关于梁的正应力强度计算.
第36节 梁的应力计算与强度校核(一)
梁的应力计算及强度校核
纯弯梁截面上的应力分布规律: 梁横截面上的正应力沿截面高度成线性分布,在中性轴处 正应力等于零,在截面的上、下边缘应力值最大。
王晓平
梁的应力计算及强度校核
梁横截面上任意点正应力的计算公式为
公式表明:纯弯曲梁横截面上任意点的正应力与截面上的 弯矩和该点到中性轴的距离成正比,与截面对中性轴的惯 性矩成反比。
王晓平
ቤተ መጻሕፍቲ ባይዱ
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
王晓平
梁的应力计算及强度校核
能力目标:
1.纯弯曲与横力弯曲的区别,中性轴的确定。 2.应力分布图的绘制,横截面上任意点弯曲正应力的 计算。 3.应用强度条件解决梁的强度计算问题。
王晓平
梁的应力计算及强度校核
一般情况下在梁的横截面上会同时存在由剪力FQ引起的剪 应力τ及由弯矩M引起的正应力σ。
在发生平面弯曲的梁中,将只有弯矩没有剪力的弯曲称为 纯弯曲,将既有剪力又弯矩的弯曲称为横力弯曲。
王晓平
梁的应力计算及强度校核
一、纯弯曲梁横截面上的正应力 纯弯曲梁的变形现象:
当梁体下弯时 (1)原来相互平行的纵向直线均成 为仍相互平行的曲线,且梁轴线 以上部分曲线缩短,梁轴线以下 部分曲线伸长。
(2)所有原来与纵向直线垂直的 横向线仍保持与纵向线垂直的直 线,即横截面不变形。
梁弯曲时的强度计算
max
2、正应力强度条件
max
M max Wz
3、正应力强度计算 ①强度校核: M
max
max
Wz
②设计截面:
Wz
M max
max
③确定许可荷载:MFra bibliotek Wz
三、正应力强度条件
1、危险点的应力——最大正应力 弯矩绝对值最大的截面称为危险截面,危 险截面上最大正应力的点(截面的上下边缘) 称为危险点。 Iz 令: Wz 则: M
max
Wz ymax 式中 Wz 称为抗弯截面模量,它是一个与截面形状和 3 mm3 尺寸有关的几何量,单位为 m 或
工程中常见弯曲实例
中 性 层 与 中 性 轴 图 示
二、梁横截面上的正应力 梁横截面上任一点处的正应力与该点到中性 轴的垂直距离y成正比。即正应力沿着截面高 度按线性规律分布。中性轴上各点的正应力为 零。上、下边缘正应力最大。
My Iz
——梁横截面上的正应力
y——所求正应力的点到中 性轴的垂直距离 I z ——横截面对中性轴的惯性矩
梁横截面上的正应力y所求正应力的点到中性轴的垂直距离横截面对中性轴的惯性矩三正应力强度条件1危险点的应力最大正应力弯矩绝对值最大的截面称为危险截面危险截面上最大正应力的点截面的上下边缘称为危险点
§6—7 梁弯曲时的强度计算
水利工程系 丁灿辉
一、基本概念
1、纯弯曲与横力弯曲 平面弯曲时,某梁段各横截面上只有弯矩而没有 剪力,这种弯曲称为纯弯曲。如果既有弯矩又有剪 力则称为横力弯曲。 2、中性层与中性轴 假设梁是由无数层纵向纤维组成的,且各层纤维 互不挤压。发生纯弯曲时,上部各层纤维缩短,下 部各层纤维伸长,中间必有一层纤维既不伸长也不 缩短,称为中性层。中性层与横截面的交线称为中 性轴。中性轴将横截面分为受压区和受拉区。
