物理化学13章_表面物理化学

合集下载

兰州大学物理化学课件 第十三章 胶体分散体系

兰州大学物理化学课件 第十三章 胶体分散体系
3.粗分散体系 当分散相粒子大于10-7m,目测是混浊不均匀体 系,放置后会沉淀或分层,如黄河水
一般以比表面积的大小来表示分散体系分散程度 的大小 分散度(比表面积:单位体积的物质具 有的表面积)
S S0 V
显然,分散程度越高,比表面积越大
4 3 分散相呈球体 V r S 4 r 2 3
通过大量观察,得出结论:粒子越小,布朗运动 越激烈。其运动激烈的程度不随时间而改变,但随温 度的升高而增加
1905年和1906年爱因斯坦(Einstein)和斯莫鲁霍 夫斯基(Smoluchowski)分别阐述了Brown运动的本质。
Brown运动是分散介质分子以不同大小和不同方向 的力对胶体粒子不断撞击而产生的,由于受到的力不 平衡,所以连续以不同方向、不同速度作不规则运动。 随着粒子增大,撞击的次数增多,而作用力抵消的可 能性亦大
用这两种方法直接制出的粒子称为原级粒 子。视具体制备条件不同,这些粒子又可以聚 集成较大的次级粒子 通常所制备的溶胶中粒子的大小不是均一的, 是一个多级分散体系
分散法
(1)研磨法: 用机械粉碎的方法(球磨机,胶体磨等)将固体磨细 这种方法适用于脆而 易碎的物质,对于柔韧性 的物质必须先硬化后再粉 碎。例如,将废轮胎粉碎, 先用液氮处理,硬化后再 研磨
布朗运动的存在是胶体能够稳定存在的原因。因 胶粒不会安定的停留在某一位置上,胶粒就不会因 重力而聚沉。但布朗运动也有可能使胶粒相互碰撞 而聚集 二.扩散 胶粒也有热运动,因此也具有扩散和渗透压。 只是溶胶的浓度较稀,这种现象很不显著 由于分子的热运动和胶粒的布朗运动,可 以观察到胶粒从高浓区向低浓区迁移的现象, 这就是胶粒的扩散作用
2.亲液溶胶(分散相与分散介质之间有亲和力的溶胶) 如高分子化合物溶液,分子半径落在胶体粒 子范围内的大分子溶解在合适的溶剂中,形成分 子分散的真溶液。一旦将溶剂蒸发,大分子化合 物凝聚,再加入溶剂,又可形成溶胶,亲液溶胶 是热力学上稳定、可逆的体系

物理化学题解1(13章)

物理化学题解1(13章)

化学热力学部分习题简解(第一章) 热力学基本定律练习题1-1 0.1kg C 6H 6(l)在O p ,沸点353.35K 下蒸发,已知m gl H ∆(C 6H 6) =30.80 kJ mol -1。

试计算此过程Q ,W ,ΔU 和ΔH 值。

解:等温等压相变 。

n /mol =100/78 , ΔH = Q = n m gl H ∆= 39.5 kJ ,W = - nRT = -3.77 kJ , ΔU =Q +W=35.7 kJ1-2 设一礼堂的体积是1000m 3,室温是290K ,气压为O p ,今欲将温度升至300K ,需吸收热量多少?(若将空气视为理想气体,并已知其C p ,m 为29.29 J K -1 ·mol -1。

)解:理想气体等压升温(n 变)。

T nC Q p d m ,=δ,⎰=300290m ,d RTT pV C Q p =1.2×107 J1-3 2 mol 单原子理想气体,由600K ,1.0MPa 对抗恒外压O p 绝热膨胀到O p 。

计算该过程的Q 、W 、ΔU 和ΔH 。

(C p ,m =2.5 R)解:理想气体绝热不可逆膨胀Q =0 。

ΔU =W ,即 nC V ,m (T 2-T 1)= - p 2 (V 2-V 1), 因V 2= nRT 2/ p 2 , V 1= nRT 1/ p 1 ,求出T 2=384K 。

ΔU =W =nC V ,m (T 2-T 1)=-5.39kJ ,ΔH =nC p ,m (T 2-T 1)=-8.98 kJ1-4 在298.15K ,6×101.3kPa 压力下,1 mol 单原子理想气体进行绝热膨胀,最后压力为O p ,若为;(1)可逆膨胀 (2)对抗恒外压O p 膨胀,求上述二绝热膨胀过程的气体的最终温度;气体对外界所作的功;气体的热力学能变化及焓变。

