高中物理牛顿第二定律瞬时性问题
专题10牛顿第二定律的瞬时性问题-2024年新高二物理暑假查漏补缺(全国通用)
专题10 牛顿第二定律的瞬时性问题加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,牛顿第二定律的瞬时性问题具体可简化为以下两种模型:1.轻绳、轻杆和接触面:不发生明显形变就能产生弹力,在瞬时性问题中其弹力可以突变.这类问题一般要结合物体在状态突变后的运动来分析状态突变瞬间的加速度,因为状态突变瞬间是状态突变之后运动的初状态。
时性问题中,弹簧的弹力瞬间突变为零。
1.如图所示,在图1、2、3中的小球a、b和c完全相同,轻弹簧S1和S2完全相同,连接的轻绳l1和l2也完全相同,通过轻弹簧或轻绳悬挂于固定点O,整个系统处于静止状态。
现将图1中的轻绳l1剪断、图2中的轻弹簧S1剪断、图3中的轻绳l2剪断,将图1中的小球a的加速度大小记为a1,将图2中的小球b的加速度大小记为a2,将图3中的小球c的加速度大小记为a3,重力加速度大小为g。
则在剪断瞬间()A.a1=3g,a2=2g,a3=g B.a1=2g,a2=2g,a3=0C.a1=2g,a2=g,a3=g D.a1=2g,a2=g,a3=0【答案】D【解析】图1中,对三个小球体整体分析有F1=3mg剪断图1中的轻绳l1时,弹簧S1不能发生突变,弹力与剪断前相同,对小球体a分析有F1−mg=ma1解得a1=2g剪断图2中的轻弹簧S1,弹簧弹力突变为0,对小球体b、c分析有2mg=2ma2解得a2=g此时轻绳l2弹力为0。
剪断图3中的轻绳l2时,弹簧S1不能发生突变,弹力与剪断前相同,即此时小球体c受力仍然平衡,图3中的小球c的加速度大小记为a3=0综合上述可知a1=2g,a2=g,a3=0故选D。
2.物块A1、A2的质量均为m,B1、B2的质量均为2m,A1、A2用一轻杆连接,B1、B2用轻质弹簧连接。
两个装置都放在水平的支托物M上,处于平衡状态,如图所示。
今突然迅速地撤去支托物M,在除去支托物的瞬间,A1、A2加速度分别为a1和a2,B1、B2的加速度分别为a1′和a2′,则()A.a1=0,a2=2g,a1′=0,a2′=2g B.a1=0,a2=2g,a1′=g,a2′=2gC.a1=g,a2=g,a1′=0,a2′=2g D.a1=g,a2=g,a1′=g,a2′=g【答案】C【解析】A1、A2用一轻杆连接,它们的加速度始终相等,在除去支托物的瞬间,由它们组成的系统只受重力的作用,根据牛顿第二定律可知,它们的加速度a1=a2=g因为在除去支托物的瞬间,弹簧上的弹力不能突然消失(主要是弹簧不能突然恢复原长),所以B1的受力不变,加速度仍为零,即a1′=0而B2受到的竖直向上的支持力突然消失,受到的竖直向下的重力2mg和弹簧弹力2mg不变,加速度大小a2′=2g 综上分析,选项C正确,ABD错误。
牛顿第二定律的理解与应用(瞬时性)
牛顿第二定律的理解与应用(瞬时性)瞬时性: A 与F 合是瞬时对应关系,a 随F 合(≠0)同时产生,同时变化,同时消失。
注意:(1)F 合与a 虽然存在因果关系,但不存在先后关系(2)就a 的决定因素看,a 由F 合及m 决定,而与v 无关【例题一】、A 、B 的质量分别为m A 和m B ,剪断细线瞬间,两物块的加速度的大小和方向分别如何?【例题二】、弹簧与竖直方向成370角,剪断细线瞬间,小球的加速度的大小和方向分别如何?【例题三】、如图,桌面上竖直固定一弹簧,一小球由弹簧正上方某处由静止释放后下落,恰落在弹簧上并压缩弹簧。
试分析从小球开始下落到把弹簧压缩到最短的全过程中,小球的加速度和速度的方向和大小的变化情况。
【例题四】、如图,小车A 拖着小车B 做匀加速运动,某时刻小车A 突然停止,则小车B 的运动是:A 、小车B 立即停止B、小车B立即向前做匀减速运动C、小车先向前做匀加速运动,后向前做匀减速运动D、小车先向前做加速运动,但加速度减小,后向前做减速运动,加速度增大练习:1、被运动员推出的铅球在空中运动时(不计空气阻力),速度的大小和方向不停,但加速度,加速度的大小为,方向为。
