济南大学线性代数与空间解析几何大作业答案-第一章

合集下载

线性代数答案

线性代数答案

线性代数与解析几何作业答案第1次作业答案2. 设O 为一定点,A,B,C 为不共线的三点.证明:点M 位于平面ABC 上的充要条件是存在实数123k ,k ,k ,使得123OM =k OA+k OB+k OC ,且1123k +k +k =.证明:由A,B,C 三点不共线,则M 位于平面ABC 上⇔MA,MB,MC 共面⇔存在123,,a a a 不全为零,使得1230a MA a MB a MC ++=.即123()()()0a OA OM a OB OM a OC OM -+-+-=.整理,得123123()a a a OM a OA a OB a OC ++=++.若1230a a a ++=,则易证,,A B C 共线.于是可设11123a k a a a =++,22123a k a a a =++,33123a k a a a =++结论得证.3.证明:向量a b c -+,232a b c -+-,22a b c -+线性相关. (P28)证明:设,,λμυ,使得()(232)(22)0a b c a b c a b c λμυ-++-+-+-+=化简(22)(3)(22)0a b c λμυλμυλμυ-++-+-+-+=设22030220λμυλμυλμυ-+=⎧⎪-+-=⎨⎪-+=⎩计算得:4λ=,1μ=,1υ=-为此方程组的一组非零解.因此,三向量线性相关.4. 证明三维空间中四个或四个以上的向量一定线性相关. (P28)证明:设三维空间内的任意四个向量1a 、2a 、3a 、4a .1) 若1a 、2a 、3a 线性相关,则存在1k 、2k 、3k 不全为零,使112233a a a 0k k k ++=. 从而,可得1122334a a a 0a 0k k k +++=.由123,,,0k k k 不全为零,所以,1a 、2a 、3a 、4a 线性相关.2)若1a 、2a 、3a 线性无关⇒1a 、2a 、3a 不共面,其可作为空间的一组基,从而,4112233a a a a x x x =++,而1x 、2x 、3x 、1-不全为零,故1a 、2a 、3a 、4a 线性相关.对于三维空间中四个以上的向量,可以从中任取四个向量进行上述讨论,而后将其余向量前系数取为0,可以得到不全为零的系数使得这些向量的线性组合为零向量.5. 设123,,e e e 为一组基, (P28) (1) 证明:1232a e e e =+-,1232b e e e =++,1332c e e =+为一组基; (2) 设12332c e xe e =++,当x 取何值时,,,a b c 共面? 解:(1) 证明:只需证明,,a b c 线性无关即可.设,,λμυ,使得 0a b c λμυ++=.整理,得123(23)(2)(2)0e e e λμυλμλμυ+++++-++=则令 2302020λμυλμλμυ++=⎧⎪+=⎨⎪-++=⎩⇒232u λυλυλ=⎧⎪⎪=⎨⎪=-⎪⎩ 即0λμυ===.则知,,a b c 线性无关.(2) 解:,,a b c 共面⇔,,a b c 线性相关设,,λμυ,使得0a b c λμυ++=整理,得123(23)(2)(2)0e e e λμυλμυλμυ++++++-++=x .则令 2302020x λμυλμυλμυ++=⎧⎪++=⎨⎪-++=⎩⇒ 303(2)0x λυλυ-=⎧⎨+-=⎩ .若1x =,可以取1,5,3λμυ===的非零解.若1x ≠,则必有0λμυ===.从而,知1x =时,,,a b c 共面.方法2 因为,a 、b 不共线,则要使得,,a b c 共面,只需c 可由a 、b 表示即可.设12c a b x x =+整理,得121122123(23)e (2)e (2)e 0x x x x x x x +-++-+-+-=. 则1212232x x x x +=⎧⎨-+=⎩,及1220x x x +-=.方程组的解为113x =-、253x =⇒1x =.6. 已知三点(2,1,1),(3,5,1),(1,3,3)A B C ---,问,,A B C 是否共线? (P28)解:,,A B C 共线⇔AB 与BC 线性相关.(1,4,2)AB =,(2,8,4)BC =---,设0AB BC λμ+=⇒20480240λμλμλμ-=⎧⎪-=⎨⎪-=⎩⇒2λμ=.2λ=,1μ=为其中一个非零解,则由20AB BC +=,所以知,,A B C 共线.8. 已知向量a 与Ox 轴和Oy 轴的夹角为060,120αβ==,且||2a =.求a 的坐标.(P28)解:设a (,,)x y z =,则x ||||cos 1a i a i α=⋅==,y ||||cos 1a j a j β=⋅==-,又由||2a =,即2= ⇒z =.10. 设三个向量,,a b c 两两的夹角为045,且||1,||2,||3a b c ===.求向量2a b c +-的模.(P28)解:2222|2|(2)(2)||4||||42426(3a b c a b c a b c a b c ab ac bc +-=+-⋅+-=+++--=-=所以,|2|a b c +-=11. 设,,a b c 满足0a b c ++=的单位向量,试求a b b c c a ⋅+⋅+⋅的值. (P28)解:由22220||()()||||||2()a b c a b c a b c a b b a b b c c a =++=++⋅++=+++⋅+⋅+⋅,得到32a b b c c a ⋅+⋅+⋅=-.第2次作业答案12. 设向量,a b 的夹角为060,且||1,||2a b ==,试求2()a b ⨯,|()()|a b a b +⨯-. (P28)解:222()||(||||sin )3a b a b a b α⨯=⨯==;|()()||()()||||020|a b a b a a b b a b a a a b b a b b a b +⨯-=⨯-+⨯-=⨯-⨯+⨯-⨯=-⨯-=14. 设一个四面体的顶点为(1,2,3)A ,(1,0,2)B -,(2,4,5)C ,(0,3,4)D -,求它的体积.(P29)解:(2,2,1)BA =,(3,4,3)BC =,(1,3,2)BD =-,于是,四面体的体积11115|()|1532662||BA BC V BA BC BD BA BC BD BA BC ⨯=⋅⨯⋅=⨯⋅=⋅=⨯.15. 