汽车变速箱齿轮钢的选择及热加工工艺设计

合集下载

汽车变速箱齿轮的选材及热处理工艺分析

汽车变速箱齿轮的选材及热处理工艺分析

汽车变速箱齿轮的选材及热处理工艺分析汽车变速箱齿轮的选材及热处理工艺分析内容提要:本文以汽车变速箱齿轮为例,详细论述了其材料选择的具体思路及其热处理工艺的制定、分析和工序的安排,论证了汽车变速箱齿轮材料的选择及热处理工艺对产品的质量和使用寿命的影响。

关键词:变速箱齿轮材料热处理工艺分析在汽车制造过程中,除了一些标准件外,其他零部件都涉及材料的选择及热处理工艺的制定、分析和工序的安排。

合理选择零件的材料及正确安排零件的热处理工艺将直接关系到产品的质量和使用寿命。

本文以汽车变速箱齿轮为例,论述了其选材及热处理工艺的制定过程与思路,与大家探讨。

一、变速箱齿轮的材料选择:1、选材的原则:零件材料的选择应根据零件的使用性能要求及加工工艺性能、经济成本要求进行选择:1)、使用性能要求:使用性能是指零件在正常使用状态下,材料应具备的性能,是保证零件工作安全可靠、经久耐用的必要条件。

零件在选材时,首先要根据零件的工作条件和失效形式,正确判断所要求的使用性能,再根据主要的使用性能指标来选择合适的材料。

变速箱齿轮位于汽车传动部分,用于传递扭矩与动力、调整速度的作用。

其工作条件、失效形式及要求的力学性能如下表:零件名称工作条件常见失效形式要求的力学性能变速箱齿轮A、由于传递扭矩,齿根要承受较大的弯曲应力和交变应力;B、由于变速箱齿轮转速变化范围广,齿轮表面承受较大的接触应力,并在高速下承受强烈的磨擦力;C、由于工作时不断换档,轮齿之间经常要承受换档造成的冲击与碰撞。

A、当齿轮所受弯曲应力过大时,可能发生齿根折断;B、轮齿在交变应力的作用下,长时间工作可能发生疲劳断裂;C、齿面在强磨擦作用下可能发生磨损和点蚀现象。

D、齿轮心部韧性过低时,在冲击作用下可能发生断裂。

A、表面高硬度、高耐磨性:齿面硬度58-64HRC,心部硬度30-45HRC;B、齿面高的接触疲劳强度;C、齿根高的弯曲强度(σb>1000Mpa);D、心部较高强度、高韧性(a k>60J/cm 2)。

汽车变速箱齿轮钢的选择及热加工工艺设计.

汽车变速箱齿轮钢的选择及热加工工艺设计.

攀枝花学院学生课程设计(论文)题目:汽车变速箱齿轮钢的选择及热加工工艺设计学生姓名:学号:所在院(系):材料工程学院专业:材料科学与工程班级:指导教师:职称:副教授2015年12月21日攀枝花学院教务处制攀枝花学院本科学生课程设计任务书注:任务书由指导教师填写。

1 引言随着我国交通运输业的快速发展,汽车工业正面临着难得的发展机遇,特别是自80年代以来,国外先进车型及生产技术的引进,使我国的汽车制造水平得到了很大提高。

变速箱齿轮作为汽车的重要零部件,从材料选择到生产工艺都发生了巨大变化。

其中重型汽车齿轮由于模数差距大、承受负荷重、对材料和热处理工艺要求高,因而在国产化时需要从影响齿轮质量的几个因素认真地加以分析和探讨。

2 重型卡车变速箱齿轮的综合性能分析2.1 变速箱齿轮服役条件分析齿轮在汽车变速箱中起传递运动和动力的作用。

⑴齿轮工作时,通过齿面的接触来传递动力。

两齿轮在相对运动过程中,既有滚动,又有滑动。

因此,齿轮表面受到很大的接触疲劳应力和摩擦力的作用。

在齿根部位受到很大的弯曲应力作用;⑵高速齿轮在运转过程中的过载产生振动,承受一定的冲击力或过载;⑶在一些特殊环境下,受介质环境的影响而承受其它特殊的力的作用。

因此,齿轮的表面有高的硬度和耐磨性,高接触疲劳强度,有较高的齿根抗弯强度,高的心部抗冲击能力。

2.2 齿轮力学性能分析因齿轮形状复杂,且使用工况很复杂,所以随着齿轮加工制造技术的发展,硬齿面齿轮在国内及国际汽车行业被普遍使用。

这是由于汽车变速箱齿轮不仅要求强度高、韧性好、耐磨性高,而且要能保证在齿轮截面上获得足够的淬硬层,以保证齿轮的综合力学性能。

同时要求齿轮材料淬透性带宽较窄,在较缓慢的冷却速度下就可以获得所需组织,保证齿轮热处理后变形小。

3 重型卡车变速箱齿轮的加工工艺流程分析3.1 预备热处理通常20CrMTi选用正火或调质处理作为预备热处理,其目的是降低钢的硬度,提高塑性,以利于切削加工;细化晶粒,均匀钢的组织及成分,改善钢的性能,为以后的热处理作准备;消除锻造应力,防止变形和开裂,保证齿形合格。

变速器齿轮的加工工艺设计

变速器齿轮的加工工艺设计

变速器齿轮的加工工艺设计
变速器齿轮是变速器的核心部件,起到传输动力、改变转速和扭矩的作用。

其加工工艺设计对于齿轮的精度、强度和寿命等方面具有重要影响。

下面我将从材料选择、加工工艺流程和加工设备三个方面进行详细的介绍。

首先,材料选择是影响齿轮加工工艺设计的一个重要因素。

常用的材料有碳素钢、合金钢和铸钢等。

根据齿轮工作负荷和使用条件的不同,选择合适的材料可以提高齿轮的强度和耐磨性。

此外,材料的热处理也是关键的工艺环节,通过淬火和回火等热处理工艺可以提高材料的硬度和韧性,从而提高齿轮的使用性能。

其次,加工工艺流程是齿轮加工的重要环节。

通常包括车削、铣削、齿轮切削和磨削等工序。

首先是车削工序,通过车床对齿轮的毛坯进行车削,得到初始形状。

然后是铣削工序,将车削得到的齿轮进行铣削,使其外形更加精确。

接着是齿轮切削工序,通过齿轮刀具对齿轮进行精密切削,得到精确的齿形和齿距。

最后是磨削工序,通过砂轮磨削对齿轮进行光洁度处理,提高齿面的精度和质量。

最后,加工设备是齿轮加工的重要工具。

根据齿轮的尺寸和工艺要求,选择合适的加工设备可以提高加工效率和产品质量。

常用的加工设备包括数控车床、数控铣床、齿轮切削机和齿轮磨床等。

在选择加工设备时,还需要考虑设备的刚性、精度和稳定性等因素,确保能够满足齿轮加工的要求。

总结起来,变速器齿轮的加工工艺设计涉及材料选择、加工工艺流程和加工设备
三个方面。

通过合理选择材料、制定科学的加工工艺流程和选择合适的加工设备,可以提高齿轮的强度、精度和寿命,从而提高变速器的性能和可靠性。

常用齿轮材料的选择及其热处理工艺分析

常用齿轮材料的选择及其热处理工艺分析

齿轮材料的选择及其热处理工艺1、齿轮材料的选择原则齿轮材料的种类很多,在选择时应考虑的因素也很多,下述几点可供选择材料时参考:1)齿轮材料必须满足工作条件的要求。