(已知C p ,m =2.5 R )。

苏州大学物理化学考研、期末考试复习-13章表面物理化学

苏州大学物理化学考研、期末考试复习-13章表面物理化学

1 2
]
6366
2H2O2(aq) 2H20 (l)+ O2(g) 被 I-催 化 ,已 知 Ea(cat)= 56.5 kJ ·mol-1,Ea(uncat)=75.3
kJ·mol-1, 则 k(I-)/k(uncat)=_____________。(T=298 K) 6491
CH2CO 光照射分解为 C2H4 及 CO,当吸收光强 Ia=4.8×10-9 mol·s-1 ,且( C2H4)=1, ( CO)=2,则 15.2 min 内产品的物质的量 n(CO)=_________, n(C2H4)=___________ 6495
(A) 向左移动 (B) 向右移动
(C) 不移动
(D) 来回不定移动
6753
同一固体, 大块颗粒和粉状颗粒, 其熔点哪个高? ( )
(A) 大块的高
(B) 粉状的高
(C) 一样高
(D) 无法比较
6764
水平仪中有一个椭球形的液泡,长短半轴分别为 0.8 和 0.3cm,已知水的表面张力为
0.07197 N·m-1,液泡的附加压力为:( )
6782 已知 27℃及 100℃时,水的饱和蒸气压分别为 3.565 kPa 及 101.325 kPa,密度分别
6033
T=1000 K 时分子能量大于 20 kJ·mol-1 的分率为____________________。
6256
反应 Br+HCl(v) kv HBr+Cl,当 HCl 的振动量子数由 v=0 增加到 v=4 时,反应速率
k(v=4)/k(v=0)1011,由此可判断逆反应 HBr+ClBr+HCl 需要____________激发。 6258

物理化学第十三章

物理化学第十三章

第十三章选择题1. 在空间轨道上运行的宇宙飞船中,漂浮着一个足够大的水滴,当用一根内壁干净、外壁油污的玻璃毛细管接触水滴时,将会出现: ( )(A) 水并不进入毛细管 (B) 水进入毛细管并达到管内一定高度(C) 水进入毛细管并达到管的另一端 (D) 水进入毛细管并从另一端滴出2.表面活性剂具有增溶作用,对增溶作用说法不正确的是: ( )(A) 增溶作用可以使被溶物的化学势大大降低 (B) 增溶作用是一个可逆的平衡过程(C) 增溶作用也就是溶解作用 (D) 增溶作用与乳化作用不同3.气固相反应 CaCO 3(s)CaO(s) + CO 2(g) 已达平衡。

在其它条件不变的情况下,若把 CaCO 3(s) 的颗粒变得极小,则平衡将: ( )(A) 向左移动 (B) 向右移动 (C) 不移动 (D) 来回不定移动 4BET 吸附等温式中 V m 为: ( )(A) 饱和吸附量 (B) 平衡吸附量 (C) 铺满第一层的吸附量 (D) 常数,无物理意义5.对于亲水性表面,其各界面张力之间关系是: ( )(A) γs-l > γs-g (B) γs-l < γs-g (C) γs-l = γs-g (D) 不能确定6.某有机物水溶液浓度为3.0 mol ·m -3,在300 K 时31d 8.31410 N m d /c cγ--=-⨯⋅$,则表面超额为:( ) (A) 0.01 mol ·m -2 (B) 0.02 mol ·m -2 (C) 1.0×10-5 mol ·m -2 (D) 1×10-7 mol ·m -27 兰缪尔的吸附等温式为 Γ = Γ∞ bp /(1+bp ),其中 Γ∞ 为饱和吸附量,b 为 吸附系数。

为从实验数据来计算 Γ∞ 及 b ,常将方程改变成直线形式。

当以 1/Γ对 1/p 作图时能得到直线。

大学物理化学第13章 表面物理化学(1)

大学物理化学第13章 表面物理化学(1)

第13章表面物理化学1.恒温恒压下,将一液体分散成小颗粒液滴,该过程液体的熵值将:( )A、增大;B、减小;C、不变;D、无法判定2.用同一滴管分别滴下1cm3的NaOH水溶液、水、乙醇水溶液,各自的滴数多少的次序为:( )A、三者一样多;B、水 > 乙醇水溶液 > NaOH水溶液;C、乙醇水溶液 > 水 > NaOH水溶液;D、NaOH水溶液 > 水 > 乙醇水溶液;3.在相同的温度及压力下,把一定体积的水分散成许多小水滴,经过这一变化过程,以下性质保持不变的是:( )A、总表面能;B、比表面;C、液面下的附加压力D、表面张力4.直径为1×10-2m的球形肥皂泡所受的附加压力为(已知表面张力为0.025N·m-1)( )A、5 Pa;B、10 Pa;C、15 Pa;D、20 Pa5.将一毛细管插入水中,毛细管中水面上升5cm,在3cm处将毛细管折断,这时毛细管上端:( )A、水从上端溢出;B、水面呈凸面;C、水面呈凹形弯月面;D、水面呈水平面;6.微小晶体与普通晶体相比较,性质不正确的是:( )A、微小晶体的饱和蒸气压大B、微小晶体的溶解度大C、微小晶体的熔点较低D、微小晶体的溶解度较小7.当水中加入表面活性剂后,将发生:( )A、d/da < 0 正吸附;B、d/da < 0 负吸附;C、d/da > 0 正吸附;D、d/da > 0 负吸附;8.把细长不渗水的两张纸条平行地放在纯水面上,中间留少许距离,小心地在中间滴一滴肥皂水,则两纸条间距离将:( )A、增大;B、缩小;C、不变;D、以上三种都有可能9.水不能润湿荷叶表面,接触角大于90°,当水中加入皂素后,接触角将:( )A、变大B、变小C、不变D、无法判断10.表面活性剂具有增溶作用,对增溶作用说法不正确的是:( )A、增溶作用可以使被溶物的化学势大大降低;B、增溶作用是一个可逆的平衡过程;C、增溶作用也就是溶解作用;D、增溶作用与乳化作用不同11.多孔硅胶有强烈的吸水性能,硅胶吸水后其表面Gibbs自由能将:( )A、变大B、变小C、不变D、无法判断12. Langmuir吸附等温式满足的条件下,下列不恰当的是:( )A、固体表面是均匀的;B、吸附质分子之间的相互作用可忽略不计;C、吸附是多分子层的;D、吸附热不随吸附量改变;13.对于物理吸附的描述中,不正确的是:( )A、吸附力来源于范德华力,其吸附一般不具有选择性;B、吸附热较小;C、吸附层可以是单分子层或多分子层;D、吸附速率较小;14.称为催化剂毒物的主要行为是:( )A、和反应物之一发生化学反应;B、增加逆反应的速率;C、使产物变得不活泼;D、占据催化剂的活性中心;15.已知水溶解某物质以后,其表面张力与溶质的活度a呈如下关系式中为纯水的表面张力,A、B为常数,则溶液的表面过剩为:A、 B、 C、 D、16.一般来说,物理吸附的吸附量随温度升高而,化学吸附的吸附量随温度升高。