判断下列结论是否成立,不成立时请举例说明: (P29) (1)若0a b ⋅=,则a 0=或b 0=; (4)222()⋅=a b a b ;(2)若a a c ⨯=⨯b ,则必有b c =; (5)()()2a b a b a a a b b b +⨯+=⨯+⨯+⨯;(3)()()a b c a b c ⋅=⋅;(6)()()a b c a b c +⋅=⨯⋅.解:(1) 否,0a b ⋅=⇔ a b ⊥.例如:(1,0,0),(0,1,0)a b ==,则0a b ⋅=,但a 0≠及0b ≠; (2) 否,原式化为:()0a b c ⨯-=,即b c a k -=.例如:(1,0,0),(1,1,0),(0,1,0)a b c ===,则(0,0,1)a b ⨯==(0,0,1)a c ⨯=,但是b c ≠. (3) 否,原式意义为12k k =c a ,但是a 与c 可能不平行.例如:(1,0,0),(0,1,0),(1,1,1)a c b ===,但()()a b c a b c ⋅≠⋅. (4) 否,因为2222()||||cos a b a b θ⋅=,当0θ≠或π(,a b 不共线).例如:略.(5) 否,()()2a b a b a a a b b a b b a a a b b b +⨯+=⨯+⨯+⨯+⨯−−→⨯+⨯+⨯若,即a b b a ⨯=⨯=a b -⨯,得0a b ⨯=,所以要求,a b 共线.(6) 否,等式右边的运算不成立.16. 证明下列等式: (P29) (1) 2222()()a b a b ⨯=-⋅a b解:因为2222222222()()||||sin ||||cos ||||a b a b a b a b a b θθ⨯+⋅=+= ,从而结论得证.19. 求下列和式: (P29) (1)1cos cos2cos n θθθ++++; (2)sin sin 2sin n θθθ+++.解:当2k θπ=时,1cos cos2cos 1n n θθθ++++=+及sin sin 2sin 0n θθθ+++=.当2k θπ≠时,(1cos cos 2cos )(sin sin 2sin )1(cos sin )(cos 2sin 2)(cos sin )n i n i i n i n θθθθθθθθθθθθ++++++++=+++++++(1)2111i n i i in i e e eee θθθθθ+-=++++=-2221212sin sin 2sin cos 2sin cos 1222222.24sin 4sin 22n n i θθθθθθθθ++⎛⎫- ⎪=++⎪ ⎪⎪⎝⎭所以12,21sin()1cos cos 2cos 122.22sin 2n k n n k θπθθθθθπθ+=⎧⎪+⎪++++=⎨+≠⎪⎪⎩ 02,21cos cos()sin sin 2sin 222.2sin 2k n n k θπθθθθθθπθ=⎧⎪+⎪-+++=⎨≠⎪⎪⎩注:(1)11i n i e e θθ+--221[cos(1)sin(1)]1cos sin {1[cos(1)sin(1)]}(1cos sin )(1cos sin )(1cos sin )1cos cos(1)cos cos(1)sin sin(1)sin(1)cos sin(1)sin si (1cos )sin n i n i n i n i i i n n n n n i θθθθθθθθθθθθθθθθθθθθθθθθ-+++=---+++-+=---+--+++++-++++-=+-+2222n cos(1)(1cos )sin [cos cos(1)cos 1][sin sin(1)sin ]2(1cos )21212sin sin 2sin cos 2sin cos 1222222.24sin 4sin 22n n n i n n n n i θθθθθθθθθθθθθθθθθθθ+-+-+-++-++=-++⎛⎫- ⎪=++⎪ ⎪⎪⎝⎭方法2 (因子法)(1)1cos cos2cos n θθθ++++2sin 2(1cos cos 2cos )(2)2sin 212sin [sin()sin()][sin(2)sin(2)][sin()sin()]22222222sin 221sin sin()22.2sin2n k n n n θθθθθπθθθθθθθθθθθθθθθθθθ=++++≠⎧⎫=++--++--+++--⎨⎬⎩⎭++=当2k θπ=时,原式1n =+.故原式12,21sin()122.22sin 2n k n k θπθθπθ+=⎧⎪+⎪=⎨+≠⎪⎪⎩(2)sin sin 2sin n θθθ+++2sin 2(sin sin 2sin )(2)2sin2n k θθθθθπθ=+++≠1[cos()cos()][cos(2)cos(2)][cos()cos()]2222222sin 221cos cos()222sin2n n n θθθθθθθθθθθθθθθθ⎧⎫=--++--+++--+⎨⎬⎭⎩+-=当2k θπ=时,原式0=.故原式02,21cos cos()222.2sin 2k n k θπθθθπθ=⎧⎪+⎪-=⎨≠⎪⎪⎩20. 证明:2222121221|1|||(1||)(1||)z z z z z z ++-=++. (P29)证明:原式12121212(1)(1)()()z z z z z z z z =+++--121212122222121212121221222221122221(1)(1)()()1||||||||1||||||||(1||)(1||).z z z z z z z z z z z z z z z z z z z z z z z z z z =+++--=+++++--=+++=++1. 求过点(4,1,3)-且与直线3125x z y -+==-平行的直线方程. (P51) 解:所求直线的方向向量可设为:(2,1,5)n =-,且过点(4,1,3)-,则直线方程为:413215x y z -+-==-.2. 求直线235,322x y z x y z -+=⎧⎨+-=⎩的点向式方程. (P52)解:设交成直线的两平面的法向量分别为:12(2,3,1),(3,1,2)n n =-=-,则直线的方向向量12(5,7,11)n n n =⨯=,且容易算出点(1,1,0)-在直线上,故可得直线的点向式方程:115711x y z-+==.4. 