原子吸收光谱法的原理

合集下载

原子吸收光谱法原理

原子吸收光谱法原理

原子吸收光谱法原理
原子吸收光谱法是一种常用的分析技术,用于确定物质中的元素含量。

该方法基于原子在特定波长的光照射下发生能级跃迁的现象,利用元素特征波长的吸收峰的强度来测量样品中元素的浓度。

以下是原子吸收光谱法的原理。

1. 原子的能级结构:原子由电子围绕着原子核的轨道运动组成。

电子在这些轨道上具有不同的能量,称为电子能级。

当原子受到外部的能量激发时,电子会从低能级跳跃到高能级,形成激发态。

2. 能级跃迁:原子的电子在吸收能量后,会跃迁到高能级。

当电子从高能级返回到低能级时,必须释放出能量。

这个能量的差别可以以光子形式释放出来,其波长与能级差相关。

3. 吸收光谱:在原子吸收光谱实验中,使用的是特定波长的光源,通常为中性或离子化的金属蒸汽灯。

这些光源会发出特定波长的光,射入样品中。

4. 样品吸收:样品中的元素原子会吸收与其能级差相匹配的波长的光。

当光通过样品时,部分光会被吸收,其吸收强度与元素的浓度成比例。

5. 检测:通过测量样品吸收光的强度,可以确定元素的浓度。

一般使用光电器件来测量吸收光的强度。

可以采用单光束或双光束系统进行测量。

6. 标准曲线:为了确定未知样品中元素的浓度,常常使用标准曲线进行定量分析。

通过测量一系列已知浓度的标准溶液的吸收峰强度,可以绘制出吸收峰强度与浓度之间的关系曲线。

利用这个曲线,可以根据样品的吸光度值来确定其浓度。

总之,原子吸收光谱法利用原子能级跃迁的现象,通过测量样品对特定波长光的吸收来测量元素的浓度。

该技术广泛应用于元素分析和环境监测等领域。

原子吸收光谱,红外光谱之间异同点

原子吸收光谱,红外光谱之间异同点

原子吸收光谱和红外光谱是化学分析领域中常见的分析方法,它们在原子和分子结构的解析和鉴定中具有重要作用。

虽然二者都是用于分析样品成分和结构的光谱技术,但它们在原理和应用上有着明显的异同点。

一、原子吸收光谱1.原子吸收光谱的基本原理原子吸收光谱是利用原子对特定波长的光进行吸收而产生的,通过分析光的衰减程度来测定样品中不同元素的含量。

当原子吸收特定波长的光后,电子从基态跃迁至激发态,从而产生吸收峰。

这一原理被广泛应用于分析金属元素和其他原子的定量测定。

2.原子吸收光谱与光谱仪的关系原子吸收光谱仪是用于测定原子吸收光谱的分析仪器,它包括光源、样品室、光路等部分。

通过光源发出特定波长的光线,样品中的原子吸收部分光线,剩余的光线经光路到达检测器,从而实现对样品中不同元素含量的测定。

3.原子吸收光谱的应用原子吸收光谱在环境监测、食品安全和医药等领域都有着广泛的应用。

利用原子吸收光谱可以对水体中的重金属离子进行快速测定,保障水质安全;在医药领域,原子吸收光谱可以用于药品成分的分析和检测。

二、红外光谱1.红外光谱的基本原理红外光谱是利用物质吸收、透射和反射红外光的特性来分析物质结构的一种技术。

物质中的分子在吸收红外光后会发生振动和转动,产生特征的红外光谱图谱。

通过分析这些谱图可以确定物质的结构和成分。

2.红外光谱仪的组成及原理红外光谱仪包括光源、样品室、光路和检测器等组成部分。

当红外光穿过样品时,被吸收的波长和强度会发生改变,检测器可以通过测量这些改变来分析样品的成分和结构。

3.红外光谱的应用红外光谱在化学、材料和生物领域都有着广泛的应用。

红外光谱可以用于药品成分的鉴定和质量控制;在材料领域,红外光谱可以帮助分析材料的组成和结构。

对比原子吸收光谱和红外光谱,可以发现它们在分析原子和分子结构上有着明显的异同点。

原子吸收光谱主要用于分析元素的含量和测定,对于金属元素和其他原子有着较广泛的应用;而红外光谱主要用于分析化合物的结构和成分,可以辅助分析有机化合物和聚合物的结构。

