ansys workbench接触分析习题
ANSYS Workbench 19.0基础入门与工程实践 第7章 接触分析
3.无摩擦
• 无摩擦接触,即两接触体之间是理想状态。当外力作用时,两接触体可以发生 分离和相对滑动,当两物体分离后,法向作用力减为0,两物体接触滑动时处 于理想状态,不产生摩擦力作用。
4.静摩擦
• 模拟静摩擦的场景,当两物体之间不发生相对滑动但是存在静摩擦力的时候, 可以使用本接触类型进行设置,可以理解为两物体之间的静摩擦力需要多大就 提供多大。
• 7.3.2 几何建模 • 7.3.3 材料属性设置 • 7.3.4 接触设置 • 7.3.5 网格划分 • 7.3.6 载荷及约束设置 • 7.3.7 模型求解 • 7.3.8 结果后处理
7.4 接触分析实例——螺栓连接
• 螺栓连接在接触问题中非常典型,本例将以螺栓连接为对象,详细介绍如何加 载预紧力、设置螺栓连接接触类型等常见技术问题,为读者进行螺栓连接分析 提供指导。
5.摩擦接触
• 通用摩擦接触,既包含静摩擦也包含滑动摩擦,在接触初始时,两接触体是静摩擦状态,当 外界作用力增大且使两接触体发生相对滑动时,此时产生滑动摩擦,滑动摩擦力基于F=计算, 用户在定义该接触类型时需要定义接触面之间的摩擦系数。
6.滑动摩擦
• 直接滑动摩擦接触是指接触体之间不发生静摩擦作用的阶段。该接触类型只针 对刚体动力学分析,系统接触力与法向正压力成正比。
• 支座及底板材质为结构钢材,在WB 19.0中默认即可;螺栓材质选用45号钢,其材料属性参 数:Ε=209000MPa,泊松比μ=0.269。
• 7.4.4 接触设置 • 7.4.5 网格划分 • 7.4.6 载荷及约束设置 • 7.4.7 模型求解 • 7.4.8 结果后处理
7.5 本章小结
• 本章先对接触问题的基本概念和模型进行介绍,让读者对有限元接触有一个概 念性的了解。然后通过两个实例分析,详细介绍如何在WB 19.0中进行含非线 性接触问题的仿真设置和操作,并对WB 19.0中提供的各类接触模型及接触类 型进行逐一讲解,使读者掌握如何选择接触类型、设置接触参数、查看接触产 生的各种结果类型,最终完成整个接触项目的仿真。
ANSYS workbench有限元模拟教程接触分析
第五章控制程序及监控界面的开发控制系统的效率和性能一方面决定于系统的硬件设计,另一方面在很大程度上取决于应用程序的设计质量。
只有将系统的硬件和软件有机的结合在一起,相辅相成,才能使系统最大程度的发挥效率。
软件是计算机控制系统的神经中枢,控制系统中的控制任务最终是靠软件即应用程序的执行来完成的。
因此软件开发占有相当重要的地位,本实验室自控系统是由三大软件支撑的,分别是利用PLC 编程软件STEP7 V5.2,嵌入式组态软件MCGS,以及虚拟仪器Labview7.0所开发的程序。
STEP7基础软件是用于西门子公司SIMATIC S7、SIMATIC C7和SIMATIC WinAC 等控制系统的标准开发软件,主要用于完成控制程序的开发。
本实验室包含的设备种类多、数量大、各设备间关系复杂。
实验室的操作者要全面、综合和有效地监控、操作和管理试验系统并不是件容易的事情,因此还需要设计合理的控制操作界面,本实验室利用MCGS嵌入式组态软件开发出形象的控制界面,并利用其提供的动画功能仿真试验系统的运行状态。
无论是研究性试验还是本科教学试验,都需要采集大量的数据,并需要对这些数据作分析、存储、曲线显示等,因此本试验室采用Labview开发数据采集程序。
因为他们的界面和和操作模仿物理仪器,如示波器和万用表,所以Labview 程序被称作虚拟仪器,。
在Labview中包含了一系列进行采集、分析、显示的工具,能很快的帮助解决复杂数据采集问题。
通过这些软件的应用,可以构造强大的实验室自控系统。
§5.1控制程序方案确定§5.1.1控制算法的选择随着智能控制技术的发展,不断有空调控制算法方面的报道,现已有模糊控制、神经网络控制、自适应控制、解耦控制在变风量空调系统中的应用的思想,但这些研究成果多为仿真结果,在实际应用还用一定的距离,而PID算法控制简单、抗干扰性好、可靠性高等优点[46]。
PID控制是最早发展起来的控制策略之一,由于其算法简单、代码少,可靠性高等优点,使得PID在工程中应用达90%以上。
基于某AnsysWorkbench地圆柱销接触分析报告
前面一篇基于Ansys经典界面的接触分析例子做完以后,不少朋友希望了解该例子在Workbench中是如何完成的。
我做了一下,与大家共享,不一定正确。
毕竟这种东西,教科书上也没有,我只是按照自己的理解在做,有错误的地方,恳请指正。
1.问题描述一个钢销插在一个钢块中的光滑销孔中。