求原点到直线521432x y z --+==-的垂线方程. (P52) 解:垂直直线且经过原点的平面方程为:4320x y z +-=.设直线方向向量(4,3,2)n =-,直线上点(5,2,1)P -,则(1,6,7)OP n ⨯=-,于是可得到经过直线且过原点的平面方程为:670x y z -++=.于是得到所求直线方程为4320670x y z x y z +-=⎧⎨-++=⎩. 方法2 (先求交点)设垂足为P ,则有(45,32,21)P t t t ++--,又由OP n ⊥,即4(45)3(32)2(21)0t t t +++---=,得2829t =-,则得交点为332627(,,)292929-,于是知道要求直线方向向量为(33,26,27)-,得直线 332627x y z ==-.8. 求过点(5,7,4)-且在三坐标轴上的截距相等的平面方程. (P52)解:记三坐标轴截距为a .01当0a =时,则平面方程可设为:0Ax By Cz ++=(,,A B C 不全为零),且5740A B C -+=,此时平面有无数个. 02当截距非0时,设平面1x y za a a++=,代入点(5,7,4)-,得2a =.此时得到平面方程20x y z ++-=.13. 求点(1,2,3)到直线1,23x y z x z +-=⎧⎨+=⎩的距离. (P52)解:设两平面法向量及直线方向向量分别为:12,,n n n ,点(1,2,3)P ,则12(1,3,2)n n n =⨯=--. 方法1 (面积法)设直线上一点000(0,,)P y z 代入直线方程00013y z z -=⎧⎨=⎩,求得点0(0,4,3)P ,于是0(1,2,0)PP =-,则001||||2P P A S d n P P n ∆==⨯,即0||62||PP n d n ⨯== 方法2 (求交点)过点P 且垂直直线的平面方程为:32110x y z --+=,则1,23,3211x y z xz x y z +-=⎧⎪+=⎨⎪--=-⎩,解得15,,222x y z ===,即交点为15(,,2)22P ,从而6||2d PP ==. 方法3 (极值法)根据方法1求得的点0P ,可得直线参数方程:,34,23x t y t z t ==-+=-+,直线上的点可以表示为(,34,23)t P t t t -+-+,设2222()||(1)(234)(323)tf t PP tt t ==-++-++-,于是知道t Rd ∈=()0f t '=,求得1/2t =,代入()f t 得2d =.15. 当a 取何值时,点(2,1,1)-和(1,2,2)-分别在平面53x y z a ++=的两侧? (P52)解:只需将两点代入式子53x y z a ++-,能使式子值异号即可.[523(1)1][513(2)2]0a a ⋅+⋅-+-⋅⋅+⋅-+-<⇒(8)(1)0a a --<,即得18a <<.17. 求两直线2132x y z +-==-和0,58x y z x y z +-=⎧⎨-+=⎩的距离. (P52)解:设两条直线分别为1l 、2l .直线1l 的方向向量为1(3,2,1)μ=-,且过点1(2,1,0)P -;设直线2l 上点200(,,0)P x y ,代入直线方程得到2(4,4,0)P -,设交得直线2l 的两平面法向量分别为12(1,2,1),(1,1,5)n n =-=--,则得到直线2l 方向向量212(6,4,2)n n μ=⨯=-,由212μμ=,知两直线平行.从而可得两直线间距离1121||5||PP d μμ⨯==注:若两直线不平行,则121212|()|||PP d μμμμ⨯⋅=⨯.8. 当a 取何值时,直线14353x y z a -+-==和3914347x y z +-+==-相交?并求交点坐标和两直线确定的平面方程. 解:设两直线方向向量分别为:12(,5,3),(3,4,7)n a n ==-,且易知两直线分别过点12(1,4,3),(3,9,14)P P ---,由于两直线不平行,故只需要1212,,n n PP 共面即可.即1212()0n n PP ⨯=,即53347041317a -=--, 得8a =. 设两直线的参数方程为:1181x t =+,1154y t =-,1133z t =+和2233x t =-,2249y t =-+,22714z t =-,交点满足121212,,x x y y z z ===,得212447t =,代入得交点23173210(,,)474747-. 两直线确定的平面法向量12(47,47,47)n n n =⨯=--,于是可设平面方程为0x y z D --+=,又过点1(1,4,3)P -,可得2D =-,于是得到平面方程20x y z ---=.方法2 (投影法)设直线12,l l 在yOz 平面的投影直线为1l ':43530y z x +-⎧=⎪⎨⎪=⎩,2l ':914470y z x -+⎧=⎪-⎨⎪=⎩,1l '与2l '的交点为73210(0,,)4747-,若1l 与2l 相交,则交点坐标可设为073210(,,)4747x -,得023147x =、8a =.第3次作业答案20. 当a 取何值时,两平面25x y az --=和32x ay z +-=相互垂直? (P52)解:两平面垂直,只需其法向量相互垂直即可.由法向量分别为12(1,2,),(1,,3)n a n a =--=-,则120n n ⋅=,即1230a a -+=,得1a =-.21. 求两平行平面229x y z -+=-和42421x y z -+=间的距离. (P52)解:设平面的法向量(2,1,2)n =-.容易得到两平面上的点分别为123(2,1,2),(3,,3)2P P --,于是平面间距离 12||39/21332||PP n d n ⋅===. 注:在直线上找点时只能先预设其中一个元素为零,而在平面上找点时,可以预先假设两个元素为零.如21题中可设平面上的点分别为12(0,0,9/2),(0,0,21/4)P P -.注:设两平行平面120,0x y z x y z n x n y n z D n x n y n z D +++=+++=,其上的点分别设为1111(,,)P x y z ,2222(,,)P x y z ,平面法向量(,,)x yz n n n n =,则平面间距离21212112|()()()||()()|||||||x y z n x x n y y n z z n x n y n z n x n y n z PP n d n n -+-+-++-++⋅====22.