北航电子电路设计数字部分实验报告.doc
北航电子电路实验报告二

测试方法同第二步
测得:Ii=202.33nA,Ui=99.996mV,进而可求的Ri=494.22kΩ
(3)输出电阻
测试方法同第三步
测得:Io=2.913mA,Uo=99.996mV,进而可求的Ro=34.32Ω
(4)利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线:
将xbp表如图所示连接在电路中,观察xbp表即可得其幅频、相频特性曲线
100mV
对于电路一用上面公式计算放大倍数,可以看到随着RL的增加,放大倍数增加,逐渐接近输入电压100mV。
而对于理想放大器来说,跟随器的作用就是使得输出电压等于输入电压,所以输出电压恒为100mV
3测量输出电阻
将输入电压源短路,同时在输出端串接电压源,同时连接万用表如下图所示
测得:Io=2.929mA,Uo=99.996mV,进而可求的Ro=34.140Ω
4利用软件提供的测量仪表测出电路的幅频、相频特性曲线
将xbp表如图所示连接在电路中,观察xbp表即可得其幅频、相频特性曲线
5利用交流分析功能测出电路的幅频、相频特性曲线
电路一
10欧
100欧
1000欧
10千欧
100千欧
1兆欧
100兆欧
22.088mV
81.811mV
98.302mV
99.665mV
99.803mV
99.816mV
99.818mV
运算放大器
10欧
100欧
1000欧
10千欧
100千欧
1兆欧
100兆欧
100mV
100mV
100mV
100mV
100mV
100mV
电子电路
(完整版)北航微机原理实验报告

微计算机原理及运用实验报告目录实验一:I/O地址译码实验 (4)一、实验目的 (4)二、实验原理和内容 (4)三、实验程序 (4)四.实验总结 (5)实验二:8255并行接口实验 (6)一、实验目的 (6)二、实验原理和内容 (6)三、程序框图 (7)四.实验程序 (7)五.实验总结 (8)实验三:键盘显示控制实验 (9)一、实验目的 (9)二、实验内容及原理 (9)三、流程图 (10)四.程序 (10)五.实验总结 (13)实验四:8254定时器/计数器实验 (14)一、实验目的 (14)二、实验原理和内容 (14)三、实验程序 (14)四.实验总结 (15)实验五:继电器控制实验 (16)一、实验目的 (16)二、实验原理和内容 (16)三、实验中使用的程序 (16)四.实验总结 (18)实验六:DMA传送 (18)一、实验目的 (18)二、实验原理和内容 (18)三、程序 (19)四.实验总结 (20)实验七:8259 中断控制实验 (20)一、实验目的 (20)二、实验原理和内容 (21)三、流程图 (21)四.程序 (21)五.实验总结 (25)实验八:8255中断实验 (25)一、实验目的 (25)二、实验原理和内容 (25)三.实验程序 (26)四.实验总结 (27)实验一:I/O地址译码实验一、实验目的掌握I/O地址译码电路的工作原理。
二、实验原理和内容实验电路如附图1所示,其中74LS74为D触发器,可直接使用实验台上数字电路实验区的D触发器,74LS138为地址译码器。
译码输出端Y0~Y7在实验台上“I/O地址“输出端引出,每个输出端包含8个地址,Y0:280H~287H,Y1:288H~28FH,……当CPU执行I/O指令且地址在280H~2BFH范围内,译码器选中,必有一根译码线输出负脉冲。
附图1 I/O地址译码电路利用这个负脉冲控制L7闪烁发光(亮、灭、亮、灭、……),时间间隔通过软件延时实现。
北航电路实验报告

实验一、组合逻辑电路一、实验目的(1)熟悉集成电路的引脚排列(2)掌握TTL门电路逻辑功能的测试方法(3)掌握TTL组合逻辑电路的实际方法,完成单元功能电路的设计(4)熟悉中规模集成电路译码器、数据译码器的性能与应用(5)掌握数字电子技术实验箱的功能及使用方法二、仪器设备(1)双踪示波器1台(2)500型万用表1台(3)数字逻辑实验箱(4)74LS00(5)74LS39(6)74LS153三、用两片74LS00自拟一个三人表决电路设三输入分别为A、B、C,当两人以上同意时发光二极管亮真值表如下1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1电路图如下:运行结果如下所示。
一人按下:二人按下:三人按下:2、设计一个三输入三输出的逻辑电路真值表如下用两个数据选择器74LS153设计电路,电路图如下:红绿灯亮:黄红灯亮:绿黄灯亮:实验二、时序逻辑电路一、实验目的(1)掌握D触发器和JK触发器逻辑功能的测试方法(2)掌握74LS161功能和引脚图,设计和实现具有一定功能的时序逻辑电路,体会不同控制端在电路设计中的作用(3)了解所用总规模集成器件的性能和应用二、仪器设备(1)双踪示波器1台(2)500型万用表1台(3)数字逻辑实验箱(4)74LS74(5)74LS20(6)74LS00(7)74LS161三、实验原理与内容1、利用2片74LS74、1片74LS20和2片74LS00设计一个4人抢答器。
电路图如下:主持人未按下抢答无效:A完成抢答其他选手按下无效:抢答完成后选手松开按钮灯保持不灭:2、利用中规模计数器74LS161实现任意进制计数器(1)用预置数置0实现七进制计数器电路图如下:计数为3的图片:计数为6的图片:,.。
