MIM金属粉末注塑成型技术介绍

合集下载

mim工艺技术

mim工艺技术

mim工艺技术MIM(Metal Injection Molding)是一种综合了传统粉末冶金技术和塑料注塑成型技术的金属成形工艺。

它利用聚合物为载体,在高压注射成型时将金属粉末喷射入模具中,然后通过高温和高压烧结成型。

MIM工艺技术已经广泛应用于各个领域,如电子、汽车、医疗、化工等。

MIM工艺技术的优势之一是可以制造复杂形状的零部件。

相比传统的金属加工工艺,MIM工艺可以制造具有内孔、薄壁、复杂曲线等特殊结构的零部件,而且生产效率高。

MIM工艺的制造工艺是分为四个主要步骤:压注成型、脱模、脱脂和底漆。

通过调整模具的形状和复杂度,可以生产出各种各样的金属零件。

MIM工艺技术的另一个优势是材料的选择性。

根据不同的应用需求,可以选择不同的金属粉末制作零部件。

常用的MIM材料包括不锈钢、合金钢、硬质合金、钴合金等。

这些材料具有高强度、耐磨、耐腐蚀等特点,能够更好地满足各种应用的需求。

MIM工艺技术还具有材料利用率高、成本低等优点。

相较于传统的CNC加工工艺,MIM工艺可以最大限度地减少材料浪费,提高成品率和利用率。

同时,MIM工艺采用批量生产的方式,可以实现大规模生产,降低生产成本。

因此,MIM工艺技术已成为制造业中非常重要的一种生产工艺。

然而,MIM工艺技术也存在一些挑战和限制。

首先,对于一些特殊形状的零件,模具的设计和制造可能会较为困难,需要更高的精确度和工艺控制。

其次,对于一些特殊材料,如高温合金等,MIM工艺可能无法满足其特殊的热处理要求。

此外,MIM工艺在生产过程中也需要严格控制温度、压力等参数,以保证产品质量。

总之,MIM工艺技术通过结合粉末冶金和塑料注塑成型技术,实现了金属零件的高效制造。

其可以制造复杂形状的零部件,材料选择性高,且材料利用率高、成本低。

虽然存在一些挑战和限制,但这种工艺技术在制造业中具有广泛的应用前景。

随着技术的进一步发展,MIM工艺技术将不断改进和完善,为各行各业提供更好的解决方案。

金属粉末注射成型技术

金属粉末注射成型技术

技术应用领域
1.计算机及其辅助设施:如打印机零件、磁芯、撞针轴销、驱动零件; 2.工具:如钻头、刀头、喷嘴、枪钻、螺旋铣刀、冲头、套筒、扳手、电工工具,手工具等; 3.家用器具:如表壳、表链、电动牙刷、剪刀、风扇、高尔夫球头、珠宝链环、圆珠笔卡箍、刃具刀头等零 部件; 4.医疗机械用零件:如牙矫形架、剪刀、镊子; 5.军用零件:导弹尾翼、枪支零件、弹头、药型罩、引信用零件; 6.电器用零件:电子封装,微型马达、电子零件、传感器件; 7.机械用零件:如松棉机、纺织机、卷边机、办公机械等; 8.汽车船舶用零件:如离合器内环、拔叉套、分配器套、汽门导管、同步毂、安全气囊件等。
技术简介
其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用注射 成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终 产品。与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工 程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。因此,国 际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术” 和“21世纪的成形技术”。
金属粉末注射成型技术
将现代塑料注射成型技术引入粉末冶金领域而形成的新 型粉末冶金近净形成型技术
01 技术简介
目录
02 历史与现状
03 术应用领域
06 未来发展方向
金属粉末注射成型技术(Metal Powder Injection Molding Technology,简称MIM)是将现代塑料注射成型 技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成型技术。

MIM(金属材料粉末注塑成型)技术介绍

MIM(金属材料粉末注塑成型)技术介绍

精心整理
MIM(金属粉末注塑成型)技术介绍
?????MIM 是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。

MIM 的工艺步骤是:首先选取符合MIM MIM ????1????2~1.6μm ????3度高,工序简单,可实现连续大批量生产;?
????4、产品质量稳定、性能可靠,制品的相对密度可达95%~99%,可进行渗碳、淬火、回火等热处理。

产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀;?
国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。

?
MIM技术优势
MIM与传统粉末冶金相对比?
?MIM可以制造复杂形状的产品,避免更多的二次机加工。

?
?MIM产品密度高、耐蚀性好、强度高、延展性好。

?
?MIM可以将2个或更多PM产品组合成一个MIM产品,节省材料和工序。

?
MIM与机械加工相对比?
??MIM设计可以节省材料、降低重量。

???MIM可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。

MIM技术介绍

MIM技术介绍

MIM技术介绍MIM技术,即金属注射成型技术(Metal Injection Molding),是一种将金属粉末与高聚合物粉末相混合,通过注射成型后烧结制成零件的先进制造技术。