已知钢销的半径是0.5 units, 长是2.5 units,而钢块的宽是4 Units, 长4 Units,高为1 Units,方块中的销孔半径为0.49 units,是一个通孔。
钢块与钢销的弹性模量均为36e6,泊松比为0.3.由于钢销的直径比销孔的直径要大,所以它们之间是过盈配合。
现在要对该问题进行两个载荷步的仿真。
(1)要得到过盈配合的应力。
(2)要求当把钢销从方块中拔出时,应力,接触压力及约束力。
2.问题分析由于该问题关于两个坐标面对称,因此只需要取出四分之一进行分析即可。
进行该分析,需要两个载荷步:第一个载荷步,过盈配合。
求解没有附加位移约束的问题,钢销由于它的几何尺寸被销孔所约束,由于有过盈配合,因而产生了应力。
第二个载荷步,拔出分析。
往外拉动钢销1.7 units,对于耦合节点上使用位移条件。
打开自动时间步长以保证求解收敛。
在后处理中每10个载荷子步读一个结果。
本篇只谈第一个载荷步的计算。
3.生成几何体上述问题是ANSYS自带的一个例子。
对于几何体,它已经编制了生成几何体的命令流文件。
所以,我们首先用经典界面打开该命令流文件,运行之以生成四分之一几何体;然后导出为一个IGS文件,再退出经典界面,接着再到WORKBENCH中,打开该IGS文件进行操作。
(3.1)首先打开ANSYS APDL14.5.(3.2)然后读入已经做好的几何体。
从【工具菜单】-->【File】-->【Read Input From】打开导入文件对话框找到ANSYS自带的文件\Program Files\Ansys Inc\V145\ANSYS\data\models\block.inp【OK】后四分之一几何模型被导入,结果如下图(3.3)导出几何模型从【工具菜单】】-->【File】-->【Export】打开导出文件对话框,在该对话框中设置如下即把数据库中的几何体导出为一个block.igs文件。
实例基于ANSYSWorkbench的轴承内外套的接触分析
实例基于ANSYSWorkbench的轴承内外套的接触分析问题描述轴承外套外半径为30mm,内半径为15mm,另外一端为20mm;轴承内套外半径为17mm,另外一端为12mm,而内径为8mm,内外套高度均为60mm。
当用10N的外力压入内轴承套后,试模拟轴承内外套的受力情况。
(接触摩擦系数为0.2),内外套材料均取默认的钢材。
问题分析1. 要仿真压入内套时接触面的摩擦应力和正压力,这是一个静力学问题。
因此需要使用静力学分析系统。
2.该问题属于接触非线性,而材料仍旧是线弹性的,但是同时要打开大变形开关进行几何非线性分析。
3.在DM中建模,使用旋转的方式直接创建四分之一模型就可以。
在DM中做好装配关系。
4.设置接触关系,是带摩擦的接触非线性,是外套的内锥面与内套的外锥面发生了接触。
5.使用扫掠方式划分网格。
6.在后处理中使用接触工具查看接触面的摩擦应力和压应力。
求解步骤1.打开ANSYS Workbench2.创建静力学分析系统。
3.创建装配模型。
双击geometry,进入到DM中,设置单位是毫米。
(1)创建轴承外套。
在XOY面内创建截面模型如下图。
围绕Y轴旋转90度,创建四分之一实体模型。
则外套创建完毕。
(2)创建轴承内套。
在XOY面内创建截面模型如下图。
围绕Y轴旋转90度,创建四分之一实体模型。
则生成了两个四分之一体。
退出DM.4.设置接触。
双击MODEL,进入到mechanical中。
选择外套的内面,内套的外面,其接触类型为有摩擦的接触,摩擦系数为0.2.5.划分网格。
对内外套均设置扫掠网格划分,并指定单元尺寸是2mm.网格划分结果如下。
可见,有2万多个节点,从而有6万多个自由度,静力学方程有6万多个。
6.进行分析设置。
打开大变形开关。
7.设置边界条件。
设置对称面约束。
四分之一界面上均为无摩擦支撑。
固定外套的顶面。
给内套顶面施加10N的力。
8.求解。
9.后处理。
查看接触状态。
可见,内套的上半部分在发生接触,而下半部分则没有接触。
Ansys workbench 螺栓接触实例操作
8例1 螺栓连接件分析如图所示为一螺栓连接的法兰连接件简图,法兰一端及内侧面固定约束。
载荷1为螺栓预应力1000N载荷2为螺栓预应力1500N载荷3为螺栓预应力2000N根据实际情况,自己设定接触类型,其中摩擦类型接触对时,摩擦系数为0.1 为方便设置,材料均取钢材,求其变形及应力。