工程力学梁的正应力强度条件及其应用1
ymax
对矩形截面
Wz
bh3 12 h2
bh2 6
Wz
bh2 6
对圆形截面
Wz
d 4
d
64 2
d 3
32
Wz
d 3
32
各种型钢的截面惯性矩Iz和弯曲截面系数Wz的 数值,可以在型钢表中查得。
为了保证梁能安全的工作,必须使梁横截面上的
最大正应力不超过材料的许用应力,所以梁的正应力
强度条件为
σmax
M max Wz
σ
二、三种强度问题的计算
σmax
M max Wz
σ
(1)强度校核 (2)选择截面 (3)确定许用荷载
σmax
M max Wz
σ
Wz
M max σ
M max Wz σ
例题10-2 一矩形截面简支木梁如图所示,已知l=4m, b=140mm,h=210mm,q=2kN/m,弯曲时木材的许 用正应力[σ]=10MPa,校核该梁的强度。
σc,max
MC Iz
y1
2.7 103 0.072 0.573105
33.9 106 Pa
33.9MPa [σc]
由以上分析知该梁满足强度要求。
例题10−4 如图所示的简支梁由工字钢制成,钢的 许用应力[σ ]=150MPa,试选择工字钢的型号。
解:先画出弯矩图如图b所示。 梁的最大弯矩值为
y1
1.8103 0.072 0.573105
22.5106 Pa
22.5MPa
第九章第六节梁弯曲时的应力及强度计算(上课用)
m
V
( Stresses in Beams)
m
m
M
V
m m
只有与剪应力有关的切向内力元素 d V = dA 才能合成剪力
只有与正应力有关的法向内力元素 d FN = dA 才能合成弯矩
剪力V 内力 弯矩M 正应力 剪应力
所以,在梁的横截面上一般
既有 正应力, 又有 剪应力
先观察下列各组图
所以,可作出如下 假设和推断:
1、平面假设:
2.单向受力假设: 各纵向纤维之间互不挤压,纵向纤维均处于单向受拉或受压的状态。 因此梁横截面上只有正应力σ而无剪应力τ
各横向线代表横截面,实验表 明梁的横截面变形后仍为平面。
梁在弯曲变形时,上面部分纵向纤维缩短,下面部分纵向纤维伸长,必 有一层纵向纤维既不伸长也不缩短,保持原来的长度,这一纵向纤维层称为 中性层. 中性层与横截面的交线称为中性轴,中性轴通过截面形心,是一条形心轴。 且与截面纵向对称轴y垂直,将截面分为受拉区及受压区。梁弯曲变形时, 各横截面绕中性轴转动。
(3)横截面上任一点处的剪应力计算公式(推导略)为
V S I zb
Z
V——横截面上的剪力
Iz——整个横截面对中性轴的惯性矩
b——需求剪应力处的横截面宽度 S*Z——横截面上需求剪应力处的水平线 以外(以下或以上)部分面积A*(如图 )对 中性轴的静矩
V
3V 4 y2 (1 2 ) 2bh h
应力状态按主应力分类:
(1)单向应力状态。在三个相对面上三个 主应力中只有一个主应力不等于零。 (2)双向应力状态。在三个相对面上三个 主应力中有两个主应力不等于零。
(3)三向应力状态。其三个主应力都不等于零。例 如列车车轮与钢轨接触处附近的材料就是处在三向应 力状态下.
