专题讲解:传送带上的滑块问题

合集下载

牛顿运动定律与直线运动 二轮专题复习:牛顿运动定律的传送带问题 含解析 精品

牛顿运动定律与直线运动 二轮专题复习:牛顿运动定律的传送带问题 含解析 精品

牛顿运动定律的传送带问题一.滑块在水平传送带上运动常见的三个情景情景一(1)可能一直加速(2)可能先加速后匀速情景二(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景三(1)传送带较短时,滑块一直减速到达左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v 返回时速度为v0例题1.如图所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示.已知v2>v1,则( )A.t2时刻,小物块离A处的距离达到最大B.t2时刻,小物块相对传送带滑动的距离最大C.0~t2时间内,小物块受到的摩擦力方向先向右后向左D.0~t3时间内,小物块始终受到大小不变的摩擦力作用解析:选B.物块滑上传送带后将做匀减速运动,t1时刻速度为零,此时小物块离A处的距离达到最大,选项A错误;然后在传送带滑动摩擦力的作用下向右做匀加速运动,t 2时刻与传送带达到共同速度,此时小物块相对传送带滑动的距离最大,选项B 正确;0~t 2时间内,小物块受到的摩擦力方向始终向右,选项C 错误;t 2~t 3时间内小物块不受摩擦力,选项D 错误.例题2. (多选)如图所示,质量为m 的物体用细绳拴住放在粗糙的水平传送带上,物体距传送带左端的距离为L .当传送带分别以v 1、v 2的速度逆时针转动(v 1<v 2),稳定时绳与水平方向的夹角为θ,绳中的拉力分别为F 1,F 2;若剪断细绳时,物体到达左端的时间分别为t 1、t 2,则下列说法正确的是( )A .F 1<F 2B .F 1=F 2C .t 1一定大于t 2D .t 1可能等于t 2解析:选BD.绳剪断前物体的受力情况如图所示,由平衡条件得F N +F sin θ=mg ,F f =μF N =F cos θ,解得F =μmg μsin θ+cos θ,F 的大小与传送带的速度无关,选项A 错误,B 正确;绳剪断后m 在两速度的传送带上的加速度相同,若L ≤v 212μg ,则两次都是匀加速到达左端,t 1=t 2,若L >v 212μg ,则物体在传送带上先加速再匀速到达左端,在速度小的传送带上需要的时间更长,t 1>t 2,选项C 错误,D 正确.例题3、 (多选)如图所示,水平传送带以速度v 1匀速运动,小物体P 、Q 由通过定滑轮且不可伸长的轻绳相连,t =0时刻P 在传送带左端具有速度v 2,P 与定滑轮间的绳水平,t =t 0时刻P 离开传送带.不计定滑轮质量和摩擦,绳足够长.正确描述小物体P 速度随时间变化的图象可能是( )解析若v1>v2,且P受到的滑动摩擦力大于Q的重力,则可能先向右匀加速,加速至v1后随传送带一起向右匀速,此过程如图B所示,故B正确.若v1>v2,且P 受到的滑动摩擦力小于Q的重力,此时P一直向右减速,减速到零后反向加速.若v 2>v1,P受到的滑动摩擦力向左,开始时加速度a1=FT+μmgm,当减速至速度为v1时,摩擦力反向,若有F T>μmg,此后加速度a2=FT-μmgm,故C正确,A、D错误.答案BC二、倾斜传送带问题滑块在倾斜传送带上运动常见的四个情景情景一①可能一直加速②可能先加速后匀速情景二①可能一直加速②可能先加速后匀速③可能先以a1加速后以a2加速情景三①可能一直加速②可能先加速后匀速③可能一直匀速④可能先以a1加速后以a2加速情景四①可能一直加速②可能一直匀速③可能先减速后反向加速例题4 如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,在传送带顶端A处无初速度的释放一个质量为m=0.5 kg的物体,已知物体与传送带间的动摩擦因数μ=0.5,g取10 m/s2.求:(sin 37°=0.6,cos 37°=0.8)(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.解析(1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加速运动,根据牛顿第二定律有mg(sin 37°-μcos 37°)=ma则a=g sin 37°-μg cos 37°=2 m/s2,根据l=12at2得t=4 s.(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a1,由牛顿第二定律得mg sin 37°+μmg cos 37°=ma1则有a1=mg sin 37°+μmg cos 37°m=10 m/s2.设当物体运动速度等于传送带转动速度时经历的时间为t1,位移为x1,则有t1=va1=1010s=1 s,x1=12a1t21=5 m<l=16 m.当物体运动速度等于传送带速度瞬间,有mg sin 37°>μmg cos 37°,则下一时刻物体相对传送带向下运动,受到传送带向上的滑动摩擦力——摩擦力发生突变.设当物体下滑速度大于传送带转动速度时物体的加速度为a2,则a2=mg sin 37°-μmg cos 37°m=2 m/s2x2=l-x1=11 m又因为x2=vt2+12a2t22,则有10t2+t22=11解得t2=1 s(t2=-11 s舍去)所以t总=t1+t2=2 s.答案(1)4 s (2)2 s例题5.如图所示,A、B两个皮带轮被紧绷的传送皮带包裹,传送皮带与水平面的夹角为θ,在电动机的带动下,可利用传送皮带传送货物.已知皮带轮与皮带之间无相对滑动,皮带轮不转动时,某物体从皮带顶端由静止开始下滑到皮带底端所用的时间是t,则( )A.当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定大于tB.当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于tC .当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间可能等于tD .当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于t解析:选D.传送带不动物体下滑时,物体受摩擦力向上,故加速度a =g sin θ-μg cos θ; 当传送带向上运动时,摩擦力一定也是向上,而摩擦力的大小不变,故a 不变,所以物体运动到B 的时间不变,故A 、B 错误;当皮带向下运动时,物体受摩擦力开始是向下的,故加速度开始一定增大,位移不变,故由A 滑到B 的时间小于t ,故C 错误,D 正确.例题6.如图所示为上、下两端相距 L =5 m 、倾角α=30°、始终以v =3 m/s 的速率顺时针转动的传送带(传送带始终绷紧).将一物体放在传送带的上端由静止释放滑下,经过t =2 s 到达下端,重力加速度g 取10 m/s 2,求:(1)传送带与物体间的动摩擦因数多大?(2)如果将传送带逆时针转动,速率至少多大时,物体从传送带上端由静止释放能最快地到达下端?解析:(1)物体在传送带上受力如图所示,物体沿传送带向下匀加速运动,设加速度为a .由题意得L =12at 2解得a =2.5 m/s 2 由牛顿第二定律得mg sin α-F f =ma 又F f =μmg cos α故μ=0.29.(2)如果传送带逆时针转动,要使物体从传送带上端由静止释放能最快地到达下端,则需要物体有沿传送带向下的最大加速度即所受摩擦力沿传送带向下,设此时传送带速度为v m,物体加速度为a′.由牛顿第二定律得mg sin α+F f=ma′又v2m=2La′故v m=2La′=8.66 m/s.答案:(1)0.29 (2)8.66 m/s例题7.(多选)如图所示是某工厂所采用的小型生产流水线示意图,机器生产出的物体源源不断地从出口处以水平速度v0滑向一粗糙的水平传送带,最后从传送带上落下装箱打包.假设传送带静止不动时,物体滑到传送带右端的速度为v,最后物体落在P处的箱包中.下列说法正确的是( )A.若传送带随皮带轮顺时针方向转动起来,且传送带速度小于v,物体仍落在P 点B.若传送带随皮带轮顺时针方向转动起来,且传送带速度大于v0,物体仍落在P点C.若传送带随皮带轮顺时针方向转动起来,且传送带速度大于v,物体仍落在P 点D.若由于操作不慎,传送带随皮带轮逆时针方向转动起来,物体仍落在P点解析:选AD.若传送带静止,物体滑到传送带右端的过程中,物体一直减速,其加速度a=μg,v2-v20=2aL,当传送带顺时针转且速度小于v时,物体仍一直减速,到达传送带右端速度仍为v,因而物体仍落在P点,A正确;当传送带顺时针转且速度大于v0时,物体应先加速,因而到达右端时速度一定大于v,应落在P点右侧,B 错误;当传送带顺时针转且速度大于v时,物体在传送带上应先减速,当速度达到传送带速度时便和传送带一起匀速运动,到达右端时速度大于v,应落在P点右侧,C 错误;当传送带逆时针转时,物体一直减速,到达右端时速度为v,仍落在P点,D 正确.。

滑块在传送带上的运动专题(很全面)

滑块在传送带上的运动专题(很全面)
M
A
v1
L
B
类型6:如图甲示,水平传送带的长度L=6m,传送带
皮带轮的半径都为R=0.25m,现有一小物体(可视为质点) 以恒定的水平速度v0滑上传送带,设皮带轮顺时针匀速转 动,当角速度为ω时,物体离开传送带B端后在空中运动的 水平距离为s,若皮带轮以不同的角速度重复上述动作(保 持物体滑上传送带的初速v0不变),可得到一些对应的ω和 s值,将这些对应值画在坐标上并连接起来,得到如图乙中 实线所示的 s- ω图象,根据图中标出的数据(g取10m/s2 ), P 求: v0 A B (1)滑上传送带时的初速v0以及物体 和皮带间的动摩擦因数μ h (2)B端距地面的高度h s (3)若在B端加一竖直挡板P,皮带轮 s /m 3.5 以角速度ω′=16rad/s顺时针匀速转 动,物体与挡板连续两次碰撞的时 0.5 ω/rads-1 间间隔t′为多少?(物体滑上A端 28 0 4 时速度仍为v0,在和挡板碰撞中无 机械能损失)
1 0
v皮/ms-1
1 5 7
(2)由图象可知:当水平速度为1m/s时, 水平距离为0.5m, h=1/2 gt2=1.25m t=s/v=0.5s (3) ω′=16rad/s 物体和板碰撞前后 的速度都是v′ =ω′ R =4m/s 第一次碰后速度向左,减速到0, 再向右加速到4m/s时第二次碰板
A
v0
P B h s
s /m
大小班、长短 课专用课件
课题26 传送带与题
问题难点:
1、对于物体与传送带之间是否存在摩擦力、是滑动 摩擦力还是静摩擦力、摩擦力的方向如何,这些 关于摩擦力的产生条件、方向的判断等基础知识 模糊不清; 2、对于物体相对地面、相对传送带分别做什么样的 运动,判断错误; 3、对于物体在传送带上运动过程中的能量转化情况 考虑不全面,出现能量转化不守恒的错误理解。 (在此处不讨论在传送带上因摩擦生热而损耗的 机械能的相关问题,这类问题留到机械能部分在 再集中讨论。)

