201x-201x学年九年级数学上册第二十二章二次函数22.3实际问题与二次函数第2课时教案 新人教

合集下载

2019九年级数学上册 第二十二章 22.3 22.3.2 实际问题与二次函数(二)备课资料教案

2019九年级数学上册 第二十二章 22.3  22.3.2 实际问题与二次函数(二)备课资料教案

第二十二章 22.3.2实际问题与二次函数(二)
用二次函数解决抛物线建筑的有关问题
建立如图所示的直角坐标求大孔的水面宽度
解:设大孔对应的抛物线所对应的函数解析式为a=-0.06,
y=-0.06x2+6.当y=4.5时,-0.06x2+6=4.5,解得x=±
故可设其对应的函数解析式为+6.
关于的函数的图象大致是图中的(
A B C
D
答案:C
点拨:本题是三角形的有关面积以及函数图象的综合题,解答时根据已知首先求得△EFG的面积y关于x的函数解析式,然后根据函数解析式判断函数图象.
因为正三角形ABC的边长为1,所以其面积为.因为AE=BF=CG=x,所以BE=FC=AG=1-x,又因为∠A=∠B=∠
C=60°,所以△AEG≌△BFE≌△CGF,所以△AEG、△BFE、△CGF的面积都相等.过点E作EH⊥A G于H,易求得EH=x,
所以△AEG的面积为x(1-x),所以y=-3×x(1-x)=x2-x+.因为>0,所以抛物线y=x2-x+开口向上.又因为b2-4ac<0,所以抛物线与x轴无交点.故应选C.。

人教版九年级上册数学精品教学课件 第22章 二次函数 第3课时 抛物线形实物及运动轨迹问题

人教版九年级上册数学精品教学课件 第22章 二次函数 第3课时 抛物线形实物及运动轨迹问题

1 令 x=0 得 y=− 45 ×(0 − 15)2 + 45=40,
∴ 点 B 的坐标为 (0,40).
∴ 这名运动员起跳时的竖直高度为 40 米.
能力提升 悬索桥两端主塔塔顶之间的主悬钢索,其形状 可近似地看作抛物线,水平桥面与主悬钢索之间用垂直 钢索连接. 已知两端主塔之间的水平距离为 900 m,两主 塔塔顶距桥面的高度为 81.5 m,主悬钢索最低点离桥面 的高度为 0.5 m.
当 y = 0 时,可求得点 C 的坐标为 (2.5,0);
同理,可求得点 D 的坐标为 (-2.5,0). y 根据对称性,如果不计其它因素,
●B (1,2.25)
A●(0,1.25)
那么水池的半径至少要 2.5 m,才
能使喷出的水流不致落到池外.

D
O

C
x
例3 如图,一名运动员在距离篮球框中心 4 m (水平距 离) 远处跳起投篮,篮球准确落入篮框,已知篮球运行 的路线为抛物线,当篮球运行的水平距离为 2.5 m 时, 篮球达到最大高度,且最大高度为 3.5 m.如果篮框中 心距离地面 3.05 m,那么篮球在该运动员出手时的高度 是多少?
OABC 的长是 12 m,宽是 4 m,按照图中所示的平面
直角坐标系,抛物线可以用 y= − 1 x2 + 2x + c 表示. (1)请写出该抛物线的函数解析式;6
解:根据题意,得 C (0,4). 将其代入
抛物线 y=− 1 x2 + 2x + c 中,得 c=4,

6
抛物线解析式为
y=−
1
x2
例2 某广场喷泉的喷嘴安装在平地上.有一喷嘴喷出

人教课标版初中数学九年级上册第二十二章22.3 实际问题与二次函数

人教课标版初中数学九年级上册第二十二章22.3 实际问题与二次函数

人教课标版初中数学九年级上册第二十二章22.3 实际问题与二次函数二次函数与一元二次方程教案本节课的主要内容是二次函数与一元二次方程之间的关系,要求用函数的观点看方程,渗透数形结合的思想。

【教学目标】一、知识与技能1、经历复习二次函数与一元二次方程关系的过程,进一步体会方程与函数之间的互相转化,能够用函数的观点看方程。

2、掌握二次函数与 x 轴交点的个数与一元二次方程的根的关系,掌握何时方程有两个不等的实根、两个相等的实根和没有实根,并熟练的用于解题中。

3、掌握一元二次方程的根就是二次函数与y =m 交点的横坐标.二、过程与方法1、经历复习二次函数与一元二次方程的关系的过程,培养学生的综合解题能力。

2、通过观察二次函数与x 轴交点的个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3、通过学生共同学习和讨论,培养合作交流意识.三、情感态度与价值观1、经历复习二次函数与一元二次方程的关系的过程,认识到事物的联系与转化,体验探究的乐趣。