梁的应力及强度计算
梁的应力及强度计算梁是一种常见的结构元件,用于承受或分配荷载。
在设计和分析梁的过程中,计算梁的应力及强度是非常重要的。
本文将详细介绍梁的应力及强度计算方法。
首先,梁的应力定义为单位面积上的力,用公式表示为:σ=M*y/I其中,σ表示梁的应力,M表示梁的弯矩,y表示距离中性轴的垂直距离,I表示梁的截面惯性矩。
梁的应力通常包括弯曲应力、剪切应力和轴向应力。
弯曲应力是由于弯曲力引起的应力,计算公式为:σ_b=M*y/I其中,σ_b表示弯曲应力。
剪切应力是由于纵向剪力引起的应力,计算公式为:τ=V*Q/(b*t)其中,τ表示剪切应力,V表示纵向剪力,Q为形状系数,b为梁的宽度,t为梁的厚度。
轴向应力是由于轴向力引起的应力,计算公式为:σ_a=N/A其中,σ_a表示轴向应力,N表示轴向力,A表示梁的截面积。
梁的强度是指在给定的荷载下梁能够承受的最大应力。
在计算梁的强度时,通常需要将不同种类的应力进行合并。
弯曲强度是指梁在弯曲荷载下的抗弯矩能力。
根据材料的弯曲性能和形状,可以采用破坏理论或变形理论计算梁的弯曲强度。
剪切强度是指梁在剪切荷载下的抗剪切能力。
根据材料的剪切性能和梁的几何形状,可以计算出梁的剪切强度。
轴向强度是指梁在轴向荷载下的抗轴向力能力。
轴向强度的计算通常基于材料的抗拉性能。
在进行梁的应力及强度计算时,还需要考虑其他因素,如材料的弹性模量、断裂韧性和安全系数等。
总之,梁的应力及强度计算是结构设计和分析中必不可少的一部分。
通过合理的计算方法,可以确保梁在荷载下的正常工作和安全使用。
梁的应力和强度计算
z dA dM z y dA
dM y
( Stresses in Beams) 将应力表达式代入(1)式,得
FN
A
E
y
dA 0
E
A
ydA 0
待解决问题:
中性轴的位置
中性层的曲率半径ρ
S z ydA 0 A
y M y zE dA 0 A
中性轴通过横截面形心
伽利略(G.Galiieo, 1564-1642)的研究中认为: 弯曲应力是均匀分布的 (《两门新科学的对话》1638 年出版 ) , 因而得不到正确的公式,大科学家有时 也弄错。
( Stresses in Beams)
C C
Z 中性轴
Z
y
压
C M M
y 拉
C
Z
Z 两部分。
?
( Stresses in Beams)
横截面的 对称轴
横截面
y σ Eε E ρ
M
中性层
中性轴
1、中性轴的位置(Location of the neutral axis) 2、中性层的曲率半径 (Curvature radius of the neutral surface)
?
中性轴
( Stresses in Beams)
强度条件(strength condition):
梁内的最大工作应力不超过材料的许用应力
1、数学表达式(mathematical formula)
max
M max [ ] W
2、强度条件的应用(application of strength condition)
M max (1) 强度校核 [ ] W M max (2)设计截面 W [ ] (3)确定许可核载 M max W [ ]
梁的弯曲应力和强度计算
88
7.5 106 7.6 106
88 86.8MPa
弯曲正应力计算
三、计算题
27.一矩形截面简支梁,梁上荷载如图所示.已知P=6kN、 l=4m、b=0.1m、h=0.2m,试画出梁的剪力图和弯矩图并求 梁中的最大正应力. 解:(1) 作剪力图、弯矩图
(2)求最大正应力
Mmax 6kN m
横向线:仍为直线,仍与纵向线正交,相对转动了一个角度 纵向线:曲线,下部伸长,上部缩短
(2)假设 平面假设:横截面在变形前为平面,变形后仍为平面,且仍
垂直于变形后梁的轴线,只是绕横截面上某个轴 旋转了一个角度。 单向受力假设:梁由无数根纵向纤维组成,之间无横向挤压,