原子吸收光谱法的基本原理

原子吸收光谱法的基本原理

第一节 基本原理
∫K d = e2N0ƒ/mc
2,峰值吸收
第一节 基本原理
1
2
3
4
5
在一般原子吸收测量条件下,原子吸收轮廓取决于 Doppler (热变宽)宽度,通过运算可得峰值吸收系数: K0 = 2/△D(ln2/)1/2 e2N0ƒ/mc 可以看出,峰值吸收系数与原子浓度成正比,只要能测出K0 就可得出N0。 3,锐线光源 锐线光源是发射线半宽度远小于吸收线半宽度的光源,如空心阴极灯。在使用锐线光源时,光源发射线半宽度很小,并且发射线与吸收线的中心频率一致。这时发射线的轮廓可看作一个很窄的矩形,即峰值吸收系数
Ni / N0 = gi / g0 exp(- Ei / kT) Ni与N0 分别为激发态与基态的原子数; gi / g0为激发态与基态的统计权重,它表示能级的简并度;T为热力学温度; k为Boltzman常数; Ei为激发能。 从上式可知,温度越高, Ni / N0值越大,即激发态原子数随温度升高而增加,而且按指数关系变化;在相同的温度条件下,激发能越小,吸收线波长越长,Ni /N0值越大。尽管如此变化,但是在原子吸收光谱中,原子化温度一般小于3000K,大多数元素的最强共振线都低于 600 nm, Ni / N0值绝大部分在10-3以下,激发态和基态原
第一节 基本原理
第一节 基本原理
01
03
05
02
04
第一节 基本原理
由图可知,在频率 0处透过光强度最小,即吸收最大。若将吸收系数对频率作图,所得曲线为吸收线轮廓。原子吸收线轮廓以原子吸收谱线的中心频率(或中心波长)和半宽度 表征。中心频率由原子能级决定。半宽度是中心频率位置,吸收系数极大值一半处,谱线轮廓上两点之间频率或波长的距离。 谱线具有一定的宽度,主要有两方面的因素:一类是由原子性质所决定的,例如,自然宽度;另一类是外界影响所引起的,例如,热变宽、碰撞变宽等。 1,自然宽度

原子吸收光谱法(AAS)

原子吸收光谱法(AAS)

局限性:测不同的元素需不同的元 素灯,不能同时测多元素,难熔元 素、非金属元素测定困难。
原子吸收光谱法基本原理
1.原子的能级与跃迁
基态第一激发态,吸收一定频率的辐射能量。 产生共振吸收线(简称共振线) 吸收光谱 激发态基态,发射出一定频率的辐射。 产生共振吸收线(也简称共振线) 发射光谱
原子吸收光谱法基本原理
A kc
原子吸收分光度计
原子吸收分光度计
原子吸收分光度计
光源
原子化器
单色器
检测系统
思考:光学系统(单色器)为什么在原子化器和检 测系统之间?
光 源
提供待测元素的特征光谱。获得较高的 灵敏度和准确度。 光源应满足如下要求; (1)能发射待测元素的共振线; (2)能发射锐线; (3)辐射光强度大,稳定性好。
2.元素的特征谱线
(1)各种元素的原子结构和外层电子排布不同 基态第一激发态:
跃迁吸收能量不同——具有特征性。
(2)各种元素的基态第一激发态
最易发生,吸收最强,最灵敏线。特征谱线。
(3)利用原子蒸气对特征谱线的吸收可以进行定量分析
原子吸收光谱法基本原理
从光源发射出具有待测元素特征 谱线的光,通过试样蒸气时,被蒸气 中待测元素的基态原子所吸收,吸收 的程度与被测元素的含量成正比。故 可根据测得的吸光度,求得试样中被 测元素的含量。
将待测试样在专门的氢化物生成器中产生氢
化物,送入原子化器中检测。
单色器
•作用:将待测元素的吸收线与邻近线分开
•组件:色散元件 ( 棱镜、光栅 ) ,凹凸镜、 狭缝等
检测系统
•作用: 将待测元素光信号转换为电信号, 经放大数据处理显示结果。 •组件: 检测器、放大器、对数变换器、显 示记录装置。

原子吸收光谱仪的原理、构成、操作及应用领域详解

原子吸收光谱仪的原理、构成、操作及应用领域详解

原子吸收光谱仪的原理、构成、操作及应用领域详解一、原子吸收光谱仪原理原子吸收光谱仪的原理是根据物质基态原子蒸汽对特征辐射吸收的作用来进行金属元素分析。

1、原子吸收光谱的产生任何元素的原子都是由原子核和核外电子组成。

原子核是原子的中心体,核正电,电子荷负电,总的负电荷与原子核的正电荷数相等。

电子沿核外的圆形或椭圆形轨道围绕着原子核运动,同时又有自旋运动。

电子的运动状态由波函数0描述。

求解描述电子运动状态的薛定愕方程,可以得到表征原子内电子运动状态的量子数n、L、m,分别称为主量子数、角量子数和磁量子数。

原子核外的电子按其能量的高低分层分布而形成不同的能级,因此一个原子核可以具有多种能级状态。

能量最低的能级状态称为基态能级(Eo),其余能级称为激发态能级,而能量最低的激发态则称为第一激发态。

一般情况下,原子处于基态,核外电子在各自能量最低的轨道上运动。

如果将一定外界能量如光能提供给该基态原子,当外界光能量恰好等于该基态原子中基态和某一较高能级之间的能级差△E时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态而产生原子吸收光谱。

2、原子吸收光谱仪基本原理仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。

3、原子吸收光谱仪方法原理原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。

当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原原子吸收光谱仪子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。