北航电子电路实验总和

电子电路设计实验仪器科学与光电工程131713尧爸爸2016.4.18实验一:共射放大器分析与设计一、实验目的(1)进一步了解Multisim的各项功能,熟练掌握其使用方法,为后续课程打好基础。
(2)通过使用Multisim来仿真电路,测试如图1所示的单管共射放大电路的静态工作点、电压放大倍数、输入电阻和输出电阻,并观察静态工作点的变化对输出波形的影响。
(3)加深对放大电路工作原理的理解和参数变化对输出波形的影响。
(4)观察失真现象,了解其产生的原因。
二、实验电路三、实验过程(1)请对该电路进行直流工作点分析,进而判断管子的工作状态。
操作步骤如下:Simulate-Analyses-DC Operating Point图1直流工作点为Ib=6.215uA,Ic=966.535uA,Uce=6.766V图2由上V(1)为c极;V(4)为b极;V(2)为e极由此可得Ube=0.619V,Ucb=6.14710V说明发射结正偏,集电结反偏,三极管工作在放大状态。
(2)请利用软件提供的各种测量仪表测出该电路的输入电阻。
用万用表测量输入端的电压和电流,电路图接法如图3所示(将万用表选为交流电压和交流电流档):图3测量结果为:图4经计算得到,输入电阻为3166Ω(3)请利用软件提供的各种测量仪表测出该电路的输出电阻。
这里注意一定要将输出回路断开,再接入万用表,采用测量开路电压和短路电流的方法测量输出电阻。
否则测量的是最后负载电阻的阻值。
用万用表测量输出端的电压和电流,接法如图如5所示(将万用表先后选为交流电压和交流电流档):图5测量结果为:图6经计算得到,输出电阻为2557.23Ω(4)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。
采用波特测试仪如下图7搭接电路:图7该电路的幅频、相频特性曲线如图8所示图8(5)请利用交流分析功能给出该电路的幅频、相频特性曲线。
操作步骤如下:Simulate-Analyses-AC Operating,选择分析点为输出电压,得到下图9:图93dB带宽是指示数为最大值的0.707时,对应的fL和fH,图中测得最大值为19.1037V,则3dB带宽应对应纵轴为13.5063V,fH=283.1MHz,fL=79.4Hz(6)请分别在30Hz、1KHz、100KHz、4MHz和100MHz这5个频点利用示波器测出输入和输出的关系,并仔细观察放大倍数和相位差。
北航_电子实习_模拟部分_实验报告试验4

仪器科学与光电工程学院电子实习A2 模拟部分实验报告实验四:集成运算放大器应用2012/5/12目录一、实验目的 (2)二、实验结果 (2)1)实验电路 (2)2)示波器观察放大倍数 (2)3)分析参考电压与输出直流信号的关系: (5)4)分析温度漂移特性: (6)5)搭建积分器,微分器,射随器电路: (7)A)积分器 (7)B)微分器 (9)C)射随器: (10)6)搭建减法器: (11)三、问题回答 (12)(1)大信号放大的特性与小信号放大特性的区别? (12)(2)运放的重要指标有哪些? (12)(3)运算放大器AD817本身的输入输出电阻是多少?对于整体运放电路,输入输出电阻如何估算? (12)(4)运放的温度漂移特性如何,并试回答原因何在? (12)(5)请分析并总结仿真结论与体会。
(13)图表目录Figure 1 实验电路 (2)Figure 2 反馈电阻Rf=1kohm (4)Figure 3 反馈电阻Rf=2kohm (4)Figure 4 偏置电压和输出饱和值 (5)Figure 5 积分器正弦输入 (7)Figure 6 积分器正弦波输入电路 (8)Figure 7 积分器方波输入 (8)Figure 8 积分器方波输入电路图 (9)Figure 9 微分器输出波形 (9)Figure 10 微分器电路结构 (10)Figure 11 射随器输入输出波形 (10)Figure 12 射随器输入输出数值 (11)Figure 13 射随器结构 (11)Figure 14 减法器结构及输出电压 (11)实验四:集成运算放大器应用一、实验目的(1)了解集成运放的内部结构及各部分功能、特点;(2)了解集成运放主要参数的定义,以及它们对运放性能的影响。
(3)掌握集成运算放大器的正确使用方法;(4)掌握用集成运算放大器构成各种基本运算电路的方法;(5)掌握根据具体要求设计集成运算放大电路的方法,并会计算相应的元件参数;(6)学习使用示波器DC、AC输入方式观察波形的方法,掌握输出波形的测量绘制方法。
北航_电子实习_数字部分实验报告

