气焊气割火焰及工艺参数的选择.pdf

合集下载

气焊与气割的火焰温度

气焊与气割的火焰温度

气焊与气割的火焰温度
1. 气焊的火焰温度
气焊是一种将金属连接在一起的方法,通常使用的燃料是乙炔和氧气。

在火焰中,乙炔和氧气发生反应,产生的火焰可以达到非常高的温度。

一般来说,气焊的火焰温度可以达到3,000摄氏度甚至更高。

2. 气割的火焰温度
气割是一种通过高温将金属切割或切割开的方法,使用的燃料与气焊
相同。

在气割中,氧气用于增加燃料的燃烧速度,从而使火焰温度达
到非常高的水平。

一般来说,气割的火焰温度可以达到3,500摄氏度或
更高。

3. 气焊和气割之间的区别
尽管气焊和气割的燃料和工具相同,但它们的用途不同。

气焊通常用
于将两个金属接在一起,如焊接一些铜管,而气割则用于切割大型金
属件,如钢材板和管道。

此外,气割比气焊需要更高的火焰温度,因
为它需要将金属从两个方向加热,从而更容易切断。

总的来说,气焊和气割的火焰温度可以达到非常高的水平,需要非常
专业的技术和设备才能进行。

正确使用这些技术可以为切割和焊接金
属提供极大的帮助,从而满足工业和建筑领域的各种需求。

9-第九章--气焊与热切割

9-第九章--气焊与热切割

危险
❖ 乙炔的易燃性

自然点低(305℃),点火能量小
(0.019mj)。在一定条件下,很容易因分子聚合
(≤540℃,压力<0.3Mpa)、分解而发生着火、
爆炸(>580℃、压力=0.15Mpa)。
乙炔火焰的传播速度~在空气中为2~3.7m/s,
在氧气中为13.5m/s。
乙炔的爆炸性
压力和温度、乙炔的杂质、接触介质、盛装 容器的直径。
宜用二氧化碳灭火器或干粉灭火器扑救。
④ 在任何情况下,应注意避免在容器或管道内
形成乙炔—空气或乙炔—氧气混合气,一旦形成, 必须采取安全措施。
⑤ 乙炔发生器的温度计只能用酒精温度计指示,
禁止使用水银温度计。凡供乙炔使用的器材都不
能用银或含铜量超过70%铜合金制造。
⑥ 乙炔含磷化氢<0.08 %。
⑦ 装盛乙炔的容器或管道,不得随意焊补或切
第二节 气焊气割火焰及工艺参数的选择
气割气焊火焰的选择 根据乙炔和氧气混合比例的不同,得到三种不同
的火焰:
表9–1 氧乙炔焰种类、焊接性能和适用范围
火焰种类 氧/乙炔
焊接性能
焊接条件 可焊接的材料
碳化焰 <1 中性焰 1~1.2 氧化焰 >1.2
火焰中乙炔过剩,含有 游离碳和较多的氢。焊 接低碳钢时会渗碳。火 焰温度2700~3000
低碳钢、低合 金钢、灰铸铁 球墨铸铁、铝 及铝合金
黄铜、青铜等
气焊气割工艺参数的选择
表9-2 工艺参数
常用金属材料气焊工艺参数的选择要点式来选择。 ②焊丝直径可参考表9-3。
火焰能率
①根据焊件的厚度、母材的熔点和导热性及焊缝的空间位置来选择。
②在选择较厚的焊件,熔点较高的金属,导热性较好金属要选择较大 的火焰能率。 ③火焰能率是由焊炬型号及焊嘴号码大小决定。

第二章气焊与气割ppt课件

第二章气焊与气割ppt课件

(3)氧气瓶在使用时,应直立放置,安放稳固,防止倾 倒。只有在特殊情况下才允许卧放,但瓶头一定要 垫高,并防止滚动。
(4)氧气瓶在开启时,操作人员应站在出气口的侧面, 先拧开瓶阀吹掉出气口内的杂质,再与氧气减压阀 连接。开启和关闭氧气瓶阀时不能用力过猛。
(5)氧气瓶内的氧气不能全部用完,至少要保留0.10.3MPa,以便于充氧时便于鉴别其体性质及吹除瓶 阀内的杂质,还可以防止使用中可燃气体倒流或空 气进入瓶内。
焰、外焰都缩短,内焰很短,几乎看不到。氧化焰的焰芯呈淡
紫蓝色,轮廓不明显;外焰呈蓝色,火焰挺直,燃烧时发出急
剧的“嘶嘶”声。氧化焰的长度取决于氧气的压力和火焰中氧
气的比例,氧气的比例越大,则整个火焰就越短,噪声也就越
大。
氧化焰的温度可达3100~3400℃。由于氧气的供应量较多,
使整个火焰具有氧化性。如果焊接一般碳钢时,采用氧化焰就
注意事项
(1)乙炔与铜或者银长期接触后,就会生成 乙炔铜或者乙炔银,这些是一种爆炸性很 强的化合物。它们只要剧烈震动或者加热 到110-120 ℃就会引起爆炸。 凡是与乙炔接触的器具设备禁止使用含铜超 过70%的铜合金制造。 乙炔和氯,次氯酸眼反应会发生燃烧和爆炸, 所以乙炔燃烧时,禁止使用四氯化碳灭火。
广,可用于焊接高碳钢、中合金钢、高合金钢、
铸铁、铝和铝合金等材料。
(3)氧化焰
氧化焰是氧与乙炔的体积的比值(O2/C2H2)大子1.2时的
混合气燃烧形成的气体火焰,氧化焰中有过剩的氧,在尖形焰
芯外面形成了一个有氧化性的富氧区,其构造和形状如图2—
2(c)所示。
氧化焰由于火焰中含氧较多,氧化反应剧烈,使焰芯、内
(5)工作时,乙炔的压力不能超过0.15MPa,输出流量 不能超过1.5-2.5m³/h

气体火焰切割工艺及参数

气体火焰切割工艺及参数

气体火焰切割工艺及参数影响气割过程的主要参数影响气体火焰切割过程(包括切割速度和质量)的主要工艺因素有:①切割氧的纯度;②切割氧的流量、压力及氧流形状;③切割氧流的流速、动量和攻角;④预热火焰的功率;⑤被切割金属的成分、性能、表面状态及初始温度;⑥其他工艺因素。

其中切割氧流起着主导作用。

切割氧流既要使金属燃烧,又要把燃烧生成的氧化物从切口中吹掉。

因此,切割氧的纯度、流量、流速和氧流形状对气割质量和切割速度有重要的影响。

⑴切割氧的纯度氧气的纯度是影响气割过程和质量的重要因素。

氧气纯度差,不但切割速度大为降低、切割面粗糙、切口下缘沾渣,而且氧气消耗量的增加。

氧气纯度从99.5%降到98%,即下降1.5%,切割速度下降25%,而耗氧量增加50%。

一般认为,氧气纯度低于95%,就不能气割,要获得无粘渣的气割切口,氧气纯度需达到99.6%。

⑵切割氧流量切割厚度12mm钢板时氧气流量对切割速度的影响如图1所示。

由图可见,随着氧流量的增加,切割速度逐渐增大,切割速度提高,但超过某个界限值反而降低。

因此,对某一钢板厚度存在一个最佳氧流量值,此时不但切割质量最高,而且切割质量最好。

⑶切割氧压力随着切割氧压力的提高,氧流量相应增加,因此能够切割板厚度随之增大。

但压力增加到一定值,可切割的厚度也达到最大值,再增大压力,可切割的厚度反而减小。

切割氧压力对切割速度的影响大致相同。

如图2所示。

由图2可见,用普通割嘴气割时,在压力较低的情况下,随着压力增加,切割速度也提高,但当压力超过0.3MP以后,切割速度反而下降;再继续加大压力,不但切割速度降低,而且切口加宽,切口断面粗糙。

