模式识别习题答案
模式识别试卷及答案
模式识别试卷及答案一、选择题(每题5分,共30分)1. 以下哪一项不是模式识别的主要任务?A. 分类B. 回归C. 聚类D. 预测答案:B2. 以下哪种算法不属于监督学习?A. 支持向量机(SVM)B. 决策树C. K最近邻(K-NN)D. K均值聚类答案:D3. 在模式识别中,以下哪一项是特征选择的目的是?A. 减少特征维度B. 增强模型泛化能力C. 提高模型计算效率D. 所有上述选项答案:D4. 以下哪种模式识别方法适用于非线性问题?A. 线性判别分析(LDA)B. 主成分分析(PCA)C. 支持向量机(SVM)D. 线性回归答案:C5. 在神经网络中,以下哪种激活函数常用于输出层?A. SigmoidB. TanhC. ReLUD. Softmax答案:D6. 以下哪种聚类算法是基于密度的?A. K均值聚类B. 层次聚类C. DBSCAND. 高斯混合模型答案:C二、填空题(每题5分,共30分)1. 模式识别的主要任务包括______、______、______。
答案:分类、回归、聚类2. 在监督学习中,训练集通常分为______和______两部分。
答案:训练集、测试集3. 支持向量机(SVM)的基本思想是找到一个______,使得不同类别的数据点被最大化地______。
答案:最优分割超平面、间隔4. 主成分分析(PCA)是一种______方法,用于降维和特征提取。
答案:线性变换5. 神经网络的反向传播算法用于______。
答案:梯度下降6. 在聚类算法中,DBSCAN算法的核心思想是找到______。
答案:密度相连的点三、简答题(每题10分,共30分)1. 简述模式识别的基本流程。
答案:模式识别的基本流程包括以下几个步骤:(1)数据预处理:对原始数据进行清洗、标准化和特征提取。
(2)模型选择:根据问题类型选择合适的模式识别算法。
(3)模型训练:使用训练集对模型进行训练,学习数据特征和规律。
模式识别习题参考1齐敏-教材第7章
第6章 模糊模式识别法习题解答7.1 试分别说明近似性、随机性和含混性与模糊性在概念上的相同处与不同处。
解:(1) 近似性与模糊性的异同① 共同点:描述上的不精确性。
② 区别:不精确性的根源和表现形式不同。
a) 近似性:问题本身有精确解,描述时的不精确性源于认识条件的局限性和认识过程发展的不充分性。
b) 模糊性:问题本身无精确解,描述的不精确性来源于对象自身固有的性态上的不确定性。
(2) 随机性与模糊性的异同 ① 共同点:不确定性。
② 区别:模糊性和随机性所表现出的不确定性的性质不同。
a) 模糊性:表现在质的不确定性。
是由于概念外延的模糊性而呈现出的不确定性。
b) 随机性:是外在的不确定性。
是由于条件不充分,导致条件与事件之间不能出现确定的因果关系,事物本身的性态(性质、状态、特征等)和类属是确定的。
c) 排中律:即事件的发生和不发生必居且仅居其一,不存在第三种现象。
随机性遵守排中律,模糊性不遵守,它存在着多种,甚至无数种中间现象。
(3) 含混性与模糊性的异同 ① 共同点:不确定性。
② 区别:a) 含混性:由信息不充分(二义性)引起,一个含混的命题即是模糊的,又是二义的。
一个命题是否带有含混性与其应用对象或上下文有关。
b) 模糊性:是质的不确定性。
7.2 已知论域}3,2,1,0{=X ,~A 和~B 为X 中的模糊集合,分别为()()()(){}3,5.0,2,4.0,1,3.0,0,2.0~=A()()()(){}3,0,2,3.0,1,4.0,0,5.0~=B(1)求~~B A ,~~B A ,~A 和~B ;(2)求()~~~A B A 。