报告名称:电子电路设计训练数字部分学院:仪器科学与光电工程学院目录实验报告概述: (3)一、选做实验总结: (3)(1)补充练习2:楼梯灯设计 (3)(2)练习题6:用两种不同的设计方法设计一个功能相同的模块,完成4个数据的冒泡排序 (5)(3)练习题3:利用10MB的时钟,设计一个单周期形状的周期波形 (6)(4)练习题4:运用always块设计一个8路数据选择器 (6)(5)练习题5:设计一个带控制端的逻辑运算电路 (7)二、必做实验总结: (7)(1)练习一:简单组合逻辑设计 (7)(2)练习三:利用条件语句实现计数分频失序电路 (7)(3)练习四:阻塞赋值与非阻塞赋值得区别 (8)(4)练习五:用always块实现较复杂的组合逻辑电路 (8)(5)练习六:在verilog HDL中使用函数 (9)(6)练习七:在verilog HDL中使用任务 (9)(7)练习八:利用有限状态机进行时许逻辑设计 (10)三、实验总结及体会: (10)四、选作程序源代码 (11)(1)练习题3:利用10MB的时钟,设计一个单周期形状的周期波形 (11)(2)练习题4:运用always块设计一个8路数据选择器 (12)(3)练习题5:设计一个带控制端的逻辑运算电路 (13)(4)练习题6:用两种不同的设计方法设计一个功能相同的模块,完成4个数据的冒泡排序 (14)(5)补充练习2:楼梯灯设计 (16)图表目录Figure 1 楼梯灯任务4 (5)Figure 2 组合逻辑 (5)Figure 3 时序逻辑 (6)Figure 4 周期波形 (6)Figure 5 8路数据选择器 (6)Figure 6 逻辑运算电路 (7)Figure 7 组合逻辑设计 (7)Figure 8 计数分频时序电路 (8)Figure 9 阻塞赋值与非阻塞赋值得区别 (8)Figure 10 always块组合逻辑电路 (9)Figure 11 使用函数 (9)Figure 12 使用任务 (10)Figure 13 有限状态机 (10)电子电路设计训练(数字部分)实验报告实验报告概述:本实验报告为对四次电子电路设计训练(数字部分)实验的总结,主要包括以下四部分:第一部分为选做实验总结,主要包括每个选择实验的设计思路、运行结果、注意事项、心得体会;第二部分为必做实验总结,包括运行结果、总结、心得体会;第三部分为课程总结和体会,是对全部实验及课程的总结;第四部分为选做实验部分源代码;一、选做实验总结:(1)补充练习2:楼梯灯设计设计思路:本题给出楼梯的运行规则,并分别给与四个相应任务进行编程设计,考虑到程序的通用性及FPGA高速并行处理的优点,主要思路如下:根据运行规则(8s内和大于8s等),对每个灯的相应状态进行编程,设计时序逻辑及有限状态机;由于在总体上看,每个灯的状态变化相对独立(只有一个人上楼除外),故对每个灯编程所得到的程序代码可通用于其它灯(只需要改变相应寄存器定义即可),此即为灯控制模块,对4个不同的任务,只需设计其它部分判断逻辑,即可完成任务要求;如此设计,可大大提高程序设计效率、易用性,同时如果面对更多的灯控制需要,也可快速进行修改部署。
北航电子电路设计训练数字部分实验报告

2014-2015-2-G02A3050-1 电子电路设计训练(数字EDA部分)实验报告(2015 年6月24 日)仪器科学与光电工程学院目录目录 (1)实验一、简单组合逻辑和简单时序逻辑 (4)1.1 实验任务1——简单组合逻辑 (4)1.1.1 实验要求 (4)1.1.2 模块的核心逻辑设计 (4)1.1.3 测试程序的核心逻辑设计 (5)1.1.4 仿真实验关键结果及其解释 (6)1.2 实验任务2——简单时序逻辑 (7)1.2.1 实验要求 (7)1.2.2 模块的核心逻辑设计 (8)1.2.3 测试程序的核心逻辑设计 (8)1.2.4 仿真实验关键结果及其解释 (9)1.3 实验小结 (9)实验二、条件语句和always过程块 (10)2.1 实验任务1——条件语句实现计数分频时序电路 (10)2.1.1 实验要求 (10)2.1.2 模块的核心逻辑设计 (10)2.1.4 仿真实验关键结果及其解释 (13)2.2 实验任务2——always块实现较复杂的组合逻辑电路 (14)2.2.1 实验要求 (14)2.2.2 模块的核心逻辑设计 (14)2.2.3 测试程序的核心逻辑设计 (15)2.2.4 仿真实验关键结果及其解释 (16)2.3 实验小结 (17)实验三、赋值、函数和任务 (18)3.1 实验任务1——阻塞赋值与非阻塞赋值的区别 (18)3.1.1 实验要求 (18)3.1.2 模块的核心逻辑设计 (18)3.1.3 测试程序的核心逻辑设计 (19)3.1.4 仿真实验关键结果及其解释 (21)3.2 实验任务2——在Verilog HDL中使用函数 (21)3.2.1 实验要求 (21)3.2.2 模块的核心逻辑设计 (21)3.2.3 测试程序的核心逻辑设计 (24)3.2.4 仿真实验关键结果及其解释 (26)3.3 实验任务3——在Verilog HDL中使用任务(task) (27)3.3.1 实验要求 (27)3.3.2 模块的核心逻辑设计 (27)3.3.4 仿真实验关键结果及其解释 (29)实验四、有限状态机 (30)4.1 实验任务1——利用有限状态机进行时序逻辑的设计 (30)4.1.1 实验要求 (30)4.1.2 模块的核心逻辑设计 (30)4.1.3 测试程序的核心逻辑设计 (31)4.1.4 仿真实验关键结果及其解释 (32)4.2 实验任务2——串行数据采样器 (33)4.2.1 实验要求 (33)4.2.2 模块的核心逻辑设计 (34)4.2.3 测试程序的核心逻辑设计 (37)4.2.4 仿真实验关键结果及其解释 (41)4.3 实验小结 (42)实验一、简单组合逻辑和简单时序逻辑1.1 实验任务1——简单组合逻辑1.1.1 实验要求实验代码提供的是一个可综合的数据比较器。