用扩散形割嘴气割时,如果切割氧压力符合割嘴的设计压力,则压力增大时,由于切割氧流的流速和动量增大,所以切割速度比用普通割嘴时也有所增加。

气割工艺参数气割的工艺参数包括预热火焰功率、氧气压力、切割速度、割嘴到工件的距离以及切割倾角等。

⑴预热火焰的选择预热火焰是影响气割质量的重要工艺参数。

《气割与气焊》

《气割与气焊》

钳工基本技能学习资料Ⅰ(气割与气焊)气焊与气割是利用可燃气体与助燃气体混合燃烧所释放出的热量作为热源进行金属材料的焊接或切割。

由于乙炔气与氧气混合燃烧产生的温度最高,所以目前气焊、切割中应用最广的一种可燃气体。

一、切割和气焊用的焊接材料1、氧气――氧气本身不能燃烧,但能帮助其他可燃物质燃烧。

2、氧气的纯度对气割与气焊的质量、生产率以及氧气本身的消费量有直接的影响。

使用时氧气纯度不应低于98.5%。

3、乙炔――是电石和水相互作用分解而得到的可燃气体。

4、乙炔与氧气混合燃烧时产生的火焰温度为3000~3300℃,因此足以迅速融化金属进行切割和焊接。

5、注意事项:乙炔是一种具有爆炸性的危险气体,乙炔与空气或氧气混合而成的气体也具有爆炸性。

乙炔与铜或银长期接触后会生存一种爆炸性的化合物,所以凡事与乙炔接触的器具设备禁止用银或纯铜制造,只准用铜的质量分数不超过70%的铜合金制造。

乙炔能够大量溶解于丙酮溶液中,这样我们就可以利用这个特性,将乙炔装入乙炔瓶内(乙炔瓶内装有丙酮溶液和活性炭)储存、运输和使用。

6、气焊丝焊丝的化学成分基本上是与被焊接金属化学成分相同,有时为了获得较好的焊缝质量在焊丝中加入其他合金元素。

牌号、用途见表17、气焊溶剂――气焊过程中,被加热的溶化金属极易与周围空气中的氧或者火焰中的氧化合生成氧化物,使焊缝产生气孔和夹渣等缺陷。

为了防止金属的氧化以及消除已经形成的氧化物,在焊接有色金属(铜和铜合金、铝和铝合金)、铸铁以及不锈钢等材料时通常采用气焊溶剂。

牌号、用途见表2用法:气焊溶剂可以在焊前直接撒在焊件坡口上,或者蘸在气焊丝上加如熔池。

二、气割1、气割设备与工具及连接:(1)气瓶―――氧气瓶、乙炔瓶(2)减压器、回火防止器、输送胶管、割炬1)氧气瓶:是储存和运输氧气的高压容器,瓶内氧气压力为15MPa,一般外表规定为蓝色,并用黑色标写“氧气”字样。

使用注意:开启氧气瓶阀时,不要面对出气口和减压器,以防伤人。

焊接工艺第二章气焊与气割_OK

焊接工艺第二章气焊与气割_OK

爆炸极限(%) 在氧气的
气体
温度
可燃气体 ----------------------------------- 燃烧速度
(J/L) (℃) (℃) 的体积比 与空气
与氧气 (m/s)
-------------------------------------------------------------------------------------------------------------------------
2021/8/27
15
二 气焊接头的种类及坡口形式
1.气焊接头的种类 常用的气焊接头形式有卷边接头、对接接头及角接接头等几种。
2.气焊焊缝坡口的基本形式与尺寸 参照国家标准GB/T985-1988,根据板厚查处装配间隙。
三 气焊焊接参数
包括焊丝的牌号、直径,熔剂,火焰性质与火焰能率,焊嘴的倾角,焊接方 向和焊接速度等。
乙炔 52754 3087 335
1.15
2.2~81 2.8~93
7.5
丙烷 99227 2526 481
3.5
2.3~9.5
2.0
丙烯 93868 2900 500
3.5
2.0~11
2.0
甲烷 33494 2538
1.5
4.8~14 5.0~59.2
氢 10048 2160
0.3~0.4 3.3~81.5 4.65~93.9
5.橡皮管
氧气橡皮管应为黑色,内径8mm,乙炔橡皮管应为红色,内径10mm,连接焊
炬或割炬的橡皮管不能短于5m一般在10~15m为宜,太长会增加气体流动的阻
力2。021/8/27
12
6.回火保险器

气焊培训教程

气焊培训教程

气焊培训教程目录第1章安稳1.1气焊气割常用火焰类型及显现变乱类型 (4)1.1.1 乙炔自爆 (4)1.1.2 乙炔-氧气混淆气体爆炸 (4)1.1.3 乙炔-空气混淆气体爆炸 (4)1.1.4 回火爆炸及重要缘故 (4)1.1.5 乙炔与其它物质反响产生爆炸 (4)1.2 气焊气割安稳操作要求 (4)1.3 应用氧气时,什么缘故要幸免它与油脂接触 (5)1.4气焊工和气割工应如何预防砸伤和眼伤 (5)1.5 气焊工和气割工应如何预防烫伤和烧伤 (5)1.6 若何包管气焊、气割安稳操作 (5)1 .6. 1 气体存放 (5)1.6.2气体搬运 (5)1.6.3气体应用 (5)1.7 若何安稳应用焊炬和割炬 (6)第2章焊接材料及其设备2.1氧气 (8)2.2乙炔 (8)2.3焊丝 (8)2.4 氮气 (8)2.5气焊设备及其对象 (8)2.5.1氧气瓶 (8)2.5.2乙炔瓶 (8)2.5.3减压器 (8)2.5.4焊炬 (9)2.5.5橡胶气管 (9)第3章气焊火焰选择及其焊接方法3.1气体火焰分类 (10)3.1.1中性焰 (10)3.1.2碳化焰 (10)3.1.3氧化焰 (10)3.2气焊操作技巧 (10)3.2.1焊接操作 (10)3.2.2焊炬使作 (11)3.2.2.1焊炬正常握法 (11)3.2.2.2焚烧 (11)3.2.2.3火焰调剂 (11)3.2.2.4火焰熄灭 (11)3.2.2.5回火现象处理 (11)3.3气焊操作方法 (11)3.3.1起焊 (11)3.3.2 焊丝和焊炬活动 (12)3.3.3接头和收尾 (12)3.3.4气焊工艺参数及选择 (12)3.3.4.1焊丝直径 (12)3.3.4.2火焰能率 (12)3.3.4.3焊嘴倾角 (12)3.3.4.4焊接速度 (13)3.3.5 焊接方法 (13)第4章焊接缺点与焊接质量考查4.1 焊接缺点及其分类 (14)4.1.1 焊接缺点 (14)4.1.1.1 焊接成型不良 (14)4.1.1.2 咬边 (14)4.1.1.3 焊瘤 (14)4.1.1.4 烧穿 (14)4.1.1.5 下踏 (15)4.1.2 接合缺点 (15)4.1.2.1 气孔 (15)4.1.2.2 未焊透 (15)4.2 焊接缺点产生缘故及防止方法 (15)4.3常见缺点在焊缝平分布状况 (16)4.4 焊接质量考查 (16)4.4.1 考查内容 (16)4.4.2 焊接缺点的考查 (17)4.4.3 焊接成品密封性考查 (17)第一章气焊气割安稳常识1,1气焊气割常用火焰类型及显现变乱类型最常用的气焊,气割火陷是氧-乙炔和氧-液化石油气火陷, 乙炔气和液化石油气差不多上易燃易爆气体,氧气是爽朗的助燃气体,若应用欠妥,极易产生燃烧爆炸变乱.一样产生的爆炸变乱有以下几种:1.1.1乙炔自爆,平日是指乙炔气体并没有和其它气体混淆而自行爆炸.形成乙炔自爆的前提是温度和压力.图1-1所示为乙炔聚合感化与爆炸分化的划分区域曲线图,由图可知,在温度低于540℃,压力小于3个大年夜气压时,重要进行聚合过程.聚合感化是放热反响, 乙炔气温越高,其聚合速度越快,放出的热量就越多,从而促使聚合加剧,可能引起乙炔的爆炸,当压力为1.5个大年夜气压而温度达580℃时,就能产生乙炔的爆炸分化, 乙炔受压力越高,其聚合感化能够或许转化为爆炸分化所必须的温度就越低.图1-11.1.2乙炔-氧气混淆气体.此种混淆气体爆炸变乱比乙炔-空气混淆气体爆炸要少一些,但破坏力却专门大年夜.只要在氧气中含有2.8%-93%(体积分数)的乙炔,碰到明火就会产生爆炸,专门是当乙炔含量在30%阁下时,是最轻易爆炸的,即使在大年夜气压下,达到了自燃温度也会产生爆炸.1.1.3乙炔-空气混淆气体.此种混淆气体爆炸变乱经常产生.在空气中只要乙炔含量在2.2%-81%(体积分数)范畴内(专门是乙炔含量在7%-13%时),一碰到高温、静电火花或明火就会产生爆炸.其破坏力虽比乙炔-氧气混淆气爆炸力小,但它的爆炸范畴专门宽,同时爆炸波的扩大速度极快,破坏力也专门大年夜.1.1.4回火爆炸及引起回火爆炸的重要缘故焊、割火焰自焊、割炬向乙炔导管及乙炔瓶回窜的现角称之为回火,其特点:1,火焰突然熄灭,2,焊、割炬内产生急速的“嘶嘶”声。