基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到激发态。

原子吸收光谱根据郎伯-比尔定律来确定样品中化合物的含量。

已知所需样品元素的吸收光谱和摩尔吸光度,以及每种元素都将优先吸收特定波长的光,因为每种元素需要消耗一定的能量使其从基态变成激发态。

检测过程中,基态原子吸收特征辐射,通过测定基态原子对特征辐射的吸收程度,从而测量待测元素含量。

原子吸收光谱法原理简述

原子吸收光谱法原理简述

原子吸收光谱法原理简述
原子吸收光谱法是一种用于分析物质中金属元素含量的方法。

它的原理简述如下:
当金属原子处于基态时,它们会吸收特定波长的光。

原子吸收光谱法利用这一特性来测量样品中金属元素的含量。

首先,样品被转化成气态原子或原子的气态化合物,然后通过光源发出的特定波长的光照射样品。

如果样品中含有被检测的金属元素,这些原子会吸收光,使得光源透过样品时的光强度减弱。

测量光源透过样品前后的光强度差异,就可以确定金属元素的含量。

原子吸收光谱法的原理基于不同金属元素吸收光的特性。

每种金属元素都有特定的吸收光谱线,这些谱线对应着特定波长的光。

因此,通过测量样品对不同波长光的吸收情况,可以确定样品中不同金属元素的含量。

此外,原子吸收光谱法还遵循比尔-朗伯定律,即吸收光强度与浓度成正比。

因此,可以通过测量吸收光强度的变化来确定金属元素的浓度。

总的来说,原子吸收光谱法利用金属原子对特定波长光的吸收特性,通过测量样品对光的吸收来确定其中金属元素的含量。

这一方法在分析化学和环境监测等领域有着广泛的应用。

原子吸收光谱工作原理

原子吸收光谱工作原理

原子吸收光谱工作原理原子吸收光谱法的原理:蒸汽中待测元素的气态基态原子会吸收从光源发出的被测元素的特征辐射线,具有一定选择性,由辐射减弱的程度求得样品中被测元素的含量。

当辐射通过原子蒸汽,且辐射频率等于原子中电子由基态跃迁到较高能态所需要的能量的频率时,原子从入射辐射中吸收能量,产生共振吸收。

原子吸收光谱是由于电子在原子基态和第一激发态之间跃迁产生的。

每一种原子的能级结构均是独特的,故原子有选择性的吸收辐射频率。

因此,在所有情况下,均可产生反映该种原子结构特征的原子吸收光谱。

原子吸收光谱检测方法:1、氢化物发生法氢化物发生法适用于容易产生阴离子的元素,如Se、Sn、Sb、As、Pb、Hg、Ge、Bi等。

这些元素一般不采取火焰原子化法检测,而是用硼氢化钠处理,因为硼氢化钠具有还原性,可以将这些元素还原成为阴离子,与硼氢化钠中电离产生的氢离子结合成气态氢化物。

如土壤监测中运用流动注射氢化物原子吸收检测河流中所含的沉积物汞和砷,经过试验后,检出砷限为2ng/L,精密度为1.35%至5.07%,准确度在93.5%至106.0%;检出汞限为2ng/L,精密度为0.96%至5.52%,精准度在93.1%至109.5%。

这种方法不仅快速、简便,且准确度和精密度非常高,能更好的测试和分析环境样品。

2、石墨炉原子吸收光谱法石墨炉原子吸收光谱法是一种用电流加热原子化的分析方法。

横向加热石墨炉解决了温度分布不均匀的问题。

石墨炉原子化的出现非常之重要,对于火焰原子化有着较为明显的优越性,与火焰原子化技术对比,灵敏度提高到3到4个数量线,达到了10-12至10-14g的灵敏度,但是石墨炉原子吸收光谱法还是存在一定的局限性:重现性还没有火焰法高,当待测样品比较复杂时,产生的结果会有很大的误差。

3、火焰原子吸收光谱法目前,火焰原子吸收光谱法还是应用最为广泛的方法。

因为其对大多数的元素都适用,而且具有速度快,成本低,操作简单,结果误差不大的优势。

原子吸收光谱仪原理及注意事项

原子吸收光谱仪原理及注意事项

原子吸收光谱‎仪原理、结构、作用及注意事‎项1.原子吸收光谱‎的理论基础原子吸收光谱分析(又称原子吸收‎分光光度分析‎)是基于从光源‎辐射出待测元‎素的特征光波‎,通过样品的蒸‎汽时,被蒸汽中待测‎元素的基态原‎子所吸收,由辐射光波强‎度减弱的程度‎,可以求出样品‎中待测元素的‎含量。