北航实验报告封面(共8篇)

北航实验报告封面(共8篇)北航惯性导航综合实验一实验报告实验一陀螺仪关键参数测试与分析实验加速度计关键参数测试与分析实验二零一三年五月十二日实验一陀螺仪关键参数测试与分析实验一、实验目的通过在速率转台上的测试实验,增强动手能力和对惯性测试设备的感性认识;通过对陀螺仪测试数据的分析,对陀螺漂移等参数的物理意义有清晰的认识,同时为在实际工程中应用陀螺仪和对陀螺仪进行误差建模与补偿奠定基础。
二、实验内容利用单轴速率转台,进行陀螺仪标度因数测试、零偏测试、零偏重复性测试、零漂测试实验和陀螺仪标度因数与零偏建模、误差补偿实验。
三、实验系统组成单轴速率转台、MEMS 陀螺仪(或光纤陀螺仪)、稳压电源、数据采集系统与分析系统。
四、实验原理1. 陀螺仪原理陀螺仪是角速率传感器,用来测量载体相对惯性空间的角速度,通常输出与角速率对应的电压信号。
也有的陀螺输出频率信号(如激光陀螺)和数字信号(把模拟电压数字化)。
以电压表示的陀螺输出信号可表示为:UGUG?0??kG??kGfG(a)?kG?G(1-1)式中fG(a)是与比力有关的陀螺输出误差项,反映了陀螺输出受比力的影响,本实验不考虑此项误差。
因此,式(1-1)简化为 UGUG?0??kG??kG?G(1-2)由(1-2)式得陀螺输出值所对应的角速度测量值:测量?UG?UG(0)(1-3) ??GkG对于数字输出的陀螺仪,传感器内部已经利用标度因数对陀螺仪模拟输出进行了量化,直接输出角速度值,即:测量??0??真值??G(1-4)?0是是陀螺仪的零偏,物理意义是输入角速度为零时,陀螺仪输出值所对应的角速度。
且UG(0)?kG?0 (1-5)?测量精度受陀螺仪标度因数kG、随机漂移?G、陀螺输出信号UG的检测精度和UG(0)的影响。
通常kG和UG(0)表现为有规律性,可通过建模与补偿方法消除,?G表现为随机特性,可通过信号滤波方法抵制。
因此,准确标定kG和UG(0)是实现角速度准确测量的基础。
北航电力电子实验报告

电力电子实验报告学号姓名王天然实验一功率场效应晶体管(MOSFET)特性与驱动电路研究一.实验目的:1.熟悉MOSFET主要参数的测量方法2.掌握MOSEET对驱动电路的要求3.掌握一个实用驱动电路的工作原理与调试方法二.实验设备和仪器1.NMCL-07电力电子实验箱中的MOSFET与PWM波形发生器部分2.双踪示波器3.安培表(实验箱自带)4.电压表(使用万用表的直流电压档) 三.实验方法1.MOSFET 主要参数测试 (1)开启阀值电压V GS(th)测试开启阀值电压简称开启电压,是指器件流过一定量的漏极电流时(通常取漏极电流I D =1mA)的最小栅源极电压。
在主回路的“1”端与MOS 管的“25”端之间串入毫安表(箱上自带的数字安培表表头),测量漏极电流I D ,将主回路的“3”与“4”端分别与MOS 管的“24”与“23”相连,再在“24”与“23”端间接入电压表, 测量MOS 管的栅源电压Vgs ,并将主回路电位器RP 左旋到底,使Vgs=0。
图2-2 MOSFET实验电路将电位器RP逐渐向右旋转,边旋转边监视毫安表的读数,当漏极电流I D=1mA时的栅源电压值即为开启阀值电压V GS(th)。
读取6—7组I D、Vgs,其中I D=1mA必测,填入下表中。
I D0.2 0.5 1 5 100 200 500 (mA)Vgs2.64 2.72 2.863.04 3.50 3.63 3.89 (V)(2)跨导g FS测试双极型晶体管(GTR)通常用h FE(β)表示其增益,功率MOSFET器件以跨导g FS表示其增益。
跨导的定义为漏极电流的小变化与相应的栅源电压小变化量之比,即g FS=△I D/△V GS。
★注意典型的跨导额定值是在1/2额定漏极电流和V DS=15V下测得,受条件限制,实验中只能测到1/5额定漏极电流值,因此重点是掌握跨导的测量及计算方法。
根据上一步得到的测量数值,计算gFS=0.0038ΩI D(mA)0.2 0.5 1 5 10 100 200 500Vgs(V) 2.64 2.72 2.86 3.04 3.13 3.5 3.63 3.89g FS0.0038 0.0036 0.0222 0.0556 0.2432 0.7692 1.1538DS导通电阻定义为R DS=V DS/I D将电压表接至MOS 管的“25”与“23”两端,测量U DS,其余接线同上。
北京航空航天大学《电子电路i》第一章 [1.3 bjt]zqv2012
![北京航空航天大学《电子电路i》第一章 [1.3 bjt]zqv2012](https://img.taocdn.com/s3/m/dbb1136db307e87101f696bc.png)
B
N
P
ICEO= IBE+ICBO ICEO= ICBO+ICBO
ICEO= (1+ )ICBO
ICBO进入N区, IBE 形成IBE=ICBO。 E
N
2019/2/1
北京航空航天大学202教研室
可通过ICBO和 ICEO确定放大倍 数。
32
3. 极限参数
① 集电极最大允许电流 ICM β值下降到额定值的 2/3 时所允许的最大集电极电流值。