解:(1)由()()()⎪⎭⎫⎝⎛=x x x B A B A ~~~,max μμμ 有~~B A =()()()(){}3,5.0,2,4.0,1,4.0,0,5.0由()()()⎪⎭⎫⎝⎛=x x x B A B A ~~~,min μμμ 有~~B A ()()()(){}3,0,2,3.0,1,3.0,0,2.0=由()()x x A A ~~1μμ-=有~A ()()()(){}3,5.0,2,6.0,1,7.0,0,8.0= ~B ()()()(){}3,1,2,7.0,1,6.0,0,5.0=(2)()~~~A B A=()()()(){}3,5.0,2,4.0,1,4.0,0,5.0()()()(){}3,5.0,2,6.0,1,7.0,0,8.0()()()(){}3,5.0,2,4.0,1,4.0,0,5.0=7.3 已知两个模糊集合()(){}b a A ,8.0,,5.0~=,()(){}b a B ,2.0,,9.0~=试验证截集的两个性质:1)λλλB A B A =)~~(;2)λλλB A B A =)~~(。
模式识别导论习题参考答案-齐敏
④ max{min( D i1 , D i 2 )}
20 D 92 T
1 74 , Z 3 X 9 [7,3]T 2
⑤ 继续判断是否有新的聚类中心出现:
D10,1 65 D21 2 D11 0 74 52 D D , ,… 12 22 D10, 2 13 D13 58 D23 40 D10,3 1
G2 (0)
G 3 ( 0)
G4 ( 0 )
G5 (0)
0 1 2 18 32 0 5 13
25
G3 (0)
G4 (0)
0 10 20 0
2
G5 (0)
0
(2) 将最小距离 1 对应的类 G1 (0) 和 G2 (0) 合并为一类,得到新的分类
G12 (1) G1 (0), G2 (0) , G3 (1) G3 (0), G4 (1) G4 (0) , G5 (1) G5 (0)
2
X3 X 6 ) 3.2, 2.8
T
④ 判断: Z j ( 2) Z j (1) , j 1,2 ,故返回第②步。 ⑤ 由新的聚类中心得:
X1 : X2 :
D1 || X 1 Z 1 ( 2) || X 1 S1 ( 2 ) D2 || X 1 Z 2 ( 2) || D1 || X 2 Z1 ( 2) || X 2 S1 ( 2 ) D2 || X 2 Z 2 ( 2) ||
T
(1)第一步:任意预选 NC =1, Z1 X 1 0,0 ,K=3, N 1 , S 2 , C 4 ,L=0,I=5。 (2)第二步:按最近邻规则聚类。目前只有一类, S1 { X 1 , X 2 , , X 10 },N 1 10 。 (3)第三步:因 N 1 N ,无聚类删除。 (4)第四步:修改聚类中心
模式识别期末试题及答案
模式识别期末试题及答案正文:模式识别期末试题及答案1. 选择题1.1 下列关于机器学习的说法中,正确的是:A. 机器学习是一种人工智能的应用领域B. 机器学习只能应用于结构化数据C. 机器学习不需要预先定义规则D. 机器学习只能处理监督学习问题答案:A1.2 在监督学习中,以下哪个选项描述了正确的训练过程?A. 通过输入特征和预期输出,训练一个模型来进行预测B. 通过输入特征和可能的输出,训练一个模型来进行预测C. 通过输入特征和无标签的数据,训练一个模型来进行预测D. 通过输入特征和已有标签的数据,训练一个模型来进行分类答案:D2. 简答题2.1 请解释什么是模式识别?模式识别是指在给定一组输入数据的情况下,通过学习和建模,识别和分类输入数据中的模式或规律。
通过模式识别算法,我们可以从数据中提取重要的特征,并根据这些特征进行分类、聚类或预测等任务。
2.2 请解释监督学习和无监督学习的区别。
监督学习是一种机器学习方法,其中训练数据包含了输入特征和对应的标签或输出。
通过给算法提供已知输入和输出的训练样本,监督学习的目标是学习一个函数,将新的输入映射到正确的输出。
而无监督学习则没有标签或输出信息。
无监督学习的目标是从未标记的数据中找到模式和结构。
这种学习方法通常用于聚类、降维和异常检测等任务。
3. 计算题3.1 请计算以下数据集的平均值:[2, 4, 6, 8, 10]答案:63.2 请计算以下数据集的标准差:[1, 3, 5, 7, 9]答案:2.834. 综合题4.1 对于一个二分类问题,我们可以使用逻辑回归模型进行预测。