该技术的特点是将金属粉末颗粒与粘结剂混合,并在注射成型后通过烧结过程将粉末颗粒结合在一起形成致密的金属零件。

MIM技术是目前最流行的三维成型技术之一,它兼具了传统压力成型和金属烧结的优点。

在MIM技术中,首先将金属粉末与粘结剂按一定比例混合,形成MIM料浆。

然后,通过注射机将MIM料浆注射到金属模具中进行成型。

成型后的零件经过脱模,形成近净成型的未烧结零件。

最后,通过烧结过程,将未烧结零件在惰性气氛下加热至金属粉末的熔点以上进行烧结,粘结剂将烧结后残留物挥发,金属粉末颗粒结合在一起,形成致密的金属零件。

MIM技术的优点主要表现在以下几个方面。

首先,MIM技术可以制造形状复杂、精度高的零件,相比传统的金属加工方法更加灵活。

其次,MIM技术能够生产大批量的零件,并且具有高度的一致性,适用于需求量大的产品制造。

此外,MIM技术还可以制造超细或微型零件,满足现代微电子、医疗器械等领域对高精度零件的需求。

尽管MIM技术在低成本、高效率和高精度等方面具有明显优势,但也存在一些挑战。

首先,MIM技术对原料的要求较高,金属粉末的粒度和形状对成型效果有较大影响。

其次,粘结剂的选择和控制也是一项关键任务。

此外,由于烧结过程中需要控制温度和气氛等因素,烧结工艺相对复杂。

因此,MIM技术的成功应用需要综合考虑材料、工艺和设备等多个因素。

总的来说,MIM技术是一种高度灵活、高效率、高精度的金属成型方法,已在汽车、航空航天、电子、医疗器械等领域得到广泛应用。

随着材料科学和制造技术的不断发展,MIM技术将进一步完善和推广,为各个行业提供更多高质量的金属零件。

MIM技术作为一种金属粉末成型技术,具有独特的优势和特点,逐渐成为制造业中不可忽视的一种先进工艺。

金属粉末注射成型

金属粉末注射成型

金属粉末注射成型金属粉末注射成型(Metal Powder Injection Molding,简称MIM)是一种高效、精确和经济的金属加工技术。

它结合了传统的塑料注射成型和金属粉末冶金工艺,可以生产出复杂形状的金属部件。

MIM技术在汽车、医疗、航空航天等行业中得到广泛应用,本文将介绍MIM的工艺原理、材料选择和应用领域。

MIM工艺原理可以分为四个步骤:混合、注射、脱模和烧结。

首先,将金属粉末与聚合物粉末、脱模剂等混合,并将其加热到高温使其熔化。

然后,将熔融的混合物喷射到模具中,形成所需的部件形状。

接下来,通过在高温和高压下使部件凝固,并将其从模具中取出。

最后,在高温下进行烧结,以消除聚合物,并在金属颗粒之间形成冶金结合。

在MIM中,材料选择是关键。

常用的金属材料包括不锈钢、工具钢、硬质合金、钻石等。

不锈钢具有良好的韧性和耐腐蚀性,常用于制造医疗器械、手表零件等高精度部件。

工具钢具有高强度和耐磨性,常用于制造汽车零部件、工具等。

硬质合金具有高硬度和耐磨性,常用于制造切削工具、注射模具等。

钻石是一种具有超硬性和导热性的材料,常用于制造高性能刀具。

MIM技术具有许多优点。

首先,MIM可以生产出复杂形状的部件,减少了后续加工的需要。

其次,MIM可以实现批量生产,提高了生产效率。

再次,MIM可以生产出高密度的部件,具有良好的力学性能和表面质量。

此外,MIM工艺还可以减少材料的浪费,提高了资源利用率。

MIM技术在许多领域中得到了广泛的应用。

在汽车行业中,MIM可以制造各种复杂形状的汽车零部件,如发动机零件、制动系统零件等。

在医疗行业中,MIM可以制造高精度医疗器械,如人工关节、牙科器械等。

在航空航天行业中,MIM可以制造轻量化部件,提高了飞机的燃油效率。

此外,MIM还可以应用于电子、军工等领域。

总之,金属粉末注射成型是一种高效、精确和经济的金属加工技术。

通过在MIM中选择合适的材料和工艺参数,可以生产出各种复杂形状的金属部件,并在汽车、医疗、航空航天等行业中得到广泛应用。

MIM金属粉末注塑成型专业技术介绍

MIM金属粉末注塑成型专业技术介绍
MIM通过模具一次成形复杂产品,避免多道加工工序。
MIM可以制造难以机械加工材料的复杂形状零件。
MIM 与精密铸造相对比
MIM 可以制造薄壁产品,最薄可以做到0.2mm。
MIM 产品表面粗糙度更好。ﻫMIM更适宜制细盲孔和通孔。ﻫMIM 大大减少了二次机加工的工作量。
MIM可以快速的大批量、低成本制造小型零件。