2、学会用辨证的观点看问题,具有初步的创新精神和实践能力.【教学重点】1.掌握方程与函数之间的联系.2. 掌握一元二次方程的实数根个数与二次函数与x轴公共点个数的对应关系,根据具体的函数图像解决有关问题;3.掌握二次函数y=ax²+bx+c(a≠0)图象与直线y=m公共点的横坐标,就是一元二次方程ax²+bx+c=m(a≠0)的根。

【教学难点】1、掌握二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系. 探索方程与函数之间的联系的过程.2、掌握由方程根来求待定系数,或由待定系数的取值决定方程根的解题套路. 【教学方法】讲练法,教师引导启发,学生合作探索【教学过程】课前复习二次函数与一元二次方程的关系课前练习考点分析:本题考查了二次函数的顶点式,图象与x轴交点坐标的求法,函数值与对应自变量取值范围的关系,利用函数图像解题是关键,让学生进一步体会"数因形而直观,形因数而入微".例2.“若二次函数y=ax²+bx+c的图象与直线y=h有两个公共点,则一元二次方程ax²+bx+c=h有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b解题分析:依题意画出函数y=(x-a)(x-b)图象草图,根据二次函数的增减性求解.考点分析:本题考查了二次函数与一元二次方程的关系,考查了数形结合的数学思想.解题时,画出函数草图,由函数图象直观形象地得出结论.例3. 已知:函数y=ax2+(3a-1)x+2a+1(a为常数).若该函数图象与坐标轴只有两个交点,求a的值;解题分析:根据a取值的不同,有三种情形,需要分类讨论,避免漏解.此题要求学生自己画图分析,老师补充强调。

22.3 实际问题与二次函数(商品利润问题)课件人教版数学九年级上册

22.3  实际问题与二次函数(商品利润问题)课件人教版数学九年级上册

巩固练习
该怎么解这个题 目呢?
本题是以文字信息形式出现的求最大总收入的 实际应用问题,解题时要抓住题目中关键词语, 对信息进行梳理,分析,建立二次函数模型。
新知探究 知识点一:利润问题中的数量关系
②自变量x的取值范围如何确定?
营销规律是价格下降,销量上升,因此只要考虑 单件利润就可以,故 20-x≥0,且x≥0, 因此自变量的取值范围是 0≤x≤20.
新知探究 知识点一:利润问题中的数量关系
③降价多少元时,利润y最大,是多少? 即:y=-20x2+100x+6000,
复习回顾
利润问题 一.几个量之间的关系. 1.总价、单价、数量的关系:总价=单价×数量 2.利润、售价、进价的关系:利润=售价-进价 3.总利润、单件利润、数量的关系:总利润=单件利润×数量 二.在商品销售中,通常采用哪些方法增加利润?
新课导入
某商店经营衬衫,已知获利以y(元)与销售单价x(元)之间满足关系式y=x2+24x+2956,则此店销售单价定为多少时,获利多少?最多获利多少?
巩固练习
解析 总利润=单件产品利润×销售教量
解:(1)获利(30-20)[105-5(30-25)]=800(元)。 (2)设售价为每件x元时一个月的获利为y元。 由题意得y=(x-20)[105-5(x-25)] =-5x2+330x-4600 =-5(x-33)2+845 当x=33时,y的最大值是845. 故当售价定为每件33元时,一个月获利最大,最大利润是845元。
新课导入
在商品经营活动中,经常会遇到求最大利润、最大铸量等问题,解此类题的关健 是通过题意,找出二次函数的解析式,然后确定其最大值,实际问题中自变量x 的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x 的取值范围。