传送带与滑块问题

传送带与滑块问题

传送带与滑块专题1.如图,质量为m 的物体用细绳拴住放在水平粗糙传送带上,物体距传送带左端距离为L ,稳定时绳与水平方向的夹角为θ,当传送带分别以v 1、v 2的速度做逆时针转动时(v 1<v 2),绳中的拉力分别为F 1、F 2;若剪断细绳时,物体到达左端的时间分别为t 1、t 2,则下列说法正确的是( )A .F 1、F 2B .F 1=F 2C .t 1>t 2D .t 1<t 22.如图所示,一水平方向足够长的传送带以恒定的速率v 1沿顺时针方向运动,传送带右端有一与传送带等高的光滑水平面,物体以恒定的速率v 2沿直线向左滑上传送带后,经过一段时间又返回光滑水平面上,这时速率为'2v ,则下列说法中正确的是( )A .若v 1<v 2,则'2v =v 1B .若v 1>v 2,则'2v =v 2C .不管v 2多大,总有'2v =v 2D .只有v 1=v2时,才有2=v 13.如图甲所示为车站使用的水平传送带的模型,传送带长L =8m ,以速度v =4m/s 沿顺时针方向匀速转动,现有一个质量为m =10kg 的旅行包以速度V 0=10m/s 的初速度水平地滑上水平传送带.已知旅行包与皮带间的动摩擦因数为μ=0.6 ,(g =10m/s 2,且可将旅行包视为质点.)(1)则旅行包从传送带的A 端到B 端所需要的时间是多少?(2)若旅行包静置于传送带上,旅行包要以最短的时间运送到B 端,传送带的速度至少 为多少?最短时间是多少?4.一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。

初始时,传送带与煤块都是静止。

现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动。

经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。

求此黑色痕迹的长度。

V 25.如图,传送带与水平方向夹37°角,AB 长为L =16m 的传送带以恒定速度v =10m/s 运动,在传送带上端A 处无初速释放质量为m =0.5kg 的物块,物块与带面间的动摩擦因数μ=0.5,(sin37°=0.6,cos37°=0.8,取g =10 m/s 2)求:(1)当传送带顺时针转动时,物块从A 到B 所经历的时间为多少?(2)当传送带逆时针转动时,物块从A 到B 所经历的时间为多少?6.如图所示,皮带轮带动传送带沿逆时针方向以速度v 0=2m / s 匀速运动,两皮带轮之间的距离L=3.2 m ,皮带绷紧与水平方向的夹角θ=37°。

“传送带”模型问题专题分析

“传送带”模型问题专题分析

“传送带”模型问题专题分析一.模型特点:1.水平传送带情景一物块可能运动情况:(1)可能一直加速(2)可能先加速后匀速情景二(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景三(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。

其中v0>v返回时速度为v,当v0<v返回时速度为v02倾斜传送带。

情景一(1)可能一直加速(2)可能先加速后匀速情景二(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速二.思路方法:(1)水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断。

进一步分析物体的运动情况,物体的速度与传送带速度相等的时刻摩擦力发生突变。

(2)倾斜传送带问题:求解关键在于认真分析物体与传送带的相对运动情况。

进一步分析物体所受摩擦力的情况及运动情况。

当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变。

例1.如图所示,水平传送带以5m/s的恒定速度运动,传送带长l=2.5m,今在其左端A处将一工件轻轻放在上面,工件被带动,传送到右端B处,已知工件与传送带间的动摩擦因数μ=0.5,试求:工件经多少时间由传送带左端A 运动到右端B?(g取10m/s2)答案:1s2.(多选)(2017·锦州模拟)如图所示,水平传送带A、B两端相距s=3.5m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度vA=4m/s,到达B端的瞬时速度设为vB。

下列说法中正确的是()A.若传送带不动,vB=3m/sB.若传送带逆时针匀速转动,vB一定等于3m/sC.若传送带顺时针匀速转动,vB一定等于3m/sD.若传送带顺时针匀速转动,vB有可能等于3m/s【解析】选A、B、D总结:(一)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。

2024年新高一物理初升高衔接《传送带问题和滑块——木板问题》含答案解析

2024年新高一物理初升高衔接《传送带问题和滑块——木板问题》含答案解析

专题04传送带问题和滑块—木板问题【必备知识】1.传送带问题(1)水平传送带问题当传送带水平时,应特别注意摩擦力的突变和物体运动状态的变化。

摩擦力的突变,常常导致物体的受力情况和运动性质的突变。

静摩擦力达到最大值,是物体和传送带恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,物体与传送带的速度达到相同时,滑动摩擦力要发生突变(滑动摩擦力为0或变为静摩擦力)。

(2)倾斜传送带问题当传送带倾斜时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ对受力的影响,从而正确判断物体的速度和传送带速度相等时物体的运动性质。

2.滑块—木板问题(1)滑块—木板问题至少涉及滑块和木板两个物体(有时不止一个滑块,有时木板受地面的摩擦力),物体间经常存在相对滑动。

由于摩擦力的突变,所以一般是多过程运动,各物体所受的摩擦力和运动情况比较复杂。

(2)常见的两种运动关系①滑块从初始位置滑到木板一端的过程中,若它们向同一方向运动,则滑块与木板的位移大小之差等于初始时滑块到木板这一端的距离。

②滑块从初始位置滑到木板一端的过程中,若它们向相反方向运动,则滑块与木板的位移大小之和等于初始时滑块到木板这一端的距离。

注意:如果滑块恰好没有脱离木板,则除了上述的位移关系外,滑块的末速度还与木板的相同。

【核心考点精准练】考向一: 传送带问题【例1】(多选)如图所示,水平传送带A、B两端点相距x=4 m,以v0=2 m/s的速度(始终保持不变)顺时针运转。

今将一小煤块(可视为质点)无初速度地轻放至A点处,已知小煤块与传送带间的动摩擦因数为0.4,g取10 m/s2。

由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕。

则小煤块从A运动到B的过程中( )A.运动时间是2 s B.运动时间是2.25 sC.划痕长度是4 m D.划痕长度是0.5 m【巩固1】如图所示,A、B间的距离l=3.25 m,传送带与水平面成θ=30°角,轮子转动方向如图所示,传送带始终以2 m/s的速度运行。