中-高
成 本




MIM 与传统粉末冶金相对比ﻫMIM可以制造复杂形状的产品,避免更多的二次机加工。
MIM 产品密度高、耐蚀性好、强度高、延展性好。
MIM 可以将2个或更多PM产品组合成一个MIM产品,节省材料和工序。
MIM与机械加工相对比
MIM 设计可以节省材料、降低重量。ﻫMIM 可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。
医疗、军工结构件
磁性材料
Fe,Fe14 Nd2 B,SmCo5
各种磁性能部件
几种典型MIM材料的性能:
材料
密度
硬度
拉伸强度
伸长率
g/cm3
洛氏
MPa
%
铁基合金
MIM-2200(烧结态)
7.65
45HRB
290
40
MIM-2700(烧结态)
7.65
69HRB
440
26
MIM-4605(烧结态)
7.62
415
25
钨合金
95%W-Ni-Fe
18.1
30
960
25
97%W-Ni-Fe
18.5
33
940
15
硬质合金
YG8X

金属粉末注射成型技术(MIM)工艺原理介绍

金属粉末注射成型技术(MIM)工艺原理介绍

金属粉末注射成型技术(MIM)工艺原理介绍金属粉末注射成型技术(MetalPowder Injection Molding Technology,简称MIM)是将现代塑料注射成型技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成型技术。

MIM基本工艺过程首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用注射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终产品。

与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。

因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成型技术”和“21世纪的成形技术”。

MIM基本工作原理MIM流程结合了注塑成型设计的灵活性和精密金属的高强度和整体性,来实现极度复杂几何部件的低成本解决方案。

MIM流程分为四个独特加工步骤(混合、成型、脱脂和烧结)来实现零部件的生产,针对产品特性决定是否需要进行表面处理。

混合颗粒低于20µ的精细金属粉末和热塑性塑料、石蜡粘结剂按照精确比例进行混合。

金属粉末和粘结剂的体积约为60:40。

混合过程在一个专门的混合设备中进行,加热到一定的温度使粘结剂熔化。

大部分情况使用机械进行混合,直到金属粉末颗粒均匀地涂上粘结剂冷却后,形成颗粒状(称为原料),这些颗粒能够被注入模腔。

成型注射成型的设备和技术与注塑成型是相似的。

颗粒状的原料被送入机器加热并在高压下注入模腔这个环节形成(greenpart)冷却后脱模只有在大约200°c的条件下使粘结剂熔化(与金属粉末充分融合),上述整个过程才能进行模具可以设计为多腔以提高生产率。