人教版九年级数学上册第22章《 二次函数:22.3.2 利用二次函数求实际中最值问题》

人教版九年级数学上册第22章《 二次函数:22.3.2  利用二次函数求实际中最值问题》
第二十二章 二次函数
22.3 实际问题与二次函数
22.3.2 利用二次函数求实际中最值问题
第二十二章 二次函数
运用二次函数的代数模型表示实际问题时,实际 上是根据实际问题中常量与变量的关系,构造出 y=ax2+bx+c,y=a(x-h)2+k或y=a(x-x1)(x-x2)等二次函 数模型,为运用二次函数的性质解决实际问题奠定基 础.
第二十二章 二次函数
(2)在降价的情况下,最大利润是多少?请你参考(1)的讨 论,自己写出答案.
解:设降价x元时利润最大, 则每星期可多卖20x件,实际卖出(300+20x)件, 销售额为(60-x)(300+20x)元,买进商品需付 40(300+20x)元, 因此,得利润 y=(60-x)(300+20x)-40(300+20x), 即y=-20x2+100x+6000(0≤x≤20), 当x=2.5时,y最大, 也就是说,在降价的情况下,降价2.5元, 即定价57.5元时,利润最大,最大利润是6125元.
分析:调整价格包括涨价和降价两种情况.我们先 来看涨价的情况.
第二十二章 二次函数
(1)设每件涨价x元,则每星期售出商品的利润y随之变
化.我们先来确定y随x变化的函数解析式.涨价x元时,
每星期少卖_1_0_x__件,实际卖出(_3_0_0_-__1_0_x_)_件,销售额 为_(_6_0_+__x_)_(_3_0_0_-__1_0_x_)元,买进商品需付_4_0_(_3_0_0_-__1_0_x_)
第二十二章 二次函数
【例1】某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日 租金为400元时,可全部租出;当每辆车的日租金每增 加50元时,未租出的车将增加1辆;公司平均每日的各 项支出共4 800元.设公司每日租出x辆车,日收益为y 元,(日收益=日租金收入-平均每日各项支出). (1)公司每日租出x辆车时,每辆车的日租金为 (_1__4_0_0_-__5_0_x_)_(_0_≤__x_≤__2_0_)_元(用含x的代数式表示); (2)求租赁公司日收益y(元)与每日租出汽车的辆数x之 间的函数关系式.

22、3 实际问题与二次函数(第2课时) -人教版数学 九年级上册

22、3 实际问题与二次函数(第2课时) -人教版数学 九年级上册
A.最大值为5万元 B.最大值为7万元 C.最小值为5万元 D.最大值为6万元
2 . 某 种 商 品 每 件 进 价 为 20 元 , 调 查 表 明 : 在 某 段 时 间 内 若 以 每 件 x 元 (20≤x≤30,且x为整数)出售,可卖出(30-x)件,若使利润最大,则每件商 品的售价应为_2_5__元.
∵a = -2<0,图象开口向下,
∴当x = 55时,Q最大= 1250. ∴当售价在50~70元时,售价x是55元时,获利最大, 最大利润是1250元.
(3)若4月份该商品销售后的总利润为1218元,则该商
品售价与当月的销售量各是多少?
解:∵当40≤x≤50时, Q最大= 1200<1218. 当50≤x≤70时, Q最大= 1250>1218. ∴售价x应在50~70元之间.
8000元不是每月最大利润,最大月利润为9000元,
此时篮球的售价为70元.
课堂练习
1. 某种商品每件的进价为20元,调查表明:在某 段时间内若以每件x元(20 ≤x ≤30)出售,可卖出 (300-20x)件,使利润最大,则每件售价应定 为 25 元.
2. 进价为80元的某件定价100元时,每月可卖出2000件, 价格每上涨1元,销售量便减少5件,那么每月售出衬 衣的总件数y(件)与衬衣售价x(元)之间的函数关系式 为 y=2000-5(x-100) .每月利润w(元)与衬衣售价 x(元)之间的函数关系式为 w=[2000-5(x-100)](x-80) .(以上 关系式只列式不化简).
Q
解得:51≤x≤53.
1242
∵Q=-2(x-55)2 +1250的顶点
不在51≤x≤53范围内,
又∵a =-2<0,
∴当51≤x≤53时 ,Q随x的增大而增大. ∴当x最大 = 53时,Q最大= 1242.