② 共基连接电流分配关系
符号说明
iCn iEn
为电流增益系数,
它只与管子的结构尺寸和 掺杂浓度有关,与外加电 是共基BJT输出端交流短路条件下交流电流增益。 压无关。一般 = 0.90.99
iE=iC+iB=iEn+iEp iB=iB1+iB2-ICBO iC=iCn+ICBO=αiEn+ICBO
E
IE
E
IE
NPN型三极管
2019/2/1
PNP型三极管
3
北京航空航天大学202教研室
双极型晶体管的基本结构: C NPN型 N B 基极 E 发射极
2019/2/1 北京航空航天大学202教研室
集电极
集电极
C
PNP型
P
B N P E 发射极
4
P
N
基极
三个杂质半导体区:
集电区: 面积较大
C N P N E
3.曲线大信号
4.小信 号模型 5.参数 2019/2/1
1.3 双极型晶体管(BJT: bipolar junction transistor) 1.3.1 BJT结构和工艺
北航电力电子实验报告

北航电力电子实验报告一、实验目的电力电子是指能够对电能进行控制、调节和变换的设备和技术。
本实验旨在通过对电力电子元件和电路的实际操作,了解电力电子的基本原理和工作特性,掌握电力电子技术的应用。
二、实验内容1.了解电力电子元件的工作原理和特性,包括二极管、晶闸管、MOSFET等。
2.使用电力电子元件搭建基本电力电子实验电路,包括电压倍增器、交流调压电路等。
3.对电力电子元件和电路进行实验调试,观察和测量电路中电压、电流等参数。
4.记录实验结果,撰写实验报告。
三、实验步骤1.根据实验要求和提供的材料,准备实验所需的电力电子元件和电路板。
2.根据实验指导书的要求,依次搭建不同的电力电子电路。
3.使用万用表、示波器等测试仪器,对电路中的电压、电流等参数进行测量和观察。
4.调试电路,观察电力电子元件的工作情况,并记录实验数据。
5.完成实验后,将实验所用的设备归还到指定位置,整理实验报告。
四、实验结果分析本实验以搭建电压倍增器为例,观察和测量了电压倍增器电路中的输入电压、输出电压和负载电流等参数。
通过实验发现,当输入电压为直流电压时,输出电压比输入电压高;当输入电压为交流电压时,输出电压也为交流电压,但其幅值大于输入电压。
此外,当负载电流增加时,电路中的电流也相应增加,但电压倍增器的输出稳定性有一定的局限性,不适用于所有场合。
五、实验总结通过本次实验,我深入了解了电力电子元件和电路的工作原理和特性,通过实际操作和测量,进一步加深了对电力电子技术的理解。
实验过程中,我掌握了搭建和调试电力电子电路的方法和技巧,提高了实际操作的能力。
同时,也意识到了电力电子技术在现代工程和生活中的广泛应用,对工程实践有着重要的意义。
在未来的学习和实践中,我将进一步探索和应用电力电子技术,为工程和生活提供更好的解决方案。
同时,也要不断学习和更新电力电子技术的知识,跟随科技的发展,不断提升自己的专业素养和技能水平。
北航电路实验报告

北航电路实验报告北航电路实验报告引言北航电路实验是电子信息工程专业学生必修的一门实践课程,旨在帮助学生理解和掌握电路的基本原理和实验技巧。
本文将对北航电路实验进行详细的报告和分析,以便更好地总结和应用所学知识。
实验一:电路基础实验电路基础实验是北航电路实验的第一次实践活动,通过搭建简单的电路并测量电流和电压,学生可以对电路的基本概念和特性有一个初步的了解。
首先,我们使用面包板搭建了一个简单的电路,包括电源、电阻和电流表。
然后,我们通过改变电阻的大小,测量了电路中的电流和电压。
实验结果表明,电流与电压成正比,而电阻则影响电流的大小。
实验二:交流电路实验交流电路实验是北航电路实验的第二个实践环节,通过使用交流电源和各种电路元件,学生可以研究交流电路的特性和行为。
我们首先搭建了一个简单的交流电路,包括交流电源、电感和电容。
然后,我们测量了电路中的电流和电压,并绘制了电流和电压随时间变化的波形图。
实验结果表明,电感和电容对交流电路的行为有重要影响,可以产生滤波、延时等效果。
实验三:放大电路实验放大电路实验是北航电路实验的第三个实践环节,通过使用放大器和各种电路元件,学生可以研究电路的放大效果和信号处理。
我们首先搭建了一个简单的放大电路,包括放大器、电阻和信号源。
然后,我们输入不同幅度和频率的信号,并测量输出信号的幅度和频率。
实验结果表明,放大器可以放大输入信号的幅度,同时也会对信号的频率产生一定的影响。
实验四:滤波电路实验滤波电路实验是北航电路实验的第四个实践环节,通过使用滤波器和各种电路元件,学生可以研究电路的滤波效果和频率响应。
我们首先搭建了一个简单的滤波电路,包括滤波器、电容和电阻。
然后,我们输入不同频率的信号,并测量输出信号的幅度和相位。
实验结果表明,滤波器可以对输入信号进行频率选择,滤除不需要的频率成分。
实验五:数字电路实验数字电路实验是北航电路实验的最后一个实践环节,通过使用数字电路元件和逻辑门,学生可以研究电路的逻辑运算和数字信号处理。
北航电气工程及其自动化电力电子技术报告

电力电子技术实验报告XX:学号:1203100 5班级:12031 1实验二三相半波可控整流电路的研究一.实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作。