2、竖直向上抛出后的小球在上升到最高点后又下落的整个运动过程中:A、若不计空气阻力,则在最高点时的加速度为零,上升与下落时的加速度为gB、若不计空气阻力,则全程加速度为都为gC、计空气阻力,则上升过程加速度比g大,最高点加速度为g,下落加速度比g小D、计空气阻力,则上升与下落时的加速度都小于g,在最高点的加速度为g3、A、B的质量分别为m A和m B两物块的加速度的大小和方向分别如何?4、弹簧与竖直方向成370角,小球的加速度的大小和方向分别如何?5、 “蹦极”运动是一项冒险者的游戏。
在很高的地方用弹性良好的橡皮条捆住人的双脚,橡皮条的另一端固定。
然后冒险者从高处跳下。
则在下落的过程中A 、橡皮条绷紧的瞬间,人向下的速度为最大B 、橡皮条绷紧的瞬间人具有向上的加速度C 、加速度为零时速度最大D 、加速度减小时速度增大6、如图,光滑水平面上小车A 起初静止,小车B 向右做匀速运动,则:A 、小车B 撞到A 左端弹簧立即停止B 、小车B 撞到A 左端弹簧后,A 立即做匀加速运动C 、当弹簧最短时,两车速度相等时D 、当弹簧最短时,两车的加速度都达到最大。
牛顿第二定律的瞬时性问题
绳子未断时,受力如图,由共点力平衡条件得
刚剪短弹簧Ⅰ瞬间,细绳弹力突变为0,故小球只受重力,加速度为g,竖直向下,故A 正确,C错误; 刚剪短细线瞬间,弹簧弹力和重力不变,受力如图
由几何关系,F合=T1sinθ=T2=ma,因而
因而B正确,D错误;
故选A、B.
马鞍山中加双语学校 高一物理组
课题导入
专题:瞬时加速度
马鞍山中加双语学校 高一物理组
上午7时7分40秒
目标引领
1、理解a与F合的瞬时对应关系
2、会分析瞬时问题的两种模型 3、学会解决此类问题的基本方法
马鞍山中加双语学校 高一物理组
上午7时7分40秒
独立自学
【例题】 小球 A、B 的质量分别为 m 和 2m,用轻弹簧相连,然后用细线悬挂而静止, 如图所示,在剪断细线瞬间,A、B 的加速度各是多少?方向如何?
(3)求物体在状态变化前后所受的合外力,利用牛顿第二 定律,求出瞬时加速度。
马鞍山中加双语学校 高一物理组
• 2-1:如下图所示,A、B两木块间连一轻 质弹簧,A、B质量相等,一起静止地放在
一块光滑木板上,若将此木板突然抽去, 在此瞬间,A、B两木块的加速度分别是
• A.aA=0,aB=2g • B.aA=g,aB=g • C.aA=0,aB=0 • D.aA=g,aB=2g
突变 压力
微小不
既可有拉力也可有
可以突变
计
支持力
马鞍山中加双语学校 高一物理组
实例分析
如图所示,质量m的球与弹簧Ⅰ和水平细线Ⅱ相连,Ⅰ、Ⅱ的另 一端分别固定于P、Q.球静止时,Ⅰ中拉力大小T1,Ⅱ中拉力大 小T2,当仅剪断Ⅰ、Ⅱ中的一根的瞬间,球的加速a应是( ) A.若断Ⅰ,则a=g,竖直向下 B.若断Ⅱ,则a= T2 /m ,方向水平向左 C.若断Ⅰ,则a= T1 /m ,方向沿Ⅰ的延长线 D.若断Ⅱ,则a=g,竖直向下
高中物理瞬时性问题ppt
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
内容特 无限次复制特权 权 文档格式转换
VIP有效期内可以无限次复制文档内容,不用下载即可获取文档内容 VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编辑!
阅读页去广告
a
1
A
2
B
• 变式3、质量为mA、mB的两物体在粗糙的水平面 上,在水平外力F的作用下匀速运动,求撤去外 力F时A、B两物体的加速度为多少?
B
A
F
变式4、光滑的水平面上有一小车,以向右 的加速度a匀加速运动,车内两物体A、B 质量均为m,A、B间弹簧相连,通过绳子 B与车相连,剪断绳子的瞬间,A、B的加 速度分别为多少?