请简要解释逻辑回归模型的原理,并说明它适用的场景。
逻辑回归模型是一种用于解决二分类问题的监督学习算法。
其基本原理是通过将特征的线性组合传递给一个非线性函数(称为sigmoid函数),将实数值映射到[0,1]之间的概率。
这个映射的概率可以被解释为某个样本属于正类的概率。
逻辑回归适用于需要估计二分类问题的概率的场景,例如垃圾邮件分类、欺诈检测等。
模式识别习题答案
将 w0 代入由 (∗∗) 得到的第二个等式得到:
1 [ N
Sw
+
N1N2 N2
(m1
−
m2)(m1
−
m2)T ]w
=
m1
−
m2
显然,
N1 N2 N2
(m1
−
m2
)(m1
−
m2
)T
w
在
m1 − m2
方向上,不妨令
N1 N2 N2
(m1
−
m2)(m1 − m2)T w = (1 − λ)(m1 − m2) 代入上式可得
g(x) = aT y, a = (1, 2, −2)T , y = (x1, x2, 1)T
(3)事实上, X 是 Y 中的一个 y3 = 1 超平面,两者有相同的表达式,因此对 原空间的划分相同。 4.8 证明在正态等协方差条件下,Fisher线性判别准则等价于贝叶斯判别。 证明: 在正态等协方差条件( Σ1 = Σ2 = Σ )下,贝叶斯判别的决策面方程为:
w xp = x ∓ r ∥w∥
根据超平面的定向,将 r 代入可得,
g(x) xp = x − ∥w∥2 w
4.4 对于二维线性判别函数
g(x) = x1 + 2x2 − 2
(1)将判别函数写成 g(x) = wT x + w0 的形式,并画出 g(x) = 0 的几何图形; (2)映射成广义齐次线性判别函数
∥∇J (a)∥2 ρk = ∇JT (a)D∇J(a)
时,梯度下降算法的迭代公式为
证明:
ak+1
=
ak
+
b
− aTk y1 ∥y1∥2
y1
模式识别习题答案(第一次)
−1 2 1
1
3
n ∑ t2 i =C λ i=1 i
显然,此为一超椭球面的方程,主轴长度由{λi , i = 1, · · · , n}决定,方向由变 换矩阵A,也就是Σ的特征向量决定。 2.19 假定x和m是两个随机变量,并在给定m时,x的条件密度为
1 1 p(x|m) = (2π )− 2 σ −1 exp{− (x − m)2 /σ 2 } 2
c ∑ j =1 c ∫ ∑ j =1 Rj
P (x ∈ Rj |ωj )p(ωj ) =
p(x|ωj )p(ωj )dx
又因为p(e) = 1 − p(c),所以 min p(e) ⇒ max p(c) ⇒ max
c ∫ ∑ j =1 Rj
p(x|ωj )p(ωj )dx
由上式可得到判决准则:若p(x|ωi )p(ωi ) > p(x|ωj )p(ωj ), ∀j ̸= i,则x ∈ ωi 等价于若p(ωi |x) > p(ωj |x), ∀j ̸= i,则x ∈ ωi 。 2.6 对两类问题,证明最小风险贝叶斯决策规则可表示为 ω1 p(x|ω1 ) (λ12 − λ22 )P (ω2 ) 若 ≷ 则x ∈ p(x|ω2 ) (λ21 − λ11 )P (ω1 ) ω2 证明: R(α1 |x) = λ11 p(ω1 |x) + λ12 p(ω2 |x)R(α2 |x) = λ21 p(ω1 |x) + λ22 p(ω2 |x) 若R(α1 |x) < R(α2 |x),则x ∈ ω1 , 代入即得所求结果。 2.9 写出两类和多类情况下最小风险贝叶斯决策判别函数和决策面方程。 解:两类情况下判别函数为:g (x) = R(α1 |x)−R(α2 |x),决策面方程为:g (x) = 0; 多 类 情 况 下 定 义 一 组 判 别 函 数gi (x) = R(αi |x), i = 1, · · · , c, 如 果 对 所 有 的j ̸= i, 有 :gi (x) < gj (x), 则x ∈ ωi , 其 中 第i类 和 第j 类 之 间 的 决 策 面 为:gi (x) − gj (x) = 0。 ∑c 当然,将R(αi |x) = j =1 λ(αi , ωj )P (ωj |x), i = 1, · · · , a代入亦可。 2.15 证明多元正态分布的等密度点轨迹是一个超椭球面,且其主轴方向由Σ的特征 向量决定,轴长度由Σ的特征值决定。