例如,用于飞行器上的齿轮,要满足质量小、传递功率大和可靠性高的要求,因此必须选择机械性能高的合金银;矿山机械中的齿轮传动,一般功率很大、工作速度较低、周围环境中粉尘含量极高,因此往往选择铸钢或铸铁等材料;家用及办公用机械的功率很小,但要求传动平稳、低噪声或无噪声、以及能在少润滑或无润滑状态下正常工作,因此常选用工程塑料作为齿轮材料。

总之,工作条件的要求是选择齿轮材料时首先应考虑的因素。

2)应考虑齿轮尺寸的大小、毛坯成型方法及热处理和制造工艺。

大尺寸的齿轮一般采用铸造毛坯,可选用铸钢或铸铁作为齿轮材料。

中等或中等以下尺寸要求较高的齿轮常选用锻造毛坯,可选择锻钢制作。

尺寸较小而又要求不高时,可选用圆钢作毛坯。

齿轮表面硬化的方法有:渗碳、氨化和表面淬火。

采用渗碳上艺时,应选用低碳钢或低碳含金钢作齿轮材料;氨化钢和调质钢能采用氮化工艺;采用表面淬火时,对材料没有特别的要求。

3)正火碳钢,不论毛坯的制作方法如何,只能用于制作在载荷平稳或轻度冲击下工作的齿轮,不能承受大的冲击载荷;调质碳钢可用于制作在中等冲击载荷下工作的齿轮。

4)合金钢常用于制作高速、重载并在冲击载荷下工作的齿轮。

5)飞行器中的齿轮传动,要求齿轮尺寸尽可能小,应采用表面硬化处理的高强度合金钢。

6)金属制的软齿面齿轮,配对两轮齿面的硬度差应保持为30~50HBS或更多。

当小齿轮与大齿轮的齿面具有较大的硬度差(如小齿轮齿面为淬火并磨制,大齿轮齿面为常化或调质);且速度又较高时,较硬的小齿轮齿面对较软的大齿轮齿面会起较显著的冷作硬化效应,从而提高了大齿轮齿面的疲劳极限。

因此,当配对的两齿轮齿面具有较大的硬度差时,大齿轮的接触疲劳许用应力可提高约20%,但应注意硬度高的齿面,粗糙度值也要相应地减小。

20CrMnTi解放牌载重汽车变速箱变速齿轮热处理工艺设计

20CrMnTi解放牌载重汽车变速箱变速齿轮热处理工艺设计

目录1. 绪论┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 1.1 引言┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 1.2 20CrMnTi钢的基本性质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 1.2.1 钢的化学成分和力学性能┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 1.2.2 合金元素的作用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 1.2.3淬透性┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 1.3解放牌汽车变速箱变速齿轮的热处理工艺设计┄┄┄┄┄┄┄5 1.3.1 服役条件┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 1.3.2 失效形式┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄61.3.3性能要求┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄72. 20CrMnTi钢变速齿轮生产工艺路线及分析┄┄┄┄┄┄┄┄┄9 2.120CrMnTi钢变速齿轮生产工艺路线┄┄┄┄┄┄┄┄┄┄┄┄9 2.2各种加工工艺路线的分析┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9 2.2.1等温正火┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9 2.2.2渗碳+淬火+回火┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9 2.2.3喷丸┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄112.2.4检验┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄113. 各种热处理后的金相组织分析┄┄┄┄┄┄┄┄┄┄┄┄┄┄12 3.1 20CrMnTi等温正火后金相组织┄┄┄┄┄┄┄┄┄┄┄┄┄123.2 20CrMnTi淬火、回火处理金相组织┄┄┄┄┄┄┄┄┄┄┄┄134. 热处理工艺过程中的质量检验项目┄┄┄┄┄┄┄┄┄┄┄┄154.1渗碳淬火后齿轮的检验项目、内容和要求┄┄┄┄┄┄┄┄┄154.2渗碳齿轮的常见缺陷及防止措施┄┄┄┄┄┄┄┄┄┄┄┄┄165. 质量控制与检验方法┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄19 5.1随炉试样检验┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄19 5.2齿轮热处理质量检验┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22 总结┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 致谢┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄25 参考文献┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄261. 绪论1.1引言热处理工艺是金属材料工程的重要组成部分。

20CrMnTi汽车变速箱齿轮的热处理工艺

20CrMnTi汽车变速箱齿轮的热处理工艺

20CrMnTi汽车变速箱齿轮的热处理工艺一、学习目标知识目标:·熟悉感应加热表面淬火原理、特点及应用;·了解火焰表面淬火原理、特点及应用;·了解化学热处理过程;·掌握渗碳、渗氮和碳氮共渗原理、特点、常用方法及应用。

能力目标:·能根据零件的化学成分、性能要求和技术条件,合理选择表面淬火和化学热处理方法。

二、任务引入变速箱齿轮位于汽车传动部分,用于传递扭矩与动力、调整速度。

由于传递扭矩,齿根要承受较大的弯曲应力和交变应力;由于变速箱齿轮转速变化范围广,齿轮表面承受较大的接触应力,并在高速下承受强烈的磨擦力;由于工作时不断换档,轮齿之间经常要承受换档造成的冲击与碰撞。

这就要求齿轮表面有高硬度和高耐磨性;齿面有高的接触疲劳强度;心部有较高的强度和高韧性。

图2-25所示20CrMnTi汽车变速箱齿轮的热处理技术要求如下:1.渗碳层表面含碳量为0.80~1.05%;2.渗碳层深度为0.80~1.3mm;3.淬火回火后齿面硬度为58~62HRC,心部硬度为33~48HRC。

图2-25 汽车变速箱齿轮简图三、相关知识在机械设备中,有许多零件(如齿轮、曲轴、活塞销等)是在冲击载荷及表面摩擦条件下工作的,这类零件表面需具有高硬度和高耐磨性,而心部需要足够的塑性和韧性。

为满足这类零件的性能要求,须进行表面热处理。

常用的表面热处理方法有表面淬火及化学热处理两种。

(一)钢的表面淬火表面淬火是通过快速加热,使钢件表层奥氏体化,然后迅速冷却,使表层形成一定深度的淬硬组织——马氏体,而心部仍保持原来塑性、韧度较好的组织的热处理工艺。

在钢的表面淬火法中,感应加热淬火应用最广。

1.感应加热表面淬火感应加热表面淬火时,将工件放在铜管制成的感应器内,即图2-26所示装置中,感应器中通入一定频率的交流电,以产生交变磁场,于是工件内部就会产生频率相同、方向相反的感应电流(涡流)。