1 原子吸收光谱‎的理论基础1.1 原子吸收光谱‎的产生在原子‎中,电子按一定的‎轨道绕原子核‎旋转,各个电子的运‎动状态是由4‎个量子数来描‎述。

不同量子数的‎电子,具有不同的能‎量,原子的能量为‎其所含电子能‎量的总和。

原子处于完全‎游离状态时,具有最低的能‎量,称为基态(E0)。

在热能、电能或光能的‎作用下,基态原子吸收‎了能量,最外层的电子‎产生跃迁,从低能态跃迁‎到较高能态,它就成为激发‎态原子。

激发态原子(Eq)很不稳定,当它回到基态‎时,这些能量以热‎或光的形式辐‎射出来,成为发射光谱‎。

其辐射能量大‎小,用下列公式示‎示:由于不同元素‎的原子结构不‎同,所以一种元素‎的原子只能发‎射由其E0与‎Eq决定的特‎定频率的光。

这样,每一种元素都‎有其特征的光‎谱线。

即使同一种元‎素的原子,它们的Eq也‎可以不同,也能产生不同‎的谱线。

原子吸收光谱‎是原子发射光‎谱的逆过程。

基态原子只能‎吸收频率为ν‎=(Eq-E0)/h的光,跃迁到高能态‎Eq。

因此,原子吸收光谱‎的谱线也取决‎于元素的原子‎结构,每一种元素都‎有其特征的吸‎收光谱线。

原子的电子从‎基态激发到最‎接近于基态的‎激发态,称为共振激发‎。

当电子从共振‎激发态跃迁回‎基态时,称为共振跃迁‎。

这种跃迁所发‎射的谱线称为‎共振发射线,与此过程相反‎的谱线称为共‎振吸收线。

元素的共振吸‎收线一般有好‎多条,其测定灵敏度‎也不同。

在测定时,一般选用灵敏‎线,但当被测元素‎含量较高时,也可采用次灵‎敏线。

1.2 吸收强度与分‎析物质浓度的‎关系原子蒸气对不‎同频率的光具‎有不同的吸收‎率,因此,原子蒸气对光‎的吸收是频率‎的函数。

原子吸收光谱法的原理

原子吸收光谱法的原理

原子吸收光谱法原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。

中文名原子吸收光谱法外文名Atomic Absorption Spectroscopy光线范围紫外光和可见光出现时间上世纪50年代简称AAS测定方法标准曲线法、标准加入法别名原子吸收分光光度法基本原理原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。

由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。

当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。

特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比:A=KC式中K为常数;C为试样浓度;K包含了所有的常数。

此式就是原子吸收光谱法进行定量分析的理论基础由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。

由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。

由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。

AAS现已成为无机元素定量分析应用最广泛的一种分析方法。

该法主要适用样品中微量及痕量组分分析。

原子吸收光谱法谱线轮廓原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长范围,即有一定的宽度。

原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。

中心波长由原子能级决定。

简述原子吸收光谱技术的原理

简述原子吸收光谱技术的原理

简述原子吸收光谱技术的原理
原子吸收光谱技术是一种广泛用于分析金属元素和某些非金属元素的分析方法。

它基于原子在吸收特定波长的光时,电子从低能级跃迁至高能级,导致原子发生激发和离子化的原理。

以下是原子吸收光谱技术的基本原理:
1.光源:使用一种适当的光源,通常是一个具有特定波长的空气
-石英火焰。

这个火焰会使样品中的金属元素被激发或离子化。

2.样品进样:待分析的样品被雾化并喷入火焰中。

在火焰中,样
品中的金属元素被激发到高能级。

3.光源辐射:通过使用中空阴极灯或其他适当的光源,产生一个
包含特定波长的光束。

这个波长通常是目标元素的特征吸收波
长。

4.原子吸收:光束通过火焰中的样品,被激发态的金属原子吸收。

吸收的光量与样品中目标元素的浓度成正比。

5.检测:通过使用光学元件(如光栅或滤光片)来分离目标元素
的吸收线,然后使用光电检测器测量光强的减少。

检测信号与
目标元素的浓度成正比。

6.分析:通过与标准溶液比较,可以确定样品中目标元素的浓度。

原子吸收光谱技术的优点包括高灵敏度、高选择性和广泛适用性。

它常用于环境监测、食品分析、地质研究等领域。

然而,也需要注意的是,它可能受到矩阵效应、光谱干扰和仪器漂移等因素的影响,因此在实际应用中需要谨慎使用。

原子吸收光谱法(共73张课件)

原子吸收光谱法(共73张课件)

比尔定律:
▪ 分析中,待测元素的浓度与其吸收辐射的原子总数成正 比。在一定浓度范围和一定火焰宽度L下:
▪ 可以通过测吸光度可求得待测元素的含量。
▪ 原子吸收分光光度A分析k'的c定量基础。待测元素浓度
2024/8/30
27
§4-3 原子吸收分光光度计
一、基本构造
光源
原子化系统
分光系统
检测系统 显示装置