模腔尺寸设计要比金属部件20%来补偿烧结过程中产生的收缩。

每种材料的收缩变化是精确的、已知的。

mimmil成型工艺

mimmil成型工艺

mimmil成型工艺
MIM(Metal Injection Molding)是一种金属注射成型工艺,也被称为Mimmil。

它是将粉末冶金和塑料注塑成型工艺相结合
的一种复合工艺。

MIM工艺可以制造出复杂形状、高密度、
高强度的金属部件。

Mimmil工艺的主要步骤包括:
1. 原料制备:将金属粉末与聚合物混合,形成可流动的注射料。

2. 注塑成型:将注射料加热至熔融状态后,通过注射机将熔融物质注入到成型模具中,然后冷却固化。

3. 去脱模:将成型的零件从模具中取出。

4. 烧结:通过高温处理,使得金属粉末粒子结合在一起,形成固体金属零件。

5. 后处理:包括去除模具支撑结构、表面处理、加工等工序,以得到最终的产品。

Mimmil工艺具有以下优点:
1. 可以制造出复杂形状的零件,如小孔、细槽等。

2. 良好的直线尺寸精度,可以达到±0.1%。

3. 零件密度高,可以达到 98%以上。

4. 可以制造高强度、高硬度和高耐磨的金属零件。

5. 生产周期短,工艺灵活,能够实现大批量生产。

Mimmil工艺在汽车、医疗器械、电子设备等领域有广泛应用,并且正在不断发展和完善,为金属制造行业带来了新的可能性。

MIM金属粉末注射成形

MIM金属粉末注射成形
(1)MIM可以成型三维形状复杂的各种金属材料零件(只要这种材料能被制成细粉)。零件各部位的密度和性能 一致,既各向同性。为零件设计提供了较大的自由度。
(2)MIM能最大限度制得接近最终形状的零件,尺寸精度较高。
(3)即使是固相烧结,MIM制品的相对密度可达95%以上,其性能可与锻造材料相媲美。特别是动力学性能优良。
流动的载体。因此,粘接剂的选择是整个粉末注射成型的关键。对有机粘接剂要求:①用量少,即用较少的粘接剂 能使混合料产生较好的流变性;②不反应,在去除粘接剂的过程中与金属粉末不起任何化学反应;③易去除,在制 品内不残留碳。
2.2.3 混炼与制粒 混炼时把金属粉末与有机粘接剂均匀掺混在一起,将其流变性调整到适于注射成型状态的作用,混合料的均匀
程度直接影响其流动性,因而影响注射成型工艺参数乃至最终材料的密度及其它性能,注射成型过程中产生的下角 料、废品都可重新破碎、制粒,回收再用。
2.3.4 注射成型
本步工艺过程与塑料注射成型工艺过程在原理上是一致的,其设备条件也基本相同。在注射成型过程中,混合 料在注射机料筒内被加热成具有流变性的塑性物料,并在适当的注射压力下注入模具中,成型出毛坯。注射成型的 毛坯的密度在微观上应均匀一致,从而使制品在烧结过程中均匀收缩。控制注射温度、模具温度、注射压力、保压 时间等成型参数对获得稳定的生坯重量至关重要。要防止注射料中各组分的分离和偏析,否则将导致尺寸失控和畸 变而报废。
3.1.2 MIM与精密铸造的比较
在金属成型工艺中,压铸和精密铸造是可以成型三维复杂形状的零件,但压铸仅限于低熔点金属,而精密铸造 (IC)限于合金钢、不锈钢、高温合金等高熔点金属及有色金属,对于难熔合金如硬质合金、高密度合金、金属陶 瓷等却无能为力,这是IC的本质局限性,而且IC对于很小、很薄、大批量的零件生产是十分困难或不可行的。IC产 业化已成熟,发展的潜力有限。MIM是新兴的工艺,将挤入IC大批量小零件的市场。

MIM金属注射成型工艺

MIM金属注射成型工艺

MIM金属注射成型工艺金属注射成型(Metal Injection Molding),简称MIM。

是一种将金属、陶瓷或复合材料通过粉末冶金工艺和塑料注射成型工艺相结合加工成型的先进制造工艺。

相对于传统的金属加工方式,MIM工艺具有高精度、高效率、低成本和复杂几何形状加工等优点。

MIM工艺的工作原理是先将金属粉末与绑定剂混合,形成可注射的糊状物。

然后,将糊状物充填进注射模具中,在高温高压的条件下,将糊状物注射成模具所需的形状。

经过烧结、退bind剂和后处理等步骤,最终得到高密度、高强度的金属零件。

MIM工艺的特点如下:1.高精度:MIM工艺可以制造出精度高的复杂零件,其精度可达到0.1mm。

与传统的金属加工方式相比,MIM工艺无需进行额外的加工,能够大大提高生产效率。

2.高效率:MIM工艺能够一次性完成复杂零件的成型,无需多次加工。

同时,每次注射可以注射多个零件,大大提高了生产效率。

3.低成本:相对于传统的金属加工方式,MIM工艺不需要额外加工,可以减少人工和设备投入。

另外,由于MIM工艺采用粉末冶金工艺,材料的浪费也相对较少。

4.适用范围广:MIM工艺适用于多种材料,包括不锈钢、钛合金、铁基合金、镍基合金等。

同时,MIM工艺还能够制造涂层、多孔和镶嵌等复合材料,并且能够制造具有种类繁多的零件。

MIM工艺在多个领域得到应用,包括汽车、医疗设备、航空航天、电子等。

例如,汽车领域,MIM工艺可以制造发动机零件、传动装置零件等。

医疗设备领域,MIM工艺可以制造外科器械、植入器械等。

航空航天领域,MIM工艺可以制造航天器零件、航空发动机零件等。

电子领域,MIM工艺可以制造电子连接器、电子器件外壳等。

然而,MIM工艺也存在一些挑战和限制。

其中之一是材料选择的限制,因为不同材料的烧结温度和性能要求不同,这对生产过程的稳定性和成本有一定的影响。

另外,由于注射模具的制造和维护成本高,对于小批量生产和复杂形状的零件来说,MIM工艺的成本可能较高。

金属粉末注射成型技术

金属粉末注射成型技术

金属粉末注射成型技术金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是一种先进的制造工艺,结合了粉末冶金和塑料注射成型技术,广泛应用于金属零件的制造。