由于涡流的趋肤效应,使涡流在工件截面上的分布是不均匀的,表面电流密度大,心部电流密度小。

常用齿轮材料的选择和热处理工艺设计

常用齿轮材料的选择和热处理工艺设计

齿轮材料的选择及其热处理工艺1、齿轮材料的选择原则齿轮材料的种类很多,在选择时应考虑的因素也很多,下述几点可供选择材料时参考:1)齿轮材料必须满足工作条件的要求。

例如,用于飞行器上的齿轮,要满足质量小、传递功率大和可靠性高的要求,因此必须选择机械性能高的合金银;矿山机械中的齿轮传动,一般功率很大、工作速度较低、周围环境中粉尘含量极高,因此往往选择铸钢或铸铁等材料;家用及办公用机械的功率很小,但要求传动平稳、低噪声或无噪声、以及能在少润滑或无润滑状态下正常工作,因此常选用工程塑料作为齿轮材料。

总之,工作条件的要求是选择齿轮材料时首先应考虑的因素。

2)应考虑齿轮尺寸的大小、毛坯成型方法及热处理和制造工艺。

大尺寸的齿轮一般采用铸造毛坯,可选用铸钢或铸铁作为齿轮材料。

中等或中等以下尺寸要求较高的齿轮常选用锻造毛坯,可选择锻钢制作。

尺寸较小而又要求不高时,可选用圆钢作毛坯。

齿轮表面硬化的方法有:渗碳、氨化和表面淬火。

采用渗碳上艺时,应选用低碳钢或低碳含金钢作齿轮材料;氨化钢和调质钢能采用氮化工艺;采用表面淬火时,对材料没有特别的要求。

3)正火碳钢,不论毛坯的制作方法如何,只能用于制作在载荷平稳或轻度冲击下工作的齿轮,不能承受大的冲击载荷;调质碳钢可用于制作在中等冲击载荷下工作的齿轮。

4)合金钢常用于制作高速、重载并在冲击载荷下工作的齿轮。

5)飞行器中的齿轮传动,要求齿轮尺寸尽可能小,应采用表面硬化处理的高强度合金钢。

6)金属制的软齿面齿轮,配对两轮齿面的硬度差应保持为30~50HBS或更多。

当小齿轮与大齿轮的齿面具有较大的硬度差(如小齿轮齿面为淬火并磨制,大齿轮齿面为常化或调质);且速度又较高时,较硬的小齿轮齿面对较软的大齿轮齿面会起较显著的冷作硬化效应,从而提高了大齿轮齿面的疲劳极限。

因此,当配对的两齿轮齿面具有较大的硬度差时,大齿轮的接触疲劳许用应力可提高约20%,但应注意硬度高的齿面,粗糙度值也要相应地减小。

汽车变速箱齿轮加工工艺流程

汽车变速箱齿轮加工工艺流程

汽车变速箱齿轮加工工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!汽车变速箱齿轮加工工艺流程主要包括以下几个步骤:1. 毛坯制备首先,需要根据设计要求选择合适的钢材,并进行熔炼、铸造等工艺,制备出变速箱齿轮的毛坯。

变速箱齿轮热处理工艺设计

变速箱齿轮热处理工艺设计

1. 齿轮热处理概述 (1)2. 零件图 (2)3. 零件的服役条件、性能要求及技术指标 (3)4. 材料选择 (4)4.1零件用途 (4)4.2材料比较 (4)4.3 材料化学成分及合金元素的作用 (5)4.4 材料的相变点 (5)5. 齿轮加工制作工艺 (6)5.1传统的齿轮材料的工艺路线: (6)5.2 淬火工艺设计 (6)5.3 其他热处理工艺 (8)6. 参考文献 (15)1. 齿轮热处理概述众所周知,齿轮是机械设备中关键的零部件,它广泛的用于汽车、飞机、坦克、轮船等工业领域。

它具有传动准确、结构紧凑使用寿命长等优点。

齿轮传动是近代机器中最常见的一种机械振动是传递机械动力和运动的一种重要形式、是机械产品重要基础零件。

它与带、链、摩擦、液压等机械相比具有功率范围大,传动效率高、圆周速度高、传动比准确、使用寿命长、尺寸结构小等一系列优点。

因此它已成为许多机械产品不可缺少的传动部件,也是机器中所占比例最大的传动形式。

由于齿轮在工业发展中的突出地位,使齿轮被公认为工业化的一种象征. 得益于近年来汽车、风电、核电行业的拉动,汽车齿轮加工机床、大规格齿轮加工机床的需求增长十分耀眼。

据了解,随着齿轮加工机床需求的增加,近年来涉及齿轮加工机床制造的企业也日益增多。

无论是传统的汽车、船舶、航空航天、军工等行业,还是近年来新兴的高铁、铁路、电子等行业,都对机床工具行业的快速发展提出了紧迫需求,对齿轮加工机床制造商提出了新的要求。

据权威部门预测2012 年将达到200 万吨。

但我国齿轮的质量与其他发达国家的同类产品相较还是具有一定的差距,主要表现在齿轮的平均使用寿命、单位产品能耗、生产率这几方面上。

本设计是在课堂学习热处理知识后的探索和尝试,其内容讨论如何设计齿轮的热处理工艺,重点是制定合理的热处理规程,并按此设计齿轮的热处理方法。

零件图3. 零件的服役条件、性能要求及技术指标齿轮是机械工业中应用最广泛的重要零件之一。

汽车变速箱齿轮加工工艺流程

汽车变速箱齿轮加工工艺流程

汽车变速箱齿轮加工工艺流程英文回答:Automotive Transmission Gear Manufacturing Process.The manufacturing process of automotive transmission gears involves several key steps to ensure precision and durability. Here's a detailed overview of the typical process:1. Material Selection:The first step involves selecting the appropriate material for the gears, typically high-strength steelalloys like carburized steel or nitriding steel. The material selection considers factors such as strength, wear resistance, and manufacturability.2. Forging:The selected material is heated to a high temperature and forged into the desired shape of the gear blank. Forging involves applying high pressure to deform the material and refine its grain structure, enhancing its strength and toughness.3. Annealing:After forging, the gear blanks undergo annealing, a heat treatment process that involves heating them and slowly cooling them. Annealing reduces internal stresses and improves machinability, making them easier to work with in subsequent processes.4. Machining:The gear blanks are then subjected to various machining operations, including turning, milling, and drilling, to achieve the precise dimensions and tolerances required. High-precision CNC machines are typically used to ensure accuracy and repeatability.5. Heat Treatment:To enhance the gears' surface hardness and wear resistance, heat treatment processes are applied. This may involve carburizing, nitriding, or induction hardening. These processes alter the chemical composition and crystal structure of the gear surface, making it harder and more durable.6. Grinding:After heat treatment, the gears are ground to achieve the final desired tooth profile and surface finish. Specialized grinding machines are used to precisely form the gear teeth, ensuring optimal meshing with other gears in the transmission.7. Inspection and Testing:Throughout the manufacturing process, rigorous inspections and tests are conducted to verify the dimensions, tolerances, and performance of the gears. Thisincludes visual inspections, dimensional measurements, and gear testing machines to assess characteristics such as noise levels and load-bearing capacity.中文回答:汽车变速箱齿轮加工工艺流程。