第二十二章 二次函数 22.3 实际问题与二次函数:拱桥问题 初中九年级数学教案教学设计课后反思

第二十二章 二次函数 22.3 实际问题与二次函数:拱桥问题 初中九年级数学教案教学设计课后反思

知识讲解(难点突破)二、合作探究达成目标探究点用二次函数解决拱桥类问题活动:出示教材第51页探究三:如图是抛物线形拱桥,现已知拱形底座顶部离水面 2 m,水面宽 4 m,为了船能顺利通过,需要把水面下降 1 m,问此时水面宽度增加多少?.思考:(1)如何根据图22.3-2建立平面直角坐标系?不同的建立方式,求得抛物线解析式是否一样?(2)水面下降1m的含义是什么?(3)如何求宽度增加多少?(4)各小组分别建立不同的平面直角坐标系求解后展示.【展示点评】本题中建立平面直角坐标系的方法有多种,但以抛物线的顶点为原点建立平面直角坐标系的方法较为简单,水面下降1米,即纵坐标减1,代入解析式即可计算出横坐标.【小组讨论】自主学习中的第1题和此题有何联系?用二次函数知识解决抛物线形建筑问题的一般步骤是怎样的?【反思小结】首先是审题,弄清已知和未知,在建立适当的平面直角坐标系后,合理的设出二次函数的解析式并求解出解析式,最后利用解析式求解得出实际问题的答案.三、达标检测 反思目标1.某大学的校门是一抛物线形的水泥建筑物(如图所示),大门的宽度为8 m ,两侧距地面4 m 高处各挂有一个挂校名横匾用的铁环,两铁环的水平距离为6 m ,则校门的高度为(精确到0.1 m ,水泥建筑物厚度忽略不计)( B )A .9.2 mB .9.1 mC .9 mD .5.1 m2. 某涵洞是抛物线形,它的截面如图所示.现测得水面宽AB =4m ,涵洞顶点O 到水面的距离为8m.在图中直角坐标系内,涵洞所在抛物线的函数关系式是__y =-2x2__.这节课学习了用什么知识解决实际问题?解决问题的一般步骤是什么?实际问题转化抽象数学问题数学知识运用问题的解决 一般步骤:(1)根据已知条件建立适当的平面直角坐标系;(2)把已知条件转化为点的坐标;(3)求出函数解析式;(4)根据二次函数的解析式解决具体的实际问题。