求直线4232z x y --=-=与平面26x y z -+=的交点和夹角. (P52) 解:设直线方向向量(1,1,2)μ=,平面法向量(2,1,1)n =-,由||31cos 62||||n n μθμ⋅===,即μ与n 夹角3πθ=,于是知道直线与平面夹角为6π.联合直线和平面方程即可求得交点2342226x y z x x y z -=-⎧⎪-⎪-=⎨⎪-+=⎪⎩ ⇒ 110226x yx z x y z -=-⎧⎪⎪-=⎨⎪-+=⎪⎩. 计算得73x =,103y =,143z =,即交点71014(,,)333.方法2 (参数法)设直线的参数方程为:2x t =+,3y t =+,24z t =+,代入平面方程得2(2)(3)(24)6t t t +-+++=,得13t =,得交点坐标71014(,,)333.23. 设动点到原点的距离等于它到平面1z =的距离.求动点的轨迹方程.(P52)解:设动点(,,)P x y z ,则满足|||1|OP z =-,即2222(1)x y z z ++=-,整理得22210x y z ++-=或221222x y z +=-+.(设1,,2x x y y z z ===-+,则原式化为2222x y z =+,表示旋转抛物面)25. 求经过四点(0,0,0),(1,1,0),(0,1,1),(1,0,1)O A B C 的球面的方程. (P52)解:设球面方程2222000()()()x x y y z z r -+-+-=,则满足方程组222200022220002222000222200(1)(1)(1)(1)(1)(1)x y z r x y z rx y z r x y z r ⎧++=⎪-+-+=⎪⎨+-+-=⎪⎪-++-=⎩ ⇒ 0000002222000111x y y z x z x y z r +=⎧⎪+=⎪⎨+=⎪⎪++=⎩⇒0001,2x y z r ====. 所以,球面方程为:2221113()()()2224x y z -+-+-=.方法2 (一般式)设球面一般式:2220x y z Dx Ey Fz G ++++++=,将点代入,得202020G E F D F D E =⎧⎪++=⎪⎨++=⎪⎪++=⎩ ⇒ 1110E F D G =-⎧⎪=-⎪⎨=-⎪⎪=⎩ ,即球面一般式为2220x y z x y z ++---=. 方法3 (几何法)若是可以看出给定的四点,,,O A B C 恰为正三棱锥的四个顶点,则容易知道球心为三棱锥的重心,即01111()(,,)4222P O A B C =+++=,03||2r OP ==.于是得球面方程2221113()()()2224x y z -+-+-=.28. 求准线为221,1,y z x ⎧+=⎨=⎩母线方向为(2,1,1)的柱面的一般方程. (P53)解:设母线方向为μ,设柱面上点(,,)P x y z ,则对应准线上点(,,)p p p Q x y z ,则PQ k μ=,于是得(2,,)Q P k x k y k z k μ=+=+++,由于Q 在准线上,则22()()121y k z k x k ⎧+++=⎨+=⎩ ⇒ 2211()()122x xy z --+++=, 整理,得2211()()1022x xy z --+++-= 或 222222222220x y z xy xz x y z ++---++-=.29. 求准线为221,1,y z x ⎧+=⎨=⎩ 顶点坐标为(2,1,1)的锥面的一般方程. (P53)解:记顶点(2,1,1)A ,设锥面上点(,,)P x y z ,对应准线上点(,,)p p p Q x y z ,则PQ k AQ =,于是得12()(,,)1111x k y k z k Q P kA k k k k---=-=----(1k ≠),由于Q 在准线上,则 22()()111211y k z k k kx k k --⎧+=⎪⎪--⎨-⎪=⎪-⎩⇒ 2211(1)(1)122y z x x --+++=--(2x ≠),整理,得 222(1)(1)(2)0x y x z x --+----= 或 222222220x y z xy xz y z ++--++-=(2x ≠).当2x =时,方程表示的是锥面的顶点,故锥面的一般方程为222222220x y z xy xz y z ++--++-=.30. 求直线1x y z -==绕1x y ==旋转所得旋转面的参数方程和一般方程.(P53)解:设旋转曲面上点(,,)P x y z ,相应子午线上的点(1,,)Q t t t +,设轴线上点(1,1,0)O ,则||||OP OQ PQ ⎧=⎪⎨⎪⎩垂直轴线⇒222222(1)(1)(1)x y z t t t t z ⎧-+-+=+-+⎨=⎩ ⇒2222(1)(1)(1)x y z z -+-=+-. 于是得旋转曲面一般方程22211(1)(1)2()022x y z -+----= 或 222222210x y z x y z +---++=.根据第一个旋转曲面方程可以得参数方程sec 1sec 111tan 22x y z θϕθϕϕ⎧=+⎪⎪⎪⎪=+⎨⎪⎪=+⎪⎪⎩02.22θπππϕ≤≤-≤≤ 方法2 (几何法)设子午线上点(1,,)Q t t t +,则同一纬线上点1,)P t θθ++,于是旋转曲面参数方程11x y z tθθ⎧=+⎪⎪=+⎨⎪=⎪⎩02.t R θπ≤≤∈.31. 求圆22(2)10x y z ⎧-+=⎨=⎩绕y 轴旋转所得旋转面的参数方程和一般方程.(P53)解:设圆上点Q ,则可设为(cos 2,sin ,0)Q θθ+,(,,)P x y z 为Q 点旋转所得,则||||OQ OP PQ y ⎧=⎪⎨⊥⎪⎩轴⇒ 22222(cos 2)sin sin x y z y θθθ⎧++=++⎨=⎩,于是,可得旋转曲面的参数方程 (2cos )cos sin (2cos )sin x y z θϕθθϕ=+⎧⎪=⎨⎪=+⎩02,02θπϕπ≤<≤< 旋转曲面的一般方程222(2)0x z -+=⇒2225x y z ++-=±⇒22222(5)16(1)0x y z y ++---=.方法2 (几何法) 设旋转曲面上一点(,,)P x y z ,则由旋转可以知道P由圆上点,0)Q y 旋转得到,又Q 点在圆上,则其一般方程222)10y +-= 或 222222(3)16()0x y z x z +++-+=.