只受轴向拉伸与压缩。
中性层
3、正应力计算公式 〖1〗几何变形关系
内容回顾
弯曲正应力 1. 基本假设:
(1)平面假设:变形前为平面的横截面,变形后仍为平面,但转动了一角度。 (2)单向受力假设:杆件的纵截面(与杆轴平行的截面)上无正应力。
2.中性轴Z:
中性层与横截面的交线,平面弯曲时中性轴过形心且与对称轴垂直。
3.正应力计算公式:
中性层
4.正应力分布规律:沿截面高度呈线性分布。
4、正负号确定 1)M、y 符号代入公式
2)直接观察变形
5、适用范围及推广
〖1〗适用范围: 平面弯曲(平面假设、单向受力假设基础上)、 线弹性材料
〖2〗推广: ① 至少有一个对称轴的截面; ② 细长梁 (l/h>5);
6、最大正应力
工程上关心的是极值应力:
只与截面形状、尺寸有关
抗弯截面模量
对剪切(横力)弯曲: 矩形:
解:(1)作弯矩图,
求最大弯矩
梁的应力计算
Mmax WZ
§6-2 梁的正应力强度条件及其应用
q=2kN/m
A
xm
FAY
C
l = 4m
例题6-2
140
[σ]=10MPa,试校核该梁
B
的强度。
x
210
FBY
解:1. 求支反力 FAy 4kN FBy 4kN
M
ql2 / 8 4kN m
2. 求最大弯矩
Mmax
ql2 8
4kN m
物理关系 E E y
静力学关系
1 M
EI
Z
1
为曲率半径, 为梁弯曲变形后的曲
正应力公式 My (6-6)
率
IZ
§6-1 (纯弯曲)梁的正应力
正应力分布
My
IZ M • 正应力大小与其到
中性轴距离成正比;
• 与中性轴距离相等 的点, 正应力相等;
• 中性轴上,正应力等于零
M
max
bh3 12
Wz
bh2 6
Wz
D3
32
(1 4 )
Wz
( b0 h03 12
bh3 12
) /(h0
/
2)
§6-1 (纯弯曲)梁的正应力
横力弯曲
弹性力学精确分析表明, 当跨度 l 与横截面高度 h 之 比 l / h > 5 (细长梁)时, 纯弯曲正应力公式对于横力 弯曲近似成立。
§6-1 梁的正应力
2.离中性轴最远处
3.变截面梁要综合考虑 M 与 Iz
4.脆性材料抗拉和抗压性能不同,两方面都要考虑
t,max t
c,max c
§6-2 梁的正应力强度条件及其应用
根据弯曲正应力强度条件
正应力计算公式
M、y绝对值代入,由变形判断 符号
m
0
M 0, 上压下拉 M 0, 下压上拉
(M>0)
0
m
0
(M<0)
0
横截面上的最大正应力:
t
M y1 IZ
,
c
M y2 IZ
当中性轴是横截面的对称轴时:
y1 y2 ymax
t c max
max
梁在弯曲变形时上面部分纵向纤维缩短下面部分纵向纤维伸长必有一层纵向纤维既不伸长也不缩短保持原来的长度这一纵向纤维层称为中性层
第六章 弯曲应力
§6-1 概 述
dA
dA
dA
dA M
dA Fs
M
Fs
在横截面上,法向内力元素σdA合成弯矩M, 切向内力元素τdA合成剪力Fs
M ymax IZ
M WZ
Wz
Iz y max
Wz 称为抗弯截面模量
bh3
bh2
I Z 12 , WZ 6
d4
I Z 64
d3
, WZ 32
IZ
(D4 d 4)
64
D4
64
(1 4 )
WZ
D3
32
(1 4 )
§6-3 横力弯曲时的正应力 正应力强度计算 My
20 M (kN m)
Mmax 20 kN m
11.25
15
max
M max Wz
20 103 0.1 0.22
6
30MPa < [ ]
该梁满足强度条件,安全 20
梁应力强度计算
第五章 平面弯曲梁的强度
内容: 梁的应力、强度计算
τ→FS
z
dA
FS y
σ→M
M
z
dA
dA
y
M =∫yσσd
A
§5.1 梁的正应力
一、纯弯曲梁横截面上的正应力
F
F
a
l
a
FS F
M
x
F Fa
x
FS M