包权
人书友圈7.三端同步
牛顿第二定律的瞬时性问题
附 轻绳:绳的弹力可发生突变。当其他条件 : 发生变化的瞬间,绳的弹力可以瞬时产生、 瞬 瞬时改变或瞬时消失。(当绳被剪断时, 时 绳的弹力瞬间消失) 加
速
度
的
分 析
轻弹簧:弹簧的弹力不能发生突变。当其 他条件发生变化的瞬间,可以认为弹簧的
弹力不变。(当弹簧被剪断时,弹簧的弹
力瞬间消失)
【方法总结】 瞬时加速度问题的两种基本模 型: (1)刚性绳(或接触面)是一种不发生明显形变就 能产生弹力的物体,若剪断(或脱离)后,其中 弹力立即消失,不需要形变恢复时间,即线的 拉力可突变.一般题目中所给细线和接触面在 不加特殊说明时,均可按此模型处理.
(2)弹簧(或橡皮绳)的特点是形变量大,形变恢复 需要较长时间,在瞬时问题中,其弹力的大小往 往可以看成不变,即弹力不能突变,但当弹簧的 一端不与有质量的物体连接时,轻弹簧的形变也 不需要时间,弹力可以突变.
1牛顿第二定律瞬时性问题
瞬时性问题【模型解析】(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理.(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变.【典型例题】例1.如图,物体A、B用轻质细线2相连,然后用细线1悬挂在天花板上,求剪断轻细线1的瞬间两个物体的加速度a1、a2大小分别为()A.g,0B.g,g C.0,g D.2g,g例1题图例2题图例3题图例2.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝P和物体Q的加速度大小是()A.a P=a Q=g B.a P=2g,a Q=0C.a P=g,a Q=2g D.a P=2g,a Q=g例3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有()A.a1=a2=a3=a4=0B. a1=a2=a3=a4=gC.a1=a2=g,a3=0,a4=m+MM g D.a1=g,a2=m+MM g,a3=0,a4=m+MM g例4.细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如图所示.以下说法正确的是(已知cos 53°=0.6,sin 53°=0.8)()A .小球静止时弹簧的弹力大小为35mg B .小球静止时细绳的拉力大小为35mg C .细线烧断瞬间小球的加速度立即为gD .细线烧断瞬间小球的加速度立即为53g 【课后练习】 (5.7.10.12为多选,其余为单选).1.如图所示,竖直放置在水平面上的轻质弹簧上放着质量为3kg 的物体A ,处于静止状态。
牛顿第二定律应用(瞬时性问题)
牛顿第二定律应用(瞬时性问题)方法突破 分析物体在某一时刻的瞬时加速度,关键是分析物体在瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度.此类问题应注意两种模型的建立.(1)中学物理中的“线”和“绳”是理想化模型,具有以下几个特性:①轻:其质量和重力均可视为等于零,且一根绳(或线)中各点的张力大小相等,其方向总是沿绳且背离受力物体的方向.②不可伸长:即无论绳受力多大,绳的长度不变,由此特点可知,绳中的张力可以突变.刚性杆、绳(线)和接触面都可以认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要形变恢复时间,一般题目中所给杆、细线和接触面在不加特殊说明时,均可按此模型来处理.(2)中学物理中的“弹簧”和“橡皮绳”也是理想化模型,具有以下几个特性:①轻:其质量和重力均可视为等于零,同一弹簧两端及其中间各点的弹力大小相等.②弹簧既能承受拉力,也能承受压力;橡皮绳只能承受拉力,不能承受压力.③由于弹簧和橡皮绳受力时,恢复形变需要一段时间,所以弹簧和橡皮绳中的力不能突变.【例题1】如图所示,将质量均为m 的小球A 、B 用绳(不可伸长)和弹簧(轻质)连结后,悬挂在天花板上.若分别剪断绳上的P 处或剪断弹簧上的Q 处,下列对A 、B 加速度的判断正确的是( )A.剪断P 处瞬间,A 的加速度为零,B 的加速度为gB.剪断P 处瞬间,A 的加速度为2g ,B 的加速度为零C.剪断Q 处瞬间,A 的加速度为零,B 的加速度为零D.剪断Q 处瞬间,A 的加速度为2g ,B 的加速度为g【例题2】 在如图所示的装置中,小球m 用两根绳子拉着,绳子OA 水平,若将绳子OA 剪断,问剪断瞬间小球m 的加速度大小?方向如何?【例题3】如图所示,底板光滑的小车上用两个量程为20N , 完全相同的弹簧秤甲和乙系住一个质量为1kg 的物块,在水平地面上,当小车做匀速直线运动时,两弹簧秤的示数均为10N ,当小车做匀加速直线运动时,弹簧秤甲的示数变为8N 。