处吸收轮廓上两点间的距离

(即两点间的频率差)。
▪ 数量级为10-3 -10-2 nm (发射线10-4 -10-3 nm )。
图4.2 原子吸收光谱轮廓图
2024/8/30
12
谱线变宽: 自然宽度 :N
▪ 无外界影响下,谱线仍有一定宽度—自然宽度。
▪ 与原子发生能级间跃迁时激发态原子的平均寿命有关。
2024/8/30
图4.3 峰值吸收测量示意图
21
应用原理: ▪ 光源:
2024/8/30
A lg I0 I
I0
e
0
I0d
I
e
0
Id
I I0eKL
I e 0
I0eKLd
Alg
e
0
I0 d
I e d e
K L
0 0
则:
在满足瓦尔西方法的测量条件时,在积分界限
内 吸可 收以 系认 数为。为常数,并合K理 地使之等于峰值
5%,测定灵敏度极差。
噪音低;
用该元素的锐线光源发射出特征辐射。 特点: 原子吸收分析的主要特点是测定灵敏度高,特效
发射的谱线稳定性好、强度高且宽度窄。
共振线在外光路损失小。
试样在原子化器中被蒸发,解离为气态基态原子。 共Ok振! L线et(’s特Ha征ve谱a线B)re是ak元. 素所有谱线中最容易发生、最灵敏的线,又具有元素的特征,所以分析中用该谱线作为分析线。

《仪器分析》第十二章_原子吸收光谱法

《仪器分析》第十二章_原子吸收光谱法

当采用锐线光源时,测量是在原子吸收线附近一定频 率范围内进行,即
I 0 I d
0

I I 0e
K l
I e
0

K l
d
锐线光源的很小,可以近似用峰值吸收系数K0 来表 示原子对辐射的吸收,因此有吸光度A为:
I0 A lg lg I


质的强谱线。
空心阴极灯光的强度与灯的工作电流有很大关系。增
大灯电流,可以增加发射强度。但是,灯电流过大,会导 致一些不良现象,如阴极溅射增强,产生密度较大的电子 云,灯本身发生自蚀现象;加快内充气体的“消耗”而缩 短寿命;阴极温度过高,使阴极物质熔化;放电不正常,
灯光强度不稳定灯。灯电流太小,灯光强低,稳定性和信
(2)峰值吸收 1955年Walsh提出,在温度不太高的稳定火焰情况下,
峰值吸收系数与被测元素的原子浓度也成正比。通常情况下,
吸收轮廓决定于多普勒变宽,吸收系数为
2 ( 0 ) ln 2 D 2
K K 0e
K0 2 D
D 是多普勒 半宽度
K d mc N
于分析化学的原因。
e 2
0
f
m 是电子质量,f是振子强度,即能被入射 辐射激发的每个原子的平均电子数,正比 于原子对特定波长光的吸收概率。
若能测定积分吸收,则可以求出原子浓度。但是,测定谱 线宽度仅仅10-3nm的积分吸收,需要分辨率很高的色散仪器,
难以做到,这也是100多年前发现原子吸收现象却一直未能用
空心阴极灯工作原理:
当正、负两电极间施加适当的直流电压(300V—500V)
时,便开始放电,阴极发射的电子在电场作用下,高速射