大学模式识别考试题及答案详解完整版
大学模式识别考试题及答案详解HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
模式识别习题及答案
模式识别习题及答案模式识别习题及答案模式识别是人类智能的重要组成部分,也是机器学习和人工智能领域的核心内容。
通过模式识别,我们可以从大量的数据中发现规律和趋势,进而做出预测和判断。
本文将介绍一些模式识别的习题,并给出相应的答案,帮助读者更好地理解和应用模式识别。
习题一:给定一组数字序列,如何判断其中的模式?答案:判断数字序列中的模式可以通过观察数字之间的关系和规律来实现。
首先,我们可以计算相邻数字之间的差值或比值,看是否存在一定的规律。
其次,我们可以将数字序列进行分组,观察每组数字之间的关系,看是否存在某种模式。
最后,我们还可以利用统计学方法,如频率分析、自相关分析等,来发现数字序列中的模式。
习题二:如何利用模式识别进行图像分类?答案:图像分类是模式识别的一个重要应用领域。
在图像分类中,我们需要将输入的图像分为不同的类别。
为了实现图像分类,我们可以采用以下步骤:首先,将图像转换为数字表示,如灰度图像或彩色图像的像素矩阵。
然后,利用特征提取算法,提取图像中的关键特征。
接下来,选择合适的分类算法,如支持向量机、神经网络等,训练模型并进行分类。
最后,评估分类结果的准确性和性能。
习题三:如何利用模式识别进行语音识别?答案:语音识别是模式识别在语音信号处理中的应用。
为了实现语音识别,我们可以采用以下步骤:首先,将语音信号进行预处理,包括去除噪声、降低维度等。
然后,利用特征提取算法,提取语音信号中的关键特征,如梅尔频率倒谱系数(MFCC)。
接下来,选择合适的分类算法,如隐马尔可夫模型(HMM)、深度神经网络(DNN)等,训练模型并进行语音识别。
最后,评估识别结果的准确性和性能。
习题四:如何利用模式识别进行时间序列预测?答案:时间序列预测是模式识别在时间序列分析中的应用。
为了实现时间序列预测,我们可以采用以下步骤:首先,对时间序列进行平稳性检验,确保序列的均值和方差不随时间变化。
然后,利用滑动窗口或滚动平均等方法,将时间序列划分为训练集和测试集。
模式识别期末考试题及答案
模式识别期末考试题及答案一、填空题1. 模式识别是研究通过_________从观测数据中自动识别和分类模式的一种学科。
答案:计算机算法2. 在模式识别中,特征选择的主要目的是_________。
答案:降低数据的维度3. 支持向量机(SVM)的基本思想是找到一个最优的超平面,使得两类数据的_________最大化。
答案:间隔4. 主成分分析(PCA)是一种_________方法,用于降低数据的维度。
答案:线性降维5. 隐马尔可夫模型(HMM)是一种用于处理_________数据的统计模型。
答案:时序二、选择题6. 以下哪种方法不属于模式识别的监督学习方法?()A. 线性判别分析B. 支持向量机C. 神经网络D. K-means聚类答案:D7. 在以下哪种情况下,可以使用主成分分析(PCA)进行特征降维?()A. 数据维度较高,且特征之间存在线性关系B. 数据维度较高,且特征之间存在非线性关系C. 数据维度较低,且特征之间存在线性关系D. 数据维度较低,且特征之间存在非线性关系答案:A8. 以下哪个算法不属于聚类算法?()A. K-meansB. 层次聚类C. 判别分析D. 密度聚类答案:C三、判断题9. 模式识别的目的是将输入数据映射到事先定义的类别中。
()答案:正确10. 在模式识别中,特征提取和特征选择是两个不同的概念,其中特征提取是将原始特征转换为新的特征,而特征选择是从原始特征中筛选出有用的特征。
()答案:正确四、简答题11. 简述模式识别的主要任务。