纯弯曲梁
Me
l
x
Me
450×0.03 2×45×10-9
=150
MPa
(-)
习题5-13 当20号槽钢受纯弯曲变形时,测出A、B两点间长度
Δl=27×10-3mm,材料的E=200GPa。试求梁截面上的弯矩M。
解:
50
5
M
AB
M
●
●
ε=
Δl l
=
27×10-3 50
=5.4×10-4
σ=Eε=200×109×5.4×10-4=108MPa
BC段: d2 ≥ 3
32×455×103 π140×106
= 321 mm
取: d1=250mm d2=322mm
例11. 已知:[σ]=160MPa,[τ]=100MPa,
试选工字钢梁的型号。
解: Fsmax=6kN
1.σ计算:
σmax =
M max Wz
≤ [σ]
M max = 8 kN • m
=
1 2
qab+
1 8
qb2
=
0.02375q
N
•
m
梁的应力及强度计算
Q图
-
2KN
y2=32.8mm由弯矩图可知上部受拉,下部受压
最大拉应力在上边缘
1KNm
s l max
M maxy1 IZ
1106 15.2 25.6 104
59.4MPa 拉
M图
最大压应力在下边缘
s ymax
M maxy2 IZ
1106 32.8 25.6 104
128.1MPa压
23
9 104
:3
144 104
:
4
3
642
2
104
3 72 : 3 144 : 3 64
结论:矩形截面最省料;圆形截面用料最多。
Z
Z
习题8-44
2、横截面上:在与中性轴平行的一条直线上的各点应力相 等。
3、截面上与中性轴距离最远的点应力最大。
横截面上正应力的画法:
M 0
M 0
M
M
smax
smax
第九章 梁的应力及强度计算
公式适用范围: ①弹性范围—正应力小于比例极限; ②精确适用于纯弯曲梁; ③对于横力弯曲的细长梁(跨度与截面高度比L/h>5),上述公 式的误差不大。
20kNm
20kNm
-
-
50 2003 50 200 94.6 1502
12 102106 mm4
+
20kNm
10kN/m
CA 2m
40kN
D 2m 2m
10kN/m
BE 2m
Q图
20kN
20kN
+
+
-
20kN
材料力学 正应力及其强度条件
中性层
中性轴
对 称 z o 轴 中 性 y 轴
中性层
F
F
m
n
2.纯弯曲正应力公式的推导 (一)几何关系: o
中性层
d q
m
n
中性轴
m
n o
z m o 1
m
n
z
r
o
o 2
n
中性轴
y
dx
n m dx
y
变形前:
y
l = dx = r × dq
变形后:
100
例题 4.22 &
图示T形截面简支梁在中点承受集中力F=32kN,梁的长度L=2m。T形 截面的形心坐标yc=96.4mm,横截面对于z轴的惯性矩Iz=1.02×108mm4。求 弯矩最大截面上的最大拉应力和最大压应力。 y
F
150 50
A l 2 l 2
B
96 . 4 C 50
F
实验现象:
F
ü1、变形前互相平行的纵向直
m
n
线、变形后变成弧线,且凹边纤 维缩短、凸边纤维伸长。
ü2、变形前垂直于纵向线的横向
m
n
线,变形后仍为直线,且仍与弯曲 了的纵向线正交,但两条横向线 间相对转动了一个角度。
§由现象1
j靠近凹入的一侧,纤维缩短,靠近凸出的 一侧,纤维伸长; k由于纤维从凹入一侧的伸长或缩短到突出 一侧的缩短或伸长是连续变化,故中间一定 有一层,其纤维长度不变,这层纤维称为中 性层。中性层与横截面的交线称为中性轴; l弯曲变形时,梁的横截面绕中性轴旋转。
28 . 1
kNm
13. 16
第七章 梁的应力和强度计算
q=3.6kN/m
A Q B
例7-4.1 矩形(bh=0.12m0.18m)
截面木梁如图,[s]=7MPa,[t]=0. 9 M Pa,试求最大正应力和最大切 应力之比,并校核梁的强度。 – 解:画内力图求危面内力