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律滑块与传送带专题一“滑块—滑板”模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题思路处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系.(1) 加速度关系如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件.(2) 速度关系滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况.(3) 位移关系滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到了,自然也就容易列出所需要的方程了.例一、如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为F f1、F f2和F f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有F f1=μ1m A g ①F f2=μ1m B g ②F f3=μ2(m+m A+m B)g ③由牛顿第二定律得F f1=m A a A ④F f2=m B a B ⑤F f2-F f1-F f3=ma1 ⑥设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1=v0-a B t1 ⑦v1=a1t1 ⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s,方向与B的初速度方向相同⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有F f1+F f3=(m B+m)a2 ⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2 ⑫对A有v2=-v1+a A t2 ⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2 ⑮A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B ⑯联立以上各式,并代入数据得s0=1.9 m.(也可用如图所示的速度-时间图线求解)答案:(1)1 m/s方向与B的初速度方向相同(2)1.9 m【题后反思】求解“滑块—滑板”模型问题的方法技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变.跟踪练习1. (水平面光滑的“滑块—滑板”模型)如图所示,质量M=8 kg的小车静止在光滑水平面上,在小车右端施加一水平拉力F=8 N.当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m=2 kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t=1.5 s 的时间,物体相对地面的位移为(g取10 m/s2)()A.1 m B.2.1 mC.2.25 m D.3.1 m解析:选B.放上物体后,物体的加速度a1=μg=2 m/s2,小车的加速度:a2=F-μmgM=0.5 m/s2,物体的速度达到与小车共速的时间为t1,则a1t1=v0+a2t1,解得t1=1 s;此过程中物体的位移:s1=12a1t21=1 m;共同速度为v=a1t1=2 m/s;当物体与小车相对静止时,共同加速度为a=FM+m=0.8 m/s2,再运动0.5 s的位移s2=vt′+12at′2=1.1 m,故从物体放上小车开始的1.5 s时间内,物体相对地面的位移为1 m+1.1 m=2.1 m,选项B正确.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的()解析:选A.放上小物块后,长木板受到小物块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小物块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于两者相对运动时木板的加速度,故A 正确,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误.3.(多个板块的组合模型)如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6 N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1 m,木板A的质量m A=3 kg,小滑块及木板B的质量均为m=1 kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10 m/s2.求:(1)小滑块在木板A上运动的时间;(2)木板B获得的最大速度.解析:(1)小滑块对木板A的摩擦力F f1=μ1mg=4 N,木板A与B整体受到地面的最大静摩擦力F f2=μ2(2m+m A)g=5 N.F f1<F f2,小滑块滑上木板A后,木板A保持静止设小滑块滑动的加速度为a1,则:F-μ1mg=ma1,l=12a1t21,解得:t1=1 s.(2)设小滑块滑上B时,小滑块速度为v1,B的加速度为a2,经过时间t2滑块与B脱离,滑块的位移为x块,B的位移为x B,B的最大速度为v B,则:μ1mg-2μ2mg=ma2,v B=a2t2,x B=12a2t22,v1=a1t1,x块=v1t2+12a1t22,x块-x B=l,联立以上各式可得:v B=1 m/s.答案:(1)1 s(2)1 m/s4.(斜面上的“滑块—滑板”问题)如图所示,在足够长的光滑固定斜面底端放置一个长度L=2 m、质量M=4 kg 的木板,木板的最上端放置一质量m=1 kg 的小物块(可视为质点).现沿斜面向上对木板施加一个外力F使其由静止开始向上做匀加速直线运动.已知斜面倾角θ=30°,物块和木板间的动摩擦因数μ=3 2,g取10 m/s2.(1)当外力F=30 N时,物块和木板保持相对静止,求二者共同运动的加速度大小;(2)当外力F=53.5 N时,物块和木板之间将会相对滑动,则二者完全分离时的速度各为多大?解析:(1)物块和木板共同运动时,分析整体的受力情况,由牛顿第二定律得F-(M+m)g sin θ=(M+m)a解得a=1 m/s2.(2)设木板和物块的加速度分别为a1、a2,二者完全分离的时间为t,分离时速度分别为v1、v2,分析木板和物块的受力情况,由牛顿第二定律可得F-Mg sin θ-μmg cos θ=Ma1μmg cos θ-mg sin θ=ma2又L=12(a1-a2)t2v1=a1tv2=a2t联立解得v1=6.5 m/s,v2=2.5 m/s. 答案:(1)1 m/s2(2)6.5 m/s 2.5 m/s二、传送带模型(一)、水平传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v0水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断.物体的速度与传送带速度相等的时刻摩擦力发生突变.例1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.解析:(1)行李所受滑动摩擦力大小F f=μmg=0.1×4×10 N=4 N,根据牛顿第二定律得F f=ma,加速度大小a=μg=0.1×10 m/s2=1 m/s2.(2)行李达到与传送带相同速率后不再加速,则v=at1,得t1=va=11s=1 s.(3)行李始终匀加速运行时,所需时间最短,加速度大小仍为a=1 m/s2,当行李到达右端时,有v2min=2aL,得v min=2aL=2×1×2 m/s=2 m/s,所以传送带对应的最小运行速率为2 m/s.由v min=at min得行李最短运行时间t min=v mina=21s=2 s.答案:(1)4 N 1 m/s2(2)1 s(3)2 s 2 m/s(二)倾斜传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速2.解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.例2、如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2 m/s的恒定速率顺时针转动.一包货物以v0=12 m/s的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?(g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8)解析:(1)设货物刚滑上传送带时加速度大小为a1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f=ma1,垂直传送带方向:mg cos θ=F N,又F f=μF N由以上三式得:a1=g(sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s2=10 m/s2,方向沿传送带向下.(2)货物速度从v0减至传送带速度v所用时间设为t1,位移设为x1,则有:t1=v-v0-a1=1 s,x1=v0+v2t1=7 m.(3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a2,则有mg sin θ-μmg cos θ=ma2,得:a2=g(sin θ-μcos θ)=2 m/s2,方向沿传送带向下.设货物再经时间t2,速度减为零,则t2=0-v-a2=1 s.沿传送带向上滑的位移x2=v+02t2=1 m,则货物上滑的总距离为x=x1+x2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a2.设下滑时间为t3,则x=12a2t23,代入解得t3=2 2 s.所以货物从A端滑上传送带到再次滑回A端的总时间为t=t1+t2+t3=(2+22) s.答案:(1)10 m/s2,方向沿传送带向下(2)1 s7 m(3)(2+22) s【总结提升】解答传送带问题应注意的事项(1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目的是得到物块的加速度.(2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需判断μ与tan θ的关系才能决定物块以后的运动.(3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.跟踪练习1.(物块初速度不为零的倾斜传送带模型)(多选)如图所示,倾斜的传送带顺时针匀速转动,一物块从传送带上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1.不计空气阻力,动摩擦因数一定.关于物块离开传送带的速率v和位置,下面哪个是可能的()A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v1解析:选ABC.物块从A端滑上传送带,在传送带上必先相对传送带向下运动,由于不确定物块与传送带间的摩擦力和物块的重力沿传送带下滑分力的大小关系和传送带的长度,若能从A端离开,由运动的对称性可知,必有v=v1,即选项C正确,D错误;若从B端离开,当摩擦力大于重力的分力时,则v<v1,选项B正确;当摩擦力小于重力的分力时,则v>v1,选项A正确;当摩擦力和重力的分力相等时,物块一直做匀速直线运动,v=v1,故本题应选A、B、C.2. (物块初速度为零的倾斜传送带模型)如图所示,传送带AB的长度为L=16 m,与水平面的夹角θ=37°,传送带以速度v0=10 m/s匀速运动,方向如图中箭头所示.在传送带最上端A处无初速度地放一个质量m=0.5 kg的小物体(可视为质点),它与传送带之间的动摩擦因数μ=0.5.g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)物体从A运动到底端B所用的时间;(2)物体与传送带的相对位移大小.解析:(1)开始阶段,设物体的加速度为a1,由牛顿第二定律有mg sin θ+μmg cos θ=ma1,解得a1=10 m/s2.物体加速到与传送带的速度相等时的位移为:x1=v202a=5 m<16 m,即物体加速到10 m/s时,未达到B点,其时间t1=v0a1=1 s.由于mg sin θ=3 N>μmg cos θ=2 N,所以物体将继续做加速运动.设物体的加速度为a2,经历的时间为t2,由牛顿第二定律有mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2.由位移公式L-x1=v0t2+12a2t22,解得时间t2=1 s,所以总时间t=t1+t2=2 s.(2)在传送带上取一点M.M点做匀速运动,物体一直做加速运动.法一:整体法整个过程物体的位移大小为x物=L=16 m,传送带位移大小为x传=v0t=20 m,故物体相对于传送带(M 点)的位移大小为: x =x 传-x 物=4 m.由于M 点的位移大于物体的位移,故全过程物体向后远离M 点4 m. 法二:v -t 图象法相对位移的大小为两个阴影三角形面积之差,即: x =10×12-1×(12-10)2=4(m).法三:分段法第一个过程:M 点的位移为v 0t 1=10 m , 所以物体与传送带间的相对位移大小 x 相对1=v 0t 1-x 1=5 m.由于M 点的速度大于物体的速度,故此过程物体在M 点后面5 m 处. 第二个过程:M 点的位移为v 0t 2=10 m , 物体的位移为L -x 1=11 m , 故相对位移大小为x 相对2=1 m. 此过程物体追M 点,并靠近M 点1 m.故相对位移大小x =x 相对1-x 相对2=4 m .即全过程物体向后远离M 点4 m. 答案:(1)2 s (2)4 m精选练习1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a 铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2La =2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大; (2)0~8 s 内小物块与传送带之间的划痕为多长. 解析:(1)根据v -t 图象的斜率表示加速度, a =Δv Δt =22m/s 2=1 m/s 2,由牛顿第二定律得μmg cos 37°-mg sin 37°=ma , 解得μ=78.(2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动0~6 s 内传送带匀速运动距离为:x 带=4×6 m =24 m .速度图象的“面积”大小等于位移,则0~2 s 内物块位移为:x 1=12×2×2 m =2 m ,方向沿斜面向下,2~6 s 内物块位移为:x 2=12×4×4 m =8 m ,方向沿斜面向上.所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m. 答案:(1)78(2)18 m4.如图所示,在光滑水平地面上停放着一质量为M =2 kg 的木板,木板足够长,某时刻一质量为m =1 kg 的小木块以某一速度v 0(未知)冲上木板,木板上表面粗糙,经过t =2 s 后二者共速,且木块相对地面的位移x =5 m ,g =10 m/s 2.求:(1)木块与木板间的动摩擦因数μ;(2)从木块开始运动到共速的过程中产生的热量Q .(结果可用分数表示) 解析:(1)设冲上木板后小木块的加速度大小为a 1, 对小木块,有μmg =ma 1,设木板开始运动的加速度大小为a 2,对木板, 有μmg =Ma 2,二者共速时,有v 共=a 2t =v 0-a 1t , 对小木块,有x =v 0t -12a 1t 2,联立得μ=18.(2)由(1)得a 2=58 m/s 2,得v 共=54m/s.木板发生的位移x ′=v 共2t =54m ,二者相对位移为Δx =x -x ′=154m , 产生的热量为Q =μmg ·Δx , 联立得Q =7516J. 答案:(1)18 (2)7516J5. (多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为916.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑.小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.5,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.5 m/s 2C .经过 2 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为433m/s 解析:选AC .对小孩,由牛顿第二定律,加速度大小为a 1=mg sin 37°-μ1mg cos 37°m =2 m/s 2,同理对滑板,加速度大小为a 2=mg sin 37°+μ1mg cos 37°-2μ2mg cos 37°m =1 m/s2,选项A 正确,B 错误;要使小孩与滑板分离,12a 1t 2-12a 2t 2=L ,解得t = 2 s(另一解不符合,舍去),离开滑板时小孩的速度大小为v =a 1t =2 2 m/s ,选项C 正确,D 错误.6.如图甲所示,倾斜的传送带正以恒定速率v 1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v 0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v -t 图象如图乙所示,物块到传送带顶端时速度恰好为零,sin 37°=0.6,cos 37°=0.8,g=10 m/s2,则()A.传送带的速度为4 m/sB.传送带底端到顶端的距离为14 mC.物块与传送带间的动摩擦因数为1 8D.摩擦力方向一直与物块运动的方向相反解析:选A.如果v0小于v1,则物块向上做减速运动时加速度不变,与题图乙不符,因此物块的初速度v0一定大于v1.结合题图乙可知物块减速运动到与传送带速度相同时,继续向上做减速运动,由此可以判断传送带的速度为4 m/s,选项A正确.传送带底端到顶端的距离等于v -t图线与横轴所围的面积,即12×(4+12)×1 m+12×1×4 m=10 m,选项B错误.0~1 s内,g sin θ+μg cos θ=8 m/s2,1~2 s内,g sin θ-μg cos θ=4 m/s2,解得μ=14,选项C错误;在1~2 s内,摩擦力方向与物块的运动方向相同,选项D错误.7.如图所示,倾角α=30°的足够长的光滑斜面固定在水平面上,斜面上放一长L=1.8 m,质量M=3 kg的薄木板,木板的最上端叠放一质量m=1 kg的小物块,物块与木板间的动摩擦因数μ=32.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始向上做匀加速直线运动,假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.(1)为使物块不滑离木板,求力F应满足的条件;(2)若F=37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.解析:(1)若整体恰好静止,则F =(M +m )g sin α=(3+1)×10×sin 30° N =20 N. 因要拉动木板,则F >20 N ,若整体一起向上做匀加速直线运动,对物块和木板,由牛顿第二定律得 F -(M +m )g sin α=(M +m )a , 对物块有f -mg sin α=ma , 其中f ≤μmg cos α 代入数据解得F ≤30 N.向上加速的过程中为使物体不滑离木板,力F 应满足的条件为20 N<F ≤30 N.(2)当F =37.5 N>30 N 时,物块能滑离木板,由牛顿第二定律,对木板有F -μmg cos α-Mg sin α=Ma 1,对物块有μmg cos α-mg sin α=ma 2,设物块滑离木板所用的时间为t ,由运动学公式得 12a 1t 2-12a 2t 2=L , 代入数据解得t =1.2 s.物块滑离木板时的速度v =a 2t , 由-2g sin α·s =0-v 2, 代入数据解得s =0.9 m. 答案:见解析8.如图所示为车站使用的水平传送带模型,其A 、B 两端的距离L =8 m ,它与水平台面平滑连接.现有一物块以v 0=10 m/s 的初速度从A 端水平地滑上传送带.已知物块与传送带间的动摩擦因数为μ=0.6.求:(1)若传送带保持静止,物块滑到B 端时的速度大小;(2)若传送带顺时针匀速转动的速率恒为12 m/s ,物块到达B 端时的速度大小;(3)若传送带逆时针匀速转动的速率恒为4 m/s ,且物块初速度变为v 0′=6 m/s ,仍从A 端滑上传送带,物块从滑上传送带到离开传送带的总时间.解析:(1)设物块的加速度大小为a,由受力分析可知F N=mg,F f=ma,F f=μF N,得a=6 m/s2.传送带静止,物块从A到B做匀减速直线运动,又x=v202a=253m>L=8 m,则由v2B-v20=-2aL.得v B=2 m/s.(2)由题意知,传送带顺时针匀速转动的速率12 m/s>v0,物块所受的摩擦力沿传送带方向,即物块先加速到v1=12 m/s,由v21-v20=2ax1,得x1=113m<L=8 m.故物块先加速运动后匀速运动即物块到达B时的速度为v B′=v1=12 m/s.(3)当物块初速度v0′=6 m/s时,物块速度减为零时的位移x2=v0′22a=3 m<L,所以物块先向右减速后向左加速由v2=v0′-at1,得t1=1 s;当物块向左加速到v3=4 m/s时由v23-v22=2ax3得x3=43m<x2=3 m,故物块向左先加速运动后匀速运动由v3=v2+at2,得t2=23s;当物块向左匀速运动v4=v3=4 m/s,x4=x2-x3=53m.由x4=v4t3,得t3=512s,故t=t1+t2+t3=25 12s.答案:(1)2 m/s(2)12 m/s(3)25 12s。