气体火焰切割工艺及参数

气体火焰切割工艺及参数

气体火焰切割工艺及参数影响气割进程的重要参数影响气体火焰切割进程(包含切割速度和质量)的重要工艺身分有:①切割氧的纯度;②切割氧的流量.压力及氧流外形;③切割氧流的流速.动量和攻角;④预热火焰的功率;⑤被切割金属的成分.机能.概况状况及初始温度;⑥其他工艺身分.个中切割氧流起着主导感化.切割氧流既要使金属燃烧,又要把燃烧生成的氧化物从瘦语中吹掉落.是以,切割氧的纯度.流量.流速和氧流外形对气割质量和切割速度有重要的影响.⑴切割氧的纯度氧气的纯度是影响气割进程和质量的重要身分.氧气纯度差,不单切割速度大为降低.切割面光滑.瘦语下缘沾渣,并且氧气消费量的增长.氧气纯度从99.5%降到98%,即降低1.5%,切割速度降低25%,而耗氧量增长50%.一般以为,氧气纯度低于95%,就不克不及气割,要获得无粘渣的气割瘦语,氧气纯度需达到99.6%.⑵切割氧流量切割厚度12mm钢板时氧气流量对切割速度的影响如图1所示.由图可见,跟着氧流量的增长,切割速度逐渐增大,切割速度进步,但超出某个界线值反而降低.是以,对某一钢板厚度消失一个最佳氧流量值,此时不单切割质量最高,并且切割质量最好.⑶切割氧压力跟着切割氧压力的进步,氧流量响应增长,是以可以或许切割板厚度随之增大.但压力增长到必定值,可切割的厚度也达到最大值,再增大压力,可切割的厚度反而减小.切割氧压力对切割速度的影响大致雷同.如图2所示.由图2可见,用通俗割嘴气割时,在压力较低的情形下,跟着压力增长,切割速度也进步,但当压力超出0.3MP今后,切割速度反而降低;再持续加大压力,不单切割速度降低,并且瘦语加宽,瘦语断面光滑.用集中形割嘴气割时,假如切割氧压力相符割嘴的设计压力,则压力增大时,因为切割氧流的流速和动量增大,所以切割速度比用通俗割嘴时也有所增长.气割工艺参数气割的工艺参数包含预热火焰功率.氧气压力.切割速度.割嘴到工件的距离以及切割倾角等.⑴预热火焰的选择预热火焰是影响气割质量的重要工艺参数.气割时一般选用中性焰或稍微的氧化焰.同时火焰的强度要适中.应依据工件厚度.割嘴种类和质量请求选用预热火焰.①预热火焰的功率要跟着板厚的增大而加大,割件越厚,预热火焰功率越大.氧-乙炔预热火焰的功率与板厚的关系见表1.表1 氧-乙炔预热火焰的功率与板厚的关系②在切割较厚钢板时,应采取轻度碳化焰,以免瘦语上缘熔塌,同时也可使外焰长一些.③应用集中行割嘴和氧帘割嘴切割厚度200mm以下钢板时,火焰功率选大一些,以加快瘦语的前缘加热到燃点,从而获得较高的切割速度.④切割碳含量较高或合金元素教多的钢材时,因为他们燃点较高,预热火焰的功率要大一些.⑤用单割嘴切割坡口时,因熔渣被吹向瘦语外侧,为填补能量,要加大火焰功率.气体火焰切割的预热时光应依据割件厚度而定,表2列出火焰切割选定预热时光的经验数据.表2 气体火焰切割选定预热时光的经验数据⑵切割氧压力的选定切割氧压力取决于割嘴类型和嘴号,可依据工件厚度选择氧气压力.切割氧气压力过大,易使瘦语变宽.光滑;压力过小,使切割进程迟缓,易造成沾渣.表3 切割氧气压力的推举值在现实切割工作中,最佳切割氧压力可用试放“风线”的办法来肯定.对所采取的割嘴,当风线最清楚.且长度最长时,这时的切割压力即为适合值,可获得最佳的切割后果.⑶切割速度切割速度与工件厚度.割嘴情势有关,一般随工件厚度增大而减慢.切割速度必须与瘦语内金属的氧化速度想顺应.切割速度太慢会使瘦语上缘融化,太快则后拖量过大,甚至割不透,造成切割中止.在切割操纵时,切割速度可依据熔渣火花在瘦语中落下的倾素来控制,当火花呈垂直或稍倾向前方排出时,即为正常速度.在直线切割时,可采取火花稍倾向后方排出的较快的速度.氧化速度快,排渣才能强,则可以进步切割速度.切割速渡过慢会降低临盆率,且会造成瘦语局部融化,影响割口概况质量.机械切割速度比手工切割速度平均可进步20%,表4列出机械化切割时切割速度的推举数据.⑷割嘴到工件概况的距离割嘴到工件概况的距离是依据工件厚度及预热火焰长度来肯定.割嘴高渡过低会使瘦语上线产生熔塌,飞溅时易堵塞割嘴,甚至引起回火.割嘴高渡过大,热损掉增长,且预热火焰对瘦语前缘的加热感化削弱,预热不充分,切割氧流淌能降低,使排渣艰苦,影响切割质量.同时进入瘦语的氧纯度也降低,导致后拖量和瘦语宽度增大,在切割薄板场合还会使切割速度降低.表4 机械切割时切割速度的推举数据(5)切割倾角割嘴与割件间的切割倾角直接影响气割速度和后拖量.切割倾角的大小重要依据工件厚度而定,工件厚度在30mm以下时,后倾角为20°~30°;工件厚度大于30mm时,起割是为5°~10°的前倾角,割透后割嘴垂直于工件,停滞时为5°~10°的后倾角.手工曲线切割时,割嘴垂直于工件.割嘴的切割倾角与切割厚度的关系如图3所示.气体火焰切割的工艺要点(1)气割前的预备工作被切割金属的概况,应细心地消除铁锈.尘垢或油污.被切割件应垫平,以便于散放热量和消除熔渣.决不克不及放在水泥地上切割,因为水泥地面遇高温后会崩裂.切割前的具体请求如下.①检讨工作场地是否相符安然请求,割炬.氧气瓶.乙炔瓶(或乙炔产生器及回火防止器).橡胶管.压力表等是否正常,将气割装备按操纵规程衔接好.②切割前,起首将工件垫平,工件下面留出必定的间隙,以利于氧化铁渣的吹除.切割时,为了防止操纵者被飞溅的氧化铁渣烧伤,须要时可加挡板遮挡.③将氧气调节到所需的压力.对于射吸式割炬,应检讨割炬是否有射吸才能.检讨的办法是:起首拔下乙炔进气软管并弯折起来,再打开乙炔阀门和预热氧阀门.这时,将手指放在割炬的乙炔过气管接头上,假如手指觉得有抽力并能吸附在乙炔进气管接头上,解释割炬有射吸才能,可以应用;反之,解释割炬不正常,不克不及应用,应检讨补缀.