13章_表面物理化学

13章_表面物理化学
外压为 p0 ,附加压力为 ps ,液滴所受总压为:
p总 p0 ps
对活塞稍加压力,将 毛细管内液体压出少许
使液滴体积增加dV
相应地其表面积增加dA 克服附加压力ps所做的功等 于可逆增加表面积的Gibbs 自由能
psdV dAs
p0 ps
R'
psdV dAs
V 4 R'3
弯曲表面上的附加压力 弯曲表面上的蒸气压——Kelvin 公式
一、 弯曲表面上的附加压力
1.在平面上
对一小面积AB,沿AB的
p0
四周每点的两边都存在表面
f
AB
f
张力,大小相等,方向相反,
p0
所以没有附加压力。
设向下的大气压力为p0, 向上的反作用力也为p0 ,附 加压力ps等于零。
ps p0 p0 0
1.气-液界面
空气
CuSO4 溶液
气-液 界面
2.气-固界面
气-固界面
3.液-液界面
H2O
Hg
液-液 界面
4.液-固界面
Hg
液-固界面
H2O
玻璃板
5.固-固界面
Cr镀层 铁管
固-固界面
二、界面现象的本质
表面层分子与内部分子相比所处的环境不同 体相内部分子所受四周邻近相同分子的作用力 是对称的,各个方向的力彼此抵消。 但是处在界面层的分子,一方面受到体相内相 同物质分子的作用,另一方面受到性质不同的另一 相中物质分子的作用,其作用力未必能相互抵销, 因此,界面层会显示出一些独特的性质。
对于单组分系统,这种特性主要来自于同一物质 在不同相中的密度不同;对于多组分系统,则特性来 自于界面层的组成与任一相的组成均不相同。

物理化学中国石油大学课后习题答案第13章

物理化学中国石油大学课后习题答案第13章

粘度近似等于水的粘度,为 0.001kg ⋅ m−1 ⋅s−1 (即 Pa ⋅s )。
解:当粒子在重力场中达到沉降平衡时,有沉降力 = 粘滞阻力,即
-2-
物理化学习题解答
( ) 4 π r3
3
ρ粒子 − ρ介质
g ≈ 6πηr Δx Δt
故 Δt =
6ηΔx
1=
6× 0.001× 0.01
1
( ) ( ) 4
解:
胶核
(
Au
) m
优先吸附与其有共同组成的
AuO2−
,因此胶团结构为
⎡⎣(
Au
) m

nAuO
− 2
,
(
n

x
)
Na
+
⎤⎦
x


xNa
+
2 . 某 溶 胶 中 粒 子 的 平 均 直 径 为 4.2nm , 设 其 粘 度 和 纯 水 相 同 ,
η = 1×10−3 kg ⋅ m−1 ⋅ s−1 ,试计算:


960 )× 9.8 ⎥
⎥ ⎥ ⎥

⎢⎣
1 6 .7
⎥⎦
=1.023P α ⋅ s
5.试计算在 293K 时,地心力场中使粒子半径分别为(1) 1.0×10−5 m ,(2)
100nm ,(3) 1.5nm 的金溶胶下降 0.01m 需时若干。
已知分散介质的密度为1000kg ⋅ m−3 ,金的密度为1.93×104 kg ⋅ m−3 ,溶液的
Δt = ⎢2.51×10−10 × ⎢ ⎣
1 1.0 ×10−7

2
⎥ ⎥
s

第十三章 表面物理化学自测题

第十三章 表面物理化学自测题

第十三章 表面物理化学自测题I.选择题1.在相同的温度及压力下,把一定体积的水分散成许多小水滴,经这一变化过程,以下性质保持不变的是(d )。

(a)总表面能 (b)比表面(c)液面下的附加压力 (d)表面张力2。

直径为1⨯10-2 m 的球形肥皂泡所受的附加压力为(已知表面张力为0.025 N ⋅m -2)(d )。

(a) 5 Pa (b) 10 Pa (c) 5 Pa (d) 24 Pa3.已知水溶解某物质以后,其表面张力γ与溶质的活度a 呈如下关系:()0=1A Ba γγ-+ln式中0γ为纯水的表面张力,A ,B 为常数,则溶液表面过剩2Γ为(c )。