二.实验线路及原理三相半波可控整流电路用三只晶闸管,与单相电路比拟,输出电压脉动小,输出功率大,三相负载平衡。
缺乏之处是晶闸管电流即变压器的二次电流在一个期只有1/3时间有电流流过,变压器利用率低。
实验线路见图1-5。
三.实验容1.研究三相半波可控整流电路供电给电阻性负载时的工作。
2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作。
四.实验设备及仪表1.教学实验台主控制屏2.NMCL—33组件3.NMEL—03组件4.二踪示波器5.万用表五.考前须知1.整流电路与三相电源连接时,一定要注意相序。
2.整流电路的负载电阻不宜过小,应使Id不超过0.8A,同时负载电阻不宜过大,保证Id 超过0.1A,防止晶闸管时断时续。
3.正确使用示波器,防止示波器的两根地线接在非等电位的端点上,造成短路事故。
六.实验法按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。
〔1〕用示波器观察MCL-33的双脉冲观察,应有间隔均匀,幅度一样的双脉冲〔2〕检查相序,用示波器观察“1〞,“2〞单脉冲观察,“1〞脉冲超前“2〞脉冲600,那么相序正确,否那么,应调整输入电源。
〔3〕用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。
2.研究三相半波可控整流电路供电给电阻性负载时的工作〔a〕合上主电源,接上电阻性负载:改变控制电压Uct,观察在不同触发移相角α时,可控整流电路的输出电压Ud=f〔t〕与输导通角30°60°90°105°120°150°Uct/V 4.1 2 1 0.7 0.2 0Ud/V 131.9 86.0 41.4 24.7 11.3 0.0Id/A 0.42 0.30 0.15 0.10 0.05 0〔bUd=f〔t〕电阻负载i d= f〔t〕:〔与U d= f〔t〕一样,只是小R倍〕〔c〕求取三相半波可控整流电路的输入—输出特性Ud/U2=f〔α〕。
【优质】北航声光实验报告-精选word文档 (8页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==北航声光实验报告篇一:北航电子电路实验报告三电子电路实验报告(三)XXXXXX班 XXX 10021189[仅供参考~]实验三差动放大器的分析与设计实验电路在Multisim11中搭建如下电器元件:实验内容1请对该电路进行直流工作点分析,进而判断管子的工作状态对该电路进行直流工作点分析,结果截图如图所示:其中,V(10)=9.75915V,V(1)=-9.92162mV,V(3)=-659.58638mV。
对此数据分析,可知:UC=9.759VUB=-0.0099VUE=-0.6596V由于发射结正偏,集电结反偏,故推断,该NPN型三极管工作在放大区。
2测量电流源供给差放的静态工作电流操作步骤:在如图位置串联万用表,测量直流电流,如下图所示测得:I=4.502mA3 测量输入、输出电阻输入电阻:在输入端并联万用表,测量输入电压;然后串联万用表,测量输出电压,如下图所示。
测得:Ui=83.783mV,Ii=8.263μA∴Ri=Ui/Ii=10.14kΩ输出电阻:将输入电压源短路,同时在输出端串接电压源,然后如图所示分别测量电压电流测得:Io=50.867μA,Uo=99.996mV,进而可求的Ro=1.97kΩ4 利用软件提供的测量仪表测出单端差模放大倍数分别测量输入和输出交流电压,可知Av=-1.83*1000/92.872=-19.75 利用软件提供的测量仪表测出幅频、相频特性曲线选中xbp表,将其IN并联在输入端,其OUT并联在输出端,点击运行即可观察电路的幅频、相频特性曲线。
6 利用交流分析功能测出电路的幅频、相频特性曲线选择交流分析,得到曲线如下图7利用温度扫描功能给出工作温度从0摄氏度到100摄氏度变化时,输出波形的变化选择温度扫描分析,得到曲线如下图8设计如下电路,利用温度扫描功能给出工作温度从0摄氏度到100摄氏度变化时,输出波形的变化选择温度扫描分析,得到曲线如下图篇二:北航电子电路实验报告一电子电路实验报告(一)XXXXXX班 XXX 10021189[仅供参考XD]实验一共射放大器的分析与设计实验电路在Multisim11中搭建如下电器元件:实验内容1请对该电路进行直流工作点分析,进而判断管子的工作状态对该电路进行直流工作点分析,结果截图如图所示:其中,V(5)=2.34087V,V(2)=2.96644V,V(3)=9.08733V。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子电路设计数字部分实验报告学院:姓名:实验一简单组合逻辑设计实验内容描述一个可综合的数据比较器,比较数据 a 、b 的大小,若相同,则给出结果1,否则给出结果 0。