答案:模式识别的主要任务包括:分类、回归、聚类、异常检测等。
其中,分类和回归任务属于监督学习,聚类和异常检测任务属于无监督学习。
12. 简述支持向量机(SVM)的基本原理。
答案:支持向量机的基本原理是找到一个最优的超平面,使得两类数据的间隔最大化。
具体来说,SVM通过求解一个凸二次规划问题来确定最优超平面,使得训练数据中的正类和负类数据点尽可能远离这个超平面。
模式识别思考题答案
X ( NT ) 两部分,这两部分没有公共元素,它们的样本数各为 NR 和 NT,NR+NT=N。利用参照
集X
( NR)
中的样本 y1 , y2 ,, y NR 采用最近邻规则对已知类别的测试集 X
( NT )
中的每个样
x1 , x2 ,, xNT 进行分类,剪辑掉 X ( NT ) 中被错误分类的样本。
k=10, x k =x 2 ,d ( x k ) =w(k)' xk =2>0, w(11)= w(10)
k=11, x k =x3 ,d ( x k ) =w(k)' xk =0, w(12)= w(11)+x3 (2, 3, 1,2)
k=12, x k =x 4 ,d ( x k ) =w(k)' xk =1>0, w(13)= w(12) k=13, x k =x5 ,d ( x k ) =w(k)' xk =-1<0, w(14)= w(13)+x 5 (2, 3, 2)
x2
W2
+ W1
x
Hale Waihona Puke 1d 23 (x)=2x 2
-
W3
+
-
d13 ( x) 2 x1 x2 1
五、以下列两类模式为样本,用感知器算法求其判决函数。 (令 w(1) = (-1,-2,-2)T) 1:{(0,0,0)’, (1,0,0)’, (1,0,1)’, (1,1,0)’,} 2:{(0,0,1)’, (0,1,1)’, (0,1,0)’, (1,1,1)’,} 解: (1)将训练样本分量增广化及符号规范化,将训练样本增加一个分量 1,且把来自 w2 类的 训练样本的各分量乘以-1,则得到训练模式集:
模式识别课后习题答案
– (1) E{ln(x)|w1} = E{ln+1(x)|w2} – (2) E{l(x)|w2} = 1 – (3) E{l(x)|w1} − E2{l(x)|w2} = var{l(x)|w2}(教材中题目有问题) 证∫ 明ln+:1p对(x于|w(12)),dxE={ln∫(x()∫p(|wp(x(1x|}w|w=1)2))∫n)+nl1nd(xx)所p(x以|w∫,1)Ed{xln=(x∫)|w(1p(}p(x(=x|w|Ew1)2{))ln)n+n+11d(xx)又|wE2}{ln+1(x)|w2} = 对于(2),E{l(x)|w2} = l(x)p(x|w2)dx = p(x|w1)dx = 1
对于(3),E{l(x)|w1} − E2{l(x)|w2} = E{l2(x)|w2} − E2{l(x)|w2} = var{l(x)|w2}
• 2.11 xj(j = 1, 2, ..., n)为n个独立随机变量,有E[xj|wi] = ijη,var[xj|wi] = i2j2σ2,计 算在λ11 = λ22 = 0 及λ12 = λ21 = 1的情况下,由贝叶斯决策引起的错误率。(中心极限 定理)
R2
R1
容易得到
∫
∫
p(x|w2)dx = p(x|w1)dx
R1
R2
所以此时最小最大决策面使得P1(e) = P2(e)
• 2.8 对于同一个决策规则判别函数可定义成不同形式,从而有不同的决策面方程,指出 决策区域是不变的。
3
模式识别(第二版)习题解答
模式识别练习题及答案.docx
1=填空题1、模式识别系统的基本构成单元包括:模式采集、特征选择与提取和模式分类。
2、统计模式识别中描述模式的方法一般使用特征矢量;句法模式识别中模式描述方法一般有串、树、网。
3、影响层次聚类算法结果的主要因素有计算模式距离的测度、聚类准则、类间距离门限、预定的类别数目。