(a)()2=1Aa RT Ba Γ-+ (b)()2=1ABa RT Ba Γ-+ (c)()2=1ABa RT Ba Γ+ (d)()2=1Ba RT Ba Γ-+ 4.298 K 时,苯蒸气在石墨上的吸附符合Langmuir 吸附等温式,在苯蒸气压力为40 Pa 时,覆盖率θ=0.05,当θ=0.5时,苯蒸气的平衡压力为(b )。

(a)400 Pa (b)760 Pa (c)1 000 Pa (d)200 Pa5甲在298K 时,已知A 液的表面张力是B 液的一半,其密度是B 液的两倍。

如果A 、B 液分别用相同的毛细管产生大小相同的气泡时,A 液的最大气泡压力 差等于B 液的(a )。

(a )12倍 (b)1倍 (c )2倍 (d)4倍6.将一毛细管插人水中,毛细管中水面上升5 cm ,在3 cm 处将毛细管折断,这时毛细管上端(c )。

(a)的水从上端溢出 (b)水面呈凸面(c)水面呈凹形弯月面 (d)水面呈水平面7.用同一滴管分别滴下1 cm 3的NaOH 水溶液、水、乙醇水溶液,各自的滴数多少的次序为(c )。

(a)三者一样多(b)水>乙醇水溶液>NaOH 水溶液(c)乙醇水溶液>水> NaOH 水溶液(d) NaOH 水溶液>水>乙醇水溶液8.当水中加入表面活性剂后,将发生(a )。

傅献彩《物理化学》(第5版)(下册)课后习题-表面物理化学(圣才出品)

傅献彩《物理化学》(第5版)(下册)课后习题-表面物理化学(圣才出品)

第13章表面物理化学的小水滴,试计算(已1.在293 K时,把半径为1.0 mm的水滴分散成半径为1.0m知293 K时水的表面Gibbs自由能为(1)表面积是原来的多少倍?(2)表面Gibbs自由能增加了多少?(3)完成该变化时,环境至少需做多少功?解:(1)设小水滴个数为N,则根据分散前后体积不变,可得所以。

(2)表面吉布斯自由能的增加量为=9.15×10-4J。

(3)完成变化时,环境至少需做功为=-9.15×10-4J。

2.已知汞溶胶中胶粒(设为球形)的直径为22 nm,在1.0 dm3的溶胶中含Hg为8×10-5 kg,试计算:(1)在1.0 cm3的溶胶中的胶粒数。

(2)胶粒的总表面积。

(3)若把质量为8×10-5kg的汞滴,分散成上述溶胶粒子时,表面Gibbs自由能增加多少?已知汞的密度为13.6 kg·m -3,汞一水界面张力为解:(1)设Hg溶胶的体积为V,则有=5.575×10-24 m3设1.0cm3溶胶中的胶粒数为N,则=1.055×1012(2)胶粒总表面积为=1.604×10-3 m2(3)设质量为的汞滴半径为r0,则有解得所以表面吉布斯自由能增加量为=5.96×10-4J。

3.试证明:证明:(1)因为所以又因故(2)由,得因,故4.已知水的表面张力与温度的关系式为在283 K时。

可逆地使一定量纯水的表面积增加0.01 m2(设体积不变),求系统的如下各个解:当T=283K时,根据题给关系式,有故,因为所以=4.95×10-8J·K-1=7.56×10-4J。

5.把半径为R的毛细管插在某液体中,设该液体与玻璃间的接触角为θ,毛细管中液体所成凹面的曲率半径为液面上升到h高度后达到平衡,试证明液体的表面张力可近似地表示为式中g为重力加速度,为液体的密度。

证明:附加压力与上升的液柱所产生的静压力相等时,才能达到力的平衡,则。

物理化学全程导学及习题全解287-304 第十三章表面物理化学

物理化学全程导学及习题全解287-304 第十三章表面物理化学

第十三章 表面物理化学本章知识要点与公式 1.表面张力及表面Gibbs 自由能 B B B B,,n ,,n ,,n ,,n s s s s S V S p T V T p U H A G A A A A γ⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂∂====⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ 2.弯曲表面上的附加压力和蒸气压 (1)Young -Laplace 公式:''1211R R s p γ⎛⎫=+⎪⎝⎭上式表示附加压力与球曲率半径及表面张力的关系。

若是球面,'''12'2, s R R R p R γ===若为平面,则'1R 和'2, 0s R p →∞→。

毛细管内液柱上升(或下降)的高度(h )计算方法。

2cos h R gγθρ=∆(θ为液体与管壁之间的接触角,11g ρρρρ∆=-≈ ) (2)弯曲表面上的蒸气压—Kekvin 公式''0022ln r p M p MRT p p R RTR γγρρ∆==简化式: 3.溶液的表面吸附 Gibbs 吸附公式 22d d 2a RT a γΓ=-若2d 0,0d 2a γ〈Γ〉则,是正吸附,表面活性物质;若22d 0,0d a γ〉Γ〈则,是负吸附,非表面活性物质。

4.液—固界面——润湿作用 杨氏润湿方程:cos s g l sl gγγθγ----=当090o o θ≤〈时,液体能润湿固体, 0o θ=时,液体完全润湿固体。