九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时二次函数与图形面积教案(新版)新人教版

九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时二次函数与图形面积教案(新版)新人教版

22.3 第1课时 二次函数与图形面积01 教学目标1.会求二次函数y =ax 2+bx +c 的最小(大)值.2.能从实际问题中分析、找出变量之间的二次函数关系,并能利用二次函数及性质解决与面积有关的最小(大)值问题.02 预习反馈阅读教材P 49~50(探究1),完成下列问题.1.一般地,当a >0时,抛物线y =ax 2+bx +c 的顶点是最低点,也就是说,当x =-b 2a 时,二次函数y =ax 2+bx +c 有最小值4ac -b 24a;当a <0时,抛物线y =ax 2+bx +c 的顶点是最高点,也就是说,当x =-b 2a 时,二次函数y =ax 2+bx +c 有最大值4ac -b 24a.2.从地面竖直向上抛出一小球,小球的高度h(单位:m )与小球的运动时间t(单位:s )之间的关系式是h =30t -5t 2(0≤t≤6),其图象如图所示.(1)小球运动的时间是3s 时,小球最高; (2)小球运动中的最大高度是45m .3.一个直角三角形的两条直角边长的和为20 cm ,其中一直角边长为x cm ,面积为y cm 2,则y 与x 的函数的关系式是y =12x(20-x),当x =10时,面积y 最大,为50cm 2.03 新课讲授例1 (教材P49探究)用总长为60 m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少米时,场地的面积S 最大?【思路点拨】 先写出S 关于l 的函数解析式,再求出使S 最大的l 值.【解答】 ∵矩形场地的周长是60 m ,一边长为l m ,则另一边长为(602-l )m ,∴场地的面积S =l (602-l )=-l 2+30l (0<l <30).∴当l =-b 2a =-302×(-1)=15时,S 有最大值4ac -b 24a =-3024×(-1)=225.答:当l 是15 m 时,场地的面积S 最大.【点拨】 在实际问题中,求函数的解析式时,一定要标注自变量的取值范围,同时在求函数的最值时,一定要注意顶点的横坐标是否在自变量的取值范围内.【跟踪训练1】 (22.3第1课时习题)如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是(C)A .60 m 2B .63 m 2C .64 m 2D .66 m 2例2 (教材P49探究的变式)如图,用长为6 m 的铝合金条制成一个“日”字形窗框,已知窗框的宽为x m ,窗户的透光面积为y m 2(铝合金条的宽度不计).(1)求出y 与x 的函数关系式;【思路点拨】由题意可知,窗户的透光面积为长方形,根据长方形的面积公式即可得到y 和x 的函数关系式.【解答】 ∵大长方形的周长为6 m ,宽为x m , ∴长为6-3x2m.∴y =x ·(6-3x )2=-32x 2+3x (0<x <2).【点拨】 求y 与x 的函数关系式时,一定不能漏掉自变量的取值范围.(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积. 【思路点拨】 由(1)中的函数关系可知,y 和x 是二次函数关系,根据二次函数的性质即可得到最大面积.【解答】 由(1)可知,y 和x 是二次函数关系. ∵a =-32<0,∴函数有最大值.当x =-32×(-32)=1时,y 最大=32 m 2,此时6-3x2=1.5.答:窗框的长和宽分别为1.5 m 和1 m 时,才能使得窗户的透光面积最大,此时的最大面积为1.5 m 2.【点拨】 要考虑x =1是不是在自变量的取值范围内.【跟踪训练2】 如图,点C 是线段AB 上的一点,AB =1,分别以AC 和CB 为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是(A )A .当C 是AB 的中点时,S 最小 B .当C 是AB 的中点时,S 最大 C .当C 为AB 的三等分点时,S 最小D .当C 是AB 的三等分点时,S 最大04 巩固训练1.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100 m ,则池底的最大面积是(B )A .600 m 2B .625 m 2C .650 m 2D .675m 22.如图,利用一面墙(墙的长度不超过45 m ),用80 m 长的篱笆围成一个矩形场地,当AD =20m 时,矩形场地的面积最大,最大面积为800m 2.3.(22.3第1课时习题)手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm ,菱形的面积S (单位:cm 2)随其中一条对角线的长x (单位:cm)的变化而变化.(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)当x 是多少时,菱形风筝面积S 最大?最大面积是多少? 解:(1)S =-12x 2+30x .(2)∵S =-12x 2+30x =-12(x -30)2+450,且a =-12<0,∴当x =30时,S 有最大值,最大值为450.即当x 为30 cm 时,菱形风筝的面积最大,最大面积是450 cm 2.05 课堂小结1.主要学习了如何将实际问题转化为数学问题,特别是如何利用二次函数的有关性质解决实际问题的方法.2.利用二次函数解决实际问题时,根据面积公式等关系写出二次函数表达式是解决问题的关键.。

九年级数学上册 第二十二章 二次函数 22.3 实际问题与

九年级数学上册 第二十二章 二次函数 22.3 实际问题与

情况下的最大值,然后综合考虑.
4.某商店经营一种水产品,成本为40元/千克,据市场分析,若按50 元/千克销售,一个月能售出500千克;销售价每涨1元,月销售量就减 少10千克,针对这种水产品的销售情况,销售单价定为 70 元时,获 得的利润最多.
1.利用二次函数解决几何问题 【例1】 如图,已知AB=2,C是AB上一点,四边形ACDE和四边形 CBFG都是正方形,设BC=x.
22.3 实际问题与二次函数
第1课时 实际问题与二次函数(1)
1.因为抛物线y=ax2+bx+c的顶点是最低(高)点,所以当x=_-_2���_���������___
4������������-������2
时,二次函数y=ax2+bx+c有最小(大)值
4������ .
2.当x= -1
时,二次函数y=x2+2x-2有最小值.
获利最多?最多是多少?
(3)若将这种化工原料全部售出,比较日均获利最多和销售单价最
高这两种方式,哪一种获总利较多?多多少?
分析(1)由日均获利=每千克获利×日均销售数量-支出费用,可列 出关系式;(2)画草图的关键是确定抛物线顶点的坐标,这可由二次 函数配方实现;(3)在(1)(2)的基础上通过计算可解.
点拨为了用图象更好地表示二次函数的关系,针对不同的情况要 具体分析,如x轴和y轴的单位长度可以不统一,但在同一坐标轴上的 单位长度必须统一.
1
2
3
4
5
6
1.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形
的周长为100 m,则池底的最大面积是( )
A.600 m2
B.625 m2
C.650 m2