原子吸收光谱法工作原理

原子吸收光谱法工作原理

原子吸收光谱法工作原理原子吸收光谱法是一种常用的分析化学方法,广泛应用于食品、医药、环保、冶金、矿产等领域。

该方法通过原子吸收光谱仪,测定样品中的金属元素含量,具有高精度、高灵敏度、高选择性等优点。

原子吸收光谱法的工作原理是基于原子的能级结构和光谱学的原理。

当原子处于基态时,其电子处于最低能级,如果给原子能量,电子会跃迁到更高的能级,这个过程会伴随着吸收特定波长的光。

当电子从高能级跃迁回到低能级时,会放出特定波长的光。

这些波长的光称为原子的谱线。

原子吸收光谱法利用这个原理进行分析。

首先将样品中的金属元素转化为原子态,这个过程称为原子化。

常用的原子化方法有火焰原子吸收光谱法和电感耦合等离子体质谱法。

火焰原子吸收光谱法是将样品中的金属元素喷入火焰中,使其原子化。

电感耦合等离子体质谱法是将样品中的金属元素离子化,然后通过高温等离子体进行原子化。

接下来将样品中的金属元素原子化后,通过原子吸收光谱仪进行分析。

原子吸收光谱仪包括光源、样品池、单色器、探测器等组成部分。

光源发出一束特定波长的光,经过单色器分离出特定波长的光线,然后通过样品池,样品中的金属元素会吸收特定波长的光线。

探测器检测样品池中透过的光强度,根据透过的光强度计算出样品中金属元素的含量。

需要注意的是,不同金属元素对应的谱线不同,因此需要针对不同金属元素选择不同的波长进行分析。

此外,样品中其他成分也可能对分析结果产生影响,因此需要对样品进行前处理或者选择合适的分析方法。

总之,原子吸收光谱法是一种基于原子能级结构和光谱学原理的分析方法,通过测定样品中金属元素吸收特定波长的光线来进行分析。

该方法具有高精度、高灵敏度、高选择性等优点,在食品、医药、环保、冶金、矿产等领域得到了广泛应用。

原子吸收光谱法原理

原子吸收光谱法原理

原子吸收光谱法原理原子吸收光谱法(Atomic Absorption Spectroscopy,AAS)是一种广泛应用于化学分析领域的分光光度法。

它利用原子对特定波长的光的吸收来分析样品中的金属元素含量。

原子吸收光谱法具有灵敏度高、选择性好、准确度高等优点,因此在环境监测、食品安全、药品检测等领域得到了广泛应用。

原子吸收光谱法的原理基于原子的能级结构和光谱学的基本原理。

当原子处于基态时,它们吸收特定波长的光能量,使得电子跃迁到激发态。

而原子在激发态的寿命非常短暂,因此在光源关闭后,原子会迅速退回到基态,释放出与吸收时相同波长的光。

原子吸收光谱法利用这一原理来分析样品中的金属元素含量。

在原子吸收光谱法中,首先需要将样品转化为原子状态。

这一过程通常包括溶解、挥发、电离等步骤,以使得金属元素以原子形式存在。

接下来,样品原子被导入火焰或炉内,使得原子吸收特定波长的光。

通过测量样品吸收光的强度,可以推断出样品中金属元素的含量。

原子吸收光谱法的灵敏度主要取决于光源的选择和样品原子的浓度。

常用的光源包括空心阴极灯和电热原子化炉,它们能够提供高能量的特定波长光。

而样品中金属元素的浓度越高,吸收光的强度也越大,因此原子吸收光谱法对于微量金属元素的分析具有很高的灵敏度。

此外,原子吸收光谱法还具有很好的选择性。

由于每种金属元素都有特定的吸收波长,因此可以通过选择合适的光源波长来分析特定的金属元素。

这使得原子吸收光谱法能够对不同金属元素进行准确的定量分析。

总的来说,原子吸收光谱法是一种成熟、可靠的分析方法,它在化学分析领域发挥着重要作用。

通过深入理解原子的能级结构和光谱学原理,我们可以更好地理解原子吸收光谱法的工作原理,从而更好地应用于实际分析中。

希望本文的介绍能够帮助大家更好地理解原子吸收光谱法的原理,为相关领域的研究和实践提供一定的参考。

原子吸收光谱法的原理

原子吸收光谱法的原理

原子吸收光谱法原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。

中文名原子吸收光谱法外文名Atomic Absorption Spectroscopy光线范围紫外光和可见光出现时间上世纪50年代简称AAS测定方法标准曲线法、标准加入法别名原子吸收分光光度法基本原理原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。

由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。

当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。

特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比:A=KC式中K为常数;C为试样浓度;K包含了所有的常数。

此式就是原子吸收光谱法进行定量分析的理论基础由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。

由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。

由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。

AAS现已成为无机元素定量分析应用最广泛的一种分析方法。

该法主要适用样品中微量及痕量组分分析。

原子吸收光谱法谱线轮廓原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长范围,即有一定的宽度。

原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。

中心波长由原子能级决定。

原子吸收光谱法的原理

原子吸收光谱法的原理

原子吸收光谱法的原理原子吸收光谱法(Atomic Absorption Spectroscopy,AAS)是一种广泛应用于许多领域的分析技术。

原子吸收光谱法依靠吸收特定波长的光来测量样品中金属组分的浓度,通过比较样品和标准溶液的测定结果,可以确定样品中金属元素的含量。

AAS基本原理:AAS的基本原理是,将样品在高温下蒸发并电离,然后通过特定波长的光束照射样品中的金属离子,测量样品吸收光的强度。

光通过样品时,被金属离子吸收的量与金属离子浓度成正比,因此可以通过测量样品中的吸收光强度来测量金属离子的浓度。

AAS基本原理详解:1. 热原子化AAS首先将样品转化为气态原子或简单离子,在做AAS时,可以使用火焰或电弧来将样品气化,从而实现离子化分析。

火焰原子化是一种常用的技术,它通过将样品遇热蒸发,在去离子化过程中,将其转化为原子。

2. 原子能级在原子化过程中,样品中的分子会分解产生原子,这些原子具有不同的能级。

AAS的分析核心就是通过光谱来检测这些原子的不同能级。

3. 火焰中的原子吸收AAS中样品的原子化过程会通过燃气火焰来实现,火焰中的原子能够吸收特定波长的光。

当光进入火焰时,会与火焰中的金属原子发生相互作用,原子能吸收特定的光谱波长,从而实现光谱检测。

4. 原子吸收测量信号检测当特定波长的光被吸收后,检测器会接收到检测信号。

检测器的种类和检测方法有多种,主要包括光电二极管(photodiode),光电倍增管(photomultiplier),以及电荷耦合器件(charge-coupled device)等。