传送带的知识点整理及归纳

传送带的知识点整理及归纳

当传送带向左运动时,物块受到向左的摩擦力,物块就作减速运 动,因加速度仍为α =μ g,故物块到达B时的速度为VB,物块仍 落在P点。 所以该题的答案为(BC)
二.滑块在倾斜的传送带上运动
因加速度是由重力沿斜面方向的分力 和滑动摩擦力的合力产生,所以解决 此类问题的关键是弄清物块运动过程 中摩擦力的方向,判断滑块受到的合 力。
由牛顿第二定律得:
Gsinα+μGcosα=mα1
α1=gsinα+μgcosα=10×( sin370+0.5×cos370 ) =10 m/s2 S1=V2/2α1=102/(2×10)m = 5 m t1=V/a1=1 s
由 Gsinα-μGcosα=ma2
α2= gsinα-μgcosα=10× 0.5×cos370)=2 m/s2 由 S- S1=Vt2+ 即 11=10 t2+ ( sin370得 t2=1 s
S1=V2/2α =0.5 m
t1=V/α =1 s t2=(S-S1)/V=7.5 s t= t1+ t2=8.5 s
(2) 从(1 )问中可知,当物体从 A 到B 都作匀加速直线运动时, 物体运动的时间为最短,故皮带传动的最小速度为 V2==4 m/s 物体运动的最短时间为 t/=2S/ V2=2×8/4=4 s
滑块在传送带上运动的模型分析
一.滑块在水平传送带上的运动
此类型的加速度往往是由滑动摩擦力产生的,所以 此类问题的关键是明确相对运动,判断摩擦力的方 向。
例 1 :如图所示为一水平传送带装置,绷紧的 皮带始终以 V 的速度传动。一质量为 m=20kg 的 物体,轻轻地无初速地放到 A 处,已知物体与 皮带间的动摩擦因素μ=0.1 , AB 间的距离为 S=8m,g=10m/s2。求: ( 1 )若皮带传送的速度 V=1m/s ,则从物体放 到A处起,经过多长时间到达B处。 ( 2 )若要使物体在皮带上从 A 至 B 的运动时间 最短,那么皮带传动速度的大小应满足什么条 件?这个最短时间为多少? A

高考物理总复习 专题强化三 动力学中的“传送带”和“滑块—滑板”模型

高考物理总复习 专题强化三 动力学中的“传送带”和“滑块—滑板”模型
专题强化三 动力学中的“传送带” 和“滑块—滑板”模型
【关键能力·分层突破】 模型一 “传送带”模型 1.模型特点 传送带在运动过程中,会涉及很多的力,是传送带模型难点的原因, 例如物体与传送带之间是否存在摩擦力,是滑动摩擦力还是静摩擦力 等;该模型还涉及物体相对地面的运动以及相对传送带的运动等;该 模型还涉及物体在传送带上运动时的能量转化等. 2.“传送带”问题解题思路
【跟进训练】 3.光滑水平面上停放着质量M=2 kg的平板小车,一个质量为m=1 kg的小滑块(视为质点)以v0=3 m/s的初速度从A端滑上小车,如图所 示.小车长l=1 m,小滑块与小车间的动摩擦因数为μ=0.4,取g=10 m/s2,从小滑块滑上小车开始计时,1 s末小滑块与小车B端的距离为 ()
香皂盒的质量为m=20 g,香皂及香皂盒的总质量为M=100 g,香皂盒与 传送带之间的动摩擦因数为μ=0.4,风洞区域的宽度为L=0.6 m,风可以 对香皂盒产生水平方向上与传送带速度垂直的恒定作用力F=0.24 N,假设 最大静摩擦力等于滑动摩擦力,香皂盒可看作质点,取重力加速度g=10 m/s2 ,试求:
A.滑块A与木板B之间的动摩擦因数为0.1 B.当F=10 N时木板B的加速度为4 m/s2 C.木板B的质量为3 kg D.滑2·山西临汾联考]某生产车间对香皂包 装进行检验,为检验香皂盒里是否有香皂,让
香皂盒在传送带上随传送带传输时(可视为匀 速),经过一段风洞区域,使空皂盒被吹离传 送带,装有香皂的盒子继续随传送带一起运动
,如图所示.已知传送带的宽度d=0.96 m,香 皂盒到达风洞区域前都位于传送带的中央.空
答案:BCD
命题分析
试题情境
属于综合性题目,以板块模型为素材创设学习探索问 题情境

高中物理滑块模板与传送带问题全面剖析

高中物理滑块模板与传送带问题全面剖析

高中物理传送带与滑块模板问题全面剖析一、滑块与木板一应用力和运动的观点处理(即应用牛顿运动定律)典型思维方法:整体法与隔离法注意运动的相对性【例1】木板M静止在光滑水平面上,木板上放着一个小滑块m,与木板之间的动摩擦因数μ,为了使得m能从M上滑落下来,求下列各种情况下力F的大小范围。

【例2】如图所示,有一块木板静止在光滑水平面上,木板质量M=4kg,长L=1.4m.木板右端放着一个小滑块,小滑块质量m=1kg,其尺寸远小于L,它与木板之间的动摩擦因数μ=0.4,g=10m/s2,(1)现用水平向右的恒力F作用在木板M上,为了使得m能从M上滑落下来,求F的大小范围.(2)若其它条件不变,恒力F=22.8N,且始终作用在M上,求m在M上滑动的时间.【例3】质量m=1kg的滑块放在质量为M=1kg的长木板左端,木板放在光滑的水平面上,滑块与木板之间的动摩擦因数为0.1,木板长L=75cm,开始时两者都处于静止状态,如图所示,试求:(1)用水平力F拉小滑块,使小滑块与木板以相同的速度一起滑动,力的最大值应为多少?F(2)用水平恒力F拉小滑块向木板的右端运动,在t=0.5s内使滑块从木板右端滑出,力F应为多大?(3)按第(2)问的力F的作用,在小滑块刚刚从长木板右端滑出时,滑块和木板滑行的距离各为多少?(设m与M之间的最大静摩擦力与它们之间的滑动摩擦力大小相等)。

(取g=10m/s2).【例4】如图所示,在光滑的桌面上叠放着一质量为m A=2.0kg的薄木板A和质量为m B=3 kg的金属块B.A的长度L=2.0m.B上有轻线绕过定滑轮与质量为m C=1.0 kg的物块C相连.B与A之间的滑动摩擦因数μ=0.10,最大静摩擦力可视为等于滑动摩擦力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直,B位于A的左端(如图),然后放手,求经过多长时间t后B从A的右端脱离(设A的右端距滑轮足够远)(取g=10m/s2).例1解析(1)m与M刚要发生相对滑动的临界条件:①要滑动:m与M间的静摩擦力达到最大静摩擦力;②未滑动:此时m与M加速度仍相同。

(完整版)高考物理滑块和传送带问题及答案

(完整版)高考物理滑块和传送带问题及答案

一、滑块问题1.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg ,长为L=1.4m ;木板右端放着一小滑块,小滑块质量为m=1kg ,其尺寸远小于L 。

小滑块与木板之间的动摩擦因数为μ==04102.(/)g m s (1)现用恒力F 作用在木板M 上,为了使得m 能从M 上面滑落下来,问:F 大小的范围是什么?(2)其它条件不变,若恒力F=22.8牛顿,且始终作用在M 上,最终使得m 能从M 上面滑落下来。

问:m 在M 上面滑动的时间是多大?解析:(1)小滑块与木板间的滑动摩擦力 f N mg ==μμ小滑块在滑动摩擦力f 作用下向右匀加速运动的加速度 a f m g m s 124===//μ木板在拉力F 和滑动摩擦力f 作用下向右匀加速运动的加速度 a F f M 2=-()/ 使m 能从M 上面滑落下来的条件是 a a 21>即N g m M F m f M f F 20)(//)(=+>>-μ解得(2)设m 在M 上滑动的时间为t ,当恒力F=22.8N ,木板的加速度a F f M m s 2247=-=()/./ )小滑块在时间t 内运动位移S a t 1122=/ 木板在时间t 内运动位移S a t 2222=/ 因S S L 21-= 即s t t t 24.12/42/7.422==-解得 2.长为1.5m 的长木板B 静止放在水平冰面上,小物块A 以某一初速度从木板B 的左端滑上长木板B ,直到A 、B 的速度达到相同,此时A 、B 的速度为0.4m/s ,然后A 、B 又一起在水平冰面上滑行了8.0cm 后停下.若小物块A 可视为质点,它与长木板B 的质量相同,A 、B 间的动摩擦因数μ1=0.25.求:(取g =10m/s 2) (1)木块与冰面的动摩擦因数. (2)小物块相对于长木板滑行的距离.(3)为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度应为多大? 解析:(1)A 、B 一起运动时,受冰面对它的滑动摩擦力,做匀减速运动,加速度222 1.0m/s 2v a g sμ=== 解得木板与冰面的动摩擦因数μ2=0.10 (2)小物块A 在长木板上受木板对它的滑动摩擦力,做匀减速运动,加速度a 1=μ1g =2.5m/s 2A vB小物块A 在木板上滑动,木块B 受小物块A 的滑动摩擦力和冰面的滑动摩擦力,做匀加速运动,有μ1mg -μ2(2m )g =ma 2 解得加速度a 2=0.50m/s 2设小物块滑上木板时的初速度为v 10,经时间t 后A 、B 的速度相同为v由长木板的运动得v =a 2t ,解得滑行时间20.8s v t a == 小物块滑上木板的初速度 v 10=v +a 1t =2.4m/s小物块A 在长木板B 上滑动的距离为22120112110.96m 22s s s v t a t a t ∆=-=--=(3)小物块A 滑上长木板的初速度越大,它在长木板B 上相对木板滑动的距离越大,当滑动距离等于木板长时,物块A 达到木板B 的最右端,两者的速度相等(设为v ′),这种情况下A 的初速度为保证不从木板上滑落的最大初速度,设为v 0.有220121122v t a t a t L --= 012v v a t v a t ''-==由以上三式解得,为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度不大于最大初速度0122() 3.0m/s v a a L =+=动力学中的传送带问题一、传送带模型中要注意摩擦力的突变①滑动摩擦力消失 ②滑动摩擦力突变为静摩擦力 ③滑动摩擦力改变方向二、传送带模型的一般解法①确定研究对象;②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。

高中物理 专题五 传送带问题和滑块—木板问题

高中物理    专题五 传送带问题和滑块—木板问题

专题五传送带问题和滑块—木板问题课题任务传送带问题1.传送带问题涉及摩擦力的判断、物体运动状态的分析和动力学知识的运用,重点考查学生分析问题和解决问题的能力。

主要有如下两类:(1)水平传送带问题当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化。

摩擦力的突变,常常导致物体的受力情况和运动性质的突变。

静摩擦力达到最大值,是物体和传送带恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度达到相同时,滑动摩擦力要发生突变(滑动摩擦力为0或变为静摩擦力)。

(2)倾斜传送带问题当传送带倾斜时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ对受力的影响,从而正确判断物体的速度和传送带速度相等时物体的运动性质。

2.倾斜传送带问题的两种情况倾斜传送带问题可分为倾斜向上传送和倾斜向下传送两种情况(物体从静止开始,传送带匀速运动且足够长):例1如图所示,水平传送带两端相距x =8m,工件与传送带间的动摩擦因数μ=0.6,工件向左滑上A 端时速度v A =10m/s,设工件到达B 端时的速度为v B 。

(g 取10m/s 2)(1)若传送带静止不动,求v B 。

(2)若传送带顺时针转动,工件还能到达B 端吗?若不能,说明理由;若能,则求出到达B 点的速度v B 。

(3)若传送带以v =13m/s 逆时针匀速转动,求v B 及工件由A 到B 所用的时间。

[规范解答](1)根据牛顿第二定律可知μmg =ma ,则a =μg =6m/s 2,且v 2B -v 2A =-2ax ,故v B =2m/s。

(2)能。

当传送带顺时针转动时,工件受力不变,其加速度不发生变化,仍然始终减速,故工件到达B 端的速度v B =2m/s。

(3)开始时工件所受滑动摩擦力向左,加速度a =μmg m=μg =6m/s 2,假设工件能加速到13m/s,则工件速度达到13m/s 所用时间为t 1=v -v Aa=0.5s,匀加速运动的位移为x 1=v A t 1+12at 21=5.75m<8m,则工件在到达B 端前速度就达到了13m/s,此后工件与传送带相对静止,因此工件先加速后匀速。