牛顿第二定律之瞬时性问题
牛顿第二定律之瞬时性问题智慧物理【总结】一、瞬时性问题1.牛顿第二定律的表达式为:F 合= 。
加速度由物体所受 决定,。
加速度的方向与物体所受 的方向一致;当物体所受合外力发生突变时,加速度也随着发生 ,而物体运动的速度 发生突变。
2.两种模型的区别(1)轻绳、轻杆和接触面:不发生明显形变就能产生弹力,剪断或脱离后,不需要时间恢复形变,原有弹力立即消失或 ,即会发生突变。
(2)轻弹簧、蹦床和橡皮条:当轻弹簧两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生 ,所以在瞬时问题中,其弹力大小认为是 的,即此时弹簧弹力不突变。
二、解题思路1.分析瞬时变化前物体的受力情况;2.分析瞬时变化后哪些力变化或消失;3.求出变化后物体所受合力,根据牛顿第二定律列方程;4.求瞬时加速度。
【专题练习】一、填空题1.如图所示,A B 、两小球用细线连接,C D 、两小球用轻弹簧连接,双手分别提起A C 、两球,使四个小球均在空中处于静止状态,双手同时释放A C 、瞬间(空气阻力不计,重力加速度为g ),小球B 的加速度大小为____________,小球D 的加速度大小为____________。
2.如图所示,两系统均处于静止状态,绳和弹簧质量不计。
重力加速度为g ,则剪断OA 、OC 上端绳的瞬时,物体A 、B 、C 、D 的瞬时加速度分别为:a A=______a B=______ac =______a D=______3.如图甲、乙所示,图中细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;图甲中倾斜细线OA与图乙中弹簧的拉力之比为________(θ、重力加速度g已知).4.如图所示,质量为m的小球用一根细线和一根轻弹簧悬挂起来,小球静止时,细线水平,而弹簧与竖直成θ角。
高中物理牛顿第二定律瞬时性问题
牛顿第二定律瞬时性问题一、牛顿第二定律瞬时性问题的两种模型二、分析瞬时问题的“两个关键”与“四个步骤”三、典型例题典例1、如图所示,物体A、B质量均为m,中间有一轻质弹簧相连,A用绳悬于O点,当突然剪断OA绳时,关于A物体的加速度,下列说法正确的是( )A.0B.gC.2gD.无法确定典例2、如图所示,一质量为m的小球处于平衡状态。
现将线L2剪断,则剪断L2的瞬间小球的加速度( )A.甲图小球加速度为a=gsin θ,垂直L1斜向下方B.乙图小球加速度为a=gsin θ,垂直L1斜向下方C.甲图小球加速度为a=gtan θ,水平向右D.乙图小球加速度为a=gtan θ,水平向左思考:如图所示,一个质量为m的小球通过水平弹簧和细线悬挂保持静止,弹簧的劲度系数为k,此时弹簧伸长了x,细线与竖直方向成θ角,当细线剪断瞬间,下列说法正确的是( ) A.小球的加速度大小为g,方向竖直向下B.小球的加速度大小为,方向水平向左C.小球的加速度大小为,方向沿原细线方向指向左下方D.不能确定小球的加速度典例3、如图,轻弹簧上端与一质量为m的木块1相连,下端与另一质量为M的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态。
现将木板沿水平方向突然抽出,设抽出后瞬间,木块1、2的加速度大小分别为a1、a2。
重力加速度大小为g。
则有: ( )A、 a1=g, a2=gB、 a1=0, a2=gC、 a1=0, a2=( m +M)g/ MD、a1=g, a2= ( m +M)g/ M典例4、如图所示,质量分别为m、2m的小球A、B,由轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中的拉力为F。
此时突然剪断细线,在线断的瞬间,弹簧弹力的大小和小球A加速度的大小分别为( )A.+gB.+gC.+gD.+g典例5、如图所示,A、B两小球分别连在轻绳两端,B球另一端用弹簧固定在倾角为30°的光滑斜面上。