实验仿真结果实验代码主程序module compare(equal,a,b);input[7:0] a,b;output equal;assign equal=(a>b)1:0;endmodule测试程序module t;reg[7:0] a,b;reg clock,k;wire equal;initialbegina=0;b=0;clock=0;k=0;endalways #50 clock = ~clock; always @ (posedge clock) begina[0]={$random}%2;a[1]={$random}%2;a[2]={$random}%2;a[3]={$random}%2;a[4]={$random}%2;a[5]={$random}%2;a[6]={$random}%2;a[7]={$random}%2;b[0]={$random}%2;b[1]={$random}%2;b[2]={$random}%2;b[3]={$random}%2;b[4]={$random}%2;b[5]={$random}%2;b[6]={$random}%2;b[7]={$random}%2;endinitialbegin #100000 $stop;endcompare m(.equal(equal),.a(a),.b(b));endmodule实验二简单分频时序逻辑电路的设计实验内容用 always 块和 @(posedge clk) 或 @(negedge clk) 的结构表述一个 1/2 分频器的可综合模型,观察时序仿真结果。
实验仿真结果实验代码主程序module half_clk(reset,clk_in,clk_out); input clk_in,reset;output clk_out;reg clk_out;always@(negedge clk_in)beginif(!reset)clk_out=0;elseclk_out=~clk_out;endendmodule测试程序`timescale 1ns/100ps`define clk_cycle 50module top;reg clk,reset;wire clk_out;always #`clk_cycle clk=~clk;initialbeginclk=0;reset=1;#10 reset=0;#110 reset=1;#100000 $stop;endhalf_clk m0(.reset(reset),.clk_in(clk),.clk_out(clk_out));endmodule实验三利用条件语句实现计数分频时序电路实验内容利用 10MHz的时钟,设计一个单周期形状的周期波形。
实验仿真结果实验代码主程序module fdivision(RESET,F10M,out); input F10M,RESET;output out;reg out;reg[7:0] i;always @(posedge F10M)if(!RESET)beginout<=0;i<=0;endelse if(i==2||i==3)beginout=~out;i<=i+1;endelse if(i==5)i<=1;elsei<=i+1;endmodule测试程序`timescale 1ns/100psmodule division_top;reg F10M,RESET;wire out;always #50 F10M=~F10M;initialbeginRESET=1;F10M=0;#90 RESET=0;#100 RESET=1;#10000 $stop;endfdivision fdivision(.RESET(RESET),.F10M(F10M),.out(out));endmodule实验四阻塞赋值与非阻塞赋值的区别实验内容比较四种不同的写法,观察阻塞与非阻塞赋值的区别。
Blocking :always @(posedge clk)beginb=a;c=b;endBlocking1 :always @(posedge clk) beginc=b;b=a;endBlocking2 :always @(posedge clk) b=a; always @(posedge clk) c=b; non_Blocking :always@(posedge clk) beginb<=a;c<=b;End实验仿真结果实验代码主程序module blocking(clk,a,b,c);output[3:0] b,c;input[3:0] a;input clk;reg[3:0] b,c;always @(posedge clk)beginb=a;c=b;endendmodule测试部分`timescale 1 ns/100 ps`include "./"`include "./"`include "./"`include "./"module compareTop;wire[3:0]b11,c11,b12,c12,b13,c13,b2,c2; reg[3:0]a;reg clk;initialbeginclk=0;forever#50 clk=~clk;endinitialbegina=4'h3;$display("%d",a);#100 a=4'h7;$display("%d",a);#100 a=4'hf;$display("%d",a);#100 a=4'ha;$display("%d",a);#100 a=4'h2;$display("%d",a);#100 $stop;endblocking blocking(clk,a,b11,c11); blocking1 blocking1(clk,a,b12,c12); blocking2 blocking2(clk,a,b13,c13);non_blocking non_blocking(clk,a,b2,c2); endmodule实验五用 always 块实现较复杂的组合逻辑实验目的运用 always 块设计一个8 路数据选择器。