滑块和传送带问题

滑块和传送带问题

传送带问题知识升华一、分析物体在传送带上如何运动的方法1、分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。

具体方法是:(1)分析物体的受力情况在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。

在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。

(2)明确物体运动的初速度分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。

(3)弄清速度方向和物体所受合力方向之间的关系物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。

2、常见的几种初始情况和运动情况分析(1)物体对地初速度为零,传送带匀速运动,(也就是将物体由静止放在运动的传送带上)物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V10是物体相对于传送带的初速度,f是物体受到的滑动摩擦力,V20是物体对地运动初速度。

(以下的说明中个字母的意义与此相同)物体必定在滑动摩擦力的作用下相对于地做初速度为零的匀加速直线运动。

其加速度由牛顿第二定律,求得;在一段时间内物体的速度小于传送带的速度,物体则相对于传送带向后做减速运动,如果传送带的长度足够长的话,最终物体与传送带相对静止,以传送带的速度V共同匀速运动。

(2)物体对地初速度不为零其大小是V20,且与V的方向相同,传送带以速度V匀速运动,(也就是物体冲到运动的传送带上)①若V20的方向与V 的方向相同且V20小于V,则物体的受力情况如图1所示完全相同,物体相对于地做初速度是V20的匀加速运动,直至与传送带达到共同速度匀速运动。

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律滑块与传送带专题一“滑块—滑板”模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题思路处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系.(1) 加速度关系如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件.(2) 速度关系滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况.(3) 位移关系滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到了,自然也就容易列出所需要的方程了.例一、如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为F f1、F f2和F f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有F f1=μ1m A g ①F f2=μ1m B g ②F f3=μ2(m+m A+m B)g ③由牛顿第二定律得F f1=m A a A ④F f2=m B a B ⑤F f2-F f1-F f3=ma1 ⑥设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1=v0-a B t1 ⑦v1=a1t1 ⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s,方向与B的初速度方向相同⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有F f1+F f3=(m B+m)a2 ⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2 ⑫对A有v2=-v1+a A t2 ⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2 ⑮A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B ⑯联立以上各式,并代入数据得s0=1.9 m.(也可用如图所示的速度-时间图线求解)答案:(1)1 m/s方向与B的初速度方向相同(2)1.9 m【题后反思】求解“滑块—滑板”模型问题的方法技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变.跟踪练习1. (水平面光滑的“滑块—滑板”模型)如图所示,质量M=8 kg的小车静止在光滑水平面上,在小车右端施加一水平拉力F=8 N.当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m=2 kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t=1.5 s 的时间,物体相对地面的位移为(g取10 m/s2)()A.1 m B.2.1 mC.2.25 m D.3.1 m解析:选B.放上物体后,物体的加速度a1=μg=2 m/s2,小车的加速度:a2=F-μmgM=0.5 m/s2,物体的速度达到与小车共速的时间为t1,则a1t1=v0+a2t1,解得t1=1 s;此过程中物体的位移:s1=12a1t21=1 m;共同速度为v=a1t1=2 m/s;当物体与小车相对静止时,共同加速度为a=FM+m=0.8 m/s2,再运动0.5 s的位移s2=vt′+12at′2=1.1 m,故从物体放上小车开始的1.5 s时间内,物体相对地面的位移为1 m+1.1 m=2.1 m,选项B正确.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的()解析:选A.放上小物块后,长木板受到小物块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小物块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于两者相对运动时木板的加速度,故A 正确,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误.3.(多个板块的组合模型)如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6 N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1 m,木板A的质量m A=3 kg,小滑块及木板B的质量均为m=1 kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10 m/s2.求:(1)小滑块在木板A上运动的时间;(2)木板B获得的最大速度.解析:(1)小滑块对木板A的摩擦力F f1=μ1mg=4 N,木板A与B整体受到地面的最大静摩擦力F f2=μ2(2m+m A)g=5 N.F f1<F f2,小滑块滑上木板A后,木板A保持静止设小滑块滑动的加速度为a1,则:F-μ1mg=ma1,l=12a1t21,解得:t1=1 s.(2)设小滑块滑上B时,小滑块速度为v1,B的加速度为a2,经过时间t2滑块与B脱离,滑块的位移为x块,B的位移为x B,B的最大速度为v B,则:μ1mg-2μ2mg=ma2,v B=a2t2,x B=12a2t22,v1=a1t1,x块=v1t2+12a1t22,x块-x B=l,联立以上各式可得:v B=1 m/s.答案:(1)1 s(2)1 m/s4.(斜面上的“滑块—滑板”问题)如图所示,在足够长的光滑固定斜面底端放置一个长度L=2 m、质量M=4 kg 的木板,木板的最上端放置一质量m=1 kg 的小物块(可视为质点).现沿斜面向上对木板施加一个外力F使其由静止开始向上做匀加速直线运动.已知斜面倾角θ=30°,物块和木板间的动摩擦因数μ=3 2,g取10 m/s2.(1)当外力F=30 N时,物块和木板保持相对静止,求二者共同运动的加速度大小;(2)当外力F=53.5 N时,物块和木板之间将会相对滑动,则二者完全分离时的速度各为多大?解析:(1)物块和木板共同运动时,分析整体的受力情况,由牛顿第二定律得F-(M+m)g sin θ=(M+m)a解得a=1 m/s2.(2)设木板和物块的加速度分别为a1、a2,二者完全分离的时间为t,分离时速度分别为v1、v2,分析木板和物块的受力情况,由牛顿第二定律可得F-Mg sin θ-μmg cos θ=Ma1μmg cos θ-mg sin θ=ma2又L=12(a1-a2)t2v1=a1tv2=a2t联立解得v1=6.5 m/s,v2=2.5 m/s. 答案:(1)1 m/s2(2)6.5 m/s 2.5 m/s二、传送带模型(一)、水平传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v0水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断.物体的速度与传送带速度相等的时刻摩擦力发生突变.例1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.解析:(1)行李所受滑动摩擦力大小F f=μmg=0.1×4×10 N=4 N,根据牛顿第二定律得F f=ma,加速度大小a=μg=0.1×10 m/s2=1 m/s2.(2)行李达到与传送带相同速率后不再加速,则v=at1,得t1=va=11s=1 s.(3)行李始终匀加速运行时,所需时间最短,加速度大小仍为a=1 m/s2,当行李到达右端时,有v2min=2aL,得v min=2aL=2×1×2 m/s=2 m/s,所以传送带对应的最小运行速率为2 m/s.由v min=at min得行李最短运行时间t min=v mina=21s=2 s.答案:(1)4 N 1 m/s2(2)1 s(3)2 s 2 m/s(二)倾斜传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速2.解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.例2、如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2 m/s的恒定速率顺时针转动.一包货物以v0=12 m/s的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?(g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8)解析:(1)设货物刚滑上传送带时加速度大小为a1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f=ma1,垂直传送带方向:mg cos θ=F N,又F f=μF N由以上三式得:a1=g(sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s2=10 m/s2,方向沿传送带向下.(2)货物速度从v0减至传送带速度v所用时间设为t1,位移设为x1,则有:t1=v-v0-a1=1 s,x1=v0+v2t1=7 m.(3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a2,则有mg sin θ-μmg cos θ=ma2,得:a2=g(sin θ-μcos θ)=2 m/s2,方向沿传送带向下.设货物再经时间t2,速度减为零,则t2=0-v-a2=1 s.沿传送带向上滑的位移x2=v+02t2=1 m,则货物上滑的总距离为x=x1+x2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a2.设下滑时间为t3,则x=12a2t23,代入解得t3=2 2 s.所以货物从A端滑上传送带到再次滑回A端的总时间为t=t1+t2+t3=(2+22) s.答案:(1)10 m/s2,方向沿传送带向下(2)1 s7 m(3)(2+22) s【总结提升】解答传送带问题应注意的事项(1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目的是得到物块的加速度.(2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需判断μ与tan θ的关系才能决定物块以后的运动.(3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.跟踪练习1.(物块初速度不为零的倾斜传送带模型)(多选)如图所示,倾斜的传送带顺时针匀速转动,一物块从传送带上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1.不计空气阻力,动摩擦因数一定.关于物块离开传送带的速率v和位置,下面哪个是可能的()A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v1解析:选ABC.物块从A端滑上传送带,在传送带上必先相对传送带向下运动,由于不确定物块与传送带间的摩擦力和物块的重力沿传送带下滑分力的大小关系和传送带的长度,若能从A端离开,由运动的对称性可知,必有v=v1,即选项C正确,D错误;若从B端离开,当摩擦力大于重力的分力时,则v<v1,选项B正确;当摩擦力小于重力的分力时,则v>v1,选项A正确;当摩擦力和重力的分力相等时,物块一直做匀速直线运动,v=v1,故本题应选A、B、C.2. (物块初速度为零的倾斜传送带模型)如图所示,传送带AB的长度为L=16 m,与水平面的夹角θ=37°,传送带以速度v0=10 m/s匀速运动,方向如图中箭头所示.在传送带最上端A处无初速度地放一个质量m=0.5 kg的小物体(可视为质点),它与传送带之间的动摩擦因数μ=0.5.g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)物体从A运动到底端B所用的时间;(2)物体与传送带的相对位移大小.解析:(1)开始阶段,设物体的加速度为a1,由牛顿第二定律有mg sin θ+μmg cos θ=ma1,解得a1=10 m/s2.物体加速到与传送带的速度相等时的位移为:x1=v202a=5 m<16 m,即物体加速到10 m/s时,未达到B点,其时间t1=v0a1=1 s.由于mg sin θ=3 N>μmg cos θ=2 N,所以物体将继续做加速运动.设物体的加速度为a2,经历的时间为t2,由牛顿第二定律有mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2.由位移公式L-x1=v0t2+12a2t22,解得时间t2=1 s,所以总时间t=t1+t2=2 s.(2)在传送带上取一点M.M点做匀速运动,物体一直做加速运动.法一:整体法整个过程物体的位移大小为x物=L=16 m,传送带位移大小为x传=v0t=20 m,故物体相对于传送带(M 点)的位移大小为: x =x 传-x 物=4 m.由于M 点的位移大于物体的位移,故全过程物体向后远离M 点4 m. 法二:v -t 图象法相对位移的大小为两个阴影三角形面积之差,即: x =10×12-1×(12-10)2=4(m).法三:分段法第一个过程:M 点的位移为v 0t 1=10 m , 所以物体与传送带间的相对位移大小 x 相对1=v 0t 1-x 1=5 m.由于M 点的速度大于物体的速度,故此过程物体在M 点后面5 m 处. 第二个过程:M 点的位移为v 0t 2=10 m , 物体的位移为L -x 1=11 m , 故相对位移大小为x 相对2=1 m. 此过程物体追M 点,并靠近M 点1 m.故相对位移大小x =x 相对1-x 相对2=4 m .即全过程物体向后远离M 点4 m. 答案:(1)2 s (2)4 m精选练习1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a 铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2La =2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大; (2)0~8 s 内小物块与传送带之间的划痕为多长. 解析:(1)根据v -t 图象的斜率表示加速度, a =Δv Δt =22m/s 2=1 m/s 2,由牛顿第二定律得μmg cos 37°-mg sin 37°=ma , 解得μ=78.(2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动0~6 s 内传送带匀速运动距离为:x 带=4×6 m =24 m .速度图象的“面积”大小等于位移,则0~2 s 内物块位移为:x 1=12×2×2 m =2 m ,方向沿斜面向下,2~6 s 内物块位移为:x 2=12×4×4 m =8 m ,方向沿斜面向上.所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m. 答案:(1)78(2)18 m4.如图所示,在光滑水平地面上停放着一质量为M =2 kg 的木板,木板足够长,某时刻一质量为m =1 kg 的小木块以某一速度v 0(未知)冲上木板,木板上表面粗糙,经过t =2 s 后二者共速,且木块相对地面的位移x =5 m ,g =10 m/s 2.求:(1)木块与木板间的动摩擦因数μ;(2)从木块开始运动到共速的过程中产生的热量Q .(结果可用分数表示) 解析:(1)设冲上木板后小木块的加速度大小为a 1, 对小木块,有μmg =ma 1,设木板开始运动的加速度大小为a 2,对木板, 有μmg =Ma 2,二者共速时,有v 共=a 2t =v 0-a 1t , 对小木块,有x =v 0t -12a 1t 2,联立得μ=18.(2)由(1)得a 2=58 m/s 2,得v 共=54m/s.木板发生的位移x ′=v 共2t =54m ,二者相对位移为Δx =x -x ′=154m , 产生的热量为Q =μmg ·Δx , 联立得Q =7516J. 答案:(1)18 (2)7516J5. (多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为916.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑.小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.5,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.5 m/s 2C .经过 2 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为433m/s 解析:选AC .对小孩,由牛顿第二定律,加速度大小为a 1=mg sin 37°-μ1mg cos 37°m =2 m/s 2,同理对滑板,加速度大小为a 2=mg sin 37°+μ1mg cos 37°-2μ2mg cos 37°m =1 m/s2,选项A 正确,B 错误;要使小孩与滑板分离,12a 1t 2-12a 2t 2=L ,解得t = 2 s(另一解不符合,舍去),离开滑板时小孩的速度大小为v =a 1t =2 2 m/s ,选项C 正确,D 错误.6.如图甲所示,倾斜的传送带正以恒定速率v 1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v 0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v -t 图象如图乙所示,物块到传送带顶端时速度恰好为零,sin 37°=0.6,cos 37°=0.8,g=10 m/s2,则()A.传送带的速度为4 m/sB.传送带底端到顶端的距离为14 mC.物块与传送带间的动摩擦因数为1 8D.摩擦力方向一直与物块运动的方向相反解析:选A.如果v0小于v1,则物块向上做减速运动时加速度不变,与题图乙不符,因此物块的初速度v0一定大于v1.结合题图乙可知物块减速运动到与传送带速度相同时,继续向上做减速运动,由此可以判断传送带的速度为4 m/s,选项A正确.传送带底端到顶端的距离等于v -t图线与横轴所围的面积,即12×(4+12)×1 m+12×1×4 m=10 m,选项B错误.0~1 s内,g sin θ+μg cos θ=8 m/s2,1~2 s内,g sin θ-μg cos θ=4 m/s2,解得μ=14,选项C错误;在1~2 s内,摩擦力方向与物块的运动方向相同,选项D错误.7.如图所示,倾角α=30°的足够长的光滑斜面固定在水平面上,斜面上放一长L=1.8 m,质量M=3 kg的薄木板,木板的最上端叠放一质量m=1 kg的小物块,物块与木板间的动摩擦因数μ=32.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始向上做匀加速直线运动,假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.(1)为使物块不滑离木板,求力F应满足的条件;(2)若F=37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.解析:(1)若整体恰好静止,则F =(M +m )g sin α=(3+1)×10×sin 30° N =20 N. 因要拉动木板,则F >20 N ,若整体一起向上做匀加速直线运动,对物块和木板,由牛顿第二定律得 F -(M +m )g sin α=(M +m )a , 对物块有f -mg sin α=ma , 其中f ≤μmg cos α 代入数据解得F ≤30 N.向上加速的过程中为使物体不滑离木板,力F 应满足的条件为20 N<F ≤30 N.(2)当F =37.5 N>30 N 时,物块能滑离木板,由牛顿第二定律,对木板有F -μmg cos α-Mg sin α=Ma 1,对物块有μmg cos α-mg sin α=ma 2,设物块滑离木板所用的时间为t ,由运动学公式得 12a 1t 2-12a 2t 2=L , 代入数据解得t =1.2 s.物块滑离木板时的速度v =a 2t , 由-2g sin α·s =0-v 2, 代入数据解得s =0.9 m. 答案:见解析8.如图所示为车站使用的水平传送带模型,其A 、B 两端的距离L =8 m ,它与水平台面平滑连接.现有一物块以v 0=10 m/s 的初速度从A 端水平地滑上传送带.已知物块与传送带间的动摩擦因数为μ=0.6.求:(1)若传送带保持静止,物块滑到B 端时的速度大小;(2)若传送带顺时针匀速转动的速率恒为12 m/s ,物块到达B 端时的速度大小;(3)若传送带逆时针匀速转动的速率恒为4 m/s ,且物块初速度变为v 0′=6 m/s ,仍从A 端滑上传送带,物块从滑上传送带到离开传送带的总时间.解析:(1)设物块的加速度大小为a,由受力分析可知F N=mg,F f=ma,F f=μF N,得a=6 m/s2.传送带静止,物块从A到B做匀减速直线运动,又x=v202a=253m>L=8 m,则由v2B-v20=-2aL.得v B=2 m/s.(2)由题意知,传送带顺时针匀速转动的速率12 m/s>v0,物块所受的摩擦力沿传送带方向,即物块先加速到v1=12 m/s,由v21-v20=2ax1,得x1=113m<L=8 m.故物块先加速运动后匀速运动即物块到达B时的速度为v B′=v1=12 m/s.(3)当物块初速度v0′=6 m/s时,物块速度减为零时的位移x2=v0′22a=3 m<L,所以物块先向右减速后向左加速由v2=v0′-at1,得t1=1 s;当物块向左加速到v3=4 m/s时由v23-v22=2ax3得x3=43m<x2=3 m,故物块向左先加速运动后匀速运动由v3=v2+at2,得t2=23s;当物块向左匀速运动v4=v3=4 m/s,x4=x2-x3=53m.由x4=v4t3,得t3=512s,故t=t1+t2+t3=25 12s.答案:(1)2 m/s(2)12 m/s(3)25 12s。