MIM技术以其高精度、高复杂性和高效率的特点,成为近年来制造业领域的热门技术。

一、MIM工艺简介金属粉末注射成型技术是将金属粉末与有机材料(通常为热熔型塑料)混合,经过塑化、成型、脱脂和烧结等多个工艺步骤,最终形成具有金属特性的零件。

该技术的基本步骤包括:原料准备、混合、注射成型、脱脂和烧结。

1. 原料准备金属粉末是MIM技术的关键原料,其粒径通常为10~20μm,且具有良好的流动性和可压缩性。

可以使用的金属粉末有不锈钢、合金钢、铁基合金、钛合金等。

同时,还需准备有机材料(通常是聚丙烯、聚氨酯或类似材料)作为粘结剂。

2. 混合将金属粉末和有机材料进行混合,通常采用机械搅拌或球磨的方法,确保金属粉末均匀分布在有机材料中。

3. 注射成型混合料经过塑化,放入注射成型机中进行注射成型。

注射成型机通过加热熔融的混合料,并将其注入模具中,在一定的温度和压力下形成所需的零件形状。

4. 脱脂注射成型后,零件经过脱脂工艺,将有机材料从混合料中去除。

通常使用热处理或溶剂处理方法进行脱脂。

5. 烧结脱脂后的零件被置于特定的高温环境中,金属粉末与有机材料经过烧结而成。

在烧结过程中,金属颗粒之间发生冶金结合,形成致密的金属零件。

二、MIM技术的优势金属粉末注射成型技术相比其他金属加工方式具有以下几个显著优势:1. 复杂形状MIM技术可以制造复杂形状的金属零件,包括细小孔洞、薄壁结构、内部腔体等。

这种高精度和高复杂性的加工能力,使得MIM技术在航空航天、医疗器械、汽车零部件等领域得到广泛应用。

2. 材料多样性MIM技术可以使用多种金属粉末制造零件,涵盖广泛的金属材料,包括不锈钢、合金钢、铁基合金、钛合金等。

这使得MIM技术具有较大的材料选择范围,满足不同应用领域对材料性能的需求。

金属粉末注射成型技术(MIM)

金属粉末注射成型技术(MIM)

金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是将现代塑料注射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。

其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用注射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终产品。

与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。

因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。

美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并得到迅速推广。

特别是八十年代中期,这项技术实现产业化以来更获得突飞猛进的发展,每年都以惊人的速度递增。

到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。

日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工业的推广,这些公司包括有太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工--爱普生、大同特殊钢等。

目前日本有四十多家专业从事MIM产业的公司,其MIM工业产品的销售总值早已超过欧洲并直追美国。

到目前为止,全球已有百余家公司从事该项技术的产品开发、研制与销售工作,MIM技术也因此成为新型制造业中最为活跃的前沿技术领域,被世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向MIM技术金属粉末注射成型技术是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。

金属注射粉末成型工艺介绍

金属注射粉末成型工艺介绍

金属注射粉末成型工艺介绍金属粉末注射成型(Metal Injection Molding,简称MIM)是一种新的零部件制备技术,它是将塑料注射成型技术引入到粉末冶金领域而形成的一种全新的零部件加工技术。

众所周知,塑料注射成形技术能生产出各种形状复杂且价格低廉的塑料制品,但塑料制品强度不高,为了改善其性能,在塑料中添加金属粉末以得到强度较高、耐磨性好的制品。

现在,这一想法已发展为最大限度地提高固体粒子含量,并在随后的脱脂烧结过程中完全去除粘结剂,从而使成形坯致密化。

这种新的粉末冶金成型方法被称为金属粉末注射成型。

金属注塑成型(MIM)工艺特点1、金属注塑成型技术可以概括为:现代塑料注塑成型技术+粉末冶金技术。

2、MIM工艺流程为:状态下(~150℃)用注射成型机注入模腔内固化成形;然后用化学或热分解的方法将成形坯中的粘结剂脱除;最后经烧结致密化得到最终产品。

有的烧结产品还可进行进一步致密化处理、热处理或机加工。

4、MIM技术特点:---- 可以直接制备出具有最终形状和尺寸的复杂零部件。

例如:非对称零件,带沟槽、横孔、盲孔的零件,壁厚变化比较大的零件,表面带花纹和文字的零件等。

产品性能优越由于MIM产品微观组织均匀,没有铸造工艺中出现的粗大结晶组织和成分偏析,产品密度高,产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀,要明显优于精密铸造材料和传统粉末冶金材料。