qL 2
L=3m
qL 2
+
x
FS max
M max
qL 3600 3 5400 N 2 2
-4kNm x
例7-2.2 T 字形截面的铸铁梁受力 如图,铸铁的[sL]=30MPa,
1m
[sy]=60 MPa,其截面形心位于G
点,y1=52mm, y2=88mm, Iz=763cm4 ,试校核此梁的强度。 并说明T字梁怎样放置更合理? 解:画弯矩图并求危面内力
2.5kNm A1 G y1
A3
2、强度条件应用:依此强度准则可进行三种强度计算:
M max s 校核强度: s max 、校核强度: Wz M max 设计截面尺寸: Wz [s ]
确定许可载荷:M max
Wz [s ]
14
1 A 1m 1
Q=60kN/m B 2m 180 30 1 2
③横向线与纵向线变形后
仍正交。
5 ④横截面高度不变。
2. 根据上述的表面变形现象,由表及里地推断梁内部的 变形,作出如下的两点假设:
平面假设:横截面变形后仍为平面,只是绕中性轴发生转
动,距中性轴等高处,变形相等。
纵向纤维间无挤压、只受轴向拉伸和压缩。 (横截面上只有正应力)
纵向对称面
中性层
中性轴
x 1
15 60kNm
1 A 1m 1
Q=60kN/m B 2m 180 30 1 2
建筑力学第12章梁的应力
b1b2 yd bb2 dx
d 1 dx
m
o1 b m1
o2
y dx
y
b2
b1 n1
——纯弯曲时应变分布规律
y
z M
Hooke定律: E
E E
y
dA
——纯弯曲时应力分布规律
沿梁高线性分布,中性轴上为零,外边缘上最大
E 中性轴必然通过截面的形心
强度条件: 1- 2+ 3
适用于脆性材料
最大剪应力理论(第三强度理论) 破坏条件: max 达到危险值
max 1 3
2
强度条件: 1 3
适用于塑性材料
形状改变比能理论(第四强度理论)
引起单元体形状改变的能量超过危险值 破坏条件:
强度条件: + - 1 3
2 1 2 3
适用于塑性材料
l
+
100kN 100kN 2m 2m 2m
-
q
* z *
*
I z:横截面对中性轴的惯性矩
b:横截面的宽度
QS Izb
b h2 2 * * * Sz A y y 2 4 h 1 h b y 2 2 2 1 3 I z bh 12
* z
* z
y
m2
3.6 kN
m
3.6 kN
m
max
5m
M max Wz
M max
1 2 1 ql 3.6 25 11.25 kN m 8 8
W z 2 39.7 103 79.4 106 m 3
工程力学 第九章 梁的应力及强度计算
1、矩形截面梁纯弯曲时的变形观察
现象:
(1)变形后各横向线仍为直线,只是相对旋转了一个角度,且与变形后的梁轴曲线保持垂直,即小矩形格仍为直角;
(2)梁表面的纵向直线均弯曲成弧线,而且,靠顶面的纵线缩短,靠底面的纵线拉长,而位于中间位置的纵线长度不变。
对剪应力的分布作如下假设:
(1)横截面上各点处剪应力均与剪力Q同向且平行;
(2)横截面上距中性轴等距离各点处剪应力大小相。
根据以上假设,可推导出剪应力计算公式:
式中:τ—横截面上距中性轴z距离为y处各点的剪应力;
Q—该截面上的剪力;
b—需求剪应力作用点处的截面宽度;
Iz—横截面对其中性轴的惯性矩;
Sz*—所求剪应力作用点处的横线以下(或以上)的截面积A*对中性轴的面积矩。
应力σ的正负号直接由弯矩M的正负来判断。M为正时,中性轴上部截面为压应力,下部为拉应力;M为负时,中性轴上部截面为拉应力,下部为压应力。
第二节 梁的正应力强度条件
一、弯曲正应力的强度条件
等直梁的最大弯曲正应力,发生在最大弯矩所在横截面上距中性轴最远的各点处,即
对于工程上的细长梁,强度的主要控制因素是弯曲正应力。为了保证梁能安全、正常地工作,必须使梁内最大正应力σmax不超过材料的许用应力[σ],故梁的正应力强度条件为:
圆形截面横梁截面上的最大竖向剪应力也都发生在中性轴上,沿中性轴均匀分布。
其它形状的截面上,一般地说,最大剪应力也出现在中性轴上各点。
结合书P161-162 例8-3进行详细讲解。
五、梁的剪应力强度校核
梁的剪应力强度条件为:
在梁的强度计算时,必须同时满足弯曲正应力强度条件和剪应力强度条件。但在一般情况下,满足了正应力强度条件后,剪应力强度都能满足,故通常只需按正应力条件进行计算。
工程力学 第九章 梁的强度刚度计算
由结果知,梁的强度不满足要求。
返回 下一张 上一张
y2
z
例9-6 试为图示钢轨枕木选择矩形截面。已知矩形截面尺寸的比 例为b:h=3:4,枕木的弯曲许用正应力[]=15.6MPa,许用剪应力 P P 0 0 .2 m 1 .6 m []=1.7MPa,钢轨传给枕木的压力P=49KN。 .2 m
a
M D ya Iz
返回 下一张 上一张
10.7
第二节 梁横截面上的剪应力
一、矩形截面梁:
矩形截面剪应力计算公式: τ沿截面高度按抛物线规律变化:
2Iz 4
3
QS
* z
I zb
bh
4
τ m ax
2 3
y
h 2
, 0 ; y 0 , max
6 Qh 4 bh
校核梁的正应力强度。
解:(1) 内力及抗弯截面模量计算: MC=3.0KN.m; MD=-4.8KN.m
W1 W2
P1
A
a C a
P2
D
a B
y1
z
763 5 .2
146 . 7 cm
3
y1
z
763 8 .8
86 . 7 cm
3
4 .8 k N m
y2
(2)C截面的正应力强度校核:
4 Q 3 A1
max 2
Q A2
返回 下一张 上一张
例9-3 矩形截面简支梁如图,已知:l=2m,h=15cm,b=10cm, h1=3cm,q=3kN/m。试求A支座截面上K点的剪应力及该截面的最 b q 大剪应力。 解:1.求剪力:QA=3kN
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7-2 梁的正应力强度计算
一、最大正应力
在强度计算时,必须算出梁的最大正应力。
产生最大正应力的截面,称为危险截面。
对于等直梁,弯矩最大的截面就是危险截面。
危险截面上的最大应力处称为危险点,它发生在距中性轴最远的上、下边缘处。
对于中性轴是截面对称轴的梁,最大正应力的值为:
max
max max z
M y I σ=
令z
z max
I W y =
,则 max
max z
M W σ=
式中z W 称为抗弯截面系数,是一个与截面形状和尺寸有关的几何量。
常用单位是m 3
或mm 3。
z W 值越大,max σ就越小,它也反映了截面形状及尺寸对梁的强度的影响。
对高为h 、宽为b 的矩形截面,其抗弯截面系数为:
32
z z max /12/26
I bh bh W y h ===
对直径为d 的圆形截面,其抗弯截面系数为:
43
z z max /64/232
I d d W y d ππ===
对于中性轴不是截面对称轴的梁,例如图7-9所示的T 形截面梁,在正弯矩M 作用下
梁下边缘处产生最大拉应力,上边缘处产生最大压应力,其值分别为:
+1max z My I σ=
2max
z
My I σ-=
令z 11I W y =
、z 22
I
W y =,则有: +
max 1
M W σ=
max
2
M W σ-=
max
σ-
图7-9
二、正应力强度条件
为了保证梁能安全地工作,必须使梁截面上的最大正应力max σ不超过材料的许用应力,这就是梁的正应力强度条件。
现分两种情况表达如下:
1、材料的抗拉和抗压能力相同,其正应力强度条件为:
max
max z
[]M W σσ=
≤ 2、材料的抗拉和抗压能力不同,应分别对拉应力和压应力建立强度条件:
+max
max 1[]M W σσ+=
≤ max max