由第一个式子可容易得参数方程如上.32. 通过坐标系的平移,化简二次曲面方程2222210x y z x y z ---++-=,并指出曲面的类型. (P53)解:原式化简为22213(1)(1)()24x y z -----=. 设11,1,2x x y y z z =-=-=-,则原式可化为: 2222221x y za a a +-=-,其中a =, 于是知将坐标系沿着方向1(1,1,)2μ=平移可将原曲面化为标准形式,且易知次二次曲面为旋转双叶双曲面.注:此二次曲面是经过标准旋转双叶双曲面平移得到(同一个坐标系),其平移向量1(1,1,)2μ=.36. 选取适当的新坐标系,化二次曲面方程10xy x y z -+++=为标准方程,并指出曲面的类型.(P53)解:由2222(1)(1)()()22x y x y z x y -+++=-+-=-. 令11(2),(),222x x y y x y z z =-+=+=+,得新坐标系11(,2e =,21(,2e =,3(0,0,2)e =及(1,1,2)O =--,因此,曲面在新坐标系123[;,,]O e e e 中为:2222x y z =-,此为双曲抛物面. 注:22()()()()222222a b a b a b a b a b a b ab +-+-+-=+-=-. 方法2设x y ==,则原式化为22102u v z -+= 即2202u z +=, 再设,2,2x u y v z z ==-=+,可将原式化为:2222x y z =-+.由,222x y x y x y z z +-+==-=+,即新坐标系11(,2e =,21(2e =-,3(0,0,2)e =及(1,1,2)O =--,因此,曲面在新坐标系123[;,,]O e e e 中为:2222x y z =-+,此为双曲抛物面.第4次作业答案1. 解下列线性方程组: (P65)(1)123123123123312213231x x x x x x x x x x x x +-=-⎧⎪+-=⎪⎨++=⎪⎪+-=⎩ ; (4)1234123412342462410x x x x x x x x x x x x +-+=⎧⎪-++=⎨⎪-+-+=⎩; (7)1245123412345123453020426340242470x x x x x x x x x x x x x x x x x x ---=⎧⎪---=⎪⎨-++-=⎪⎪+-+-=⎩.解:(1)121314342242,,7,11311131113111312121014301430143111300130013001312310132007500016r r r r r r r r r r r -→-→-→-→--→--------⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪------⎪ ⎪ ⎪ ⎪−−−−−−−−→−−−−→−−−−→⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭. 从最后一个矩阵的最后一行看出,原方程组无解.(4)233231212312117,,42,,63311411246121141171114110614100103611110003212100133r r r r r r r r r r r r →-→-→→↔⎛⎫⎪---⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-−−−−−−−→--−−−−→--−−−−−−→ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭ 2151541101003318925725701001018918921210010013333r r →⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪⎪ ⎪−−−→ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.令4x t =,解得12345425721(,,,)(,,,)18918933x x x x t t t t =+-+-+,其中t F ∈.注:相应齐次解:(5,25,12,18)TX t =--,其中t F ∈.(7)23121323142434411,,43212124,151103111031110311121002221022214263406615000129324247022105004124r r r r r r r r r r r r r r r --→-→-→-→→→------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪------- ⎪ ⎪ ⎪−−−−−−→−−−−→−−−−−→ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭43423241213,437110311100210006*********10201006631001000010010044111000100010001333r r r r r r r r r r -→→-→→-→--⎛⎫⎛⎫--⎛⎫ ⎪⎪⎪ ⎪ ⎪-- ⎪-⎪⎪- ⎪ ⎪⎪−−−−−→−−−→⎪⎪⎪- ⎪ ⎪⎪ ⎪ ⎪⎪- ⎪-- ⎪⎪⎝⎭⎝⎭⎝⎭. 令5x t =,解得12345(,,,,)(7,5,0,2,6)T T X x x x x x t t t t ==,其中t F ∈.2. 当a 为何值时,下列线性方程组有解?有解时求出它的通解. (P66)(1)12312312332223226x x x x x x ax x x ++=⎧⎪--=-⎨⎪-+=⎩ 解:212121323153,(2)11233212112371111230571101.55226022236324452005555r r r r r ar r a r r a a a a a a ↔-→-→-→⎛⎫⎪------⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪---−−−−−−→−−−−→ ⎪ ⎪ ⎪ ⎪ ⎪--++ ⎪⎝⎭⎝⎭ ⎪++ ⎪⎝⎭当324055a +=且452055a +=,或324055a +≠时,方程组有解,容易验证前者不成立.