解放牌汽车变速箱齿轮热处理工艺设计

解放牌汽车变速箱齿轮热处理工艺设计

毕业设计(论文)题目:解放牌汽车变速箱齿轮热处理工艺设计年级专业:精细化学品生产技术学生姓名:学号:指导教师:职称:副教授导师单位:化学工程系论文完成时间:2009年12月20 日附件 2山东化工职业学院毕业设计(论文)任务书专业:精细化学品生产技术班级:精细化学品生产技术1班设计者:合作者:指导教师:课题名称:解放牌汽车变速箱齿轮的热处理工艺设计完成日期:2009 年 12 月 20 日附件3山东化工职业学院毕业设计(论文)评定表前言热处理工艺是金属材料工程的重要组成部分。

通过热处理可以改变材料的加工工艺性能,充分发挥材料的潜力,提高工件的使用寿命。

本课程设计是在《材料科学基础》﹑《金属热处理工艺学》﹑《失效分析》﹑《金属力学性能》等课程学习的基础上开设的,是理论与实践相结合的重要教学环节。

通过该课程设计,可使学生在综合运用所学专业基础理论和专业知识能力方面得到训练,学会独立分析问题和解决问题的方法,提高工程意识和工程设计能力。

热处理工艺是整个机械加工过程种的一个重要环节,它与工件设计及其它加工工艺之间存在密切关系。

如何实现工件设计时提出的几何形状和加工精度,满足设计时所要求的多种性能指标,热处理工艺制定的合理与否,有着至关重要的作用。

现代工业的飞速发展对机械零部件﹑工模具等提出的要求愈来愈高。

热处理不仅对锻造机械加工的顺利进行和保证加工效果起着重要作用,而且在改善或消除加工后缺陷,提高工件的使用寿命等方面起着重要作用。

为获得理想的组织与性能,保证零件在生产过程中的质量稳定性和使用寿命,就必须从工件的特点﹑要求和技术条件,认真分析产品在使用过程中的受力状况和可能失效形式,正确选择材料;再根据生产规模﹑现场条件﹑热处理设备提出几种可行的热处理方案,最后根据其经济性﹑方便性﹑质量稳定性和便于管理﹑降低成本等因素,确定出一种最佳方案。

目录1.课程设计的原则 (4)1.1热处理零件结构形状设计....................................‥4 1.1.1结构形状设计应避免应力集中..............................‥4 1.1.2 结构形状设计应尽量简单、均衡、规则、对称.........‥4 1.1.3设计中实际措施................................................‥5 1.2热处理零件的选材原则 (5)1.2.1使用性原则 (5)1.2.2 工艺性原则 (5)1.2.3 经济性原则 (6)1.2.4 选材时应注意的几个问题 (6)1.3热处理工艺设计 (7)1.3.1热处理在加工工艺路线中的位置 (7)1.3.2热处理工艺选择时应重点考虑的因素 (8)1.3.3热处理工艺规程的拟定 (8)1.4 本课程设计任务 (9)2. 解放牌汽车变速箱齿轮的热处理工艺设计 (10)2.1汽车变速齿轮的服役条件 (10)2.2 汽车变速齿轮常见的失效形式 (10)2.3汽车变速齿轮的性能要求 (11)2.4 汽车变速齿轮的材料的选择 (11)2.4.1 汽车变速齿轮备选材料分析……………………………‥122.5 汽车变速齿轮的加工工艺路线 (13)2.6 热加工及热处理工艺规程 (14)2.7 各热处理工艺后的金相组织分析 (16)2.8 热处理工艺过程中的质量检验项目 (19)2.8.1 渗碳淬火后齿轮的检验项目、内容和要求 (19)2.8.2 渗碳齿轮的常见缺陷及防止措施 (21)3.心得体会………………………………………………‥23 4.参考文献………………………………………………‥241.课程设计的原则1.1热处理零件结构形状设计需要热处理的工件,在设计时,除了应考虑服役条件、承受载荷的大小和机械加工工艺外,还要要考虑热处理的变形、开裂所造成的产品报废。

汽车齿轮材料的选择及其热处理工艺

汽车齿轮材料的选择及其热处理工艺

汽车齿轮材料的选择及其热处理工艺汽车齿轮是汽车传动系统中的重要组成部分,其质量直接影响汽车的性能和寿命。

因此,汽车齿轮材料的选择及其热处理工艺是汽车制造中的重要问题。

首先,汽车齿轮材料的选择应考虑以下几个方面:1.强度和硬度:汽车齿轮需要承受较大的载荷和磨损,因此需要具有较高的强度和硬度。

2.韧性:汽车齿轮在工作过程中需要承受冲击和振动,因此需要具有较好的韧性,以避免断裂和裂纹的产生。

3.耐磨性:汽车齿轮需要长时间工作,因此需要具有较好的耐磨性,以延长使用寿命。

4.加工性能:汽车齿轮需要经过精密加工,因此需要具有较好的加工性能,以保证加工精度和表面质量。

基于以上考虑,常用的汽车齿轮材料有以下几种:1.碳素钢:碳素钢具有较高的强度和硬度,但韧性较差,容易产生裂纹和断裂。

2.合金钢:合金钢具有较高的强度、硬度和韧性,但加工性能较差,需要采用先进的加工工艺。

3.铸铁:铸铁具有较好的耐磨性和韧性,但强度和硬度较低,适用于低速和中速齿轮。

4.不锈钢:不锈钢具有较好的耐腐蚀性和韧性,但强度和硬度较低,适用于低速和中速齿轮。

其次,汽车齿轮材料的热处理工艺也是影响其性能的重要因素。

常用的热处理工艺有以下几种:1.淬火:淬火可以提高齿轮的硬度和强度,但会降低韧性,容易产生裂纹和断裂。

2.回火:回火可以提高齿轮的韧性和耐磨性,但会降低硬度和强度。

3.正火:正火可以提高齿轮的强度和硬度,同时保持一定的韧性和耐磨性。

4.表面强化:表面强化可以提高齿轮的耐磨性和疲劳寿命,常用的方法有渗碳、氮化和喷涂等。

综上所述,汽车齿轮材料的选择及其热处理工艺是汽车制造中的重要问题,需要综合考虑材料的强度、硬度、韧性、耐磨性和加工性能等因素,选择合适的材料和热处理工艺,以保证汽车齿轮的性能和寿命。