---- 可以实现零部件一体化。

由于加工技术或材料性能的原因,有些部件采用传统技术制造时,需要加工成几个零件来组装,有时几个零件的材料还不一样。

采用MIM技术则可以直接制成一个整体的复合部件。

---- 材料适应性广。

可以说:能制成合适粉末的任何材料都可以用MIM技术制造零部件。

---- 生产成本低。

主要表现在:可以减少甚至消除机加工,劳动强度低,大幅度的提高生产效率;原材料利用率高,避免切削加工中的浪费;生产线高度自动化,工序简单,可连续大批量生产。

MIM金属粉末注射成型技术简介

MIM金属粉末注射成型技术简介

MIM金属粉末注射成型技术简介MIM(Metal Injection Molding)金属粉末注射成型技术是一种将金属粉末与聚合物混合并注射成型的成型工艺。

这种工艺结合了传统金属粉末冶金和塑料注射成型技术的优势,可以生产出复杂形状、高精度和高强度的金属零件。

MIM工艺的基本原理是将金属粉末与适当比例的聚合物混合,并在高温下注射进模具中。

注射后,模具中的混合物经过固化和烧结两个步骤。

首先,在固化阶段,聚合物在高温下固化成强度较低的绿坯。

然后,在烧结阶段,通过加热使聚合物燃烧脱除,金属粉末颗粒在密实的绿坯中结合成金属零件。

MIM工艺具有以下几个优点。

首先,它可以实现复杂形状的金属零件的制作,包括内腔、细槽和细孔等特殊结构。

其次,MIM可以生产出精度高、表面光滑的零件。

此外,在同样强度要求下,MIM制件的重量通常比传统制造工艺更轻。

最后,MIM工艺适用于大批量生产,可以实现高效率、低成本的生产。

MIM工艺的主要应用领域包括电子、汽车、医疗、军工等行业。

在电子领域,MIM可以制作出细小的电子器件,如连接器、电池片和耳机插头等。

在汽车领域,MIM可以制作出复杂的发动机零件、传动系统部件和刹车系统组件等。

在医疗领域,MIM可以制作出高精度的人工关节、牙科器械和手术工具等。

在军工领域,MIM可以制作出高强度、耐磨的武器部件和飞行器部件等。

然而,MIM工艺也存在一些限制。

首先,MIM工艺的设备和材料成本较高,需要更高的投资。

其次,MIM的制造周期较长,通常需要数周至数月的时间。

最后,MIM工艺的材料种类有限,只适用于可烧结金属粉末,如不锈钢、合金钢和钛合金等。

总的来说,MIM金属粉末注射成型技术是一种高效、精密和经济的金属制造工艺。

随着对金属零件的需求不断增加,MIM有望在各行业中得到更广泛的应用。

未来,随着新材料的发展和工艺改进,MIM技术将进一步提升零件的性能和质量,为各行业的发展带来更多的机遇和挑战。

MIM(金属粉末注塑成型)技术介绍

MIM(金属粉末注塑成型)技术介绍

MIM(金属粉末注塑成型)技术介绍MIM是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。

MIM的工艺步骤是:首先选取符合MIM要求的金属粉末与有机粘结剂在一定温度条件下采用适当的方法混合成均匀的喂料,然后经制粒后在加热塑化状态下用注射成形机注入模具型腔内获得成形坯,再经过化学或溶剂萃取的方法脱脂处理,最后经烧结致密化得到最终产品。

MIM产品的特点:1、零部件几何形状的自由度高,能像生产塑料制品一样,一次成形生产形状复杂的金属零部件 ;2、 MIM产品密度均匀、光洁度好,表面粗糙度可达到Ra 0.80 ~ 1.6 μm ,重量范围在 0.1 ~200g。

尺寸精度高(± 0.1% ~±0.3% ),一般无需后续加工 ;3、适用材料范围宽,应用领域广,原材料利用率高,生产自动化程度高,工序简单,可实现连续大批量生产 ;4、产品质量稳定、性能可靠,制品的相对密度可达95% ~ 99% ,可进行渗碳、淬火、回火等热处理。

产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀;国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。

MIM技术优势参数MIM传统 PM机械加工精密铸造相对密度98%98%100%98%拉伸强度高低高高延伸率高低高高硬度高低高高复杂程度高低高中表面粗糙度高中高中量产可行性高高低中材料范围高高高中- 高成本中低高中MIM与传统粉末冶金相对比MIM可以制造复杂形状的产品,避免更多的二次机加工。

MIM产品密度高、耐蚀性好、强度高、延展性好。

MIM 可以将 2 个或更多 PM 产品组合成一个MIM产品,节省材料和工序。

MIM与机械加工相对比MIM设计可以节省材料、降低重量。

MIM可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。

金属粉末注射成型技术

金属粉末注射成型技术

金属粉末注射成型技术前言金属材料是工业制造领域中最为基础和重要的材料之一,目前制造金属零件的方法主要有:铸造、锻造、加工、焊接等。

其中,传统的金属制造方法存在着一些局限性,比如造型精度有限、生产周期长等。

为了克服这些限制并满足不同领域对金属产品更高的要求,人们逐渐发展和推广了一种被称为“金属粉末注射成型技术”的新工艺。

什么是金属粉末注射成型技术?金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是将金属粉末和橡胶树脂混合物压制成为原型,然后将原型通过特定的注射设备放到高温致密炉中进行高温烧结,同时橡胶树脂减数挥发,形成致密的金属部件。