牛顿第二定律的瞬时性问题
牛顿第二定律的瞬时性问题根据牛顿第二定律的表达式F=ma,物体的加速度与物体所受的合外力总是同时产生、同时变化、同时消失,故物体的合外力与其加速度具有瞬时对应关系。
所以,合外力恒定时加速度恒定不变,合外力变化时加速度随之发生变化。
在某些情况下物体的合外力受力条件突然发生变化,要求分析物体加速度的变化,这类问题我们称为瞬时性问题。
一、瞬时性问题的解题步骤二、两种模型1、轻绳、轻杆和接触面这些物体产生弹力时没有明显的形变,剪断或脱离后,恢复形变不需要时间,弹力立即消失或改变,如果题目中没有特殊说明,我们均可认为轻绳、轻杆和接触面的弹力发生突变。
例题1:如图甲、乙所示,质量为m的两物体分别用长度均为L的细线悬挂在天花板上的A、B、C、D 四点,A、B及C、D两点间的距离也为L,甲图中物体通过一小段细线悬挂,而乙图中两根等长细线直接系在物体上,现在剪断悬挂在B、D两点的细线,则在剪断细线的瞬间,物体的加速度为()A. 甲图中物体的加速度为0,乙图中物体的加速度为gB. 甲图中物体的加速度为12g,乙图中物体的加速度为32g分析原状态受力情况,求出原状态下各力的大小和方向。
原状态当前状态加速度若原状态是平衡状态,则由平衡条件求解,若原状态处于加速状态,则由牛顿第二定律求解。
分析当前状态与原状态的间的差异,发生了哪些变化?分析当前状态的受力情况,确定合外力,由牛顿第二定律求解加速度。
C. 甲图中物体的加速度为g,乙图中物体的加速度为1 2 gD. 甲图中物体的加速度为32g,乙图中物体的加速度为0分析与解:甲图中细线剪断后,物体将做自由落体运动,直至细线被拉直,所以剪断的瞬间物体加速度为g;乙图中细线剪断后,物体将绕C点做圆周运动,其加速度垂直细线,所以加速度为12g。
答案:C例题2:(多选)如图所示,质量分别为M=10kg和m=5kg的两物体通过细线连接,已知物体M与水平面的摩擦因数为0.1,物体m与水平面的摩擦因数为0.2,用恒定的外力F=30N拉着两物体在水平面上做匀加速运动,某时刻,突然撤去外力F的瞬间,下列说法正确的是()A.两物体的加速度大小均为43m/s2B.细线的拉力为10NC.物体m的加速度为2m/s2D. 细线的拉力为零分析与解:撤去力F的瞬间,由于物体m所受摩擦力产生的加速度大于物体M所受摩擦力产生的加速度,所以两细线间没有拉力,两物体加速度不同,物体M的加速度为1 m/s2,物体m的加速度为2 m/s2.答案:CD例题3:(多选)如图所示,箱子内用两根细线将质量为m的小球悬挂在A、B两点,其中细线AO与水平方向成600角,细线BO水平,箱子做竖直向上的匀加速直线运动,加速度a=g,g为重力加速度。
第四章专题牛顿第二定律瞬时性问题课件-高一上学期物理必修第一册
学习目标
1、理解牛顿第二定律具有瞬时性的含义 2、能够理解并且区分轻绳、轻弹簧、轻杆、橡皮条四 种模型 3、运用牛顿第二定律瞬时性解决相应问题
一、牛顿第二定律瞬时性的理解
(1)物体运动的加速度a与其所受的合外力F有瞬时对 应关系,所谓瞬时性,就是物体的加速度与其所受的合外 力有瞬时对应的关系,每一瞬时的加速度只取决于这一 瞬时的合外力。也就是物体一旦受到不为零的合外力的 作用,物体立即产生加速度;当合外力的方向、大小改 变时,物体的加速度方向、大小也立即发生相应的改变; 当物体的合外力为零时,物体的加速度也立即为零。由 此可知,力和加速度之间是瞬时对应的,即物体运动的 加速度可以突变。
三、典型补充:小球落入弹簧全程分析
如图所示,轻弹簧下端固定在水平面上,一个小球从弹簧正上方某一 高 度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后 停止下落.在小球下落的这一全过程中,下列说法中正确的是( ) A.小球刚接触弹簧瞬间速度最大 B.从小 球接触弹簧起加速度变为竖直向上 C.从小球接触弹簧到到达最低点,小球的速 度先增大后减小 D.从小球接触弹簧到到达最低点,小球的加速度先减小后增大
二、轻绳、轻杆、轻弹簧、橡皮条四种模型
(1)轻绳:只能产生拉力,且方向一定沿着绳子 背离受力物体,不能承受压力;认为绳子不可 伸长,即无论绳子所受拉力多大,长度不变(只 要不被拉断);绳子的弹力可以发生突变——瞬 时产生,瞬时改变,瞬时消失.
(2)轻杆:既能承受拉力,又可承受压力,施力 或受力方向不一定沿着杆;认为杆既不可伸长, 也不可缩短,杆的弹力也可以发生突变.