4、线性判别函数的正负和数值大小的几何意义是正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
5、感知器算法丄。
(1 )只适用于线性可分的情况;(2)线性可分、不可分都适用。
6、在统计模式分类问题中,聂曼-皮尔逊判决准则主要用于某一种判决错误较另一种判决错误更为重愛情况;最小最大判别准则主要用于先验概率未知的情况。
7、“特征个数越多越有利于分类”这种说法正确吗?错误。
特征选择的主要目的是从n个特征中选出最有利于分类的的m个特征(m<n),以降低特征维数。
一般在可分性判据对特征个数具有单调性和(C n m»n )的条件下,可以使用分支定界法以减少计算量。
& 散度Jij越大,说明。
类模式与3j类模式的分布差别越大;当3类模式与(Oj类模式的分布相同时,Jij=_O_.选择题1、影响聚类算法结果的主要因素有(BCD ).A.已知类别的样本质量B.分类准则C.特征选取D.模式相似性测度2、模式识别中,马式距离较之于欧式距离的优点是(CD )。
A.平移不变性B.旋转不变性C.尺度不变性D.考虑了模式的分布3、影响基本K-均值算法的主要因素有(DAB )。
A.样本输入顺序B.模式相似性测度C.聚类准则D.初始类中心的选取4、在统计模式分类问题中,当先验概率未知时,可以使用(BD )。
A.最小损失准则B.最小最大损失准则C.最小误判概率准则D.N-P判决5、散度环是根据(C )构造的可分性判据。
A.先验概率B.后验概率C.类概率密度D.信息燔E.几何距离6、如果以特征向量的相关系数作为模式相似性测度,则影响聚类算法结果的主要因素有(B C )。
模式识别习题及答案
第一章 绪论1.什么是模式?具体事物所具有的信息。
模式所指的不是事物本身,而是我们从事物中获得的___信息__。
2.模式识别的定义?让计算机来判断事物。
3.模式识别系统主要由哪些部分组成?数据获取—预处理—特征提取与选择—分类器设计/ 分类决策。
第二章 贝叶斯决策理论1.最小错误率贝叶斯决策过程? 答:已知先验概率,类条件概率。
利用贝叶斯公式得到后验概率。
根据后验概率大小进行决策分析。
2.最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率类条件概率分布 利用贝叶斯公式得到后验概率如果输入待测样本X ,计算X 的后验概率根据后验概率大小进行分类决策分析。
3.最小错误率贝叶斯决策规则有哪几种常用的表示形式? 答:4.贝叶斯决策为什么称为最小错误率贝叶斯决策?答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了(平均)错误率 最小。
Bayes 决策是最优决策:即,能使决策错误率最小。
5.贝叶斯决策是由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这个概率进行决策。
6.利用乘法法则和全概率公式证明贝叶斯公式答:∑====mj Aj p Aj B p B p A p A B p B p B A p AB p 1)()|()()()|()()|()(所以推出贝叶斯公式7.朴素贝叶斯方法的条件独立假设是(P(x| ωi) =P(x1, x2, …, xn | ωi)⎩⎨⎧∈>=<211221_,)(/)(_)|()|()(w w x w p w p w x p w x p x l 则如果∑==21)()|()()|()|(j j j i i i w P w x P w P w x P x w P 2,1),(=i w P i 2,1),|(=i w x p i ∑==21)()|()()|()|(j j j i i i w P w x P w P w x P x w P ∑===Mj j j i i i i i A P A B P A P A B P B P A P A B P B A P 1)()|()()|()()()|()|(= P(x1| ωi) P(x2| ωi)… P(xn| ωi))8.怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P(x| ωi) =P(x1, x2, …, xn | ωi) = P(x1| ωi) P(x2| ωi)… P(xn| ωi) 后验概率:P(ωi|x) = P(ωi) P(x1| ωi) P(x2| ωi)… P(xn| ωi)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值方差,最后得到类条件概率分布。