高中物理传送带专题

高中物理传送带专题

传送带专题传送带问题具有一定的综合性,能够很好的考查各种能力,我们先通过表格讨论一下传送带没有加速度的情景,设传送带长度L,以v匀速运动。

一、水平传送带问题:在物体做功的过程中有一种有趣的现象,总有一半的能量传输给另外的物体,而另一半能量在做功中消耗掉。

这一现象与能量守恒定律并不违背,并且是自然界存在的普遍规律之一。

三个距离和三种能量的对应关系:摩擦力乘以物块位移的大小等于物块机械能的增加量,W机械=fx1;摩擦力乘以传动带位移的大小等于电动机多消耗的电能,W电=fx2;摩擦力乘以物块和传送带相对位移的大小等于耗散掉的能量,Q=fΔx。

对于水平传送带,滑块加速过程中传送带对其做的功等于这一过程由摩擦产生的热量,即传送装置在这一过程需额外(相对空载)做的功W电=2W机械=m v2=2E k=2Q。

在物块的速度从零加速到和传送带共速的过程中,传送带的机械能,一半转移给物块,另一半耗散,可以称之为“半能损失”。

需要注意的是,如果传送带倾斜放置,物块增加的能量体现为动能和重力势能的和,此时机械能的增加量和生成的内能相等;如果传送带水平放置,物体增加的能量只表现为动能,此时动能增加量和生成的内能相等。

求解的关键在于对物体所受的摩擦力进行正确的分析判断。

判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x1(对地)的过程中速度是否和传送带速度相等。

物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。

总结如下:以上的情况痕迹、相对路程、相对位移是一致的,但是也有不相同的情况,例如,一个物体在地面运动情景如下:二、倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。

如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况。

当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变。

再讨论一下,水平传送带和倾斜传送带有加速度的情况,看看分析问题的方法是否已经掌握。

滑块在传送带上运动的专题

滑块在传送带上运动的专题

2
a
g
(2)L vt v0 t 得: t 2L
2
v0
返回目录
传送带问题
【问题一】分析无初速度的滑块在水平传送带上运动的时间.
N f
A G
N
V B
G
【讨论三】传送带“足够长”(物体到B前,速度等于传送带的速度,
之后由于不再受摩擦力而做匀速运动)
物体做匀加速时间为: v at
得:t1
传送带问题
【模型1】如图所示,传送带从A到B长度为L,传送带以v0的速率顺时 针转动.在传送带上端A无初速地放一个质量为m的物体,它与传送带 间的动摩擦因数为μ ,试分析滑块在传送带上的运动情况.
【情景一】无初速度的滑块在水平传送带上的运动情况分析
0
A
B
v0
A
B
返回目录
【情景一】 无初速度的滑块在水平传送带上的运动情况分析
高三年级第一论专题复习
动力学中的
(多过程问题)
目录
模型1 滑块在水平传送带上的运动
情景一:无初速的滑块在水平传送带上的运动分析 情景二:与传送带具有同向速度的滑块在水平传送带上的运动分析 情景三:与传送带具有反向速度的滑块在水平传送带上的运动分析
模型2 无初速的滑块在倾斜传送带上的运动
情景一:无初速度的滑块在倾斜传送带上由底端向顶端运动的情况分析 情景二:无初速度的滑块在倾斜传送带上由顶端向底端运动的情况分析 情景三:与传送带具有同向速度的滑块在倾斜传送带上的运动情况分析 情景四:与传送带具有反向速度的滑块在倾斜传送带上的运动情况分析
长.正确描述小物体P速度随时间变化的图象可能是( BC )
典型例题
解析:选BC.本题中条件间大小关系不明了,我们需要进行 讨论.