九年级数学上册 第二十二章《二次函数》22.3 实际问题与二次函数 第1课时 几何图形的面积问题试题

九年级数学上册 第二十二章《二次函数》22.3 实际问题与二次函数 第1课时 几何图形的面积问题试题

22.3实际问题与二次函数第1课时几何图形的面积问题知识要点基础练知识点利用二次函数求图形面积的最值1.用长60 m的篱笆围成一个矩形花园,则围成的花园的最大面积为(D)A.150 m2B.175 m2C.200 m2D.225 m22.已知一个直角三角形两直角边之和为20 cm2,则这个直角三角形的最大面积为(B)A.25 cm2B.50 cm2C.100 cm2D.不确定3.如图,用总长度为12米的不锈钢材料设计成如图所示的外观为矩形的框架,所有横档和竖档分别与AD,AB平行,则矩形框架ABCD的最大面积为4平方米.4.手工课上,小明准备做个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积为S,随其中一条对角线的长x的变化而变化.(1)求S与x之间的函数解析式.(不要求写出取值范围)(2)当x是多少时,菱形风筝的面积S最大?最大的面积是多少?解:(1)S=x(60-x)=-x2+30x.(2)由(1)得S=-x2+30x=-(x-30)2+450,故当x是30 cm时,菱形风筝的面积S最大,最大的面积是450 cm2.综合能力提升练5.合肥寿春中学劳动课上,老师让学生利用成直角的墙角(墙足够长),用10 m长的栅栏围成一个矩形的小花园,花园的面积S m2与它一边长a m的函数解析式是S=-a2+10a ,面积S 的最大值是25.6.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向B点以2 cm/s的速度移动,点Q从点B开始沿BC向C点以1 cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ的面积为最大时,运动时间t为2s.7.(衢州中考)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为144 m2.8.如图,有一块边长为a的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中虚线折起,做成一个无盖的直三棱柱纸盒,若该纸盒侧面积的最大值是 cm2,则a的值为3cm.9.在美化校园的活动中,巢湖一中初三一班的兴趣小组利用如图所示的直角墙角(两边足够长),用32 m长的藤条圈成一个长方形的花圃ABCD(藤条只围AB,BC两边),设AB=x m.(1)若花圃的面积为252 m2,求x的值;(2)正好在P处有一棵桃树与墙CD,AD的距离分别是17 m和8 m,如果把将这棵桃树围在花圃内(含边界,不考虑树的粗细),老师让学生算一下花圃面积的最大值是多少?解:(1)因为AB=x,则BC=32-x,所以x(32-x)=252,解得x1=14,x2=18,故x的值为14 m或18 m.(2)因为AB=x,所以BC=32-x,所以S=x(32-x)=-x2+32x=-(x-16)2+256,因为在P处有一棵桃树与墙CD,AD的距离分别是17 m和8 m,所以,所以8≤x≤15,所以当x=15时,S取到最大值为S=-(15-16)2+256=255,故花圃面积S的最大值为255 m2.10.如图所示,在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A出发,沿AB边向点B以1 cm/s 的速度移动,同时点Q从点B出发,沿BC边向点C以2 cm/s的速度移动,如果P,Q两点在分别到达B,C两点后就停止移动,回答下列问题:(1)运动开始后第多少秒时,△PBQ的面积等于8 cm2.(2)设运动开始后第t秒时,五边形PQCDA的面积为S cm2,写出S与t的函数解析式,并指出自变量t的取值范围.(3)t为何值时S最小?求出S的最小值.解:(1)设x秒后△PBQ的面积等于8 cm2.则AP=x,QB=2x,∴PB=6-x,∴×(6-x)×2x=8,解得x1=2,x2=4.运动开始后第2秒或第4秒时△PBQ的面积等于8 cm2.(2)第t秒时,AP=t cm,PB=(6-t) cm,BQ=2t cm,∴S△PBQ=·(6-t)·2t=-t2+6t.∵S矩形ABCD=6×12=72,∴S=72-S△PBQ=t2-6t+72(0≤t≤6).(3)∵S=t2-6t+72=(t-3)2+63,∴当t=3秒时,S有最小值63 cm2.11.工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12 dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?解:(1)如图所示:设裁掉的正方形的边长为x dm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2 dm,底面积为12 dm2.(2)因为长不大于宽的五倍,所以10-2x≤5(6-2x),解得0<x≤2.5,设总费用为w元,由题意可知w=0.5×2x(16-4x)+2(10-2x)(6-2x)=4x2-48x+120=4(x-6)2-24,因为对称轴为x=6,开口向上,所以当0<x≤2.5时,w随x的增大而减小,所以当x=2.5时,w有最小值,最小值为25元,答:当裁掉边长为2.5 dm的正方形时,总费用最低,最低费用为25元.拓展探究突破练12.(安徽中考)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域面积相等.设BC的长度是x米,矩形区域ABCD的面积为y平方米.(1)求y与x之间的函数解析式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?解:(1)设AE=a,由题意得AE·AD=2BE·BC,AD=BC,∴BE=a,AB=a.由题意得2x+3a+2·a=80,∴a=20-x.∴y=AB·BC=a·x=x,即y=-x2+30x(0<x<40).(2)∵y=-x2+30x=-(x-20)2+300,∴当x=20时,y有最大值,最大值是300平方米.13.如图,一面利用墙,用篱笆围成一个外形为矩形的花圃,花圃的面积为S平方米,平行于院墙的一边长为x米.(1)若院墙可利用最大长度为10米,篱笆长为24米,花圃中间用一道篱笆间隔成两个小矩形,求S与x之间函数关系.(2)在(1)的条件下,围成的花圃面积为45平方米时,求AB的长.能否围成面积比45平方米更大的花圃?如果能,应该怎么围?如果不能请说明理由.(3)当院墙可利用最大长度为40米,篱笆长为77米,中间建n道篱笆间隔成小矩形,当这些小矩形为正方形,且x为正整数时,请直接写出一组满足条件的x,n的值.解:(1)由题意得:S=x×=-x2+8x(0<x≤10).(2)由S=-x2+8x=45,解得x1=15(舍去),x2=9,所以x=9,AB==5,又S=-x2+8x=-(x-12)2+48,0<x≤10,因为当x≤10时,S随x的增大而增大,所以当x=10米时,S最大,为平方米>45平方米,所以平行于院墙的一边长为10米时,就能围成面积比45平方米更大的花圃.(3)根据题意可得,则n=4,x=35或n=2,x=33.如有侵权请联系告知删除,感谢你们的配合!。

