exp(-x^2/2),-inf,inf)得结果:ans=7186705221432913/18014398509481984*2^(1/2)*pi^(1/2) 由输出结果看出这两个积分收敛.对后一个积分输入命令:int(1/(1-x)^2,0,2)结果得ans=inf .说明这个积分是无穷大不收敛.例4.9.求积分⎰t dxx x 0sin解:输入命令:int(sin(x)/x,0,t),可得结果sinint(t),通过查帮助(help sinint )可知sinint(t)=⎰t dxxx 0sin,结果相当于没求!实际上matlab 求出的只是形式上的结果,因为这类积分无法用初等函数或其值来表示.尽管如此,我们可以得到该函数的函数值.输入vpa(sinint(0.5))可得sinint(0.5)的值.5.二重积分计算 例4.10.求二次积分⎰⎰+12102x x xydydx解:输入命令:int(int(x*y,y,2*x,x^2+1),x,0,1) 得结果ans=1/12.例4.11.求⎰⎰≤++π12222))(sin(y x dxdyy x解:积分区域用不等式可以表示成2211,11x y x x -≤≤--≤≤-,二重积分可化为二次积分⎰⎰----+π22112211)(sin(x x dyy x dx,输入命令:int(int(sin(pi*(x^2+y^2)),y,-sqrt(1-x^2),sqrt(1-x^2)),x,-1,1) 由输出结果可以看出,结果中仍带有int ,表明matlab 求不出这一积分的值.采用极坐标可化为二次积分⎰⎰ππ2012)sin(drr r da ,输入命令:int(int(r*sin(pi*r^2),r,0,1),a,0,2*pi)可得结果为ans=2.6.曲线积分 例4.12.求曲线积分⎰L xyds ,其中L 为曲线122=+y x 在第一象限内的一段.解:曲线的参数方程是)20(,sin ,cos π≤≤==t t y t x 曲线积分可以化为⎰π⋅20s i n c o s t d tt .输入命令:int(cos(t)*sin(t),0,pi/2) 执行后即可求出曲线积分结果1/2.练习:1.计算下列不定积分.(1)⎰+dxx x 12 (2)⎰+x xdx 2sin 12sin(3)⎰+52x dx (4)⎰+++dx x x x 112(5)⎰-dxe x x 22 (6)⎰dx x x 2arcsin2.计算下列定积分.(1)⎰exdxx 1ln (2)⎰ππ342sin dxxx(3)⎰edxx 1)sin(ln (4)⎰-++11242312sin dx x x x x3.求⎰+tdx x x x 12)ln (ln 1并用diff 对结果求导.4.求摆线)cos 1(),sin (t a y t t a x -=-=的一拱(π≤≤20t )与x 轴所围成的图形的面积.5.计算二重积分(1)⎰⎰≤++122)(y x dxdyy x (2)⎰⎰≤++xy x dxdyy x 22)(226.计算⎰+Ldsyx22L为圆周)0(22>=+aaxyx7.计算⎰++-Ldyyxdxyx)()(2222,其中L为抛物线2xy=上从点(0,0)到点(2,4)的一段弧.。