当90180o o θ〈≤时,液体不能润湿固体, 180o θ=时,液体完全不能润湿固体。

粘湿功()1cos a g s g l l s g l W γγγγθ----=+-=+ 浸湿功cos i g s l s g l W γγγθ---=-=铺展系数()cos 1g s g l l s g l S γγγγθ----=--=- 5.固体表面吸附 Langmuir 等温式:m m11ap p pap V V a V θ==++或 混合气体的Langmuir 吸附等温式:B 1B BB BBa p a p θ=+∑Fieundlich 等温式:1nq kp = BET 吸附公式(=常数公式):()()11pms s C V V p p p C p =⎡⎤-+-⎢⎥⎣⎦eMKHH T 方程式:()ln o m V RT A p V θα== 通过Clausius -Clapeyron 方程式求化学吸附热2ln Q RTq p T ∂⎛⎫=⎪∂⎝⎭ 6.气-固相表面催化反应单分子反应2A A 2A A A 1k a pr k a p θ==+(假定产物的吸附很弱)若A p 低,A A 1a p ,则2A A A r k a p kp ==,一级反应; 若A p 高,A A 1a p ,则2r k =,零级反应; 若A p 适中,2A AA A1k a p r a p =+,介于0~1级之间。

物理化学第十三章表面物理化学

物理化学第十三章表面物理化学
第Ⅱ类,溶液表面张力随溶质浓度增加以 近于直线的关系而缓慢升高。多数无机盐、非 挥发性的酸或碱及蔗糖、甘露醇等多羟基有机 物的水溶液属于这一类型—非表面活性物质。
第Ⅲ类,溶液表面张力在溶质浓度很低时 急剧下降,至一定浓度后溶液表面张力随浓度 变化很小。属于这一类的溶质主要是含长碳链 的羧酸盐、硫酸盐、磺酸盐、苯磺酸盐和季铵 盐——表面活性剂。
→分子间作用力减小→表面张力减小。
Vm2 3 k Tc T 6.0
式中,Tc为临界温度。
可见:当温度趋于临界温度时,饱和液 体和饱和蒸气性质趋于一致,相界面消失, 液体表面张力趋于零。
(4)压力影响 压力增大,一般使界面张力下降:压
力增加→气相密度增加→两相间密度差 减小。
对于固体和液体表面下降幅度很小。
对于凸面:表面张力的合力方向是指 向液体内部;则P内=P外+Ps
对于凹面:表面张力的合力方向是指 向液体内部;则P内=P外-Ps
故:对于凸面:附加压力Ps = P内- P外 对于凹面:附加压力Ps = P外- P内
附加压力产生的原因:表面张力的存在。
二、附加压力的计算
对于曲率半径为R´的小液滴或液体中的小
五、 弯曲液面上的蒸气压 开尔文公式
微小液滴因具有较大的比表面,因而其饱 和蒸气压要比平面液体高。其值与物质的本 性、温度、压力、液滴的大小有关。
RT
ln
pg
p
0 g
2M R
(开尔文公式)
pg0:平面液体的饱和蒸气压,pg为非平面
液体的饱和蒸气压;、M和R分别为液体的
密度、摩尔质量和液滴半径。
气泡:
ps
2
R
___球面条件下的杨-拉普拉斯公式 。 小结:

《物理化学》高等教育出版(第五版)第十三章胶体与大分子溶液练习题

《物理化学》高等教育出版(第五版)第十三章胶体与大分子溶液练习题

第十三章胶体与大分子溶液练习题一、判断题:1.溶胶在热力学和动力学上都是稳定系统。

2.溶胶与真溶液一样是均相系统。

3.能产生丁达尔效应的分散系统是溶胶。

4.通过超显微镜可以看到胶体粒子的形状和大小。

5.ξ 电位的绝对值总是大于热力学电位φ的绝对值.。

6.加入电解质可以使胶体稳定,加入电解质也可以使胶体聚沉;二者是矛盾的。

7.晴朗的天空是蓝色,是白色太阳光被大气散射的结果。

8.旋光仪除了用黄光外,也可以用蓝光。

9.大分子溶液与溶胶一样是多相不稳定体系。

10.将大分子电解质NaR的水溶液与纯水用半透膜隔开,达到Donnan平衡后,膜外水的pH值将大于7。

二、单选题:1.雾属于分散体系,其分散介质是:(A) 液体;(B) 气体;(C) 固体;(D) 气体或固体。

2.将高分子溶液作为胶体体系来研究,因为它:(A) 是多相体系;(B) 热力学不稳定体系;(C) 对电解质很敏感;(D) 粒子大小在胶体范围内。

3.溶胶的基本特性之一是:(A) 热力学上和动力学上皆属于稳定体系;(B) 热力学上和动力学上皆属不稳定体系;(C) 热力学上不稳定而动力学上稳定体系;(D) 热力学上稳定而动力学上不稳定体系。

4.溶胶与大分子溶液的区别主要在于:(A) 粒子大小不同;(B) 渗透压不同;(C) 带电多少不同;(D) 相状态和热力学稳定性不同。

5.大分子溶液和普通小分子非电解质溶液的主要区分是大分子溶液的:(A) 渗透压大;(B) 丁铎尔效应显著;(C) 不能透过半透膜;(D) 对电解质敏感。

6.以下说法中正确的是:(A) 溶胶在热力学和动力学上都是稳定系统;(B) 溶胶与真溶液一样是均相系统;(C) 能产生丁达尔效应的分散系统是溶胶;(D) 通过超显微镜能看到胶体粒子的形状和大小。