本文章更多内容:<<上一页 - 1 - 2 - 3 - 4 - 5 - 下一页>>本文章共6789字,分5页,当前第3页,快速翻页:12345④检讨风线,办法是点燃火焰并将预热火焰调剂恰当.然后打开切割氧气阀门,不雅察切割氧流(即风线)的外形,风线应为笔挺.清楚的圆柱体并有恰当的长度.如许才干使工件瘦语概况滑腻清洁,宽窄一致.假如风线不规矩,应封闭所有的阀门,用通针或其他对象修整割嘴的内概况,使之滑腻.预热火焰的功率应依据板材厚度不合加以调剂,火焰性质应采取中性焰.(2)手工气割的操纵要点气割操纵中,起首点燃割炬,随即调剂火焰.火焰的大小依据钢板的厚度进行调剂,然后预热工件和进行切割.1)火焰调剂依据燃气与氧的混杂比不合,切割火焰分为碳化焰.中性焰和氧化焰,如图4所示.在应用乙炔的场合,氧与乙炔的体积比(O2/C2H2)为1.1~1.15时,形成的火焰为中性焰,由焰芯.内焰和外焰构成.焰芯为C2H2与O2的混杂气.内焰为C2H2与O2产生一次燃烧的反响区,其反响式为C2H2 O2→2CO H2在内焰中距离焰芯2~3mm处,温度最高,约3100°C.外焰是一次燃烧生成的CO和H2.空气中氧化合成而燃烧的区域,其反响式为→2CO2 H2O火焰温度约2500°C.外焰越长,呵护切割氧流的后果越好.O2/C2H2比值小于1.1时形成碳化焰,也有焰芯.内焰和外焰,内焰中消失未燃烧的碳,火焰长而软,温度也较低.O2/C2H2比值小于1.15时形成氧化焰,只有焰芯和外焰两部分.火焰短而挺直并陪同随“嘶.嘶……”声,最高温度可达约3300°C.因火焰中消失多余氧,具有氧化性.气割时一般应调剂火焰到中性焰,同时火焰的强度要适中.一般不采取碳化焰,因为碳化焰会使切割边沿增碳.调剂好火焰后,应该放出切割氧,检讨火焰性质是否有变更.切割火焰过强时会消失以下问题:①瘦语上边沿熔塌,并粘有颗粒状熔滴;②切割面不服整,光滑度变差;③瘦语下缘粘渣.切割火焰过弱时会产生以下问题:①切割速度减慢,且易产生切割中止现象;②易产生回火;③后拖量增大.应依据工件厚度.割嘴种类和质量请求肯定预热和切割火焰,其要点如下:①预热和切割火焰的功率(乙炔流量.氧气流量)要跟着钢板厚度增大而加大;②切割较厚钢板时,火焰宜用轻度碳化焰,以免瘦语上缘熔塌,同时也可使外焰长一些;③应用集中形割嘴和氧帘割嘴切割厚度20mm以下钢板时,火焰功率应大一些,以加快瘦语前缘加热到燃点,从而获得较高的切割速度;④切割碳含量较高或合金元素含量较高的钢材时,因它们的燃点较高,预热火焰的功率要大一些;⑤用单割嘴切割坡口时,因熔渣被吹向瘦语外侧,为填补热量,要加大火焰的功率;⑥应用石油气或自然气作为燃气,因其火焰温度低,预热时光较长;在切割小尺寸零件等需频仍预热起割的场合,为进步切割效力,可把火焰调节成氧化焰,开端切割后再恢复到中性焰.2)操纵技巧气割操纵因小我的习惯不合,可以有所不合.一般是右手把住割炬把手,以右手的拇指和食指把住预热氧的阀门,以便于调剂预热火焰和当回火时实时割断预热氧气.左手的拇指和食指把住开关心割氧的阀门,同时还要起控制倾向的感化.其余三个手指安稳地托住混杂室.上身不要弯得太低,呼吸要有节拍;眼睛应注目和割嘴,并侧重注目割口前面的割线.这种气割办法为“抱切法”,一般是按照从右向左的倾向切割.开端切割时,先预热钢板的边沿,待瘦语地位消失微红的时刻,将火焰局部移出边沿线以外,同时慢慢打开切割氧气阀门.当有氧化铁渣随氧气流一腾飞出时,证实已经割透,这时应移动割炬逐渐向前切割.切割很厚的金属时,割嘴与被切割金属概况大约成10°~20°倾角,以便能更好地加热割件边沿,使切割进程轻易开端.切割厚度50mm 以下的金属,割嘴开端应与被切割金属概况成垂直地位.假如是从零件内廓开端切割,必须预先在被切割件上面作孔(孔的直径等于切割宽度).开端切割时,先用预热火焰加热金属边沿,直至加热到使其能在氧中可以燃烧的温度,即在割件概况层消失将要融化的状况时,再放出切割氧进行切割.切割时割嘴与被切割金属概况的距离应依据火焰焰心长度来决议,最好使焰心尖端距割件 1.5~3mm,毫不成使火焰焰心触及割件概况.为了包管割缝质量,在全体气割进程中,割嘴到割件概况的距离应保持一致.沿直线切割钢板时,割枪应向活动反倾向竖直20°~30°,这时切割最为有用.但在沿曲线外轮廓切割时,割嘴必须严厉垂直于切割金属的概况.切割进程中,有时因割嘴过热和氧化铁渣的飞溅,使切割割嘴堵住或乙炔供给不实时,割嘴产生鸣爆并产生回火现象.这时应敏捷封闭预热氧气阀门,阻拦氧气倒流入乙炔管内,使回火熄灭.假如此时割炬内还在发出嘶嘶的响声,解释割炬内回火尚未熄灭,这时应敏捷再将乙炔阀门封闭或敏捷拔下割炬上的乙炔软管,使回火的火焰气体排出.处理完毕后,应先检讨割炬的射吸才能,然后才可以从新点燃割炬.气割进程中,若操纵者需移出发体地位时,应先封闭切割氧阀门,然后移出发体地位.假如切割较薄的钢板,在封闭切割氧的同时,火焰应敏捷分开钢板概况,以防止因板薄受热快,引起变形和使割缝从新粘合.当持续切割时,割嘴必定要瞄准割缝的接割处,并恰当预热,然后慢慢打开切割氧气阀门,持续进行切割.切割邻近终点时,割嘴应向切割进步的反倾向竖直一些,以利于钢板的下部提前割透,使收尾的割缝较整洁.当到达终点时,应敏捷封闭切割氧气的阀门并将割炬抬起,然后封闭乙炔阀门,最后封闭预热氧气阀门.假如停滞工作时光较长,应将氧气阀门封闭,松开减压器调节螺丝,并将氧气胶管中的氧气放出.停滞切割工作时,将减压器卸下并将乙炔供气阀门封闭.气割缺点及防止措施气体火焰切割功课中,经常因为气割工艺参数调剂和操纵不当,会造成各类切割缺点.切割之后的瘦语状况及原因见图 5.气割临盆中罕有缺点的种类.产生原因及防止措施见表6.。