A.2g,竖直向下;2g,竖直向下
B.4g,竖直向上;4g,竖直向下
C.2g,竖直向上;2g,竖直向下
第三章第1讲牛顿第二定律瞬时性问题课件讲述
的加速度大小分别为 a1、a2.重力加速度大小为 g.则有
()
A.a1=0,a2=g B.a1=g,a2=g C.a1=0,a2=m+MMg
D.a1=g,a2=m+MMg
C
例一: (2010·广东外国语学校模拟)在动摩擦因数μ=0.2的
水平面上有一个质量为m=1 kg的小球,小球与水平轻弹簧及 与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图3- 2-2所示.此时小球处于静止平衡状态,且水平面对小球的弹 力恰好为零,当剪断轻绳的瞬间,取g=10 m/s2.求: (1)此时轻弹簧的弹力大小; (2)小球的加速度大小和方向;
A.g g g
B.0 g g
C.0 3g/2 3g/2
D.0 0 3g
三个质量相同的物块A、B、C,用两个轻弹 簧和一根轻线相连,处于静止状态,如图所 示,已知斜面光滑且倾角为θ=30°,在将B、 C间细线剪断的瞬间,A、B、C的加速度大 小分别为 (重力加速度为g)( ) A. g,2g,2g B. 0,2g,g C. g,2g,0 D. 0,g,g
MB
2
B.g 和0
2
D.0和
MA MB g
MB
2
例五:如图,质量相同的物块A、B、C用两个 轻弹簧和一根轻线相连,挂在天花板上处 于平衡状态。现将A、B之间的轻绳剪断, 在刚剪断的瞬间,三个物块的加速度分别 是多大?方向如何?
A
B
C
例六:如图所示,在倾角为=300的光滑斜面 上,有两个用轻弹簧连接的木块A和B,已 知A的质量为2kg,B的质量为3kg,有一恒 力F=50N的力作用在A上,在AB具有相同加 速度的瞬间,撤去外力F,则这一瞬时,A 和B的加速度分别是多大?(g=10m/s2)
2牛顿第二定律瞬时性问题.
牛顿运动定律专题(二※【模型解析】——瞬时性问题(1刚性绳 (或接触面 :一种不发生明显形变就能产生弹力的物体, 剪断 (或脱离后, 弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理.(2弹簧 (或橡皮绳 :当弹簧的两端与物体相连(即两端为固定端时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中, 其弹力的大小认为是不变的,即此时弹簧的弹力不突变.【典型例题】例 1.如图,物体 A 、 B 用轻质细线 2相连,然后用细线 1悬挂在天花板上,求剪断轻细线 1的瞬间两个物体的加速度 a 1、 a 2大小分别为 (A . g, 0B . g , gC . 0, gD . 2g , g例 1题图例 2题图例 3题图例 2. 如图所示, 吊篮 P 悬挂在天花板上, 与吊篮质量相等的物体 Q 被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝 P 和物体 Q 的加速度大小是 (A . a P =a Q =gB . a P =2g , a Q =0C . a P =g , a Q =2gD . a P =2g , a Q =g例 3. 如图所示,物块 1、 2间用刚性轻质杆连接,物块 3、 4间用轻质弹簧相连,物块 1、 3质量为 m, 2、 4质量为 M , 两个系统均置于水平放置的光滑木板上, 并处于静止状态. 现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块 1、 2、 3、4的加速度大小分别为 a 1、 a 2、 a 3、 a 4. 重力加速度大小为 g ,则有 (A.a 1=a2=a3=a4=0B. a1=a2=a3=a4=gC . a 1=a 2=g , a 3=0, a 4=m +M M gD . a 1=g , a 2=m +M M g , a 3=0, a 4=m +M M g例 4.细绳拴一个质量为 m 的小球, 小球用固定在墙上的水平弹簧支撑, 小球与弹簧不粘连. 平衡时细绳与竖直方向的夹角为 53°, 如图所示. 以下说法正确的是 (已知cos 53°=0.6, sin 53°=0.8(大智者必谦和,大善者比宽容。
牛顿第二定律专题——连接体和瞬时性问题+课件-高一上学期物理人教版(2019)必修第一册+
当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力 变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物 接触面上的弹力都立即消失)。 3.求物体在状态变化后所受的合外力
CD.根据题意,若将绳 OA 换为轻质弹簧,以结点O 为研究对象,受灯笼的拉力G 、弹簧 OA 的拉力FA 和绳 OB 的
拉力 FB ,如图所示
由平衡条件可得 FA
cos 60
G
,
FA
sin 60
FB