7.对由各种方法制备的溶胶进行半透膜渗析或电渗析的目的是:(A) 除去杂质,提高纯度 ;(B) 除去小胶粒,提高均匀性 ;(C) 除去过多的电解质离子,提高稳定性 ;(D) 除去过多的溶剂,提高浓度 。

物理化学南大五版,十三章十四章重点简答题答案

物理化学南大五版,十三章十四章重点简答题答案

1.为什么气泡、小液滴、肥皂泡都呈圆形?玻璃管口加热后会变的光滑并缩小,现象的本质?用同一滴管滴出相同体积的苯、水和Nacl溶液,所得滴数是否相同?答:①本质是:由于表面张力的存在,液体表面都有自动缩成最小的趋势,使之表面能降低以达到稳定状态,而球形是相同体积的物体具有表面积最小的一种形式,所以气泡、小液滴、肥皂泡等都呈圆形,玻璃管口加热后会变的光滑并缩小也是同理。

②滴数不相同,因为他们各自的表面张力不同。

2.解释现象的基本原理:①人工降雨②有机蒸馏中加沸石③多孔固体吸附蒸气时的毛细凝聚④过饱和溶液、过饱和蒸汽、过冷液体等过饱和现象⑤重量分析中的“陈化”过程⑥喷洒农药时为何常常要在药液中加少量表面活性剂?答:这些都可以用Kelvin公式解释,①②④⑤是新相刚行面时的体积小,曲率半径小,对与之平衡的旧相有更加苛刻的条件要求。

③多孔固体吸附蒸气时,被吸附的气体的液相对毛细管是润湿的,其曲率半径小于零,当气体的分压小于其饱和蒸气压时,就可以发生凝聚。

⑥喷洒农药时,在农药中加入少量的表面活性剂,可以降低药液的表面张力,使药液在叶面上铺展。

3.为什么小晶粒的熔点比大块的固体的熔点略低,而溶解度却比大晶粒大?答:晶粒越细小,比表面积就越大,表面效应就越明显。

所以。

4.若用CaCO3进行热分解,问细粒CaCO3的分解压p1与大块CaCO3的分解压p2相比,两者大小如何?为什么?答:细粒CaCO3的分解压p1更大,因为△rGmθ=—RTlnKpθ,而CaCO3的分解压p1正比于Kpθ。

又△rGmθ=△fGmθ(CaO)+△fGmθ(CO2)—△fGmθ(CaCO3).热力学数据表中的数据一般是对大颗粒而言的,而细小CaCO3的粒子有较大的表面能,从而△rGm θ使减小,pθ变大,所以细粒CaCO3的分解压更大。

5、试说明同一个气固相催化反应,为何在不同的压力下表现出不同的反应级数?请在符合Langmuir吸附假设的前提下,从反应物和产物分子的吸附性,解释下列实验事实:①NH3(g)在金属钨表面的分解呈零级数反应的特点;②N2O(g)在金表面的分解是一级反应;③H原子在金表面的复合是二级反应;④NH3(g)在金属钼的分解速率由于N2(g)的吸附而显著降低,但尽管表面被N2(g)所饱和,但速率不为零。

第十三章表面物理化学练习题及答案

第十三章表面物理化学练习题及答案

第十三章表面物理化学练习题一、选择题1.在电泳实验中,观察到分散相向阳极移动,表明:(A) 胶粒带正电(B) 胶粒带负电(C) 电动电位相对于溶液本体为正(D) Stern 面处电位相对溶液本体为正2.通常称为表面活性物质的就是指当其加入于液体中后:(A) 能降低液体表面张力(B) 能增大液体表面张力(C) 不影响液体表面张力(D) 能显著降低液体表面张力3.实验测得O2在金表面上的吸附热Q与吸附量无关,这种吸附满足以下哪种吸附规律?(A)L angmuir等温式(B) Freundlich等温式(C) TëMKuH等温式(D) 以上三种皆可以4.对于有过量KI 存在的AgI 溶液,电解质聚沉能力最强的是:(A) K3[Fe(CN)6] (B) MgSO4(C) FeCl3(D) NaCl5.多孔硅胶的强烈吸水性能说明硅胶吸附水后,表面自由能将(A) 变高(B) 变低(C) 不变(D) 不能比较6.为直接获得个别的胶体粒子的大小和形状,必须借助于:(A) 普通显微镜(B) 丁铎尔效应(C) 电子显微镜(D) 超显微镜7.由0.01 dm3 0.05 mol·kg-1的KCl 和0.1 dm3 0.002 mol·kg-1的AgNO3溶液混合生成AgCl 溶胶,为使其聚沉,所用下列电解质的聚沉值由小到大的顺序为:(A) AlCl3<ZnSO4<KCl (B) KCl <ZnSO4<AlCl3(C) ZnSO4<KCl <AlCl3(D) KCl <AlCl3<ZnSO4 8.将一毛细管端插入水中,毛细管中水面上升5 cm,若将毛细管向下移动,留了 3 cm 在水面,试问水在毛细管上端的行为是:(A) 水从毛细管上端溢出(B) 毛细管上端水面呈凸形弯月面(C) 毛细管上端水面呈凹形弯月面(D) 毛细管上端水面呈水平面9.明矾净水的主要原理是:(A) 电解质对溶胶的聚沉作用(B) 溶胶的相互聚沉作用(C) 电解质的敏化作用(D) 电解质的对抗作用10.在pH <7 的Al(OH)3溶胶中,使用下列电解质使其聚沉:(1)KNO3(2) NaCl (3) Na2SO4(4) K3Fe(CN)6在相同温度、相同时间内,聚沉能力大小为:(A) (1) >(4) >(2) >(3) (B) (1) <(4) <(2) <(3)(C) (4) >(3) >(2) >(1) (D) (4) <(3) <(2) <(1) 11.兰缪尔的吸附等温式为Γ = Γ∞bp/(1+bp),其中Γ∞为饱和吸附量,b为吸附系数。