【气焊操作规程】

【气焊操作规程】

气焊操作规程一:气焊工安全操作规程1)焊工操作时,必须穿戴好必要的劳保,电焊工焊接时须使用面罩,清渣时应戴防护眼镜,气焊工应带防护眼镜。

2)严禁在有压力的容器管路上焊接,在距焊接场所5m以内严禁存放易燃易爆物品,装过易燃介质器焊接时,须用碱水或蒸气彻底清洗指残介质,扣开刀孔或手孔确实无误后,方可旋焊。

3)在焊修乙炔气发生器前,必须用清水冲洗干净并用明火试爆,确实无误后,方可旋焊。

4)移动式乙炔气发生器附近,严禁接触火源距焊接现场保持10米以上.5)乙炔气发生器应设防爆及防止回火的安全装置,经常检查发生器及回火防止器水注,不宜过高或过低,仪表和安全应定期检验,确保灵敏可靠.6)氧气瓶及减压器严焊接触油脂。

7)氧乙炔气瓶应妥善搬运存放,避免碰撞和震动不得在阳光下爆晒并应避开热源。

8)减压器装上后,应先开起气瓶,再开起减压器,工作结束后应先关闭气瓶,再关减压器,操作时焊工应在减压器侧面.9)氧气瓶中的氧气不允许全部放完,应保留0。

1-0。

2MPA的压力。

10)氧气胶管与乙炔气胶管不得换用或代用,管路连接处严防漏气。

11)焊炬使用中应防止过分受热,当发生回火时应迅速关闭氧气阀门,然后再关闭乙炔气阀门.12)乙炔管破裂着火时,应迅速折起前一段胶管将火熄灭.氧气管着火时,应迅速关闭氧气瓶阀门。

禁止用折管办法灭火焰。

二:气焊与气割设备与工具的安全使用一、气焊与气割设备的安全使用1。

常用气瓶的结构用于气焊与气割的氧气瓶和氢气瓶属于压缩气瓶,乙炔气瓶属于溶解气瓶,石油气瓶属于液化气瓶。

(1)氧气瓶的构造氧气瓶是一种贮存和运输氧气的专用高压容器.氧气瓶通常用优质碳素钢或低合金结构钢轧制成无缝圆柱形容器.常用气瓶容积40L,瓶内氧气压力为15MPa,可以贮存6m3的氧气。

氧气瓶在出厂前,除对氧气瓶的各个部件进行严格检查外,还需对瓶体进行水压试验,一般试验的压力为工作压力的1.5倍.并在瓶体上部球面部位作明显的标志。

标志上标明:瓶号、工作压力和试验压力、下次试压日期、检查员的钢印、制造厂检验部门的钢印、瓶的容量和重量、制造厂、出厂日期等.此外,氧气瓶在使用过程中亦必须定期作内外部表面检验和水压试验;氧气瓶表面为天蓝色,并用黑漆标明“氧气”字样。

气焊气割工作原理工艺参数及操作规程

气焊气割工作原理工艺参数及操作规程

气焊气割工作原理工艺参数及操作规程3课时。

重点:气焊,气割工作原理,工艺参数等难点:气焊、气割的操作一.气焊火焰气焊是利用气体火焰作热源的一种熔焊方法。

常用的气焊火焰是氧与乙炔混合燃烧所形成的火焰称氧乙炔焰,根据氧与乙炔混合比的大小可分三种不同性质的火焰。

1.中性焰:基本上没有自由氧,和自由碳存在的气体,氧与乙炔的混合比为1.1——1.2,焰心温度为3050——3150度。

2.碳化焰:在火焰的内焰区内有自由碳存在的气体,氧与乙炔的混合比为小于1.1,乙炔过剩,焰心温度2700——3000度。

3.氧化焰:在火焰的内焰区内有自由氧的存在的气体,氧与乙炔的混合比大于1.2,焰心温度3100——3300度。

火焰缩短。

根据焊件材料的不同选择不同的火焰。

重点:中性焰后的气体中即无过剩的氧,也无过剩的乙炔碳化焰:火焰比中性焰长,火焰中有过剩的乙炔氧化焰:火焰缩短,内外焰层次不清。

不同材料焊接时采用的火焰种类焊接金属火焰种类焊接金属火焰种类低中碳钢中性焰铬镍钢中性或乙炔稍多的中性焰低合金钢中性焰锰钢氧化焰紫铜中性焰镀锌铁板氧化焰铝及铝合金中性或轻微碳化焰高速钢碳化焰铅锡中性焰硬质合金碳化焰青铜中性或轻微氧化焰高碳钢碳化焰不锈钢中性或轻微碳化焰铸铁碳化焰黄铜氧化焰镍碳化焰或中性焰二.气焊原理利用乙炔气体加上氧气气体在焊炬是进行混合,并使它所发生剧烈的氧化燃烧,然后手氧化燃烧的热量去熔化工件接头部位的金属和焊丝,使熔化金属形成熔池,冷却后形成焊缝。

三.气焊工艺气焊工艺包括:焊丝,气焊熔剂,火焰,焊炬倾角,焊接方向等。

1.焊丝直经的选择;根据焊件的力学性能和化学成分,选择相应性能成分的焊丝,焊丝直径是根据焊件厚度来决定的。

焊丝直径与工件厚度的关系焊件厚度1.0——-2.02.0——3.03.0——5.05.0——10.010——15焊丝直径1.0——2.0或不用焊丝2.0——3.03.0——4.03.0——5.04.0——6.02.气焊熔剂气焊熔剂的选择,可根据焊件的成分和性质而定。

气焊气割火陷分类、性质及选择

气焊气割火陷分类、性质及选择

气焊的火焰是用来对焊件和填充金属进行加热、熔化和焊接的热源;气割的火焰是预热的热源;火焰的气流又是熔化金属的保护介质。

焊接火焰直接影响到焊接质量和焊接生产率,气焊气割时要求焊接火焰应有足够的温度,气焊的火焰是用来对焊件和填充金属进行加热、熔化和焊接的热源;气割的火焰是预热的热源;火焰的气流又是熔化金属的保护介质。