注射成型过程的实标非常高,达到了85-95%。

与其他规整制造方式相比,MIM技术可制造出一些传统方法无法实现的金属部件。

同时,压缩烧结过程适用于大量制造、复杂的几何结构和高精度的细小零件。

MIM技术的工艺过程1.原材料制备:将金属粉末与橡胶树脂按配方按比例调配混合,制成金属粉末和树脂丸子。

2.注射成型:将上述丸子通过注射设备注射到有轨迹的催化剂上形成模具。

3.脱模:用加压空气将模具从漆面上分离出来。

4.热炼:采用专业热炼设备热炼金属制成物。

5.成品处理:通过各种加工手段对金属零件进行修整和抛光。

MIM技术的优势MIM技术具有以下优势:•可以生产细小的零件和高精度的特殊形状。

•最大程度上避免了应力集中的情况。

•可以制造比传统制造方式更复杂的形状、零件和组件。

•由于采用的是金属粉末生产工艺,因此可以大量节省原材料和成本。

•高生产效率,不需要进行额外的热加工或与这些工艺相似的形式。

•可适应多种金属材料的制造。

MIM技术的应用领域MIM技术在汽车、医疗设备、手表、航空航天、枪械等领域广泛应用。

其中汽车领域应用最为广泛。

例如,汽车行业中的高性能活塞、变速器、发动机零件等,都可以通过MIM技术制造,拥有更高的强度和更好的密封性能。

在枪械领域,MIM技术可以用于生产枪管、扳机、弹膛等零件。

金属粉末注射成型技术模版

金属粉末注射成型技术模版

金属粉末注射成型技术模版金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是一种将细小金属粉末通过混合、精磨、注射成型和烧结工艺,制造复杂形状金属零件的先进制造技术。

该技术结合了传统注射成型和粉末冶金工艺的优势,具备高质量、高精度、高效率及节能环保等优点,并被广泛应用于航空、汽车、电子、医疗等领域。

本文将从MIM的工艺流程、材料选择、设备要求等方面进行介绍。

一、MIM工艺流程MIM工艺主要包括金属粉末的制备、混合、粉末与增塑剂的注射成型、烧结和后处理等环节。

1. 金属粉末的制备金属粉末是MIM工艺的核心材料,其品质影响成品零件的质量。

金属粉末可以通过多种方法获得,如气雾法、水雾法、球磨法等。

制备金属粉末需要控制粉末粒度、形状和分布等参数,以满足MIM工艺的要求。

2. 混合混合是将金属粉末与增塑剂、增稠剂等混合均匀的过程。

增塑剂的作用是使混合物具有足够的可塑性和可压性,增稠剂则用于控制混合物的流动性。

混合的目标是获得均匀的混合物,以提高注射成型的稳定性和一致性。

3. 注射成型注射成型是将混合物注入金属模具中,并施加足够的压力使其充满模具腔体的过程。

注射成型设备通常包括注射机、模具和温控系统。

注射成型需要控制温度、压力和注射速度等参数,以获得理想的成品零件。

4. 烧结烧结是将注射成型后的零件进行加热,使金属粉末颗粒结合为实体的过程。

烧结过程中需要控制温度、时间和气氛等参数,以实现金属结合和材料致密化。

烧结后的零件通常需要进行后处理,如去除增塑剂、调质等。

二、材料选择MIM技术可以制造多种金属材料,如不锈钢、钛合金、钴基合金等。

材料选择需考虑零件的用途和要求,如强度、耐热性、耐腐蚀性等。

常用的MIM材料包括:1. 不锈钢:具有良好的强度、耐热性和耐腐蚀性,广泛应用于汽车、医疗等领域。

2. 钛合金:具有良好的比强度和耐腐蚀性,适用于航空、航天等高温高压环境。

金属粉末注塑成型技术

金属粉末注塑成型技术

金属粉末注塑成型技术金属粉末注射成型技术(Metal Powder ※※※※ction Molding,简称MIM)是将现代塑料注射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。

其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用注射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终产品。

与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。

因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。

美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并得到迅速推广。

特别是八十年代中期,这项技术实现产业化以来更获得突飞猛进的发展,每年都以惊人的速度递增。

到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。

日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工业的推广,这些公司包括有太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工--爱普生、大同特殊钢等。

目前日本有四十多家专业从事MIM产业的公司,其MIM工业产品的销售总值早已超过欧洲并直追美国。

到目前为止,全球已有百余家公司从事该项技术的产品开发、研制与销售工作,MIM技术也因此成为新型制造业中最为活跃的前沿技术领域,被世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向MIM技术金属粉末注射成型技术是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。

金属的粉末注射成型技术

金属的粉末注射成型技术

金属的粉末注射成型技术
金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是发展至今最先进的一种小批量生产要求精密复杂零件的高技术技术。

MIM技术是一种热致凝固的成型技术,能够在低温(一般在200-300℃)及低压(一般为50-150MPa之间)的条件下进行加工,将外形精密、规格复杂的金属粉末挤压成型,利用高温热致凝固成型而制得复杂的金属零件。

MIM技术的主要流程主要包括材料制备、模具制备和成型烧结三个部分。

材料制备包括:混合、消粒、压制、搅拌及造粒等工序。

MIM技术所用金属粉末材料分两大类:一类是质量比较稳定的内部结构欠晶的粉末,铁、钢、铜;另一类是其他一些稀有金属,如钛、硼、银、锆、钨等,其含金量比较高。

金属粉末的粒径大小以及水合作用均对模具的质量有明显影响。

模具制备,是将金属粉状混合物填充进模具,用特殊的装置,以精确的压力、温度将粉末材料填缩成固体零件形状的工序,其又分为热凝固成型和气凝固成型,热凝固成型技术中,常用的有塑性凝固注射成型、凝固热压成型、凝固热熔成型。