边界条件螺栓连接件分析1 导入几何模型,进入DS模块2 材料设置选择默认的材料:Structural Steel3 设置接触螺栓与螺母的接触类型为Bonded螺栓杆与法兰的接触类型为Frictional,摩擦系数为0.1螺栓杆与垫片内壁的接触类型为Frictional,摩擦系数为0.1其余接触类型为No Separation4 网格划分5 选择分析类型·在“New Analysis”中选择结构静力学分析“Static Structural”;6 施加约束与载荷1)施加固定约束·点击“Static Structural”,在“Supports”中选择固定约束“Fixed Support”·选择法兰一端及内侧面固定约束;2)施加载荷·选择载荷1处螺栓杆表面,添加螺栓预应力“Bolt Pretension”大小为1000N ·选择载荷2处螺栓杆表面,添加螺栓预应力“Bolt Pretension”大小为1500N ·选择载荷3处螺栓杆表面,添加螺栓预应力“Bolt Pretension”大小为2000N5 设定求解类型1)求解变形·点击“solution”,点击“Deformation”选择“Total”,求解变形·点击“Stress”,选择“Equivalent (V on-Mises)”,求解等效应力6 单击“Solve”求解7 观察求解结果·点击“Total Deformation”查看变形·点击“Equivalent Stress”查看应力分布例2卡紧散热片的不锈钢扣件受力分析扣紧件是一个不锈钢的卡子,因为散热片同功率部件之间的接触力同最终的散热有很大关系,因此研究力的大小是很有意义的。
ansysworkbench接触实例分析
前言WokBench 是众所周知的好东西,以下是自己琢磨的一个小应用,肯定有不对的地方,欢迎指出,便于大家共同提高。
问题描述这是一个塑料小卡扣的例子,主要想使用WorkBench 了解在使用中,塑料件的变形是否足够。
模型是用ProE 制作的,为了简化,只切取了关于变形的部分,如下图:其中蓝色的部分是活动的,只有一个方向的运动,红色的部分是固定的。
大体的尺寸如下,单位是毫米:注意:在模型中,蓝色和红色部件的距离要控制好(这是由ProE 中,模型装配关系决定的),如果太近,软件将自动计算出一个接触区域,但对于这个例子,还需要手动扩大接触区域。
如果距离太远,在手动设置Pinball 类型的接触区域时,Pinball 的半径要设得很大,可能导致无法计算。
请参考上面的尺寸图纸调节两个部件之间的距离。
之后,设置接触面(2、3):需要将两个部件在运动过程中,会接触的地方一一标出,千万不要加无用的面。
将Pinball Region 设置为Radius 方式(4),并将Radius 设置一个合适的值(5),本例设置了3 毫米(如图,会形成一个蓝色的大圆球),求解的时候软件会使用这个PinBall 自动探测接触。
还需要将接触方式设置为无摩擦的(6)。
最后将接触面计算方式设置为Adjust To Touch(7)。
也可以尝试其他的方式,不过对于这个仅研究红色部件变形的例子就无所谓了。
关于单元格WorkBench 中可以不自行划分单元格(在解算的时候,如果没有手动的设置,软件就会先自动划分),软件帮你自动产生。
如果你的其他设置正确,即便是这个自动的值也能很精确了。
添加分析这个分析用静力学就可以了(1)。
之后要设置Analysis Setting(2)。
将Nuber Of Step 设置为2(3)。
注意:1)蓝色部件在运动的过程中,先压迫红色部件,再逐渐松开,因此必须将这个过程至少分解为至少两个阶段(阶段指“Step”)。
ansys workbench接触分析习题
)间的球形界面的压力形貌。
上机实验报告:软件版本:ANSYS workbench 19.21.主要分析过程及注意事项分析过程:●打开workbench,从左侧的“analysis system”中拖入“static structural”到中间空白区域●由于材料已经是默认的结构钢,所以我们不用修改,但是单位和它的显示模式我们要改成像下图中的(Tonne,mm,…)和“display values in project units”。
●在geometry中导入“ball-socket.x_t ”之前,先在右边的属性栏里,找到analysis type,将3D改为2D,改完之后再导入“ball-socket.x_t ”。
●双击model进去“mechanical”,选中Geometry,在Definition中把2D Behavior改为Axisymmetric。
同时检查工作单位制是否是Metric (mm,kg,N,s,mV,mA)●选中“contacts”,插入“Frictional”Frictional Coefficient设为0.4,behavior改为auto asymmetric(自动非对称),formulation改为augmented lagrange(后面的试验结果表明,formulation设为program controlled,结果都一样)●在analysis setting里把Large Deflection改为ON●鼠标选中mesh,我们可以在下面的element size 改变网格大小,本上机实验中会分别试验1.0mm和0.5mm,修改完后右键generate mesh可观看效果●选中static structural,插入fixed support ,选中socket的上边线,并apply,然后在插入loads里的force,这时选择ball的下边线,并apply,在define by里选择component,并在y方向上输入-1000。