人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案

人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案

人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案一. 教材分析人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时主要介绍了二次函数在实际问题中的应用。

这部分内容是对前面学习的二次函数知识的巩固和拓展,通过实际问题引导学生将理论知识和实际应用相结合,提高解决问题的能力。

教材通过丰富的例题和练习题,帮助学生掌握二次函数在实际问题中的运用方法。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有了初步的了解。

但是,将二次函数应用于实际问题中,解决实际问题对学生来说还是一个挑战。

因此,在教学过程中,需要关注学生对知识的掌握程度,以及他们在解决实际问题时的思维方式和方法。

三. 教学目标1.了解二次函数在实际问题中的应用。

2.能够将实际问题转化为二次函数问题,利用二次函数解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.掌握二次函数在实际问题中的应用。

2.将实际问题转化为二次函数问题。

五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握二次函数在实际问题中的应用。

同时,运用讨论法、案例分析法等,激发学生的学习兴趣,提高学生的参与度。

六. 教学准备1.准备相关的实际问题案例。

2.准备PPT,展示二次函数在实际问题中的应用。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题引出本节课的主题,激发学生的兴趣。

例如:一个农场计划种植两种作物,种植面积一定的条件下,如何安排两种作物的种植面积,使得总收益最大?2.呈现(10分钟)呈现实际问题,引导学生认识到实际问题可以通过二次函数来解决。