最后是成型烧结,在高温等环境下,通过去除材料体内的组分,形成固态聚合物状态,从而达到陶瓷晶体的烧结。

金属粉末注射成型技术

金属粉末注射成型技术

金属粉末注射成型技术金属粉末注射成型(Metal Powder Injection Molding,简称MIM)技术是一种通过将金属粉末与热塑性聚合物射出成型技术相结合,制造复杂形状的金属制品。

MIM技术结合了传统的注射成型和金属粉末冶金技术的优点,能够高效、精确地制造出形状复杂的金属部件。

下面将从工艺原理、材料特点、工艺流程以及应用领域等方面详细介绍MIM技术。

一、工艺原理MIM技术主要包括四个步骤,即粉末混合、注射成型、烧结和后处理。

首先,将金属粉末与增塑剂、溶剂等辅助剂混合均匀,形成可塑性的混合料。

然后,将混合料装入注射机中,通过高压力将混合料注射至模具腔穴中,得到近成型的部件。

接下来,通过烧结工艺,将成型的部件进行加热,使金属粉末颗粒之间相互扩散,实现部件的致密化和结合。

最后,进行去脱模、表面处理等后处理工艺,使得最终制品达到所需的精度和表面质量。

二、材料特点MIM技术可以制造多种金属的制品,包括不锈钢、钛合金、铜合金、铁合金等。

这些材料具有良好的机械性能、耐磨、耐腐蚀等特点,可以满足各种应用领域的需求。

金属粉末的粒度一般在5-20μm之间,可以根据制品要求进行选择。

此外,MIM制品可以采用多种表面处理工艺,如抛光、电镀、喷涂等,进一步提高产品的表面质量和装饰效果。

三、工艺流程MIM技术的工艺流程相对复杂,包括原料准备、混合、注射、烧结和后处理等环节。

首先,需要根据制品要求选择合适的金属粉末和添加剂,并对其进行筛选和处理。

然后,将金属粉末与增塑剂、溶剂等辅助剂进行混合,形成可塑性的混合料。

接下来,将混合料装入注射机中,通过高压力将混合料注射至模具腔穴中。

然后,将近成型的部件进行烧结,使其实现致密化和结合。

最后,通过去脱模、除渣、表面处理等后处理工艺,得到最终的金属部件。

四、应用领域MIM技术的应用领域非常广泛,包括电子通讯、汽车工业、医疗器械、军工等领域。

在电子通讯领域,MIM技术可以制造小型高精度的连接器、插件等零部件,满足电子设备不断减小体积和提高性能的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MIM(金属粉末注塑成型)技术介绍
?????MIM是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。

MIM的工艺步骤是:首先选取符合MIM要求的金属粉末与有机粘结剂在一定温度条件下采用适当的方法混合成均匀的喂料,然后经制粒后在加热塑化状态下用注射成形机注入模具型腔内获得成形坯,再经过化学或溶剂萃取的方法脱脂处理,最后经烧结致密化得到最终产品。

?
MIM产品的特点:?
????1、零部件几何形状的自由度高,能像生产塑料制品一样,一次成形生产形状复杂的金属零部件;?
????2、MIM产品密度均匀、光洁度好,表面粗糙度可达到Ra0.80~1.6μm,重量范围在0.1~200g。

尺寸精度高(±0.1%~±0.3%),一般无需后续加工;?? ????3、适用材料范围宽,应用领域广,原材料利用率高,生产自动化程度高,工序简单,可实现连续大批量生产;?
????4、产品质量稳定、性能可靠,制品的相对密度可达95%~99%,可进行渗碳、淬火、回火等热处理。

产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀;?
国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。

?
MIM与传统粉末冶金相对比?
?MIM可以制造复杂形状的产品,避免更多的二次机加工。

?
?MIM产品密度高、耐蚀性好、强度高、延展性好。

?
?MIM可以将2个或更多PM产品组合成一个MIM产品,节省材料和工序。

? MIM与机械加工相对比?
??MIM设计可以节省材料、降低重量。

???MIM可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。

???MIM通过模具一次成形复杂产品,避免多道加工工序。

???MIM可以制造难以机械加工材料的复杂形状零件。

?
MIM与精密铸造相对比?
?MIM可以制造薄壁产品,最薄可以做到0.2mm。

?
?MIM产品表面粗糙度更好。

?
?MIM更适宜制细盲孔和通孔。

?
?MIM大大减少了二次机加工的工作量。

?
?MIM可以快速的大批量、低成本制造小型零件。

?
MIM材料范围
常用MIM材料应用领域:?
几种典型MIM材料的性能:?
MIM工艺流程。

相关文档
最新文档