,解得 FA
mg cos 60
, FB
mg
tan 60
将绳OB 割断,绳 OB 的拉力消失,轻弹簧OA 弹力不发生突变,则灯笼所受合外力为 F合2 mg tan 60
T
mA gsin
mA gcos
mAa
mA F mA mB
=F 1+ mB
要增加T,可增大A物的质量,或减小B物的质量。改变倾m角Aθ和改变动
摩擦因数不能改变细线上的拉力,故A正确。
03 规律总结
连接体的动力分配原理:两个物体(系 统的两部分)在外力(总动力)的作用下以共 同的加速度运动时,单个物体分得的动力与 自身的质量成正比,与系统的总质量成反比。 相关性:两物体间的内力与接触面是否光滑 无关,与物体所在接触面倾角无关。
“摩擦力”连接在一起。
01 典例
例1.用轻质细线把两个质量未知的小球悬挂起来,如图1—2所示,今对小球 a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右偏上30° 的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是 ()
A
高中物理:牛顿运动定律瞬时加速度问题
高中物理:牛顿运动定律瞬时加速度问题由牛顿第二定律可知,加速度是由合外力决定的,即有什么样的合外力,就有什么样的加速度与之相对应。
当合外力变化时,加速度也随之变化,某一时刻的瞬时加速度是由那一时刻物体所受合外力决定的,因此确定瞬时加速度的关键是正确确定瞬时作用力。
牛顿第二定律的瞬时性所谓瞬时性,就是物体的加速度a与其所受的合外力F有瞬时对应的关系,每一瞬时的加速度只取决于这一瞬时的合外力。
也就是物体一旦受到不为零的合外力的作用,物体立即产生加速度;当合外力的方向、大小改变时,物体的加速度方向、大小也立即发生相应的改变;当物体的合外力为零时,物体的加速度也立即为零。
由此可知,力和加速度之间是瞬时对应的。
瞬时加速度的求解分析物体在在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
常见情景项目情景1情景2情景3情景4情景5图示说明几个物体叠放在一起并处于平衡状态,突然抽出下方木板的瞬间在推力F作用下,A、B共同以加速度a做匀加速直线运动,突然撤去推力F的瞬间两小球A、B用轻弹簧连接,通过细线悬挂于天花板处于静止状态,剪断细线的瞬间用手提一轻弹簧,弹簧下端挂一个金属球,在将整个装置匀加速上提的过程中,手突然停止不动的瞬间小球用水平弹簧系住,并用倾角为θ的光滑板AB托着,当板AB 突然向下撤离的瞬间一、把握两种模型1、轻绳、轻杆和接触面不发生明显形变就能产生弹力,剪断或脱离后,不需要时间恢复形变,弹力立即消失或改变。
2、弹簧、蹦床和橡皮筋当弹簧的两端与物体相连时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力大小认为是不变的。
二、求瞬时加速度的一般思路(1)分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态则利用牛顿运动定律);(2)分析当状态变化时(如:烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(如:被剪断的绳、弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失);(3)求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度。
高中物理牛顿运动定律的应用_牛顿第二定律的应用之瞬时性问题
牛顿运动定律的应用-牛顿第二定律的应用之瞬时性问题牛顿第二定律的“瞬时性”指:物体的加速度与物体所受合外力的瞬时对应关系分析物体的瞬时问题,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意两种基本模型的建立。
1. 刚性绳(或接触面):认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要考虑形变恢复时间。
一般题目所给细线和接触面在不加特殊说明时,均可按此模型处理。
2. 弹簧(或橡皮绳):此类物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成不变【名师点睛】1. 物体的加速度a与物体所受合外力F合瞬时对应。
a为某一瞬时的加速度,F合即为该时刻物体所受的合力。
2. 物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析。
求物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及其变化。
先看不变量,再看变化量;加速度与合外力瞬时一一对应。
3. 轻绳(线、弹簧、橡皮绳)即其质量和重力均可视为等于零,同一根绳(线、弹簧、橡皮绳)的两端及其中间各点的弹力大小相等。