5.3.9 接触设置综合实例[共10页]
5.3 状态非线性分析——接触5.3.9 接触设置综合实例通过前面例子的学习,已经了解了WB中接触设置。
下面以一个2D压片弯曲挤压胶片,胶片再承受密封流体压力的例子综合描述接触分析。
本例包含刚柔接触、自接触、密封流体压力。
1.建立2D模型如图5-3-99所示,建立一个含压模板、压片、胶片的2D模型。
由于压片上端为曲线,且压片与胶片均处于相对自由状态,所以很难精确定义压模板和胶片与压片相切的位置,因此压模板距压片有微小间隙,胶片与压片呈过盈状态。
压模板在整个过程中几乎不变形,而且也不是本分析所关注的目标,所以将其定义为刚体;压片在整个过程中存在大的弯曲变形,其结果将表现为首尾相接触,将其材料定义为非线性铝合金;胶片为橡胶件,整个过程中存在大应变,且胶片内部存在自接触可能,将其本构定义为Ogden 3rd Order类型。
压模板,命名tie,刚体压片,命名Surface Body,材料本构为非线性铝合金胶片,命名rub,材料本构为Ogden 3rd Order图5-3-99 2D模型2.2D模型及材料设置调用WB默认材料库内的非线性铝合金(General Non-linear Materials→Aluminum Alloy NL),新增一个材料,命名为rub,本构选择Hyperelastic→Ogden 3rd Order,9个参数分别为:MU1=0.043438MPa,A1=1.3,MU2=8.274E−5MPa,A2=5,MU3=−0.0006895MPa,A3=−2,D1=0.029MPa^−1,D2=0MPa^−1,D3=0MPa^−1。
在Geometry→2D Behavior处定义为Plane Stress(平面应力),如图5-3-100所示。
– 435 –第5章 非线性静力学分析– 436 – 3.Virtual Topology (虚拟拓扑)设置虚拟拓扑一般用于合并几个不同平面,使其保证为一个有限元拓扑模型,除此之外,还可用于分割模型。
ANSYS Workbench 17·0有限元分析:第15章-接触问题分析
第15章接触问题分析接触问题是一种高度的非线性行为,通常两个独立表面之间相互接触并相切时,称之为接触。
对接触问题进行分析时,需要较多的计算资源。
接触的特点是属于状态变化的非线性,也就是说,系统刚度取决于接触的状态,即部件之间是接触或是分离。
★ 了解接触问题分析方法。
15.1接触问题分析概述从物理意义上讲,接触的表面具有以下特点:相互之间不会渗透(如图15-1所示),可传递法向压缩力和切向摩擦力,通常不传递法向拉伸力,相互之间可自由分离和互相移动。
由于接触体之间是不相互渗透的,因此程序必须建立两表面间的相互关系以阻止分析中的互相穿透,这称为强制接触协调性。
(a)不渗透接触(b)渗透接触图15-1 接触方式15.1.1 罚函数法和增强拉格朗日法对于非线性实体表面接触,可使用罚函数或增强拉格朗日法,这两种方法都是基于罚函数方程的。
在此对于一个有限的接触力F normal存在一个接触刚度k normal的概念,接触刚度越高,穿透量x penetration越小,如图15-2所示。
第15章 接触问题分析对于理想无限大的k normal ,穿透量为0。
但对于罚函数法而言,这在数值计算中是不可能的,但是只要x penetration 足够小,或许可以忽略,且求解的结果也是精确的。
罚函数法和增强拉格朗日法的区别就是后者加大了接触力(压力)的计算。
罚函数法:F normal = k normal x penetration增强拉格朗日法:F normal = k normal x penetration+λ因为额外因子λ的存在,增强拉格朗日法对于k normal 变得不敏感。
增强拉格朗日法通过增加额外的自由度(接触压力)来满足接触协调性,因此接触力(接触压力)作为一个额外自由度直接求解,而不通过接触刚度和穿透计算得到。
normal F DOF =该方法可以得到0或接近0的穿透量,如图15-3所示,这要消耗更多的计算代价。
ANSYS 高级接触问题1-3
• ·如果收敛的迭代次数过多(或未收敛),降低刚度重新分析。 • 注意:罚刚度可以在载荷步间改变,并且可以在重启动中调整。 • 牢记:接触刚度是同时影响计算精度和收敛性的最重要的参数。如