焊接火焰直接影响到焊接质量和焊接生产率,气焊气割时要求焊接火焰应有足够的温度,体积要小,焰芯要直,热量要集中;还应要求焊接火焰具有保护性,以防止空气中的氧、氮对熔化金属的氧化及污染。

(一)焊接切割的火焰分类气焊气割的气体火焰包括氧—乙炔焰、氢氧焰及液化石油气体[丙烷(C3H8)含量占50%~80%,此外还有丁烷(C4H10)、丁烯(C4H8)等]燃烧的火焰。

乙炔与氧混合燃烧形成的火焰,称为氧—乙炔焰。

氧—乙炔焰具有很高的温度(约3200℃),加热集中,因此,是气焊气割中主要采用的火焰。

氢与氧混合燃烧形成的火焰,称为氢氧焰。

氢氧焰是最早的气焊利用的气体火焰,由于其燃烧温度低(温度可达2770℃),且容易发生爆炸事故,未被广泛应用于工业生产,目前主要用于铅的焊接及水下火焰切割等。

液化石油气燃烧的温度比氧-乙炔火焰要低(丙烷在氧气中燃烧温度为2000~2850℃)。

液化石油气体燃烧的火焰主要用于金属切割,用于气割时,金属预热时间稍长,但可以减少切口边缘的过烧现象,切割质量较好,在切割多层叠板时,切割速度比使用乙炔快20%~30%。

液化石油气体燃烧的火焰除越来越广泛地应用于钢材的切割外,还用于焊接有色金属。

国外还有采用乙炔与液化石油气体混合,作为焊接气源。

乙炔(C2H2)在氧气(O2)中的燃烧过程可以分为两个阶段,首先乙炔在加热作用下被分解为碳(C)和氢(H2),接着碳和混合气中的氧发生反应生成一氧化碳(CO),形成第一阶段的燃烧;随后在第二阶段的燃烧是依靠空气中的氧进行的,这时一氧化碳和氢气分别与氧发生反应分别生成二氧化碳(CO2)和水(H2O)。

第四章气焊与气割作业介绍

第四章气焊与气割作业介绍

6、金属气割的条件:
(1)金属在氧气中的燃点应低于其熔点。 (2)气割时金属氧化物的熔点应低于金属的熔点。 (3)金属在切割氧流中的燃烧应是放热反应。 (4)金属的导热性不能太高。 (5)阻碍气割的杂质要少。 说明: ①不需要特殊气割方法就可以气割的金属有:
纯铁、低碳钢、中碳钢、低合金钢和钛等。
②必需采用特殊气割方法气割的金属有: 铸铁、不锈钢、铝和铜等。
7、 钢板厚度不同时的火焰偏向 当两块钢板厚度不相同时,火焰的主要热量应偏向厚
板方向。焊接间隙较大的焊件和薄焊件时,为防止工件烧 穿,可用焊丝挡住焰心,使火焰的高温部位不直接作用在 焊件上。
第三节 气焊与气割常用气体 气焊气割常用的可燃气体有:乙炔 (C2H2 )、氢气(H2)、液化石油气 等;常用的助燃气体是氧气(O2)。 一、乙炔 (一)乙炔的物理化学性质 乙炔是一种无色易燃易爆气体,工
1、中性焰(O2 :C2H2= 1 : 1.2)
中性焰有三个显著的区域:焰芯、内焰和外焰。
①、焰芯:白而亮,轮廓清晰。温度 800~1200 ℃ 。
②、内焰:内焰处在焰芯前2~4mm部位燃烧最剧烈,温
度最高,可达3100~3150 ℃ 。呈兰紫色 。
③、外焰:外焰呈桔红色。温度为1200~2500 ℃。 中性焰是焊接时常用的火焰,用于焊接低碳
免气孔和夹渣,但较难掌握。此种方法适用于较厚工件的焊接,而
一般厚度较大的工件均采用电弧焊,因此右焊法很少使用。
左焊法是焊丝在前,焊炬在后。这种方法是焊接火焰指向未焊
金属,有预热作用,焊接速度较快,可减少熔深和防止烧穿,操作
方便、适宜焊接薄板和低熔点金属。用左焊法,还可以看清熔池,
分清熔池中铁水与氧化铁的界线,因此左焊法在气焊中被普遍采用。