模式识别第二版答案完整版
1. 对c类情况推广最小错误率率贝叶斯决策规则; 2. 指出此时使错误率最小等价于后验概率最大,即P (wi|x) > P (wj|x) 对一切j ̸= i
成立时,x ∈ wi。
2
模式识别(第二版)习题解答
解:对于c类情况,最小错误率贝叶斯决策规则为: 如果 P (wi|x) = max P (wj|x),则x ∈ wi。利用贝叶斯定理可以将其写成先验概率和
(2) Σ为半正定矩阵所以r(a, b) = (a − b)T Σ−1(a − b) ≥ 0,只有当a = b时,才有r(a, b) = 0。
(3) Σ−1可对角化,Σ−1 = P ΛP T
h11 h12 · · · h1d
• 2.17 若将Σ−1矩阵写为:Σ−1 = h...12
h22 ...
P (w1) P (w2)
= 0。所以判别规则为当(x−u1)T (x−u1) > (x−u2)T (x−u2)则x ∈ w1,反
之则s ∈ w2。即将x判给离它最近的ui的那个类。
[
• 2.24 在习题2.23中若Σ1 ̸= Σ2,Σ1 =
1
1
2
策规则。
1]
2
1
,Σ2
=
[ 1
−
1 2
−
1 2
] ,写出负对数似然比决
1
6
模式识别(第二版)习题解答
解:
h(x) = − ln [l(x)]
= − ln p(x|w1) + ln p(x|w2)
=
1 2 (x1
−
u1)T
Σ−1 1(x1
−
u1)
−
1 2 (x2
(完整word版)模式识别习题解答第五章全文
可编辑修改精选全文完整版题1:设有如下三类模式样本集ω1,ω2和ω3,其先验概率相等,求Sw 和Sb ω1:{(1 0)T, (2 0) T, (1 1) T} ω2:{(—1 0)T, (0 1) T , (-1 1) T}ω3:{(-1 -1)T , (0 -1) T , (0 -2) T }解:由于本题中有三类模式,因此我们利用下面的公式:b S =向量类模式分布总体的均值为C ,))()((00031m m m m m P t i i i i --∑=ω,即:i 31i i 0m )p(E{x }m ∑===ωi m 为第i 类样本样本均值⎪⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎭⎫⎝⎛-⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛=--=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--=⎪⎪⎪⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡---++-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡++-+-=⎪⎪⎪⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡++++=∑=81628113811381628112181448144811681498149814981498116814481448112131911949119497979797949119491131)m m )(m m ()(P S 919134323131323431m 343121100131m 323211010131m ;313410012131m t 0i 0i 31i i