物理化学(第五版傅献彩)第13_主要内容

物理化学(第五版傅献彩)第13_主要内容

一 选择题
1 等温等压下把一定量的水分散成小水滴,此过程中保持 不变的是(D)
(A)总表面能
(B)比表面
(C)液面下的附加压力 (D)表面张力
2 298K时液体A和B,γA=1/2γB,ρA=2ρB,用相同的毛细 管产生大小相同的气泡,则A的最大气泡压力差等于B
的(A)倍。
(A)1/2 (B)1 (C)2 (D)4
径之比为1。
例5
正常沸点时,水中只含有直径为10-3 mm的空气泡, 使这样的水沸腾要过热多少度?已知100°C水的γ=0.0589 N m-1,∆vapHm=40656 J mol-1。 解:
气泡半径R’ = 5×10-7m ps= 2γ/R’ = 235600 Pa(水中的气泡只有一个界面,
肥皂泡才有两个界面)
解:
c ln c0
=
2γ M RTR ' ρ
c ln 5.9 ×10−3
=
2 × 0.0257 × 0.168 8.314 × 298 ×1566 × 0.005 ×10−6
c = 9.2×10-3 mol dm-3
溶解度 S = 9.2 ×10−3 × 0.168 = 1.55×10−3 kg dm-3
外压为1atm下能否蒸发出R'=0.5×10-7m的气泡?
解:由开尔文公式
ln
pr po
=
2γ M RTR ' ρ
= −0.01427
(R’为负值)
pr po
= 0.9858
pr=99.89 kPa
R’ = 0.5×10-7m,ps = 2γ / R’ = 2356000 Pa
p = po+ps = 2457325 Pa

物理化学课件物化习题课第十三章 表面物理化学

物理化学课件物化习题课第十三章 表面物理化学
10
二、例题
1.选择与填空 (1) 直径为110-2m的球形肥皂泡所受的附加压力为(已知表 面张力为0.025N.m-1) ( D ) (A) 5Pa; (B) 10Pa; (C) 15Pa; (D) 20Pa (2) 用同一滴管分别滴下1cm-3的NaOH水溶液、水、乙醇 水溶液,各自的滴数多少的次序为 ( C ) (A) 三者一样多; (B) 水>乙醇水溶液>NaOH水溶液 (C)乙醇水溶液>水>NaOH水溶液 (D) NaOH水溶液>水>乙醇水溶液
5.Gibbs吸附公式
Γ2
a2 RT
d
da2
d /da2<0, 2 >0,正吸附,
表面活性物质
d /da2>0,2 <0,负吸附,
非表面活性物质
6.粘湿功、浸湿功、铺展系数
W a G l-sl-gs-g
W i Glsgs
S G g sg ll s S≥0,液体可以自动铺展
4
一、基本概念及公式
lnp pr vaR pH m31 73T 12ln2 14 05 17 .3 .3
T=429.6K
15
二、例题
(2) 298K和101.325kPa下,将直径为1.0m的毛细管插入水 中,问需在管内加多大压力才能防止水面上升?若不加额 外压力,水面上升达平衡后,管内液面上升多高? 已知:该水的表面张力为0.072N.m-1,密度为1000kg.m-3, 设接触角为0º,重力加速度为g=9.8m.s-2。
(CHale Waihona Puke 不变 (D) 无法判断13
二、例题
2.计算题 (1)373K时,水的表面张力为 0.0589 Nm-1,密度为958.4 kg. m-3,问直径为100nm的气泡内的蒸汽压为多少?在 101.325kPa外压下,能否从373K的水中蒸发出直径为 100nm的蒸汽泡?若要蒸发温度为多少?已知100℃以气化 热为40.7 kJmol-1。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统做的可逆非膨胀功。
测定表面张力方法很多,如毛细管上升法、滴重法、
吊环法、最大压力气泡法、吊片法和静液法等
表面张力
纯物质的表面张力与分子的性质有关,通常是
(金属键)> (离子键)> (极性共价键)> (非极性共价键)
水因为有氢键,所以表面张力也比较大
Antonoff 发现,两种液体之间的界面张力是两 种液体互相饱和时的表面张力之差,即
B
U U S,V , As, nB
表面热力学的基本公式
所以考虑了表面功的热力学基本公式为
dU TdS pdV dAs BdnB
B
dH TdS Vdp dAs BdnB
B
dA SdT pdV dAs BdnB
B
dG SdT Vdp dAs BdnB
B
从这些热力学基本公式可得
U As
S ,V ,nB
H As
S , p,nB
A As
T ,V ,nB