通过PPT展示实际问题的图像,让学生观察和分析图像,理解二次函数在实际问题中的应用。

3.操练(10分钟)让学生分组讨论,尝试将实际问题转化为二次函数问题。

每组选择一个实际问题,分析问题中的变量关系,列出二次函数的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时实际问题与二次函数(2)
※教学目标※
【知识与技能】
将生活实际问题转化为数学问题,进一步体验二次函数在生活中的应用.
【过程与方法】
通过对生活中实际问题的探究,体会数学在生活实际中的广泛应用,发展数学思维.
【情感态度】
感受数学在生活中的应用,激发学生学习热情,体验解决问题的方法,培养学生的合作交流意识和探索精神.
【教学重点】
利用二次函数解决有关拱桥问题.
【教学难点】
建立二次函数的数学模型.
※教学过程※
一、问题导入
问题为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
答案解:(1)由题意,得()
7002045201600
y x x
=--=-+.
(2)P=()()()2
2
402016002024006400020608000
x x x x x
--+=-+-=--+,∵x≥45,a=-20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元.
(3)由题意,得()2
206080006000
x
--+=.解得
150
x=,270
x=.
∵抛物线()2
20608000
P x
=--+的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元.又x≤58,∴50≤x≤58.∵在201600
y x
=-+中,20
k=-<0,∴y随x的增大而减小.∴当x=58时,y最小值=-20×58+1600=440,即超市每天至少销售粽子440盒.
二、探索新知
探究图中是抛物线形拱桥,当拱桥离水面2m时,水面宽4m,水面下降1m,水面宽度增加多少?
提问
(1)石拱桥桥拱的形状可以近似地看成是抛物线吗?
(2)将本体转化为二次函数问题,需要求出二次函数解析
式,根据题中条件,求二次函数解析式的前提是什么?
(3)题中“水面下降1m的含义是什么?”水面下降的同
时水面宽度有什么变化?如何求宽度增加多少?
()264- 解决问题:以抛物线的顶点为原点,以抛物线的对称轴为y 轴,建立坐标系.设这条抛
物线表示的二次函数为2y ax =.由抛物线经过点(2,-2),可得222a -=⨯,12
a =-.这条抛物线表示的二次函数为212
y x =. 当水面下降1m 时,水面的纵坐标为-3.
请你根据上面的函数解析式求出这时的水面宽度.
水面下降1m 时,水面宽度增加 m.
三、巩固练习
1.如图,一单杠高
2.2米,两立柱之间的距离为1.6米,将一根绳子的
两端拴于立柱与铁结合处,绳子自然下垂呈抛物线状态,一身高0.7米的小女
孩站在离立柱0.4米处,其头刚好触上绳子,则绳子最低点到地面的距离为多
少米?
2.如图,一位篮球运动员甲在距篮球筐下4米处跳起投篮,球的运
行线路为抛物线,当球运行到水平距离为2.5米时达到最高高度为3.5
米,然后准确地落入篮筐,已知篮圈中心到地面的高度为3.05米,该
运动员的身高为1.8米.
(1)在这次投篮中,球在该运动员的头顶上方0.25米处出手,则
当球出手时,该运动员离地面的高度为多少米?
(2)运动员乙跳离地面时,最高能摸到3.3米运动员乙在运动员
甲与篮板之间的什么范围内能在空中截住球?
答案:1.如图所示,以O 为坐标原点,水平方向为x 轴,垂直方向为y 轴,建立直角坐标系,设抛物线的解析式为()20y ax a =≠.设A ,B ,D
三点坐标依次为(A x ,A y ),(B x ,B y ),(D x ,D y ).
由题意,得AB =1.6,∴0.8A x =-,0.8B x =,又可得1 1.60.42D x ⎛⎫=-⨯- ⎪⎝⎭
=-0.4.∴当0.8x =-时,A y =()2•0.80.64a a -=,当0.4x =-时,()2
•0.40.16yD a a =-=.∵ 2.20.7 1.5A D y y -=-=,∴0.640.16 1.5a a -=.∴258a =
.∴抛物线的解析式为2258y x =.当0.4x =-时,()2250.40.58
D y =⨯-=,∴0.70.50.2-=(m ). 2.(1)设抛物线的解析式为2 3.5y ax =+.∵(1.5,3.05)在抛物线上,
∴3.05 1.52 3.5a =⨯+.解得0.2a =-.∴20.2 3.5y x =-+.当 2.5x =-时, 2.25y =,
∴运动员离地面的高度为2.250.25 1.80.2--=(m ).
(2)由题意,得 3.3y =,则23.30.2 3.5x =-+.解得11x =,21x =-.∴413-=(m ).∴乙在运动员甲与篮板之间的距离甲3米范围内能在空中截住球.
四、归纳小结
1.运用二次函数解决实际问题的一般步骤:审题;建立数学模型;求抛物线解析式;解决实际问题.
2.数形结合思想的运用.
※布置作业※
从教材习题22.3中选取.
※教学反思※
本课时的教学应注意建立正确的直角坐标系,使类似于抛物线的实际问题转化为平面直角坐标系中的抛物线.教学时,教师仍可采用分步设问的形式让学生回答并让学生互相交流.教师应鼓励学生用多种方法建立平面直角坐标系,并求出相应抛物线的解析式,在这一过程中让学生体验探究发现的乐趣,体会数学的最优化思想.
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档