故324055a +≠,即8a ≠-,此时 32132315()3247,253241101001123324871120200101001055324324324452452452000010015555324324r r r a r r r r a a a a a a a a a a a a a →+-→→-+⎛⎫⎛⎫⎛⎫- ⎪ ⎪⎪---++ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪−−−−−−→−−−→ ⎪ ⎪ ⎪++ ⎪ ⎪ ⎪++ ⎪ ⎪ ⎪++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. 解得123420452(,,)(,,)8324324T Ta a X x x x a a a -+==+++.4. 求三次多项式32()f x ax bx cx d =+++,使()y f x =的图像经过以下4个点:(1,2)A ,(1,3)B -,(3,0)C ,(0,2)D .解:将四个点代入()y f x =,得23279302a b c d a b c d a b c d d +++=⎧⎪-+-+=⎪⎨+++=⎪⎪=⎩3432312134241211,9243127,21111211112111125111130202501012279310018242654002489000120001200012r r r r r r r r r r r r r r --→→→-→-→-→⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪-- ⎪ ⎪−−−−→−−−→−−−−−→ ⎪ ⎪ ⎪---- ⎪--- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭3121511100100024110100010022770010001024240001200012r r r r -→-→⎛⎫-⎛⎫ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪−−−→ ⎪ ⎪ ⎪- ⎪- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭. 得32517()224224f x x x x =-+-+. 方法2由方程组23279302a b c d a b c d a b c d d +++=⎧⎪-+-+=⎪⎨+++=⎪⎪=⎩,得等价方程组0127932a b c a b c a b c ++=⎧⎪-+-=⎨⎪++=-⎩,及2d =.即23311213212391127,22451001110241110111011111102010100102227932018242770010012424r r r r r r r r r r r r →-→→-→-→-⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪--−−−−→−−−−→−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---- ⎪⎝⎭⎝⎭ ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭. 于是得32517()224224f x x x x =-+-+.6. 兽医建议某宠物的食谱每天要包含100单位的蛋白质,200单位的糖,50单位的脂肪.某宠物商店出售四种食品,,,A B C D解:根据题意设配置食物,,,A B C D 的份量分别为1234,,,x x x x 千克,则1234123412345471010020251052002210650x x x x x x x x x x x x +++=⎧⎪+++=⎨⎪+++=⎩231311213233231111,536220,518,5547101001153251153252025105200059055300011811602210650011852500361685r r r r r r r r r r r r r r r -↔-→-→→→-→⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪−−−−−−→---−−−→---−−−−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭217475341105110100936936353501030103.22485485001001936936r r -→⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎪ ⎪--−−−→-- ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭令4x t =,得123434110535485(,,,)(,3,,)9362936x x x x t t t t =-+--+, 由于当230,0x x ≥≥时, 5.83t ≥、 5.3125t ≤,矛盾.故满足问题的解不存在.7. 给定线性方程组123412341234234225213820x x x x x x x x x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩ 将常数项改为零得到另一个方程组,求解这两个方程组,并研究这两个方程组的解之间的关系.对其他方程组作类似的讨论.解:231221132223123421234212342101118825211014730147301473.381200281460000000000r r r r r r r r -→-→-→-→----⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-−−−−→--−−−−→--−−−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭21210111880147300000r r -→-⎛⎫⎪−−−−→-- ⎪ ⎪⎝⎭.令3142,x t x t ==,解得123412121212(,,,)(11188,473,,)(11,4,1,0)(18,7,0,1)(8,3,0,0).T T T T T X x x x x t t t t t t t t ==-+-+-=-+-+-当常数项取值为零时,从上述操作中得其解为123412121212(,,,)(1118,47,,)(11,4,1,0)(18,7,0,1)T T T T X x x x x t t t t t t t t ==--+=-+-.