4. 轻绳(线、橡皮绳)只能发生拉伸形变,只能产生拉力;而轻弹簧既能发生拉伸形变,又能产生压缩形变,所以轻弹簧既能承受拉力,也能承受压力。
5. 无论轻绳(线)所受拉力多大,轻绳(线)的长度不变,即轻绳(线)发生的是微小形变,因此轻绳(线)中的张力可以突变。
由于弹簧和橡皮绳受力时,发生的是明显形变,所以弹簧和橡皮绳中的弹力不能发生突变。
6. 涉及弹簧问题时,注意弹簧轻弹簧的弹力不能突变;两物体相互分离的瞬间,两者之间的弹力为零,但注意该时刻它们的速度和加速度仍相等。
7. 加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变。
【典例1】如图所示,A、B 两个质量均为m 的小球之间用一根轻弹簧(即不计其质量)连接,并用细绳悬挂在天花板上,两小球均保持静止。
牛顿第二定律的瞬时性问题
牛顿第二定律的瞬时性问题近几年高考考察了牛顿定律的力和加速度的瞬时关系,并且比重在不断增加。
而这一问题恰好又是我们学生的难点。
如何帮助学生来解决这一问题?本文从以下几个方面进行了阐述:一、弄清几个基本概念1.牛顿第二定律基本内容(1)内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比。
加速度的方向与作用力方向相同。
(2)牛顿第二定律的“五性”:①矢量性;②瞬时性;③因果性;④同一性;⑤独立性。
其中牛顿第二定律的瞬时作用:牛顿第二定律揭示的加速度a与合外力F的正比关系是“瞬时”的依存关系。
有力就有加速度,任一时刻的合外力对应着该时刻的瞬时加速度。
力改变,加速度亦同时改变。
2.几种常见的模型(1)物理中的“绳”和“线”、“轻杆”及“弹簧”和“橡皮绳”的特性:①中学物理中的“绳”和“线”一般都是理想化模型,具有如下几个特性:a.轻,即绳(或线)的质量和重力均可视为零,同一根绳(或线)的两端及其中间各点的张力大小相等。
b.软,即绳(或线)只能受拉力,不能承受压力(因绳能弯曲),由绳及其物体相互间作用力的方向是沿着绳且背离受力物体的方向。
c.不可伸长,即无论绳所受拉力多大,绳子的长度不变,绳子中的张力可以突变。
②中学物理中的“轻杆”也是理想化模型,轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以致于认为受力形变极微,看作不可伸长或压缩。
具有如下几个特性:a.轻杆各处受力相等,其力的方向不一定沿着杆的方向;b.轻杆不能伸长或压缩。
c.轻杆受到的弹力的形式有拉力、压力或侧向力。
③中学物理中的“弹簧”和“橡皮绳”也是理想化模型,具有如下几个特性:a.轻,即弹簧(或橡皮绳)的质量和重力均可视为零。
由此特点可知,同一弹簧两端及其中各点的弹力大小相等。
b.弹簧既能受拉力,也能受压力(沿弹簧的轴线),橡皮绳只能受拉力,不能承受压力(因橡皮绳能弯曲)。
c.由于弹簧和橡皮绳受力时形变较大,发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不会突变,但是,当弹簧或橡皮绳被剪断时,它们受的弹力立即消失。
专题3.3 牛顿第二定律中的瞬时性问题(解析版)
2.(2018 贵州联考)如图所示,质量分别为 MA 和 MB 的 A、B 两小球分别连在弹簧两端,B 端用细线固定在倾 角为 30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A、B 两球的加速度分别为( )
A.都等于
B. 和 0
C.
和0
D.0 和
【参考答案】D 【名师解析】在线被剪断前,A 处于平衡状态,弹簧的拉力等于 A 的重力沿斜面的分力,即 F=MAgsin30°。 在线被剪断瞬间,绳子拉力立即减为零,而弹簧的伸长量没有来得及变化,弹力不变,故 A 的加速度为零。 对 B,在沿斜面方向,B 受到沿斜面向下的弹力和重力沿斜面的分力,由 F+MBgsin30°=MBaB,解得:
专题 3.1 牛顿运动定律的瞬时性问题
【考纲解读与考频分析】 在牛顿运动定律应用中经常出现瞬时性问题,瞬时性问题成为高考命题热点。 【高频考点定位】: 瞬时性问题
考点一:瞬时性问题 【3 年真题链接】
1. (2019 年 4 月浙江选考)如图所示,A、B、C 为三个实心小球,A 为铁球,B、C 为木球。A、B 两球分别 连在两根弹簧上,C 球连接在细线一端,弹簧和细线的下端固定在装水的杯子底部,该水杯置于用绳子悬挂 的静止吊篮内。若将挂吊篮的绳子剪断,则剪断的瞬间相对于杯底(不计空气阻力,ρ木<ρ水<ρ铁)( )
平伸手掌托起物体,由静止开始向上运动,直至将物体抛出。对此现象分析正确的是( )
A.受托物体向上运动的过程中,物体始终处于超重状态;
B.受托物体向上运动的过程中,物体始终处于失重状态;
C.在物体离开手的瞬间,物体的加速度大于重力加速度;
D.在物体离开手的瞬间,手的加速度大于重力加速度;
【参考答案】D
A. A 球将向上运动,B、C 球将向下运动