G As
T , p,nB
表面自由能 (surface free energy)
广义的表面自由能定义:
U ( As )S,V ,nB
例如,把边长为1 cm的立方体1 cm3 ,逐渐分 割成小立方体时,比表面将以几何级数增长。
分散程度越高,比表面越大,表面能也越高
可见达到nm级的超细微粒,具有巨大的比表面 积,因而具有许多独特的表面效应,成为新材料和 多相催化方面的研究热点。
§13.1 表面张力及表面Gibbs自由能
表面张力 表面热力学的基本公式 界面张力与温度的关系 溶液的表面张力与溶液浓度的关系
这时
F 2 l
l 是滑动边的长度,因膜有两个
面,所以边界总长度为2l, 就是作
用于单位边界上的表面张力。
F =(W1 W2 )g
= 2 l 22222222222 lllllllllllW1
WWWWWWWWWWWW 222222222222
表面张力
在两相(特别是气-液)界面上,处处存在着一种 张力,这种力垂直与表面的边界,指向液体方向并 与表面相切。
2222222222222222 llllllllllllllll
F =(W1 W2 )g
= 2 l 22222222222 lllllllllllW1
WWWWWWWWWWWW222222222222
如果在活动边框上挂一重物,
使重物质量W2与边框质量W1所产 生的重力F与总的表面张力大小相 等方向相反,则金属丝不再滑动。
表面张力(surface tension)
液体表面的最基本的特性是趋向于收缩 由于表面层分子的受力不均衡,液滴趋向于 呈球形,水银珠和荷叶上的水珠也收缩为球形。 从液膜自动收缩的实验,可以更好地认识这 一现象 将一含有一个活动边框的金属线框架放在 肥皂液中,然后取出悬挂,活动边在下面。
由于金属框上的肥皂膜的表面张力作用, 可滑动的边会被向上拉,直至顶部。
1.气-液界面
空气
CuSO4 溶液
气-液 界面
2.气-固界面
气-固界面
3.液-液界面
H2O
Hg
液-液 界面
4.液-固界面
Hg
液-固界面
H2O
玻璃板
5.固-固界面
Cr镀层 铁管
固-固界面
界面现象的本质
表面层分子与内部分子相比所处的环境不同 体相内部分子所受四周邻近相同分子的作用力
是对称的,各个方向的力彼此抵销; 但是处在界面层的分子,一方面受到体相内相
把作用于单位边界线上的这种力称为表面张
力,用 或 表示。 表面张力的单位是: N m1
表面张力
表面张力也可以这样来理解:
温度、压力和组成恒定时,可逆使表面积增加dA
所需要对系统作的非体积功,称为表面功。用公式表
示为:
W ' dAs
式中 为比例系数,它在数值上等于当T,p 及
组成恒定的条件下,增加单位表面积时所必须对系
同物质分子的作用,另一方面受到性质不同的另一 相中物质分子的作用,其作用力未必能相互抵销, 因此,界面层会显示出一些独特的性质。
对于单组分系统,这种特性主要来自于同一物质 在不同相中的密度不同;对于多组分系统,则特性来 自于界面层的组成与任一相的组成均不相同。
最简单的例子是液体及其蒸气组成的表面。
物理化学电子教案—第十三章
表面物理化学
第十三章 表面物理化学
§13.1 表面张力及表面Gibbs自由能 §13.2 弯曲表面下的附加压力和蒸气压 §13.3 溶液的表面吸附 §13.4 液-液界面的性质 §13.5 膜 §13.6 液-固界面-润湿作用 §13.7 表面活性剂及其作用 §13.8 固体表面的吸附 §13.9 气-固相表面催化反应
1,2 1 2
这个经验规律称为 Antonoff 规则
表面热力学的基本公式
根据多组分热力学的基本公式
dU TdS pdV BdnB U U S,V , nB
B
对需要考虑表面层的系统,由于多了一个表 面相,在体积功之外,还要增加表面功,则基本 公式为
dU TdS pdV dAs BdnB
表面和界面 (surface and interface)
界面是指两相接触的约几个分子厚度的过渡区, 若其中一相为气体,这种界面通常称为表面。
严格讲表面应是液体和固体与其饱和蒸气之间 的界面,但习惯上把液体或固体与空气的界面称为 液体或固体的表面。
常见的界面有:气-液界面,气-固界面,液-液 界面,液-固界面,固-固界面。
比表面通常用来表示物质分散的程度,有两
种常用的表示方法:一种是单位质量的固体所具
有的表面积;另一种是单位体积固体所具有的表
面积。即:
A0
As m

A0
As V
式中,m 和 V 分别为固体的质量和体积,As为其 表面积。目前常用的测定表面积的方法有BET法
和色谱法。
分散度与比表面
把物质分散成细小微粒的程度称为分散度。 把一定大小的物质分割得越小,则分散度越高, 比表面也越大。
液体内部分子所受的力可 以彼此抵销,但表面分子受到 体相分子的拉力大,受到气相 分子的拉力小(因为气相密度 低),所以表面分子受到被拉 入体相的作用力。
这种作用力使表面有自动收缩到最小的趋势,并 使表面层显示出一些独特性质,如表面张力、表面吸 附、毛细现象、过饱和状态等。
界面现象的本质
比表面(specific surface area)
相关文档
最新文档