在AAS实验中,还需要通过分光装置来进行光谱分析,从而实现精确的测量结果。

此外,还需要一个标准样品进行对比分析以确定样品中金属元素的含量。

总之,原子吸收光谱法是一种基于原子分析的分析技术,通过确定样品中特定金属元素吸收特定波长的光谱,来测定样品中的金属元素的含量。

它在环境、食品、医药、生化和冶金等领域都得到了广泛应用。

原子吸收光谱基本原理

原子吸收光谱基本原理

原子吸收光谱基本原理
原子吸收光谱是一种用于研究原子结构和元素组成的分析方法。

其基本原理是利用原子在特定波长的光辐射下吸收能量,并将其转化为原子内部的激发态,进而观察和测量吸收光的强度变化。

以下是原子吸收光谱的基本原理:
1. 激发态和基态:原子具有不同能级的状态,其中最低能级称为基态,而高于基态的能级称为激发态。

当给原子提供足够能量时,电子会从基态跃迁到激发态。

2. 能级跃迁:原子的能级之间存在一定的能量差,而这些能级之间的跃迁需要特定的能量。

当原子吸收特定波长的光时,光子的能量与能级之间的能量差相匹配,电子便会从低能级跃迁到高能级。

3. 波长选择性:每个元素都有其特定的电子结构和能级布局,因此它们对不同波长的光吸收具有选择性。

这些特定的吸收波长称为吸收线或谱线,可以用来识别和定量分析元素。

4. 实验测量:在实验中,通常将待测样品中的原子蒸发成烟雾或气体,并通过传输窗口引入光束。

然后,使用单色仪或光谱仪将白光分散成不同波长的光,其中包括待测元素谱线的特定波长。

当这些光通过样品时,被吸收的光会产生吸收谱线,其强度与待测元素的浓度成正比。

5. 谱线分析:测量吸收谱线的强度可以用来定量分析样品中待测元素的含量。

通过比较待测样品与已知浓度标准溶液的吸收
强度,可以绘制标准曲线或校准曲线,从而确定待测样品中元素的浓度。

总之,原子吸收光谱利用原子吸收光子能量的特性,通过测量吸收谱线的强度变化来分析样品中元素的含量。

这项技术被广泛应用于环境监测、食品安全、矿产资源勘探等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 分析范围广。发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。
在原子吸收光谱分析中,只要使化合物离解成原子就行了,不必激发,所以测定的是大部分原子。应用原子吸收光谱法可测定的元素达73种。就含量而言,既可测定低含量和主量元素,又可测定微量、痕量甚至超痕量元素;就元素的性质而言,既可测定金属元素、类金属元素,又可间接测定某些非金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定某些固态样品,这是其他分析技术所不能及的。
而对原子吸收光谱分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。
光线范围
紫外光和可见光
出现时间
上世纪50年代
简称
AAS
测定方法
标准曲线法、标准加入法
别名
原子吸收分光光度法
基本原理
原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比:
原子吸收光谱法物理干扰及其抑制
物理干扰指试样在前处理、转移、蒸发和原子化的过程中,试样的物理性质、温度等变化而导致的吸光度的变化。物理干扰是非选择性的,对溶液中各元素的影响基本相似。
削除和抑制物理干扰常采用如下方法:
(1) 配制与待测试样溶液相似组成的标准溶液,并在相同条件下进行测定。如果试样组成不详来自采用标准加入法可以削除物理干扰。
消除方法,可以减小狭缝宽度,使光谱通带小到可以阻挡多重发射的谱线,若波长差很小,则应另选分析线,降低灯电流也可以减少多重发射。
3、背景干扰和抑制
背景干扰包括分子吸收、光散射等。
分子吸收是原子化过程中生成的碱金属和碱土金属的卤化物、氧化物、氢氧化物等的吸收和火焰气体的吸收,是一种带状光谱,会在一定波长范围内产生干扰。
A=KC
式中K为常数;C为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础
由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。
1、 光源。光源的功能是发射被测元素的特征共振辐射。对光源的基本要求是:发射的共振辐射的半宽度要明显小于吸收线的半宽度;辐射强度大、背景低,低于特征共振辐射强度的1%;稳定性好,30分钟之内漂移不超过1%;噪声小于0.1%;使用寿命长于5安培小时。空心阴极放电灯是能满足上述各项要求的理想的锐线光源,应用最广。
除上述因素外,影响谱线变宽的还有其它一些因素,例如场致变宽、自吸效应等。但在通常的原子吸收分析实验条件下,吸收线的轮廓主要受多普勒和洛伦茨变宽的影响。在2000-3000K的温度范围内,原子吸收线的宽度约为10-3-10-2nm。
原子吸收光谱法仪器结构
原子吸收光谱仪由光源、原子化系统、分光系统、检测系统等几部分组成。通常有単光束型和双光束型两类。这种仪器光路系统结构简单,有较高的灵敏度,价格较低,便于推广,能满足日常分析工作的要求,但其最大的缺点是,不能消除光源被动所引起的基线漂移,对测定的精密度和准确度有意境的影响。
赫鲁兹马克变宽是指被测元素激发态原子与基态原子相互碰撞引起的变宽,称为共振变宽,又称赫鲁兹马克变宽或压力变宽。在通常的原子吸收测定条件下,被测元素的原子蒸气压力很少超过10-3mmHg,共振变宽效应可以不予考虑,而当蒸气压力达到0.1mmHg时,共振变宽效应则明显地表现出来。洛伦茨变宽是指被测元素原子与其它元素的原子相互碰撞引起的变宽,称为洛伦茨变宽。洛伦茨变宽随原子区内原子蒸气压力增大和温度升高而增大。
光散射是原子化过程中产生的微笑固体颗粒使光产生散射,吸光度增加,造成假吸收。波长越短,散射影响越大。
背景干扰都使吸光度增大,产生误差。石墨炉原子化法背景吸收干扰比火焰原子化法来得严重,有时不扣除背景会给测定结果带来较大误差。
目前用于商品仪器的背景矫正方法主要是氘灯扣除背景、塞曼效应扣除背景。
原子吸收光谱法主要特点
2、碰撞变宽。当原子吸收区的原子浓度足够高时,碰撞变宽是不可忽略的。因为基态原子是稳定的,其寿命可视为无限长,因此对原子吸收测定所常用的共振吸收线而言,谱线宽度仅与激发态原子的平均寿命有关,平均寿命越长,则谱线宽度越窄。原子之间相互碰撞导致激发态原子平均寿命缩短,引起谱线变宽。碰撞变宽分为两种,即赫鲁兹马克变宽和洛伦茨变宽。
1、多普勒变宽。多普勒宽度是由于原子热运动引起的。从物理学中已知,从一个运动着的原子发出的光,如果运动方向离开观测者,则在观测者看来,其频率较静止原子所发的光的频率低;反之,如原子向着观测者运动,则其频率较静止原子发出的光的频率为高,这就是多普勒效应。原子吸收分析中,对于火焰和石墨炉原子吸收池,气态原子处于无序热运动中,相对于检测器而言,各发光原子有着不同的运动分量,即使每个原子发出的光是频率相同的单色光,但检测器所接受的光则是频率略有不同的光,于是引起谱线的变宽。
原子吸收光谱法
原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。
中文名
原子吸收光谱法
外文名
Atomic Absorption Spectroscopy
原子吸收光谱法光谱干扰及其抑制
光谱干扰是指在单色器的光谱通带内,除了待测元素的分析线之外,还存在与其相邻的其他谱线而引起的干扰,常见的有以下三种。
1、吸收线重叠
一些元素谱线与其他元素谱线重叠,相互干扰。可另选灵敏度较高而干涉少的分析线抑制干扰或采用化学分离方法除去干扰元素。
2、光谱通带内的非吸收线
这是与光源有关的光谱干扰,即光源不仅发射被测元素的共振线,往往发射与其邻近的非吸收线。对于这些多重发射,被测元素的原子若不吸收,它们被监测器检测,产生一个不变的背景型号,使被测元素的测定敏感度降低;若被测元素的原子对这些发射线产生吸收,将使测定结果不正确,产生较大的正误差。
原子吸收光谱法优越性
原子吸收光谱法该法具有检出限低(火焰法可达μg/cm–3级)准确度高(火焰法相对误差小于1%),选择性好(即干扰少)分析速度快,应用范围广(火焰法可分析30多种/70多种元素,石墨炉法可分析70多种元素,氢化物发生法可分析11种元素)等优点[2]