传送带模型和滑块(第一课堂)高中一年级物理精品教学课件PPT

传送带模型和滑块(第一课堂)高中一年级物理精品教学课件PPT
5
A运动到B所需的时间。(g取10 m/s2)
解析 刚将物体无初速度地放上传送带时,物体做加速运动,受力如图甲所
示,
由牛顿第二定律得
x轴方向上:mgsin 30°+f=ma1
y轴方向上:N-mgcos 30°=0
又f=μN
联立解得a1=g(sin 30°+μcos 30°)=8 m/s2
物体加速到与传送带速度相等所用的时间为
2
2
解得v0=6 m/s。
答案 (1)3 m/s2
1.5 m/s2
(2)6 m/s
变式训练2如图所示,厚度不计的木板A长l=5 m,质量M=5 kg,放在水平地面
上。在A上距右端s=3 m处放一物体B(大小不计),其质量m=2 kg,已知A、B
间的动摩擦因数μ1=0.1,A与地面间的动摩擦因数μ2=0.2,原来系统静止。

2
a
=
=3
m/s
1
动,设其加速度大小为a1,则有


木板 B 向右做匀加速运动,设其加速度大小为 a2,则有 a2=
=1.5 m/s2。

(2)A刚好没有从B上滑下来,则A滑到B最右端时的速度和B的速度相同,设
为v,则有v=v0-a1t
v=a2t
0 +
位移关系:L=
t- t
一质量为m=1 kg的小滑块,滑块可视为质点,滑块与传送带间的动摩擦因
数μ=0.2,传送带长L=2 m,重力加速度g取10 m/s2。求:
(1)滑块从传送带左端到右端的时间;
(2)滑块相对传送带滑行的位移的大小。
解析 (1)滑块在传送带上滑行时的加速度


a= =

专题讲解:传送带上的滑块问题

专题讲解:传送带上的滑块问题

专题讲解:传送带上的滑块问题滑块在传送带上运动时,所受滑动摩擦f 的方向与滑块相对于传输带的相对速度方向相反,注意:而对滑块进行动力学运算时,滑块的位移、速度、加速度则均取地面为参考系.若要另行计算滑块与传输带间由于滑动摩擦的相互作用而产生的焦耳热Q 时,应先计算出滑块相对于传输带的相对位移L ,再用fL Q =求解.1.水平传送带上的滑块问题(Ⅰ)——滑块顺着传送带运行方向冲上传送带滑块顺着传送带运动的方向以速度1v 冲上以速度2v 运动的传送带上,在水平传送带上的加速(2v >1v )或减速(2v <1v ),当传送带足够长时,滑块的速度最多加速到或减速与传送带的速度2v 相等时,不再加速或减速,因此,最终速度不可能大于或小于传送带的速度2v ,即加速不可能超过传送带的速度2v ,减速不可能小于传送带的速度2v .足够长的最短长度是:gμ2||2122minv v L -=,式中μ为滑块与传送带间的动摩擦因数. 【案例1】如图所示,某物块(可看成质点)从A 点沿竖直光滑的41圆弧轨道,由静止开始滑下,圆弧轨道的半径R =0.25 m ,末端B 点与水平传送带相切,物块由B 点滑上粗糙的传送带.若传送带静止,物块滑到传送带的末端C 点后做平抛运动,落到水平地面上的D 点,已知C 点到地面的高度H =5 m ,C 点到D 点的水平距离为1x =1m ,g =10 m/s ..求:(1)物块滑到B 点时速度的大小; (2)物块滑到C 点时速度的大小;(3)若传送带不静止,则物块最后的落地点可能不在D 点.取传送带顺时针转动为正方向,试讨论物块落地点到C 点的水平距离x 与传送带匀速运动的速度v 的关系,并做出v x -的图象.【解析】(1)设物体到达B 点速度为1v ,从A 到B ,由动能定理得:02121-=mv h m g 解得 m /s g 521==h v(2)从C 到D 做平抛运动,竖直方向上有 221t H g =解得 s 1=t设水平方向上在C 点速度为2v ,则水平方向上有 t v x 21=解得 =2v 1m/s故传送带不动时,滑块在传送带上一直减速到=2v 1m/s(3)若物体在传递带上一直加速,到C 点时速度为3v ,由运动学规律有as v v 22123-=-,=3v 3 m/s讨论:(1)若传递带逆时针转动,则滑块在传送带上沿着原来的运动方向是做减速运动,此时与传送带静止不动的情况相同.m 11==x x(2)若传递带顺时针转动:①当传送带的速度v 满足:0<v ≤1 m/s 时,滑块在传送带上运动的速度始终大于传送带的速度,此时与传送带静止的情况一样 m 11==x x②当1 m /s<v <3 m/s 时,滑块在传送带上先减速到v ,再以v 匀速,故在C 点平抛运动的初速度为v , s 1⨯==v vt x③当v >3 m/s 时,故滑块在传送带上,一直加速到=3v 3m/s m 33==t v x2.水平传送带上的滑块问题(Ⅱ)——滑块逆着传送带运行方向冲上传送带 滑块以速度1v 逆着传送带运行方向冲上以速度2v 运行的传送带:①若传送带两端的距离L 较短,滑块会一直减速冲到另一端后离开传送带,即两端的距离gμ221v L <,式中μ为滑块与传送带间的动摩擦因数,滑块一直减速到另一端离开传送带.②如果传送带两端的距离L 足够长,即gμ221v L ≥时,则滑块先减速到零后再沿传送带运行的方向反向加速,滑块加速获得的速度不可能超过传送带的运行速度,即:当>1v 2v ,则滑块先减速到零,再反向加速到2v ,然后以速度2v 相对传送带静止匀速运动当≤1v 2v ,滑块先减速到零,再反向一直加速运动1v ,这种情况,类似于竖直上抛运动的情景.【案例2】如图所示,一个长m l 8=的传送带上表面距地面高度为m h 2.0=,传送带以s m /6=ν的速度顺时针传动,传送带右端有一个斜面,斜面倾角037=θ,斜面底端通过一小段光滑圆弧和传送带相连,圆弧处放置一个小物块C ,不计物块C 由传送带滑上斜面过程的能量损失,且物块C 与斜面间的动摩擦因数25.01=μ.有两个可视为质点且靠紧的小物块A 和B ,A 、B 之间夹有少量炸药,把A 、B 放在传送带左端的同时引爆炸药,炸药瞬间爆炸,A 物体水平向左抛出,落地点距传送带左端水平距离m s 9.0=,B 物体在传送带上运动,与传送带间的动摩擦因数2.02=μ,已知kg m A 1=,kg m m c B 5.0==,已知6.037sin 0=,8.037cos 0=,求:(1)炸药爆炸后B 物体的速度.(2)从炸药爆炸到B 第一次离开传送带,物块B 与传送带因摩擦而产生的热量Q(3)若B 、C 相碰交换速度,从炸药爆炸到B 最后离开传送带的过程中传送带对B 所做的总功.【解析】(1)A 平抛:t v s A =,221t h g =,解得s 2.0=t ,m/s 5.4=A v炸药爆炸过程:B B A A v m v m =,=B v m/s 92=A v (2)设物体B 在传送带上一直减速,加速度22m/s g g==22μμBB m mB 到达C 处时的速度为1v ,有2122v v aL B -=,解得m/s 71=v 因v v <1,所以B 一直减速,减速时间s 111=-=av v t B B 与传送带因摩擦而产生的热量J g 2)(2=-=vt L m Q B μ(3)物体B 、C 交换速度后B 静止,C 以1v 滑上斜面,设上滑1s在斜面上上滑过程:2111121037sin 37cos v m s m s m C C C -=⋅︒-⋅︒-g g μ解得m 45.21=s设C 滑回底端时的速度为2v ,在斜面上下滑过程,有02137sin 37cos 22111-=⋅︒+⋅︒-v m s m s m C C C g g μB 、C 交换速度后C 静止,B 滑上传送带,B 从左端离开传送带需克服摩擦力做功 =f W L m B g 2μ代入数据解得<2221v m B L m B g 2μ因此,B 不会离开传送带,最终静止在C 处,传送带对B 所做的总功 =f W J g 82-=-L m B μ3.倾斜的传送带上滑块问题【案例2】如图所示,传输带与水平间的倾角为︒=37θ,皮带以10m/s 的速率运行,在传输带上端A 处无初速地放上质量为0.5kg 的物体,它与传输带间的动摩擦因数为0.5,若传输带A 到B 的长度为16m ,求:物体从A 运动到B 的时间和因相对滑动而产生的摩擦热?【解析】首先判定μ与θtan 大小关系,μ=0.5, tg θ=0.75,所以物体一定沿传输带对地下滑,不可能对地上滑或对地相对静止.其次皮带运行速度方向未知,而皮带运行速度方向影响物体所受摩擦力方向.所以应分别讨论.①当皮带的上表面以10m/s 速度向下运行时,刚放上的物体相对皮带有向上的相对速度,物体所受滑动摩擦方向沿斜坡向下,该阶段物体对地加速度2m/s g g 10cos sin 1=+=mm m a θμθ,方向沿斜坡向下物体赶上皮带对地速度需时间==av t 1ls在1t 秒内物体沿斜坡对地位移==211121t a s 5m如图所示,当物体速度超过皮带运行速度时物体所受滑动摩擦力沿斜面向上,物体对地加速度 2m/s g g 2cos sin 1=-=mm m a θμθ物体以2m/s 21=a 加速度运行剩下的11m 位移需时间2t则:2222221t a vt s +=即11=l0t 2+22221t ⨯; t 2=ls (112-='t s 舍去) 所需总时间=+=21t t t 2s在1t 时间内发生相对位移m 52121111=-=∆t a vt s在2t 时间内发生相对位移m 121222222=--=∆vt t a vt s所以由于摩擦产生的焦耳热J g 12)(cos 211=∆+∆=s s m Q θμ②当皮带上表面以10m/s 速度向上运行时,物体相对于皮带一直具有沿斜面向下的相对速度,物体所受滑动摩擦方向沿斜坡向上且不变,设为3a则2m/s g g 2cos sin 3=-=mm m a θμθ物体从传输带顶滑到底所需时间为t ' 则2321t a s '=,4s s =⨯=='216223a s t在t '时间内发生的相对位移m 5621233='+'=∆t a t v s由于摩擦产生的焦耳热J g 112cos 32=∆=s m Q θμ4.组合传送带上的滑块问题【案例4】图示为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A 、B 两端相距3m ,另一台倾斜,θD传送带与地面的倾角=θ370,C 、D 两端相距4.45m ,B 、C 相距很近.水平部分AB 以5m/s 的速率顺时针转动.将质量为10kg 的一袋大米放在A 端,到达B 端后,速度大小不变地传到倾斜的CD 部分,米袋与传送带间的动摩擦因数均为0.5.试求:(1)若CD 部分传送带不运转,求米袋沿传送带所能上升的最大距离. (2)若要米袋能被送到D 端,求CD 部分顺时针运转的速度应满足的条件及米袋从C 端到D 端所用时间的取值范围.【解析】(1)米袋在AB 上:5m/s g g0====μμmm m f a 2 米袋加速到m/s 50=v 时,滑行的距离3m AB m 522020=<==.a v s故米袋在到达B 点之前就与传送带同速(2)设米袋在CD 上运动的加速度大小为a ,则 ma m m =+θμθcos sin g g 求得2m /s 10=a所以能滑上的最大距离m 251220.==av s (2)设CD 部分运转速度为1v 时米袋恰能到达D 点,则米袋速度减为1v 之前的加速度为 21m/s 10g(-=+-=)cos sin θμθa 米袋速度小于1v 至减为零前的加速度为 22m/s 2g(-=--=)cos sin θμθa 由m 45420222112021.=-+-a v a v v 解得m /s 41=v即要把米袋送到D 点,CD 部分的速度m/s 41=≥v v CD 米袋恰能到D 点所用时间最长为s 12021101.max =-+-=a v a v v t 若CD 部分传送速度较大,使米袋沿CD 上滑时所受摩擦力一直沿传送带向上,则所用时间最短,此种情况米袋加速度一直为2a由22021max max t a t v s CD +=,得s 161.m ax =t所以,所示时间t 的范围为s 12s 161..≤≤t。

滑块与传送带

滑块与传送带

专题:滑块与传送带模型学习目标:1、了解传送带问题的基本类型和分析方法2、学会通过二者速度关系分析传送带问题的摩擦力3、知道滑块与传送带问题相对位移的计算方法【自问引思】一、画出以下几种情况滑块的速度时间图像1、轻轻放上了匀速运动的传送带上2、初速度方向相同(1)滑块速度小于传送带速度(23、初速度方向相反滑块大于传送带速度传送带足够长 V1 V2二、分析物体在传送带上如何运动的方法(将你最重要的想法记录在下面)【互问成思】例1物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带以后落到地面上Q 点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,如图7所示,再把物块放到P 点自由滑下,则:( )A. 物块将仍落在Q 点B. 物块将会落在Q 点的左边C. 物块将会落在Q 点的右边D. 物块有可能落不到地面上例2水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查。