汽车齿轮材料的选择及其热处理工艺

汽车齿轮材料的选择及其热处理工艺
技术 因采 用柔性 工艺过程模块化设 计 . 其生 产效 率高 、 运行 成本低 且
经过适 当的热处理. 以提高承载能力和延长使用寿命
环保 . 已成 为可行 的替代可控气氛的方法。低 压真空渗碳和高气淬技 油淬工艺相 比较 . 具有下优势 : 渗碳钢是制作 汽车齿轮 的主要材料 . 其中渗碳钢包括碳 素渗碳 钢 术与传统的气 氛渗碳 、 ( 1 ) 真空渗碳速度快 , 减少零件在高温下的保 温时间 . 有利于减少 和合 金渗碳 钢 碳素渗碳钢碳量一般都低, 介于 0 . 1 - 0 . 2 5 %之间, 属 于低 2 ) 高压气淬 的淬火烈度 比油淬低 , 在保证零件度的前提下 , 碳钢 低 的含碳量可保证渗碳零件心部具有 足够 的韧性和塑性 碳 素 高温变。( 3 ) 高压气淬不存在油淬过程 中的三个 渗碳 钢的淬透性低 . 对大模数齿轮心部淬火得不到低碳马 氏体. 热处理 零件的冷却变形量也小许多 。( 仅 对流传 导过程 , 零件较易得到较高的硬度 。( 4 ) 低压真空渗碳 后不能使碳钢渗碳零 件的心部获得明显的强化效果 。合金渗碳钢 , 具 阶段 , 可以避零件表面不 良组织 ( 如 内氧 化等) 出现 , 有 良好的淬透性高, 零件心部可 以得到低碳 马氏体 , 即热处理能使 合金 过程 中不存在氧原子 , ( 5 ) 处理后 的零件表 面清洁度高 , 无须后清洗和强 渗碳钢零件的心部获得较显著的强化效果 合金渗碳钢 中主要合金元 提高零件的用寿命。 降低了生产成本 。( 6 ) 环保性好 , 无火帘 , 无S 0 2 、 C O的排 素是 铬( < 2 %) 、 镍( < 4 . 5 %) 、 锰( < 2 %) 、 硼( < O . 0 0 5 %) 等, 钢 中硼的 最佳 含量 力抛丸工序 .
由于汽车行驶状况随路况随机变化因而汽车齿轮的工作状况很复杂齿轮的齿根部受交变弯曲应力齿面承受大接触应力并产生强烈的摩擦在换挡启动和啮合不良时齿轮还承受定的冲击载荷齿轮的主要失效形式是疲劳断齿疲劳点蚀以及齿面的过量磨损根据齿轮的受力情况和失效分析可知

汽车齿轮材料的选择及其热处理工艺

汽车齿轮材料的选择及其热处理工艺

汽车齿轮材料的选择及其热处理工艺汽车齿轮作为汽车传动系统中的重要部件,其材料的选择和热处理工艺对于汽车性能的提升和使用寿命的延长起着关键作用。

本文将从材料选择和热处理工艺两个方面进行探讨。

材料选择是汽车齿轮设计的首要考虑因素之一。

齿轮材料需要具备较高的强度、硬度和耐磨性,以承受汽车传动系统中的高载荷和高速运动。

目前常用的齿轮材料主要包括合金钢、碳钢和铸铁等。

合金钢是一种优质的齿轮材料,具有较高的强度和硬度,能够承受较大的载荷和磨损。

同时,合金钢还具有较好的韧性和耐疲劳性能,能够在长期高速运动下保持稳定的使用性能。

然而,合金钢的制造成本较高,加工难度较大,需要经过精密的热处理工艺才能达到理想的性能。

碳钢是一种常用的齿轮材料,具有较高的强度和硬度,并且制造成本相对较低。

碳钢齿轮需要经过热处理工艺,以提高其硬度和耐磨性。

常用的热处理工艺包括淬火和回火。

淬火可以使碳钢齿轮获得较高的硬度,但韧性相对较差,容易产生脆性断裂。

回火可以提高碳钢齿轮的韧性和耐疲劳性能,但硬度相对降低。

因此,根据齿轮的具体工作条件和要求,选取合适的热处理工艺非常重要。

铸铁是一种经济实用的齿轮材料,广泛应用于汽车传动系统中。

铸铁齿轮具有良好的耐磨性和降噪性能,适用于低速和中速传动。

然而,铸铁齿轮的强度和韧性相对较低,容易产生断裂和疲劳损伤。

因此,在设计铸铁齿轮时,需要考虑到其工作条件和要求,合理选择材料和热处理工艺。

热处理工艺对齿轮材料的性能提升至关重要。

在热处理过程中,通过控制加热温度、保温时间和冷却速率等参数,使材料的组织结构发生变化,从而改善其机械性能和耐磨性。

常用的热处理工艺包括淬火、回火、表面渗碳和氮化等。

淬火是一种常用的热处理工艺,通过快速冷却使材料达到高硬度和高强度。

淬火后的材料具有较高的耐磨性和抗断裂能力,适用于高速传动。

然而,淬火过程中容易产生应力集中和变形问题,需要进行适当的回火处理以提高韧性。

回火是一种常用的热处理工艺,通过加热材料至适当温度并保温一段时间后,再进行适当冷却。

变速箱齿轮热处理工艺设计

变速箱齿轮热处理工艺设计

变速箱齿轮热处理工艺设计
变速箱齿轮是汽车传动系统中重要的零部件之一,对其进行热处理工
艺设计可以提高其硬度和耐磨性,从而提高变速箱的传动效率和使用寿命。

以下是一个关于变速箱齿轮热处理工艺设计的简要介绍,包括热处理目标、工艺选择、工艺参数以及工艺控制。

1.热处理目标:
2.工艺选择:
3.工艺参数:
a.淬火:淬火温度、保温时间、淬火介质、冷却速度等参数需要根据
材料的类型和要求来确定。

一般采用水淬或油淬的方式进行。

b.回火:回火温度、保温时间和冷却方式等参数需要根据材料的类型
和要求来确定。

回火温度一般在250-400摄氏度之间。

4.工艺控制:
a.温度控制:在进行热处理过程中,需要严格控制炉温和零件温度的
均匀性和准确性。

可以使用热处理炉的温度控制系统来实现。

b.冷却控制:淬火时需要控制冷却介质的温度和速度,以确保齿轮的
硬度达到要求。

可以通过控制冷却介质的流量和温度来实现。

c.保温时间控制:淬火和回火的保温时间需要根据材料和要求进行确定,可以使用定时器或自动控制系统来控制保温时间。

d.试样测量:热处理前后需要对齿轮进行硬度测试和金相组织观察,
以确保工艺参数和结果符合要求。

总之,变速箱齿轮的热处理工艺设计需要根据材料的类型和要求来选择合适的工艺和参数,并通过严格的工艺控制来确保工艺效果的稳定性和可靠性。

这样可以提高齿轮的硬度和耐磨性,从而提高变速箱的传动效率和使用寿命。

常用齿轮材料的选择及其热处理工艺设计

常用齿轮材料的选择及其热处理工艺设计

齿轮材料的选择及其热处理工艺1、齿轮材料的选择原则齿轮材料的种类很多,在选择时应考虑的因素也很多,下述几点可供选择材料时参考:1)齿轮材料必须满足工作条件的要求。

例如,用于飞行器上的齿轮,要满足质量小、传递功率大和可靠性高的要求,因此必须选择机械性能高的合金银;矿山机械中的齿轮传动,一般功率很大、工作速度较低、周围环境中粉尘含量极高,因此往往选择铸钢或铸铁等材料;家用及办公用机械的功率很小,但要求传动平稳、低噪声或无噪声、以及能在少润滑或无润滑状态下正常工作,因此常选用工程塑料作为齿轮材料。