气焊与气割过程中的火焰控制技巧

气焊与气割过程中的火焰控制技巧

气焊与气割过程中的火焰控制技巧气焊与气割过程中的火焰控制技巧火焰控制是气焊与气割过程中非常重要的技巧之一。

它直接影响到焊接或切割的质量和效果。

下面将逐步介绍气焊与气割中火焰控制的技巧。

第一步:选择合适的火焰类型火焰类型是根据工作需求和材料性质来选择的。

对于气焊来说,常用的火焰类型有中性火焰、还原火焰和氧化火焰。

其中,中性火焰适用于大部分焊接材料;还原火焰适用于焊接钢材等含碳材料;氧化火焰适用于焊接铜、铜合金等材料。

对于气割来说,常用的火焰类型有预热火焰和切割火焰。

预热火焰用于加热材料表面,切割火焰用于切割材料。

第二步:调整火焰比例火焰比例是调节氧气与燃料气的流量比例。

通常来说,氧气流量要比燃料气流量大。

对于气焊来说,中性火焰的氧气与燃料气的比例为1:1;还原火焰的比例为2:1;氧化火焰的比例为1:2。

对于气割来说,预热火焰的氧气与燃料气的比例为1:3;切割火焰的比例为1:1。

第三步:调整火焰大小火焰大小的调节是根据焊接或切割的要求和材料的厚度来确定的。

一般来说,焊接较细材料时,火焰要小一些,焊接较厚材料时,火焰要大一些。

对于气割来说,切割材料越厚,切割火焰的大小就需要调得越大。

第四步:控制火焰的角度和距离在焊接或切割过程中,保持合适的火焰角度和距离非常重要。

通常来说,焊接时火焰的角度要与焊接缝相垂直,距离要适中,以保证焊接的均匀性和质量。

而在气割时,火焰的角度和距离也要根据切割要求和材料的厚度来调整。

第五步:注意火焰的稳定性在气焊和气割过程中,保持火焰的稳定性是非常重要的。

火焰稳定性的关键是要控制好氧气和燃料气的流量,并保持合适的压力。

同时,要注意避免火焰被外界风力影响,避免火焰剧烈摆动或熄灭。

总结起来,火焰控制是气焊与气割过程中至关重要的技巧之一。

通过选择合适的火焰类型、调整火焰比例和大小、控制火焰角度和距离以及注意火焰的稳定性,可以有效提高焊接或切割的质量和效果。

在实际操作中,需要不断积累经验并加以实践,以提高自己的火焰控制技巧。

气割操作技巧与工艺

气割操作技巧与工艺

气割操作技巧与工艺气割的工艺参数主要有预热火焰能率、切割氧气压力、切割速度、割嘴倾角及其与工件表面的距离等。

1、预热火焰能率预热火焰能率主要取决于割炬和割嘴的大小。

气割是应根据工件的厚度选择割炬型号和嘴号,火焰能率过大,会造成上且口边缘塌边或产生细竹状毛边。

特别是气割薄板时,火焰能率过大,会使整个切割而熔化,不仅切口不平整,而且下口边缘会形成熔滴,清查十分困难,甚至会出现边割边焊的现象。

如果火焰能率太小,则会导致预热时间长、切割速度慢、切割面粗燥甚至割不透等。

2、切割氧气压力切割氧气的压力主要根据切割厚度确定。

氧气压力太小切割过程缓慢,切口粘渣,甚至个不透;氧气压力过大,不但浪费氧气,而且切口增宽、表面粗糙,如果切割场所尘灰较多,还会因此溅起更多的飞灰,恶化作业环境。

3、切割速度切割速度也是影响切口质量的一个重要参数。

通常情况下切割速度随切割厚度的增加而减慢。

但是在相同的工艺条件下,切割速度太慢,相当于增加了火焰能率,因此会出现上切口塌边等类似火焰能率过大产生的缺陷;而切割速度太快,则会造成拖量多大甚至割不透。

4、割嘴倾角气割时,通常割嘴应垂直于工件表面。

但直线切割厚度小于20mm的工件时,割嘴可向后(与切割方向相反)倾斜20°—30°,这样可消除或减少后拖量,提高切割速度与质量。

当直线或曲线切割厚度大于20mm的工件时,割嘴应垂直于工件表面。

5、割嘴与工件表面的距离割嘴与工件表面之间的距离应视火焰能率及工件的厚度面定。

一般以焰芯距工件表面2-4mm为宜。

但在切割较厚的工件时,火焰能率较大,于工件表面的距离可适当增大些,以防止切口边熔化以及因各最过热核飞溅的熔渣堵塞碰嘴可引起回火(在氧气作用下,火焰在乙炔输气管内倒燃的现象)。

气割操作技术1.气割准备手工气割前要做好以下七样准备工作。

1)检查工作场地是否安全,将割件切口下面垫空,便于气割时散发热量和排除熔渣。

2)检查乙炔发生器和回火防止器是否工作正常,将气割设备按操作规程连接好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气焊气割火焰及工艺参数的选择一、气焊气割火陷气焊的火焰是用来对焊件和填充金属进行加热、熔化和焊接的热源;气割的火焰是预热的热源;火焰的气流又是熔化金属的保护介质。

焊接火焰直接影响到焊接质量和焊接生产率,气焊气割时要求焊接火焰应有足够的温度,体积要小,焰芯要直,热量要集中;还应要求焊接火焰具有保护性,以防止空气中的氧、氮对熔化金属的氧化及污染。

(一)焊接切割的火焰分类气焊气割的气体火焰包括氧—乙炔焰、氢氧焰及液化石油气体[丙烷(C3H8)含量占50%~80%,此外还有丁烷(C4H10)、丁烯(C4H8)等]燃烧的火焰。

乙炔与氧混合燃烧形成的火焰,称为氧—乙炔焰。

氧—乙炔焰具有很高的温度(约3200℃),加热集中,因此,是气焊气割中主要采用的火焰。

氢与氧混合燃烧形成的火焰,称为氢氧焰。

氢氧焰是最早的气焊利用的气体火焰,由于其燃烧温度低(温度可达2770℃),且容易发生爆炸事故,未被广泛应用于工业生产,目前主要用于铅的焊接及水下火焰切割等。

液化石油气燃烧的温度比氧-乙炔火焰要低(丙烷在氧气中燃烧温度为2000~2850℃)。

液化石油气体燃烧的火焰主要用于金属切割,用于气割时,金属预热时间稍长,但可以减少切口边缘的过烧现象,切割质量较好,在切割多层叠板时,切割速度比使用乙炔快20%~30%。

液化石油气体燃烧的火焰除越来越广泛地应用于钢材的切割外,还用于焊接有色金属。

国外还有采用乙炔与液化石油气体混合,作为焊接气源。

乙炔(C2H2)在氧气(O2)中的燃烧过程可以分为两个阶段,首先乙炔在加热作用下被分解为碳(C)和氢(H2),接着碳和混合气中的氧发生反应生成一氧化碳(CO),形成第一阶段的燃烧;随后在第二阶段的燃烧是依靠空气中的氧进行的,这时一氧化碳和氢气分别与氧发生反应分别生成二氧化碳(CO2)和水(H2O)。