如图所示为一水平传送带装置示意图,绷紧的传送带AB 始终保持v=1m/s 的恒定速率运行。

一质量为m=4kg 的行李无初速度地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动。

设行李与传送带间的动摩擦因数μ=0.1,AB 间的距离=2m ,g 取10 m/ s 2。

(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处。

求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率。

【追问深思】若倾斜斜面滑块会发生怎样的运动?例3如图所示,皮带轮带动传送带沿逆时针方向以速度v0=2 m / s匀速运动,两皮带轮之间的距离L=3.2 m,皮带绷紧与水平方向的夹角θ=37°。

将一可视为质点的小物块无初速地从上端放到传送带上,已知物块与传送带间的动摩擦因数μ=0.5,物块在皮带上滑过时能在皮带上留下白色痕迹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题讲解:传送带上的滑块问题滑块在传送带上运动时,所受滑动摩擦f 的方向与滑块相对于传输带的相对速度方向相反,注意:而对滑块进行动力学运算时,滑块的位移、速度、加速度则均取地面为参考系.若要另行计算滑块与传输带间由于滑动摩擦的相互作用而产生的焦耳热Q 时,应先计算出滑块相对于传输带的相对位移L ,再用fL Q =求解.1.水平传送带上的滑块问题(Ⅰ)——滑块顺着传送带运行方向冲上传送带滑块顺着传送带运动的方向以速度1v 冲上以速度2v 运动的传送带上,在水平传送带上的加速(2v >1v )或减速(2v <1v ),当传送带足够长时,滑块的速度最多加速到或减速与传送带的速度2v 相等时,不再加速或减速,因此,最终速度不可能大于或小于传送带的速度2v ,即加速不可能超过传送带的速度2v ,减速不可能小于传送带的速度2v .足够长的最短长度是:gμ2||2122minv v L -=,式中μ为滑块与传送带间的动摩擦因数. 【案例1】如图所示,某物块(可看成质点)从A 点沿竖直光滑的41圆弧轨道,由静止开始滑下,圆弧轨道的半径R =0.25 m ,末端B 点与水平传送带相切,物块由B 点滑上粗糙的传送带.若传送带静止,物块滑到传送带的末端C 点后做平抛运动,落到水平地面上的D 点,已知C 点到地面的高度H =5 m ,C 点到D 点的水平距离为1x =1m ,g =10 m/s ..求:(1)物块滑到B 点时速度的大小; (2)物块滑到C 点时速度的大小;(3)若传送带不静止,则物块最后的落地点可能不在D 点.取传送带顺时针转动为正方向,试讨论物块落地点到C 点的水平距离x 与传送带匀速运动的速度v 的关系,并做出v x -的图象.【解析】(1)设物体到达B 点速度为1v ,从A 到B ,由动能定理得:02121-=mv h m g 解得 m /s g 521==h v(2)从C 到D 做平抛运动,竖直方向上有 221t H g =解得 s 1=t设水平方向上在C 点速度为2v ,则水平方向上有 t v x 21=解得 =2v 1m/s故传送带不动时,滑块在传送带上一直减速到=2v 1m/s(3)若物体在传递带上一直加速,到C 点时速度为3v ,由运动学规律有as v v 22123-=-,=3v 3 m/s讨论:(1)若传递带逆时针转动,则滑块在传送带上沿着原来的运动方向是做减速运动,此时与传送带静止不动的情况相同.m 11==x x(2)若传递带顺时针转动:①当传送带的速度v 满足:0<v ≤1 m/s 时,滑块在传送带上运动的速度始终大于传送带的速度,此时与传送带静止的情况一样 m 11==x x②当1 m /s<v <3 m/s 时,滑块在传送带上先减速到v ,再以v 匀速,故在C 点平抛运动的初速度为v , s 1⨯==v vt x③当v >3 m/s 时,故滑块在传送带上,一直加速到=3v 3m/s m 33==t v x2.水平传送带上的滑块问题(Ⅱ)——滑块逆着传送带运行方向冲上传送带 滑块以速度1v 逆着传送带运行方向冲上以速度2v 运行的传送带:①若传送带两端的距离L 较短,滑块会一直减速冲到另一端后离开传送带,即两端的距离gμ221v L <,式中μ为滑块与传送带间的动摩擦因数,滑块一直减速到另一端离开传送带.②如果传送带两端的距离L 足够长,即gμ221v L ≥时,则滑块先减速到零后再沿传送带运行的方向反向加速,滑块加速获得的速度不可能超过传送带的运行速度,即:当>1v 2v ,则滑块先减速到零,再反向加速到2v ,然后以速度2v 相对传送带静止匀速运动当≤1v 2v ,滑块先减速到零,再反向一直加速运动1v ,这种情况,类似于竖直上抛运动的情景.【案例2】如图所示,一个长m l 8=的传送带上表面距地面高度为m h 2.0=,传送带以s m /6=ν的速度顺时针传动,传送带右端有一个斜面,斜面倾角037=θ,斜面底端通过一小段光滑圆弧和传送带相连,圆弧处放置一个小物块C ,不计物块C 由传送带滑上斜面过程的能量损失,且物块C 与斜面间的动摩擦因数25.01=μ.有两个可视为质点且靠紧的小物块A 和B ,A 、B 之间夹有少量炸药,把A 、B 放在传送带左端的同时引爆炸药,炸药瞬间爆炸,A 物体水平向左抛出,落地点距传送带左端水平距离m s 9.0=,B 物体在传送带上运动,与传送带间的动摩擦因数2.02=μ,已知kg m A 1=,kg m m c B 5.0==,已知6.037sin 0=,8.037cos 0=,求:(1)炸药爆炸后B 物体的速度.(2)从炸药爆炸到B 第一次离开传送带,物块B 与传送带因摩擦而产生的热量Q(3)若B 、C 相碰交换速度,从炸药爆炸到B 最后离开传送带的过程中传送带对B 所做的总功.【解析】(1)A 平抛:t v s A =,221t h g =,解得s 2.0=t ,m/s 5.4=A v炸药爆炸过程:B B A A v m v m =,=B v m/s 92=A v (2)设物体B 在传送带上一直减速,加速度22m/s g g==22μμBB m mB 到达C 处时的速度为1v ,有2122v v aL B -=,解得m/s 71=v 因v v <1,所以B 一直减速,减速时间s 111=-=av v t B B 与传送带因摩擦而产生的热量J g 2)(2=-=vt L m Q B μ(3)物体B 、C 交换速度后B 静止,C 以1v 滑上斜面,设上滑1s在斜面上上滑过程:2111121037sin 37cos v m s m s m C C C -=⋅︒-⋅︒-g g μ解得m 45.21=s设C 滑回底端时的速度为2v ,在斜面上下滑过程,有02137sin 37cos 22111-=⋅︒+⋅︒-v m s m s m C C C g g μB 、C 交换速度后C 静止,B 滑上传送带,B 从左端离开传送带需克服摩擦力做功 =f W L m B g 2μ代入数据解得<2221v m B L m B g 2μ因此,B 不会离开传送带,最终静止在C 处,传送带对B 所做的总功 =f W J g 82-=-L m B μ3.倾斜的传送带上滑块问题【案例2】如图所示,传输带与水平间的倾角为︒=37θ,皮带以10m/s 的速率运行,在传输带上端A 处无初速地放上质量为0.5kg 的物体,它与传输带间的动摩擦因数为0.5,若传输带A 到B 的长度为16m ,求:物体从A 运动到B 的时间和因相对滑动而产生的摩擦热?【解析】首先判定μ与θtan 大小关系,μ=0.5, tg θ=0.75,所以物体一定沿传输带对地下滑,不可能对地上滑或对地相对静止.其次皮带运行速度方向未知,而皮带运行速度方向影响物体所受摩擦力方向.所以应分别讨论.①当皮带的上表面以10m/s 速度向下运行时,刚放上的物体相对皮带有向上的相对速度,物体所受滑动摩擦方向沿斜坡向下,该阶段物体对地加速度2m/s g g 10cos sin 1=+=mm m a θμθ,方向沿斜坡向下物体赶上皮带对地速度需时间==av t 1ls在1t 秒内物体沿斜坡对地位移==211121t a s 5m如图所示,当物体速度超过皮带运行速度时物体所受滑动摩擦力沿斜面向上,物体对地加速度 2m/s g g 2cos sin 1=-=mm m a θμθ物体以2m/s 21=a 加速度运行剩下的11m 位移需时间2t则:2222221t a vt s +=即11=l0t 2+22221t ⨯; t 2=ls (112-='t s 舍去) 所需总时间=+=21t t t 2s在1t 时间内发生相对位移m 52121111=-=∆t a vt s在2t 时间内发生相对位移m 121222222=--=∆vt t a vt s所以由于摩擦产生的焦耳热J g 12)(cos 211=∆+∆=s s m Q θμ②当皮带上表面以10m/s 速度向上运行时,物体相对于皮带一直具有沿斜面向下的相对速度,物体所受滑动摩擦方向沿斜坡向上且不变,设为3a则2m/s g g 2cos sin 3=-=mm m a θμθ物体从传输带顶滑到底所需时间为t ' 则2321t a s '=,4s s =⨯=='216223a s t在t '时间内发生的相对位移m 5621233='+'=∆t a t v s由于摩擦产生的焦耳热J g 112cos 32=∆=s m Q θμ4.组合传送带上的滑块问题【案例4】图示为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A 、B 两端相距3m ,另一台倾斜,θD传送带与地面的倾角=θ370,C 、D 两端相距4.45m ,B 、C 相距很近.水平部分AB 以5m/s 的速率顺时针转动.将质量为10kg 的一袋大米放在A 端,到达B 端后,速度大小不变地传到倾斜的CD 部分,米袋与传送带间的动摩擦因数均为0.5.试求:(1)若CD 部分传送带不运转,求米袋沿传送带所能上升的最大距离. (2)若要米袋能被送到D 端,求CD 部分顺时针运转的速度应满足的条件及米袋从C 端到D 端所用时间的取值范围.【解析】(1)米袋在AB 上:5m/s g g0====μμmm m f a 2 米袋加速到m/s 50=v 时,滑行的距离3m AB m 522020=<==.a v s故米袋在到达B 点之前就与传送带同速(2)设米袋在CD 上运动的加速度大小为a ,则 ma m m =+θμθcos sin g g 求得2m /s 10=a所以能滑上的最大距离m 251220.==av s (2)设CD 部分运转速度为1v 时米袋恰能到达D 点,则米袋速度减为1v 之前的加速度为 21m/s 10g(-=+-=)cos sin θμθa 米袋速度小于1v 至减为零前的加速度为 22m/s 2g(-=--=)cos sin θμθa 由m 45420222112021.=-+-a v a v v 解得m /s 41=v即要把米袋送到D 点,CD 部分的速度m/s 41=≥v v CD 米袋恰能到D 点所用时间最长为s 12021101.max =-+-=a v a v v t 若CD 部分传送速度较大,使米袋沿CD 上滑时所受摩擦力一直沿传送带向上,则所用时间最短,此种情况米袋加速度一直为2a由22021max max t a t v s CD +=,得s 161.m ax =t所以,所示时间t 的范围为s 12s 161..≤≤t。

相关文档
最新文档