果收敛有问题,减小刚度值,重新分析 • 在敏感的分析中,还应该改变罚刚度来验证计算结果的有效性。 • -在分析中减小刚度范围,直到结果(接触压力、最大SEQV等)
表面
• CONTA172 2D、3节点高阶单元,可用于带中间节点的二维实体单 元表面
• ·3D目标单元
• TARGE170
§3 面一面接触分析步骤、实例 (不通过接触向导创建接触对)
• Step 1.建立基体有限元模型
• 设置基体单元类型、实常数、材料特性
• 给基体分网:
• 命令:AMESH
•
VMESH
不再明显改变。
§2 摩擦
• 1、两个接触体的剪切或滑动行为可以是无 摩擦的或有摩擦的
• ·无摩擦时允许物体没有阻力地相互滑动; • ·有摩擦时,物体之间会产生剪切力。 • 2、摩擦消耗能量,并且是路径相关行为。 • 为获得较高的精度,时间步长必须小(图
2-1)
•
图2-1
• 3、ANSYS中,摩擦采用库仑模型,并有附 加选项可处理复杂的粘着和剪切行为。
面上其它节点约束。控制点能控制目标面的运动。
• 对Seal.dat施加的边界条见图3-3。
• Step 7.定义求解选项和载荷步,以下是默认 设置
• ·推荐使用N.L求解自动控制 • ·使用不带自适应下降的full Newton-
Raphson法求解 • ·时间步必须足够小。使用自动时间步。 • ·子步数的最大值(NSBMX)应较大,最小值
根据AnsysWorkbench的圆柱销接触分析
前面一篇基于Ansys经典界面的接触分析例子做完以后,不少朋友希望了解该例子在Workbench中是如何完成的。
我做了一下,与大家共享,不一定正确。
毕竟这种东西,教科书上也没有,我只是按照自己的理解在做,有错误的地方,恳请指正。
1.问题描述一个钢销插在一个钢块中的光滑销孔中。
已知钢销的半径是0.5 units, 长是2.5 units,而钢块的宽是4 Units, 长4 Units,高为1 Units,方块中的销孔半径为0.49 units,是一个通孔。
钢块与钢销的弹性模量均为36e6,泊松比为0.3.由于钢销的直径比销孔的直径要大,所以它们之间是过盈配合。
现在要对该问题进行两个载荷步的仿真。
(1)要得到过盈配合的应力。
(2)要求当把钢销从方块中拔出时,应力,接触压力及约束力。
2.问题分析由于该问题关于两个坐标面对称,因此只需要取出四分之一进行分析即可。
进行该分析,需要两个载荷步:第一个载荷步,过盈配合。
求解没有附加位移约束的问题,钢销由于它的几何尺寸被销孔所约束,由于有过盈配合,因而产生了应力。
第二个载荷步,拔出分析。
往外拉动钢销1.7 units,对于耦合节点上使用位移条件。
打开自动时间步长以保证求解收敛。
在后处理中每10个载荷子步读一个结果。
本篇只谈第一个载荷步的计算。
3.生成几何体上述问题是ANSYS自带的一个例子。
对于几何体,它已经编制了生成几何体的命令流文件。
所以,我们首先用经典界面打开该命令流文件,运行之以生成四分之一几何体;然后导出为一个IGS文件,再退出经典界面,接着再到WORKBENCH中,打开该IGS文件进行操作。
(3.1)首先打开ANSYS APDL14.5.(3.2)然后读入已经做好的几何体。
从【工具菜单】-->【File】-->【Read Input From】打开导入文件对话框找到ANSYS自带的文件\Program Files\Ansys Inc\V145\ANSYS\data\models\block.inp 【OK】后四分之一几何模型被导入,结果如下图(3.3)导出几何模型从【工具菜单】】-->【File】-->【Export】打开导出文件对话框,在该对话框中设置如下即把数据库中的几何体导出为一个block.igs文件。
workbench屈服分析ANSYS接触分析及四个强度理论文件
⎡ π 2 • 30e6 • 12.771 ⎤ P' = 0.25 • ⎢ ⎥ = 65648.3lbf 2 (120) ⎣ ⎦
(
)
July 3, 2006 Inventory #002022 WS2-4
线性屈曲
作业7 – 开始页
• • • • 选取 “A link to a geometry file on my computer or network” 浏览文件 “pipe.x_t”. 点击文件 “Pump_housing” 按照指导教师的要求 更改工作路径 “Open a new simulation based on the selected geometry” 启动DS,关闭模板菜单
July 3, 2006 Inventory #002022 WS2-5
线性屈曲
作业7 – 前处理
1. 将工作单位设置为 U.S. customary单位制:
– “Units > U.S. Customary (in, lbm, psi, F, s)”.