2
[]M
W σσ--=≤ 根据强度条件可解决有关强度方面的三类问题:
1)强度校核:在已知梁的材料和横截面的形状、尺寸(即已知[]σ、z W )以及所受荷载(即已知max M )的情况下,可以检查梁是否满足正应力强度条件。
2)设计截面:当已知荷载和所用材料时(即已知max M 、[]σ),可根据强度条件,计算所需的抗弯截面系数
max
z []M W σ≥
然后根据梁的截面形状进一步确定截面的具体尺寸。
3)确定许用荷载:如已知梁的材料和截面形状尺寸(即已知[]σ、z W ),则先根据强度条件算出梁所能承受的最大弯矩,即:
max z []
M W σ≤
然后由max M 与荷载间的关系计算许用荷载。
例7-2 如图7-10所示T 形截面外伸梁。
已知材料的许用拉应力[]32MPa σ+
=,许用
压应力[]70MPa σ-
=。
试校核梁的正应力强度。
2m
2m2m
z
z1200
30
3
1
7
7kN·m
a)
b)
16kN·m
c)
图7-10
解:
(1)绘出弯矩图(图7-10b),可见B截面有最大负弯矩,C截面有最大正弯矩。
(2)确定中性轴位置及计算截面对中性轴的惯性矩
i iC
C
i
301708520030185
139mm
3017020030
A y
y
A
⋅⨯⨯+⨯⨯
===
⨯+⨯
∑
∑
2
c ci i i
33
22
64
()
3017020030
301705420030046
1212
40.310mm
I I a A
=+
⨯⨯
=+⨯⨯++⨯⨯
=⨯
∑
(3)强度校核
B截面的最大拉应力在上边缘点处,最大压应力在下边缘点处,其值为:
6
+B
max6
z
1610
6124.2MPa
40.310
M
y
I
σ
⨯
==⨯=
⨯
上
<[]
σ+
6
B
max6
z
1610
13955.2MPa
40.310
M
y
I
σ-
⨯
==⨯=
⨯
下
<[]
σ-
C截面的最大压应力在上边缘点处,最大拉应力在下边缘点处,其值为:
6
C
max6
z
710
6110.6MPa
40.310
M
y
I
σ-
⨯
==⨯=
⨯
上
<[]
σ-
6
C
max6
z
710
13924.1MPa
40.310
M
y
I
σ+
⨯
==⨯=
⨯
下
<[]
σ+
正应力分布图如图7-10c所示。
由此例可见,对于中性轴不是对称轴的截面,最大正应力不是发生在弯矩绝对值最大的截面上,这类梁的校核应同时考虑梁的最大正弯矩和最大负弯矩所在截面的强度。
例7-3 如图7-11所示,某简支梁承受两个集中荷载:160kN P =,220kN P =。
梁的许用应力[]170MPa σ=。
试选用工字钢的型号。
B
2m
2m
1m
A
72kN ·m
88kN ·m
a )
b )
C
D P 2P 1
Z
图7-11
解:
(1)绘出弯矩图,如图7-11b 所示,可见C 截面有最大正弯矩。
(2)计算每根工字梁所需的抗弯截面系数为:
6
333max z 881025910mm 259cm 2[]2170
M W σ⨯≥==⨯=⨯
由型钢表查得№22a 工字钢的3z 309cm W =>3
259cm ,采用两根№22a 工字钢。
例7-4 如图7-12所示悬臂梁,由两根不等边角钢2×∠125×80×10组成,已知材料的许用应力[]160MPa σ=。
试确定许用荷载[]P 。
l =2m
A
B
P
Pl a )
b )
Z
y
图7-12
解:
(1)绘出弯矩图,如图7-12b 所示,可见A 截面有最大负弯矩。
(2)由型钢表查得∠125×80×10的抗弯截面系数为:
3z 37.33cm W '=
(3)计算许用荷载:
max max z z
[]2M Pl
W W σσ=
=≤'
3z 3
2[]237.3310160
5973N 5.97kN 210W P l σ'⨯⨯⨯≤===⨯。