要求:每路输入数据与输出数据均为 4 位 2 进制数,当选择开关(至少 3 位)或输入数据发生变化时,输出数据也相应地变化。
实验仿真结果实验代码主程序module alu(out,opcode,a1,a2,a3,a4,a5,a6,a7,a8);output[3:0] out;reg[3:0] out;input[3:0] a0,a1,a2,a3,a4,a5,a6,a7;input[2:0] opcode;always@(opcode or a1 or a2 or a3 or a4 or a5 or a6 or a7 or a0) begincase(opcode)3'd0: out=a0;3'd1: out=a1;3'd2: out=a2;3'd3: out=a3;3'd4: out=a4;3'd5: out=a5;3'd6: out=a6;3'd7: out=a7;default:out=4'b0000;endcaseendendmodule测试程序`timescale 1ns/1ns`include "./"module alutext;wire[3:0] out;reg[3:0] a1,a2,a3,a4,a5,a6,a7,a8;reg[2:0] opcode;initialbegina1={$random}%16;a2={$random}%16;a3={$random}%16;a4={$random}%16;a5={$random}%16;a6={$random}%16;a7={$random}%16;a8={$random}%16;repeat(100)begin#100 opcode={$random}%8;a1={$random}%16;a2={$random}%16;a3={$random}%16;a4={$random}%16;a5={$random}%16;a6={$random}%16;a7={$random}%16;a8={$random}%16;end#100 $stop;endalu alu(out,opcode,a1,a2,a3,a4,a5,a6,a7,a8); endmodule实验六在 Verilog HDL中使用函数实验目的设计一个带控制端的逻辑运算电路,分别完成正整数的平方、立方和最大数为5 的阶乘运算。
实验仿真结果实验代码主程序module tryfunct(clk,n,result1,result2,result3,reset);output[31:0]result1,result2,result3;input[3:0]n;input reset,clk;reg[31:0]result1,result2,result3;always@(posedge clk)beginif(!reset)beginresult1<=0;result2<=0;result3<=0;endelsebeginresult1<=fun1(n); result2<=fun2(n); result3<=fun3(n); endendfunction[31:0]fun1; input[3:0]operand;fun1=operand*operand; endfunctionfunction[31:0]fun2; input[3:0]operand; beginfun2=operand*operand; fun2=operand*fun2; endendfunctionfunction[31:0]fun3; input[3:0]operand;beginfun3=1;if(operand<11)for(index=2;index<=operand;index=index+1)fun3=index*fun3;elsefor(index=2;index<=10;index=index+1)fun3=index*fun3;endendfunctionendmodule测试程序`include"./"`timescale 1ns/100psmodule tryfunctTop;reg[3:0] n,i;reg reset,clk;wire[31:0]result1,result2,result3;initialbeginclk=0;n=0;reset=1;#100 reset=0;for(i=0;i<=15;i=i+1)begin#200 n=i;end#100 $stop;endalways#50 clk=~clk;tryfunctm(.clk(clk),.n(n),.result1(result1),.result2(result2),.result3(result3),.reset(reset));endmodule实验七在 Verilog HDL中使用任务 (task) 实验目的用两种不同方法设计一个功能相同的模块,该模块能完成四个8 位 2 进制输入数据的冒泡排序。