Workshop Supplement
ANSYS Workbench - Simulation ANSYS Workbench - Simulation ANSYS Workbench - Simulation ANSYS Workbench - Simulation
对于应力结果进行快速检查表明,模型在受载荷后仍保持在材料允 许的力学性能范围内。 正如前面所述,这一步在屈曲分析中并不是必要的,但却被认为是 比较符合工程实际情况的。
模型是一个钢管,一端固定,另一端自由,并在这个自由端施加 了纯压缩载荷。管的尺寸和材料属性如下: OD = 4.5 in ID = 3.5 in. E = 30e6 psi, I = 12.7 in^4, L = 120 in. 在这样的情况下,我们假设管子遵循手册中的如下公式:
ansys workbench接触分析
Workbench -Mechanical Introduction Introduction作业3.131接触控制作业3.1 –目标Workshop Supplement •作业3.1调查了一个简单组件的接触行为。
目的是为了说明由于不适当接触导致的刚体运动是怎么产生的。
•问题描述:问题描述–模型从一个简单Parasolid组件文件获得–我们的目标是在组件的各部件中建立接触,查看非对称加载对结果有何影响我们的目标是在组件的各部件中建接触,查看非对称加载对结果有何影响作业3.1 –假设Workshop Supplement •假设arm shaft 和side plate上的孔间的摩擦忽略不计,同样arm shaft 和stop shaft 之间的接触也忽略不计。
最后假设stop shaft固定在两个side plate之间。
之间Arm ShaftSide PlateSide PlatepStop Shaft作业3.1 –Project SchematicWorkshop Supplement •打开Project page(项目页)•通过“Units” 菜单确定:–Project单位设置为“US Customary (lbm, in, s, F, A, lbf, V).–选择“Display Values in Project Units”. . .作业3.1 –Project SchematicWorkshop Supplement1.在Toolbox(工具箱)中双击Static Structural建立新的分析系统1.2.Geometry上点击鼠标右键选择2在Import Geometry导入2.Contact_Arm.x_t文件作业3.1 –前处理Workshop Supplement3.双击Model打开Mechanical application.3.4.设置作业单位制系统:Units>U S Customary(in lbm lbf°F s V A)–Units > U.S Customary (in, lbm, lbf, F, s, V, A) 4.. . .作业3.1 –前处理Workshop Supplement5.在Connections上点击鼠标右键选择Rename Based on Definition5.•在各个部件彼此之间都定义了接触。
ANSYS高级接触问题73852
• 在数学上为保持平衡,需要有穿透值 • 然而,物理接触实体是没有穿透的 • 分析者将面对困难的选择: • 小的穿透计算精度高,因此接触刚度应该大; • 然而,太大的接触刚度会产生收敛困难:模型可能会振荡,接触
表面互相跳开。 • 接触刚度是同时影响计算精度和收敛的最重要的参数。你必须选
定一个合适的接触刚度。 • 除了在表面间传递法向压力外,接触单元还传递切向运动(摩
§2 接触单元
§2 接触单元
• 2. 点一面接触单元用于某一点和任意形状的面的 接触
• 可使用多个点-面接触单元模拟棱边和面的接 触;
• 不必事先知道接触的准确位置; • 两个面可以具有不同的网格; • 支持大的相对滑动; • 支持大应变和大转动。 • 例:点面接触可以模拟棱边和面之间的接触
和土壤的接触
§2 接触单元
§3 关于耦合和约束方程的应用
• 如果接触模型没有摩擦,接触区域始终粘在一起,并且分 析是小挠度、小转动问题,那么可以用耦合或约束方程代 替接触。
• 使用耦合或约束方程ห้องสมุดไป่ตู้优点是分析还是线性的
接触问题的一般特性
• §1 接触刚度
• 1、所有的 ANSYS 接触单元都采用罚刚度(接触刚度)来 保证接触界面的协调性
擦)。采用切向罚刚度保证切向的协调性。(图1-2) • 作为初值,可采用:Ktangent=0.01 · Knormal • 切向罚刚度与法向罚刚度以同样的方式对收敛性和计算精度产生
影响。
• 2、接触刚度的选取
• 选定一个合适的接触刚度值需要一些经验。
• 对于面一面接触单元,接触刚度通常指定为基体单 元刚度的一个比例因子。
§2 面-面接触单元
• §1 概述
静力学接触分析workbench
静力学接触分析如图所示,这个模型由四个部分组成,A区域受到一个垂直向下的力100N,B区域被完全固定,管状工件与夹具之间摩擦系数为0.4,其余各接触面的摩擦系数为0.1;此外还要施加螺栓(螺丝直径6mm)预紧力3000N,管状工件的材料为铜合金,其余为结构钢;在静力学分析的条件下,保证螺杆不会失效。