总之,工作条件的要求是选择齿轮材料时首先应考虑的因素。

2)应考虑齿轮尺寸的大小、毛坯成型方法及热处理和制造工艺。

大尺寸的齿轮一般采用铸造毛坯,可选用铸钢或铸铁作为齿轮材料。

中等或中等以下尺寸要求较高的齿轮常选用锻造毛坯,可选择锻钢制作。

尺寸较小而又要求不高时,可选用圆钢作毛坯。

齿轮表面硬化的方法有:渗碳、氨化和表面淬火。

采用渗碳上艺时,应选用低碳钢或低碳含金钢作齿轮材料;氨化钢和调质钢能采用氮化工艺;采用表面淬火时,对材料没有特别的要求。

3)正火碳钢,不论毛坯的制作方法如何,只能用于制作在载荷平稳或轻度冲击下工作的齿轮,不能承受大的冲击载荷;调质碳钢可用于制作在中等冲击载荷下工作的齿轮。

4)合金钢常用于制作高速、重载并在冲击载荷下工作的齿轮。

5)飞行器中的齿轮传动,要求齿轮尺寸尽可能小,应采用表面硬化处理的高强度合金钢。

6)金属制的软齿面齿轮,配对两轮齿面的硬度差应保持为30~50HBS或更多。

当小齿轮与大齿轮的齿面具有较大的硬度差(如小齿轮齿面为淬火并磨制,大齿轮齿面为常化或调质);且速度又较高时,较硬的小齿轮齿面对较软的大齿轮齿面会起较显著的冷作硬化效应,从而提高了大齿轮齿面的疲劳极限。

因此,当配对的两齿轮齿面具有较大的硬度差时,大齿轮的接触疲劳许用应力可提高约 20%,但应注意硬度高的齿面,粗糙度值也要相应地减小。

汽车齿轮材料的选择及其热处理工艺

汽车齿轮材料的选择及其热处理工艺

汽车齿轮材料的选择及其热处理工艺一、引言汽车齿轮作为传动系统的核心部件之一,其性能对整个汽车的运行质量和寿命有着重要的影响。

齿轮的材料选择和热处理工艺对于其强度、硬度、耐磨性以及齿面质量等方面都有着关键作用。

本文将从材料的选择和热处理工艺两个方面,对汽车齿轮进行深入探讨。

二、汽车齿轮材料的选择2.1 材料要求汽车齿轮材料在选择时需要考虑以下要求: - 高强度:齿轮需要承受较大的载荷和冲击,因此材料需要具备较高的强度; - 耐磨性:齿轮在长时间摩擦中容易受到磨损,材料需要具备一定的耐磨性; - 高硬度:齿轮表面需要有足够的硬度,以提高齿面的使用寿命; - 良好的韧性:齿轮在受到冲击时需要具备良好的韧性,以避免断裂; - 低摩擦系数:材料需要具备较低的摩擦系数,以减少能量损失。

2.2 常用材料根据以上要求,目前常用的汽车齿轮材料主要包括以下几种:2.2.1 碳素钢碳素钢是最常见的齿轮材料之一,其具有良好的强度和耐磨性。

由于其制造成本较低,被广泛应用于中低档汽车的齿轮制造中。

2.2.2 低合金钢低合金钢相对于碳素钢来说,具有更好的强度和韧性,适用于中高档汽车的齿轮制造。

通过适当的热处理工艺,可以进一步提高其性能。

2.2.3 铸造钢铸造钢可以根据具体应用的要求,选择不同的成分和硬化方式。

其制造成本较高,但可以获得较高的硬度和强度,适用于高档车型。

2.2.4 渗碳钢渗碳钢是通过在碳含量较低的钢表面渗入碳元素,从而提高齿轮表面的硬度和耐磨性。

它在制造成本和性能之间取得了很好的平衡,适用于中档车型的齿轮制造。

三、汽车齿轮的热处理工艺3.1 热处理的目的热处理是通过对材料进行加热和冷却,改变其内部组织和性能的工艺。

对于汽车齿轮而言,热处理的目的主要包括以下几个方面: - 提高材料的硬度和强度; - 改善材料的韧性和抗疲劳性能; - 调整材料的组织结构,提高齿面的质量。

3.2 常用热处理工艺根据齿轮的材料和要求,常见的热处理工艺包括以下几种:3.2.1 淬火和回火淬火是将齿轮材料加热至临界温度后迅速冷却,使其获得高硬度和较好的强度。

汽车变速器齿轮材料选择及热处理工艺设计

汽车变速器齿轮材料选择及热处理工艺设计

汽车变速器齿轮材料选择及热处理工艺设

汽车变速器齿轮材料选择及热处理工艺设计
摘要:本文主要通过对变速器齿轮的工作环境、受力情况、失效形式进行分析,总结出齿轮使用时所要的性能要求;选择了两种较为合适的材料,但通过对其价格、加工工艺及最终性能等多方面进行比较后,确定了变速器齿轮的材料;运用一套完整的热处理工艺,设计出了符合国家标准要求的变速器齿轮。

关键词:齿轮;材料;热处理
目录
1齿轮的应用及发展前景• 2
1.1 齿轮的应用•2
1.2 齿轮轴的工作环境•2
1.3 齿轮的发展前景•3
1.4 齿轮的受力失效形式分析•4
1.5 齿轮的选材要求•5
2 齿轮的性能要求•5
2016-全新公文范文-全程指导写作–独家原创
3 齿轮的材料选择•6
3.1 材料合金元素作用分析•7
3.2 材料加工工艺分析•8
3.3 热处理工艺分析•9
3.4材料工艺的技术要求•10
3.5 材料的质量控制•11
3.6 材料的价格比较•11
3.7 材料的最终性能•12
3.8 材料的最终选择•12
4 20CrMnTi齿轮热处理工艺方案设计•13
4.1 齿轮选用的热处理设备•13
4.2 工艺路线•13
4.3 热处理工艺制定•13
4.4 预备热处理工艺•13
4.5 最终热处理工艺•15
5 20CrMnTi齿轮热处理工艺曲线图•18
6 热处理工艺卡片•19
7 热处理工艺特性对齿轮质量和寿命的影响•20 结论••21
2016。

常用齿轮材料选择及其热处理工艺

常用齿轮材料选择及其热处理工艺

齿轮材料的选择及其热处理工艺1、齿轮材料的选择原则齿轮材料的种类很多,在选择时应考虑的因素也很多,下述几点可供选择材料时参考:1)齿轮材料必须满足工作条件的要求。

例如,用于飞行器上的齿轮,要满足质量小、传递功率大和可靠性高的要求,因此必须选择机械性能高的合金银;矿山机械中的齿轮传动,一般功率很大、工作速度较低、周围环境中粉尘含量极高,因此往往选择铸钢或铸铁等材料;家用及办公用机械的功率很小,但要求传动平稳、低噪声或无噪声、以及能在少润滑或无润滑状态下正常工作,因此常选用工程塑料作为齿轮材料。