上述的反应释放出热量,即乙炔在氧气中燃烧的过程是一个放热的过程。

氧—乙炔火焰根据氧和乙炔混合比的不同,可分为中性焰、碳化焰和氧化焰三种类型,其构造和形状如图2—2所示。

(二)中性焰中性焰是氧与乙炔体积的比值(O2/C2H2)为1.1~1.2的混合气燃烧形成的气体火焰,中性焰在第一燃烧阶段既无过剩的氧又无游离的碳。

当氧与丙烷容积的比.值(O2/C3H8)为3.5时,也可得到中性焰。

中性焰有三个显著区别的区域,分别为焰芯、内焰和外焰,如图2—2(a)所示。

图2-2 氧—乙炔焰的构造和形状1.焰芯2.内焰3.外焰1.焰芯中性焰的焰芯呈尖锥形,色白而明亮,轮廓清楚。

焰芯由氧气和乙炔组成,焰芯外表分布有一层由乙炔分解所生成的碳素微粒,由于炽热的碳粒发出明亮的白光,因而有明亮而清楚的轮廓。

在焰芯内部进行着第一阶段的燃烧。

焰芯虽然很亮,但温度较低(800~1200℃),这是由于乙炔分解而吸收了部分热量的缘故。

2.内焰内焰主要由乙炔的不完全燃烧产物,即来自焰芯的碳和氢气与氧气燃烧的生成物一氧化碳和氢气所组成。

内焰位于碳素微粒层外面,呈蓝白色,有深蓝色线条。

内焰处在焰芯前2~4mm部位,燃烧量激烈,温度最高,可达3100~3150℃。

气焊时,一般就利用这个温度区域进行焊接,因而称为焊接区。

由于内焰中的一氧化碳(CO)和氢气(H2)能起还原作用,所以焊接碳钢时都在内焰进行,将工件的焊接部位放在距焰芯尖端2~4mm处。

内焰中的气体中一氧化碳的含量占60%~66%,氢气的含量占30%~34%,由于对许多金属的氧化物具有还原作用,所以焊接区又称为还原区。

3.外焰处在内焰的外部,外焰的颜色从里向外由淡紫色变为橙黄色。

在外焰,来自内焰燃烧生成的一氧化碳和氢气与空气中的氧充分燃烧,即进行第二阶段的燃烧。

外焰燃烧的生成物是二氧化碳和水。

外焰温度为1200~2500℃。

由于二气化碳(CO2)和水(H2O)在高温时容易分解,所以外焰具有氧化性。

中性焰应用最广泛,一般用于焊接碳钢、紫铜和低合金钢等。

中性焰的温度是沿着火焰轴线而变化的,如图2—3所示。

中性焰温度最高处在距离焰芯末端2~4mm的内焰的范围内,此处温度可达3150℃,离此处越远,火焰温度越低。

图2-3 中性焰的温度分布情况此外,火焰在横断面上的温度是不同的,断面中心温度最高,越向边缘,温度就越低。

由于中性焰的焰芯和外焰温度较低,而且内焰具有还原性,内焰不但温度最高还可以改善焊缝金属的性能,所以,采用中性焰焊接切割大多数的金属及其合金时,都利用内焰。

(三)碳化焰碳化焰是氧与乙炔的体积的比值(O2/C2H2)小于1.1时的混合气燃烧形成的气体火焰,因为乙炔有过剩量,所以燃烧不完全。

碳化焰中含有游离碳,具有较强的还原作用和一定的渗碳作用。

碳化焰可分为焰芯、内焰和外焰三部分,如图2—2(b)所示。

碳化焰的整个火焰比中性焰长而柔软,而且随着乙炔的供给量增多,碳化焰也就变得越长、越柔软,其挺直度就越差。

当乙炔的过剩量很大时,由于缺乏使乙炔完全燃烧所需要的氧气,火焰开始冒黑烟。

碳化焰的焰芯较长,呈蓝白色,由一氧化碳(CO)、氢气(H2)和碳素微粒组成。

碳化焰的外焰特别长,呈橘红色,由水蒸汽、二氧化碳、氧气、氢气和碳素微粒组成。

碳化焰的温度为2700~3000℃。

由于在碳化焰中有过剩的乙炔,它可以分解为氢气和碳,在焊接碳钢时,火焰中游离状态的碳会渗到熔池中去,增高焊缝的含碳量,使焊缝金属的强度提高而使其塑性降低。

此外,过多的氢会进入熔池,促使焊缝产生气孔和裂纹。

因而碳化焰不能用于焊接低碳钢及低合金钢。

但轻微的碳化焰应用较广,可用于焊接高碳钢、中合金钢、高合金钢、铸铁、铝和铝合金等材料。

(四)氧化焰氧化焰是氧与乙炔的体积的比值(O2/C2H2)大子1.2时的混合气燃烧形成的气体火焰,氧化焰中有过剩的氧,在尖形焰芯外面形成了一个有氧化性的富氧区,其构造和形状如图2—2(c)所示。

氧化焰由于火焰中含氧较多,氧化反应剧烈,使焰芯、内焰、外焰都缩短,内焰很短,几乎看不到。

氧化焰的焰芯呈淡紫蓝色,轮廓不明显;外焰呈蓝色,火焰挺直,燃烧时发出急剧的“嘶嘶”声。

氧化焰的长度取决于氧气的压力和火焰中氧气的比例,氧气的比例越大,则整个火焰就越短,噪声也就越大。

氧化焰的温度可达3100~3400℃。

由于氧气的供应量较多,使整个火焰具有氧化性。

如果焊接一般碳钢时,采用氧化焰就会造成熔化金属的氧化和合金元素的烧损,使焊缝金属氧化物和气孔增多并增强熔池的沸腾现象,从而较大地降低焊接质量。

所以,一般材料的焊接,绝不能采用氧化焰。

但在焊接黄铜和锡青铜时,利用轻微的氧化焰的氧化性,生成的氧化物薄膜覆盖在熔池表面,可以阻止锌、锡的蒸发。

由于氧化焰的温度很高,在火焰加热时为了提高效率,常使用氧化焰。

气割时,通常使用氧化焰。

(五)各种火焰的适用范围以上叙述的中性焰、碳化焰、氧化焰,因其性质不同,适用于焊接不同的材料。

氧与乙炔不同体积比值(O2/C2H2)对焊接质量关系很大。

各种金属材料气焊时火焰种类的选择详见表2—1。

二、气焊与气割主要工艺参数(一)气焊主要工艺参数气焊的焊接工艺参数包括焊丝的牌号和直径、熔剂、火焰种类、火焰能率、焊炬型号和焊嘴的号码、焊嘴倾角和焊接速度等。

由于焊件的材质、气焊的工作条件、焊件的形状尺寸和焊接位置、气焊工的操作习惯和气焊设备等的不同,所选用的气焊焊接工艺参数不尽相同。

下面对一般的气焊工艺参数(即焊接规范)及其对焊接质量的影响分别说明如下:1.焊丝直径的选择焊丝的直径应根据焊件的厚度、坡口的形式、焊缝位置、火焰能率等因素确定。

在火焰能率一定时,即焊丝熔化速度在确定的情况下,如果焊丝过细,则焊接时往往在焊件尚未熔化时焊丝已熔化下滴,这样,容易造成熔合不良和焊波高低不平、焊缝宽窄不一等缺陷;如果焊丝过粗,则熔化焊丝所需要的加热时间就会延长,同时增大了对焊件的加热范围,使工件焊接热影响区增大,容易造成组织过热,降低焊接接头的质量。

焊丝直径常根据焊件厚度初步选择,试焊后再调整确定。

碳钢气焊时焊丝直径的选择可参照表2—2。

在多层焊时,第一、二层应选用较细的焊丝,以后各层可采用较粗的焊丝。

一般平焊应比其它焊接位置选用粗一号的焊丝,右焊法比左焊法选用的焊丝要适当粗一些。

2.火焰性质的选择一般来说,需要尽量减少元素的烧损时,应选用中性焰;对需要增碳及还原气氛时,应选用碳化焰;当母材含有低沸点元素[如锡(Sn)、锌(Zn)等]时,需要生成覆盖在熔池表面的氧化物薄膜,以阻止低熔点元素蒸发,应选用氧化焰。

总之,火焰性质选择应根据焊接材料的种类和性能。

由于气焊焊接质量和焊缝金属的强度与火焰种类有很大的关系,因而在整个焊接过程中应不断地调节火焰成分,保持火焰的性质,从而获得质量好的焊接接头。

不同金属材料的气焊所采用焊接火焰的性质参照表2—1。

3.火焰能率的选择火焰能率指单位时间内可燃气体(乙炔)的消耗量,单位为L/h。

火焰能率的物理意义是单位时间内可燃气体所提供的能量。

火焰能率的大小是由焊炬型号和焊嘴号码大小来决定的。

焊嘴号越大火焰能率也越大。

所以火焰能率的选择实际上是确定焊炬的型号和焊嘴的号码。

火焰能率的大小主要取决于氧、乙炔混合气体中,氧气的压力和流量(消耗量)及乙炔的压力和流量(消耗量)。

流量的粗调通过更换焊炬型号和焊嘴号码实现;流量的细调通过调节焊炬上的氧气调节阀和乙炔调节阀来实现。

火焰能率应根据焊件的厚度、母材的熔点和导热性及焊缝的空间位置来选择。

如焊接较厚的焊件、熔点较高的金属、导热性较好的铜、铝及其合金时,就要选用较大的火焰能率,才能保证焊件焊透;反之,在焊接薄板时,为防止焊件被烧穿,火焰能率应适当减小。

平焊缝可比其它位置焊缝选用稍大的火焰能率。

在实际生产中,在保证焊接质量的前提下,应尽量选择较大的火焰能率。

4.焊嘴倾斜角的选择焊嘴的倾斜角是指焊嘴中心线与焊件平面之间的夹角。

详见图2—4。

焊嘴的倾斜角度的大小主要是根据焊嘴的大小、焊件的厚度、母材的熔点和导热性及焊缝空间位置等因素综合决定的。

当焊嘴倾斜角大时,因热量散失少,焊件得到的热量多,升温就快;反之,热量散失多,焊件受热少,升温就慢。

一般低碳钢气焊时,焊嘴的倾斜角度与工件厚度的关系详见图2—4。

一般说来,在焊接工件的厚度大、母材熔点较高或导热性较好的金属材料时,焊嘴的倾斜角要选得大一些;反之,焊嘴倾斜角可选得小一些。

图2-4 焊嘴倾斜角与焊件厚度的关系焊嘴的倾斜角度在气焊的过程中还应根据施焊情况进行变化。

如在焊接刚开始时,为了迅速形成熔池,采用焊嘴的倾斜角度为80°~90°;当焊接结束时,为了更好地填满弧坑和避免焊穿或使焊缝收尾处过热,应将焊嘴适当提高,焊嘴倾斜角度逐渐减小,并使焊嘴对准焊丝或熔池交替地加热。

在气焊过程中,焊丝对焊件表面的倾斜角一般为30°~40°,与焊嘴中心线的角度为90°~100°,如图2—5所示。

相关文档
最新文档