提示:1、接触区的网格划分尽量细化;2、要施加螺栓预紧力就需要对模型进行处理,做出一个切片(如下图);3、接触区的设置也极为重要。
分析流程:1、导入几何模型(做切片处理);2、添加材料属性,定义材料;3、划分网格(接触区的网格划分尽量细化);4、施加载荷和约束(预紧力的施加);5、求解(在重要零件或截面查看位移、应力);6、查看结果,得出结论;7、检验结果的正确性。
a、前处理b、求解c、后处理解题步骤:1、 导入模型:打开workbench ,双击static structural ,右键单击A3栏(即geometry )选择import geometry ,导入Pipe Clamp.x_t 模型,确定单位mm ;2、 切片处理:双击A3栏,进入Pipe Clamp.x_t 模型,如图1所示,新建坐标系(C 面),冻结模型(tools freeze ),在C 面处生成切片(create slice ),再将螺栓的两个solid 通过from new part 生成一个solid ;图1 螺栓切片处理3、 添加材料:返回到unsaved project-workbench 界面,双击A2栏(即engineering data ),双击outline filter 界面的A3栏(即general materials ),添加材料铜合金(即copper alloy ); 4、 定义材料:双击A4栏(即model ),将管状工件的assignment 设置为copper alloy ,其他材料均为structural steel ;5、 划分网格:单击mesh ,在其下拉菜单中选择preview surface mesh ,产生如图2所示相对粗糙的四面体网格,展开明细栏中的statistics 项目,检查模型节点输与单元数;图2 划分网格(粗糙)图3 statistics 项目6、 网格细分:选择装配图中的接触面,如图4所示,点击鼠标右键选择insert >refinement ,点击preview surface mesh ,观察其网格变化,并检查模型节点输与单元数,如图5、6所示;---------------------------------------------------------------------------------此为第一种方法 点击鼠标右键选择insert> contact sizing ,选择接触面和单元大小-------此为第二种方法图4 选择细化表面图5 网格细化图6 statistics 项目7、施加载荷:单击左侧的static structural,选择A表面,鼠标右键选择insert>force,力的大小设为100N,方向如图7所示;8、施加约束:选择B表面,鼠标右键选择insert>fixed support;9、加预紧力:选择如图所示D表面,鼠标右键选择insert>bolt pretension,设定力的大小为3000N;图7 施加约束与载荷10、添加摩擦系数:选择connections,在明细栏中将type改为frictional,管状工件与夹具之间的摩擦系数设为0.4,其余接触面的摩擦系数均为0.1;图8 设置摩擦面系数11、求解:单击solution,在弹出的工具条中,deformation下选择total查看装配图总变形;stress下选择equivalent stress查看装配图V on Mises等效应力;deformation下选择total查看螺栓总变形;stress下选择equivalent stress查看螺栓V on Mises等效应力;选择body,点击管状工件,鼠标右键选择insert>deformation>directional,查看管状工件X方向上的位移;右键单击solution选择insert,添加contact tool,查看螺栓与夹具在接触面处的frictional stress和pressure.12、查看结果:单击solve进行求解(图解);图9 装配图在X方向上的总位移图10 装配图Von Mises等效应力图11 螺栓在X方向上位移图12 螺栓Von Mises等效应力图13 螺栓与夹具接触面的frictional stress(摩擦应力)图14 螺栓与夹具接触面的pressure(压力)图15 管状工件在X方向上的位移13、查看报告:单击report preview,查看报告:表1:装配图、螺栓的位移和应力(如图9、10、11、12、15所示)表2:螺栓与夹具之间的受力分析(如图13、14所示)14、分析与结论:两种不同的细化网格对应力的结果产生很大影响(步骤6),但位移基本相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)间的球形界面的压力形貌。
上机实验报告:
软件版本:ANSYS workbench 19.2
1.主要分析过程及注意事项
分析过程:
●打开workbench,从左侧的“analysis system”中拖入“static structural”到中间空白区域