总之,工作条件的要求是选择齿轮材料时首先应考虑的因素。

2)应考虑齿轮尺寸的大小、毛坯成型方法及热处理和制造工艺。

大尺寸的齿轮一般采用铸造毛坯,可选用铸钢或铸铁作为齿轮材料。

中等或中等以下尺寸要求较高的齿轮常选用锻造毛坯,可选择锻钢制作。

尺寸较小而又要求不高时,可选用圆钢作毛坯。

齿轮表面硬化的方法有:渗碳、氨化和表面淬火。

采用渗碳上艺时,应选用低碳钢或低碳含金钢作齿轮材料;氨化钢和调质钢能采用氮化工艺;采用表面淬火时,对材料没有特别的要求。

3)正火碳钢,不论毛坯的制作方法如何,只能用于制作在载荷平稳或轻度冲击下工作的齿轮,不能承受大的冲击载荷;调质碳钢可用于制作在中等冲击载荷下工作的齿轮。

4)合金钢常用于制作高速、重载并在冲击载荷下工作的齿轮。

5)飞行器中的齿轮传动,要求齿轮尺寸尽可能小,应采用表面硬化处理的高强度合金钢。

6)金属制的软齿面齿轮,配对两轮齿面的硬度差应保持为30~50HBS或更多。

当小齿轮与大齿轮的齿面具有较大的硬度差(如小齿轮齿面为淬火并磨制,大齿轮齿面为常化或调质);且速度又较高时,较硬的小齿轮齿面对较软的大齿轮齿面会起较显著的冷作硬化效应,从而提高了大齿轮齿面的疲劳极限。

因此,当配对的两齿轮齿面具有较大的硬度差时,大齿轮的接触疲劳许用应力可提高约20%,但应注意硬度高的齿面,粗糙度值也要相应地减小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

攀枝花学院学生课程设计(论文)题目:汽车变速箱齿轮钢的选择及热加工工艺设计学生姓名:学号:所在院(系):材料工程学院专业:材料科学与工程班级:指导教师:职称:副教授2015年12月21日攀枝花学院教务处制攀枝花学院本科学生课程设计任务书注:任务书由指导教师填写。

1 引言随着我国交通运输业的快速发展,汽车工业正面临着难得的发展机遇,特别是自80年代以来,国外先进车型及生产技术的引进,使我国的汽车制造水平得到了很大提高。

变速箱齿轮作为汽车的重要零部件,从材料选择到生产工艺都发生了巨大变化。

其中重型汽车齿轮由于模数差距大、承受负荷重、对材料和热处理工艺要求高,因而在国产化时需要从影响齿轮质量的几个因素认真地加以分析和探讨。

2 重型卡车变速箱齿轮的综合性能分析2.1 变速箱齿轮服役条件分析齿轮在汽车变速箱中起传递运动和动力的作用。

⑴齿轮工作时,通过齿面的接触来传递动力。

两齿轮在相对运动过程中,既有滚动,又有滑动。

因此,齿轮表面受到很大的接触疲劳应力和摩擦力的作用。

在齿根部位受到很大的弯曲应力作用;⑵高速齿轮在运转过程中的过载产生振动,承受一定的冲击力或过载;⑶在一些特殊环境下,受介质环境的影响而承受其它特殊的力的作用。

因此,齿轮的表面有高的硬度和耐磨性,高接触疲劳强度,有较高的齿根抗弯强度,高的心部抗冲击能力。

2.2 齿轮力学性能分析因齿轮形状复杂,且使用工况很复杂,所以随着齿轮加工制造技术的发展,硬齿面齿轮在国内及国际汽车行业被普遍使用。

这是由于汽车变速箱齿轮不仅要求强度高、韧性好、耐磨性高,而且要能保证在齿轮截面上获得足够的淬硬层,以保证齿轮的综合力学性能。

同时要求齿轮材料淬透性带宽较窄,在较缓慢的冷却速度下就可以获得所需组织,保证齿轮热处理后变形小。

3 重型卡车变速箱齿轮的加工工艺流程分析3.1 预备热处理通常20CrMTi选用正火或调质处理作为预备热处理,其目的是降低钢的硬度,提高塑性,以利于切削加工;细化晶粒,均匀钢的组织及成分,改善钢的性能,为以后的热处理作准备;消除锻造应力,防止变形和开裂,保证齿形合格。

对于重要的齿轮用调质来改善钢的性能。

在切削加工时,为了不致发生“粘刀”现象和使刀具严重磨损,通过改善金相组织控制钢的硬度。

实践证明,为了防止锻造毛坯在预备热处理中产生粒状贝氏体影响钢的力学性能,工艺可采用淬火后680℃高温回火来替代原来的正火。

高温回火后得到回火索氏体组织,应力集中倾向小,硬度降低至300HB,切削性能较好。

调质钢与正火钢相比不仅强度较高,而且塑性、韧性远高于后者,同时锻造应力得到充分的消除,满足了机械加工要求,在生产中已取得了良好的经济效益。

正火是将钢加热到Ac3以上30℃~50℃,保温足够的时间后出炉在空气中冷却到室温。

对于一般的齿轮采用正火,正火可以减少碳和其他合金元素的成分偏析;使奥氏体晶粒细化和碳化物的弥散分布,以便在随后的热处理中增加碳化物的溶解量。

由于正火的冷却速度较快,获得细小的片层状渗碳体珠光体,强度、硬度都较高,力学性能较好。

然而正火工艺是空冷,对于尺寸较大零件,内外温差大冷却速度不稳定,在连续冷却时,过冷奥氏体在A1~550℃温度范围内分解为珠光体,在550℃-M s温度范围内,因转变温度较低转变为贝氏体组织,其特征是过饱和碳的铁素体中分布粒状或长条状的碳化物。

锻造毛坯正火产生的粒状贝氏体引起硬度增高,导致了齿型加工困难,使刀具早期磨损。

对于车辆齿轮或大批量的小型齿轮越来越多采用等温正火工艺。

对于模数、直径较大的质量要求高的工业齿轮通常采用调质作为预备热处理。

3.2 化学热处理3.2.1 渗碳工艺渗碳工艺可使齿轮具有很好的综合力学性能,因此在汽车齿轮的生产中应用最广泛。

目前世界上汽车齿轮生产所采用的渗碳工艺主要是气体渗碳,气体渗碳是低碳钢生产所采用的最广泛的表面硬化工艺,国外已实现通过计算机可控渗碳深度和表面硬度,从而得到最佳的渗碳层深度和最小的变形。

3.2.2 碳氮共渗工艺碳氮共渗工艺具有在给定时间内有效提高渗层深度、获得较高硬度、保证奥氏体晶粒细小、减小零件变形、提高齿轮强度和耐磨性能等优点而被频繁使用。

随着对齿轮质量要求的提高,碳氮共渗工艺由于渗层组织性能不易控制稳定,获得较深渗层所需的时间长,该工艺使用日渐减少,只有少数小模数低负荷的汽车齿轮才允许采用。

3.2.3 渗氮工艺渗氮工艺是传统热处理工艺之一,然而其能否成功地在汽车齿轮上应用一直存在疑虑和争论,主要是渗氮齿轮的承载能力问题,因而长期以来渗氮齿轮的应用受到限制。