容易看出,解X 是由X 加上(8,3,0,0)T-得到的.2. 证明:每个方阵都可以表示为一个对称矩阵与一个反对称矩阵之和的形式.(P110)证明:设矩阵A ,则A B C =+,其中2T A A B +=,2TA A -=. 容易验证矩阵B 为对称阵,C 为反对称阵.3. 设312134A ---⎛⎫= ⎪⎝⎭,222414433B -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭,114112C ⎛⎫⎪=- ⎪ ⎪--⎝⎭.计算2,,,,,AB BC ABC B AC CA . 解:222312181116414134301126433AB -⎛⎫-----⎛⎫⎛⎫ ⎪=--= ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪-⎝⎭; 222114841441121143312513BC --⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=---= ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭;11181116106141301126129312ABC ⎛⎫---⎛⎫⎛⎫⎪=-= ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪--⎝⎭; 222222244641441412384334338411B ----⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=----=-- ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭;11312304113415412AC ⎛⎫---⎛⎫⎛⎫ ⎪=-= ⎪ ⎪ ⎪--⎝⎭⎝⎭ ⎪--⎝⎭; 11222312411371213412156CA -⎛⎫⎛⎫---⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪----⎝⎭⎝⎭.4. 计算000211122222111n n n n n n a b c x x x a b c y yy a b c z z z a b c ⎛⎫ ⎪⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪⎝⎭. (P110) 解:原矩阵乘法得0000002111222200020111nnni i i iiii i i n n nnn i i i iii i i i n nnn ii i iii n nn i i i a b c x a x b x c xx x a b c y y y a b c y a y by c z z z z a z bz c a b c =========⎛⎫⎛⎫ ⎪⎪ ⎪⎛⎫ ⎪⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑. 5. 计算()1112112122221212n n m m m mn n a a a y a a a y x x x a a a y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭. (P110) 解:原矩阵乘法得()1112111212222212121111112n mmmn mn m i i i i i in i ij j i i i j i m m mn n n a a a y y a a a y y x x x x a x ax a x a y a a a y y =====⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎛⎫ ⎪⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑∑∑.第5次作业答案7. 计算下列方阵的k 次幂,1k ≥: (P110)(1)cos sin sin cos θθθθ⎛⎫⎪-⎝⎭; (2)a b b a ⎛⎫ ⎪-⎝⎭; (3)11001010010001a a ⎛⎫ ⎪ ⎪ ⎪⎪⎝⎭; (4)11111⎛⎫⎪⎪ ⎪⎪⎝⎭; (5)111212122212n n n n n n a b a b a b a b a b a b a b a b a b ⎛⎫⎪ ⎪⎪ ⎪⎝⎭. 解:(1)由于2222cos sin cos sin cos 2sin 2cos sin 2cos sin sin cos sin cos sin 2cos 22cos sin cos sin θθθθθθθθθθθθθθθθθθθθ⎛⎫-⎛⎫⎛⎫⎛⎫==⎪⎪⎪⎪-----⎝⎭⎝⎭⎝⎭⎝⎭. 假设当1n k =-(2k ≥)时,1cos sin cos(1)sin(1)sin cos sin(1)cos(1)k k k k k θθθθθθθθ---⎛⎫⎛⎫=⎪⎪----⎝⎭⎝⎭成立.当n k =时,1cos sin cos sin cos sin cos sin cos(1)sin(1)sin cos sin cos sin cos sin cos sin(1)cos(1)cos cos(1)sin sin(1)cos sin(1)sin cos(1)sin k k k k k k k k k k θθθθθθθθθθθθθθθθθθθθθθθθθθθθ---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⎪ ⎪⎪ ⎪⎪-------⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭----+-=-cos sin .cos(1)cos sin(1)sin sin(1)cos cos(1)sin cos k k k k k k k k θθθθθθθθθθθθ⎛⎫⎛⎫= ⎪ ⎪-----+--⎝⎭⎝⎭由数学归纳法,得cos sin cos sin .sin cos sin cos kk k k k θθθθθθθθ⎛⎫⎛⎫=⎪⎪--⎝⎭⎝⎭(2)当220a b +=时,原式00000000k⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭;当220a b +≠时,由cos sin sin cos a b b a θθθθ⎛⎫⎛⎫=⎪⎪--⎝⎭⎝⎭,其中cos θθ==,于是由(1)得 22/222/2cos sin cos sin ()()sin cos sin cos kkk k a b k k a b a b b a k k θθθθθθθθ⎛⎫⎛⎫⎛⎫=+⋅=+⋅ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭. 