●由于材料已经是默认的结构钢,所以我们不用修改,但是单位和它的显示模式我们要改
成像下图中的(Tonne,mm,…)和“display values in project units”。
●在geometry中导入“ball-socket.x_t ”之前,先在右边的属性栏里,找到analysis type,
将3D改为2D,改完之后再导入“ball-socket.x_t ”。
●双击model进去“mechanical”,选中Geometry,在Definition中把2D Behavior改为
Axisymmetric。
同时检查工作单位制是否是Metric (mm,kg,N,s,mV,mA)
●选中“contacts”,插入“Frictional”
Frictional Coefficient设为0.4,behavior改为auto asymmetric(自动非对称),formulation改为augmented lagrange(后面的试验结果表明,formulation设为program controlled,结果都一样)
●在analysis setting里把Large Deflection改为ON
●鼠标选中mesh,我们可以在下面的element size 改变网格大小,本上机实验中会分别试验
1.0mm和0.5mm,修改完后右键generate mesh可观看效果
●选中static structural,插入fixed support ,选中socket的上边线,并apply,然后在插入loads
里的force,这时选择ball的下边线,并apply,在define by里选择component,并在y方向上输入-1000。
●选中solution,插入deformation total,还有它下面的strain – equivalent(von mise) 和stress –
equivalent(von mise)
●依然选中solution,这次插入contact tool
因为前面我们将behavior设为auto symmetric,所以这里contact side最好设为both,因为在自
动非对称行为中,软件会智能调换你前面设的contact面和target面,所以在计算结果里最好把两个面都显示出来,但最终的结果只属于接触面。
●左击选中Contact Tool,右击> Insert > Pressure和Penetration。
最后,。
●注意事项:
A.本人在自己的电脑上往geometry导入ball-socket.x_t 后,试着双击打开model,结果跳出
右图这个错误窗口,
解决方法:
右击geometry进入new designmodeler geometry,接着:file – import external source geometry,导入之后再点击generate,问题解决。
B.关于contacts formulation的选择:
C.对称与非对称:
D.对称行为,能分别计算出接触面和目标面的结果,但得去contact tool分别单独设置
contact side,选择both的话只会显示目标面的结果(本结论适用于ansys 19.2)。
E.非对称性为,只有接触面上的结果,目标面上的结果为零。
F.经过本人试验,你在里,
不管是把“球设为contact,窝设为target”还是“球设为target,窝设为contact”
又或是“把behavior设成program controlled,把formulation 也设成program controlled”
还是“把behavior设成auto Asymmetric ,把formulation 也设成Augmented Lagrange”
它们三的计算结果都一样,比如,pressure都是9.9126Mpa!
这么做的好处是你万一不知道“球设为contact,窝设为target”还是“球设为target,窝设为contact”哪个好,你把behavior设成program controlled或者auto Asymmetric,软件会自动帮你选择最佳的方案,当然你需要在contact tool里把contact side设为both。
实验结果表明,软件把窝设成了contact面,把球设成了target面。
在内部互换!
2、用总体单元尺寸分别为1.0和0.5mm划分网格,绘出划分网格后的有限元模型图。
A.这是用1.0mm的单元尺寸划分的网格:
B.这是用0.5mm的单元尺寸划分的网格:
3、分别绘出两种网格划分方式下结构的von-Mises应力云图及位移云图,并在云图上标示出最大值所发生的位置;用contact tool绘出两种网格划分方式下接触面的接触状态,接触压力以及接触渗透云图。
①0.5mm,von-Mises应力云图
②1.0mm,von-Mises应力云图
③0.5mm,位移云图
④1.0mm,位移云图
为了直观地感受零件间的相对位移,我们可以通过auto scale来放大微小的位移。
⑤0.5mm,接触状态云图
⑥1.0mm,接触状态云图
⑦0.5mm,接触压力云图
⑧1.0mm,接触压力云图
⑨0.5mm,接触渗透云图
⑩1.0mm,接触渗透云图。