如美国石油协会规定经渗氮的齿轮,只能承受渗碳齿轮接触疲劳极限的75%,而对齿轮的弯曲疲劳极限也要相应降低30%。

然而渗氮工艺由于温度低、畸变小以及加工工序少而使成本降低的优点,近年来在齿轮上的应用比较广泛。

4 重型卡车变速箱齿轮用钢的选择4.1 变速箱齿轮用钢的选择4.1.1 国外汽车齿轮材料的发展本世纪初,德国汽车工业采用高Ni合金钢生产高负荷齿轮。

1928年,含4.5%Ni的Cr-Ni系钢ECN45被采纳为标准钢材,著名跑车银箭用齿轮就是用ECN45钢制造的。

二战期间,为了节约Ni,导致了Cr-Mn系齿轮钢的发展,经过几十年的不断改进和完善,如今Cr-Mn 系齿轮钢已成为中、小模数齿轮用钢的主要品种。

著名的ZF公司在Cr-Mn系齿轮钢中添加微量B,形成了独具特色的ZF系列齿轮钢,目前也被汽车生产厂家广泛采用。

对于大模数重负荷齿轮而言,含2%Ni的Cr-Ni系钢18CrNi8取代了ECN45钢,迄今18CrNi8作为淬透性最好的齿轮钢仍被奔驰公司、斯太尔公司等多家汽车厂所采用。

随着世界性节能浪潮的推动及新工艺的不断采用,材料潜力逐渐被发掘出来,含1.6%Ni的Cr-Ni-Mo系钢17CrNiMo6(ZFA钢)由于良好的工艺性能正逐渐取代18CrNi8用于大模数重负荷汽车齿轮。

在美国,早期用含5%Ni的SAE25系列钢生产汽车齿轮,二战前普遍采用含2%Ni的SAE46系列和含3.5%Ni的SAE48系列。

基于同样的原因,战后美国发展了SAE40系列Mn钢及含0.55%Ni的Cr-Ni-Mo系SAE86系列齿轮钢。

目前其中、小模数汽车齿轮使用SAE86和SAE40系列钢,而大模数重负荷汽车齿轮仍使用Ni-Mo系SAE46和SAE48系列钢。

各个国家由于资源情况不同,冶金工业和汽车工业发展历史不同,因而齿轮材料的选择和加工技术也各具特点。

工业发达国家汽车齿轮材料的共同特点是多品种、系列化,对应不同模数齿轮有不同的材料。

从材料成分来看,中、小模数汽车齿轮的发展趋势是从含Ni 钢到不含Ni钢,大模数汽车齿轮则是由较少含量的Cr、Ni、Mo合金钢取代高Cr、Ni合金钢。

4.1.2 国内重型汽车齿轮钢的选择国内汽车齿轮钢基本上沿用前苏联牌号,在过去很长的时期内,一直是17CrNiMo6一统天下的局面,不仅品种单一,而且钢材成分波动大,淬透性带宽,夹杂物多,造成齿轮热处理变形大、寿命低。

随着国外先进车型的引进,各种齿轮钢的国产化使我国的齿轮钢水平上了一个新台阶。

目前,德国的Cr-Mn系钢、日本的Cr-Mo系钢和美国的SAE86系列钢已实现了国产化,基本上满足了国内中、小模数汽车齿轮钢的需求。

斯达—斯太尔系列汽车齿轮用钢采用德国标准,按齿轮模数分大、中、小三种,分别使用18CrNi8、20MnCr5、16MnCr5三种齿轮钢。

其中,中、小模数齿轮用钢20MnCr5和16MnCr5的国产化问题已经解决,钢厂供应的材料基本达到了德国标准。

但对18CrNi8而言,由于Cr、Ni含量多,淬透性极高,因而热处理工艺很难控制,同时价格也较高,直接对其国产化并不是最佳方案。

国内工程机械用的大模数重负荷齿轮一般沿用前苏联的18Cr2Ni4W A,尽管使用效果良好,但价格昂贵,不适于用作汽车齿轮材料。

从国内齿轮钢牌号来看,20CrNi3与18CrNi8有相近之处,但淬透性远不如18CrNi8,价格也较高,因此使用20CrNi3做大模数汽车齿轮只能是权宜之计。

根据国内重型汽车的使用现状分析,超载使用和路况较差这两个问题较为严重,而且短期内无法克服,这就使齿轮经常承受较大的过载冲击载荷。

过载冲击载荷介于疲劳强度和断裂应力之间,它对齿轮使用寿命有很大影响,往往造成齿轮早期失效。

我们对斯达—斯太尔车早期失效齿轮的分析结果也证实了这一观点。

因此,在选择齿轮材料时必须考虑材料的抗过载能力。

渗碳钢的抗过载能力主要决定于心部强度和其有关的韧性指标。

大量试验表明,临界过载负荷和冲击断裂应力与渗碳钢的断裂韧性有关,因此能提高材料韧性的合金元素如Ni、Mo均可以提高材料的抗过载能力。

尽管17CrNiMo6钢的常规性能较好,但当渗碳层达1mm时的无缺口冲击试样的冲击韧性比Cr-Ni 钢低近10倍。

从这一点来说,大模数重负荷汽车齿轮应当选择Cr-Ni 或Cr-Ni-Mo系钢。

国外试验证明,渗碳钢表层淬火时出现过冷奥氏体分解产物是降低齿轮疲劳抗力的根本原因,而内氧化恰恰促进了这一过程的出现。

为了减轻内氧化的影响,应适当降低钢中的Cr、Mn 含量,增加Mo含量,以改善材料表层淬透性,同时使硬度梯度分布合理。

根据上述分析,我们认为Cr-Ni-Mo系钢更适合用于大模数重负荷汽车齿轮。

参照国外牌号分析,我们认为德国的17CrNiMo6钢可以作为首选钢种。

从性能上讲,它完全能够满足使用要求,而且工艺性优于18CrNi8钢;与国内的20CrNi3相比,17CrNiMo6不仅淬透性好,而且含Ni量低,价格也相应降低,这符合汽车齿轮钢的发展方向。

国外的使用情况表明,17CrNiMo6不仅能用作汽车齿轮钢,也可以替代国内的18Cr2Ni4W A钢用于生产工程机械用大模数重负荷齿轮,因而是大有发展前途的钢种。

4.2 热加工工艺设计4.2.1 正火选择的变速箱齿轮,它的直径大约是200mm,内圈直径约为100mm,厚度约是50mm,齿轮正面的圆形面积S约为628mm2,体积V约为31400mm3材料是低碳合金钢17CrNiMo6。

它的正火温度在950℃左右。

考虑到中温炉在中温测量时比较准确,因而选用中温箱式炉。

结构图如图1所示。

标准系列中温箱式电阻炉技术数据如表1所示。

图1 中温箱式炉结构图1-炉壳;2-炉衬;3-热电偶;4-炉膛;5-炉门;6-炉门升降结构;7-电热元件;8-炉底板;表1 标准系列中温箱式电阻炉技术数据 齿轮在箱式炉中的热处理为了让齿轮在箱式炉中受热均匀,可以用耐火材料制成料架放进箱式炉中,然后将齿轮放在架子上,进行加热。

4.2.2 渗碳升温装炉。

将空炉升温至600℃,启动风扇,在800℃开始滴入渗剂,到渗碳温度930℃即可装炉工件装炉后,肯定会导致炉温下降,此时应控制炉子的升温速度,使工件各部分之间不产生明显的温差。

相关文档
最新文档