b10321ω;333t(i)(i)k k w i i i i i i i i 1i 11111S P()E{(x-m )(x-m )/}C [(x m )(x m )33361211999271612399279Tk ωω====•==--⎡⎤⎡⎤--⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑题2:设有如下两类样本集,其出现的概率相等: ω1:{(0 0 0)T , (1 0 0) T , (1 0 1) T , (1 1 0) T }ω2:{(0 0 1)T , (0 1 0) T , (0 1 1) T , (1 1 1) T }用K-L 变换,分别把特征空间维数降到二维和一维,并画出样本在该空间中的位置.解:把1w 和2w 两类模式作为一个整体来考虑,故0 1 1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1x ⎛⎫ ⎪= ⎪ ⎪⎝⎭0.5{}0.50.5m E x ⎛⎫⎪== ⎪ ⎪⎝⎭协方差矩阵0.25 0 0{()()} 0 0.25 0 0 0 0.25x C E x m x m ⎛⎫ ⎪'=--= ⎪ ⎪⎝⎭从题中可以看出,协方差矩阵x C 已经是个对角阵,故x C 的本征值1230.25λλλ===其对应的本征向量为: 1231000,1,0001φφφ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭若要将特征空间维数降到二维,因本题中三个本征值均相等,所以可以任意选取两个本征向量作为变换矩阵,在这里我们取1φ和2φ,得到100100⎛⎫⎪Φ= ⎪ ⎪⎝⎭。
(完整word版)模式识别试题答案
(完整word版)模式识别试题答案模式识别非学位课考试试题考试科目:模式识别考试时间考生姓名:考生学号任课教师考试成绩一、简答题(每题6分,12题共72分):1、监督学习和非监督学习有什么区别?参考答案:当训练样本的类别信息已知时进行的分类器训练称为监督学习,或者由教师示范的学习;否则称为非监督学习或者无教师监督的学习。
2、你如何理解特征空间?表示样本有哪些常见方法?参考答案:由利用某些特征描述的所有样本组成的集合称为特征空间或者样本空间,特征空间的维数是描述样本的特征数量。
描述样本的常见方法:矢量、矩阵、列表等。
3、什么是分类器?有哪些常见的分类器?参考答案:将特征空中的样本以某种方式区分开来的算法、结构等。
例如:贝叶斯分类器、神经网络等。
4、进行模式识别在选择特征时应该注意哪些问题?参考答案:特征要能反映样本的本质;特征不能太少,也不能太多;要注意量纲。
5、聚类分析中,有哪些常见的表示样本相似性的方法?参考答案:距离测度、相似测度和匹配测度。
距离测度例如欧氏距离、绝对值距离、明氏距离、马氏距离等。
相似测度有角度相似系数、相关系数、指数相似系数等。
6、你怎么理解聚类准则?参考答案:包括类内聚类准则、类间距离准则、类内类间距离准则、模式与类核的距离的准则函数等。
准则函数就是衡量聚类效果的一种准则,当这种准则满足一定要求时,就可以说聚类达到了预期目的。
不同的准则函数会有不同的聚类结果。
7、一种类的定义是:集合S 中的元素x i 和x j 间的距离d ij 满足下面公式:∑∑∈∈≤-S x S x ij i jh d k k )1(1,d ij ≤ r ,其中k 是S 中元素的个数,称S 对于阈值h ,r 组成一类。
请说明,该定义适合于解决哪一种样本分布的聚类?参考答案:即类内所有个体之间的平均距离小于h ,单个距离最大不超过r ,显然该定义适合团簇集中分布的样本类别。
8、贝叶斯决策理论中,参数估计和非参数估计有什么区别?参考答案:参数估计就是已知样本分布的概型,通过训练样本确定概型中的一些参数;非参数估计就是未知样本分布概型,利用Parzen 窗等方法确定样本的概率密度分布规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。