1 选择性强。这是因为原子吸收带宽很窄的缘故。因此,测定比较快速简便,并有条件实现自动化操作。在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。
非火焰原子化法,其中应用最广的是石墨炉电热原子化法。
3、分光器。它由入射和出射狭缝、反射镜和色散元件组成,其作用是将所需要的共振吸收线分离出来。分光器的关键部件是色散元件,商品仪器都是使用光栅。原子吸收光谱仪对分光器的分辨率要求不高,曾以能分辨开镍三线Ni230.003、Ni231.603、Ni231.096nm为标准,后采用Mn279.5和279.8nm代替Ni三线来检定分辨率。光栅放置在原子化器之后,以阻止来自原子化器内的所有不需要的辐射进入检测器。
4、检测系统。原子吸收光谱仪中广泛使用的检测器是光电倍增管,一些仪器也采用CCD作为检测器。
原子吸收光谱法干扰效应
原子吸收光谱分析法与原子发射光谱分析法相比,尽管干扰较少并易于克服,但在实际工作中干扰效应仍然经常发生,而且有时表现得很严重,因此了解干扰效应的类型、本质及其抑制方法很重要。原子吸收光谱中的干扰效应一般可分为四类:物理干扰、化学干扰、电离干扰和光谱干扰。
2、灵敏度高。原子吸收光谱分析法是目前最灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14g。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。无火焰原子吸收分析的试样用量仅需试液5~100?l。固体直接进样石墨炉原子吸收法仅需0.05~30mg,这对于试样来源困难的分析是极为有利的。譬如,测定小儿血清中的铅,取样只需10?l即可。
消除或抑制其化学干扰应该根据具体情况采取以下具体措置措施:
1、加入干扰抑制剂
(1) 加入稀释剂 加入释放剂与干扰元素生成更稳定或更难挥发的化合物,从而使被测定元素从含有干扰元素的化合物中释放出来。
(2) 加入保护剂 保护剂多数是有机络合物。它与被测定元素或干扰元素形成稳定的络合物,避免待测定元素与干扰元素生成难挥发化合物。
(2) 尽可能避免使用粘度大的硫酸、磷酸来处理试样;当试液浓度较高时,适当稀释试液也可以抑制物理干扰。
相关文档
最新文档