方法2由001011010k k i k i k i i ki a b aI b C a b b a -=⎛⎫⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭∑,其中cos sincos sin01222210sin cos sin cos2222ii i i i i ππππππππ⎛⎫⎛⎫ ⎪ ⎪⎛⎫== ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭-- ⎪ ⎪⎝⎭⎝⎭, 所以0000cos sin012210sin cos 22k ki k i iik i ik i k kk i i i k i i k kki i k i i i k i i kk i i i i C a b C ab a b C a b b a i i C a b C a b ππππ--==-=--==⎛⎫⎪⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪--⎝⎭⎝⎭- ⎪⎝⎭∑∑∑∑∑. 方法3设nn n n n a b a b b a b a ⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭,则11n n nn n n a a a b b b b a a b ++=⋅-⋅⎧⎨=⋅+⋅⎩ ⇒ 21121()()[()]()[()]n n n n n a a ib a a ib a a ib a a ib a a ib a +++-+=--+==--+ ⇒ 1111[()()]2n n n a a ib a ib +++=++-,同理,得1()()22n n n b ia b iab a ib a ib +-+=++-. (3)将矩阵分块得211001010010001a A I B a O A ⎛⎫⎪⎛⎫⎪== ⎪⎪⎝⎭ ⎪⎝⎭,其中11000,,010100a A I O ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 则12kkk k k A I A kA B O A OA -⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,又其中110101kka ka A ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,得11101(1)010101000100100010001kkk k a ka k k k a k A kA a ka OA --⎛⎫⎛⎫⎪⎪⎛⎫ ⎪ ⎪==⎪ ⎪ ⎪⎝⎭⎪⎪⎝⎭⎝⎭. (4)设()11111n I B ⎛⎫ ⎪ ⎪=+ ⎪⎪⎝⎭,其中10110,110nI B ⎛⎫⎛⎫⎪⎪ ⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 则()011111kk k i i n ki I B C B =⎛⎫ ⎪ ⎪=+= ⎪ ⎪⎝⎭∑,当i n <时,(1)(1)1(1)(1)(1)(1)n i i n i ii i i n i O I B O O -+--+----+⎛⎫=⎪⎝⎭;当i n ≥时,in n B O ⨯=.当k n <时,1101100111011111kk k kkki i k k k i k C C C C B C C =⎛⎫ ⎪ ⎪⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎪⎪⎝⎭∑; 当k n ≥时,11101111111kn k k ki i ki k C C C B C -=⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑. (5)由1111212122221212()n n n n n n n n a a b a b a b a b a b a b a A b b b a b a b a b a ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.1122211121211()()()()nnkk k k n n i i i i i i n n a a a aA b b b b b b Aa b Aa b A a a ---==⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=⋅=⋅==⋅ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑.9. 证明:两个n 阶上(下)三角形方阵的乘积仍是上(下)三角形方阵.(P110)证明:设两上三角方阵1112111121222222,n n n n nn nn a a a b b b a a b b A B a b ⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,设C AB =,于是当i j >时, 111ni nij ik kj ik kj ik kj k k k ic a b a b a b -=====+∑∑∑,其中等式右侧第一项中由i k >,0ik a =,第二项中k i j ≥>,则0kj b =,则0,ij c i j =>.即矩阵C 为上三角形矩阵.注:也可以从()1000,00j jj ij iiin b b c a a i j ⎛⎫ ⎪ ⎪ ⎪⎪==> ⎪ ⎪ ⎪ ⎪⎝⎭可以证明结论.10. 证明:与任意n 阶方阵都乘法可交换的方阵一定是数量矩阵. (P110)证明:设满足题设的矩阵为A ,设矩阵ij E 为只有(,)i j 元为1,其他元素为0的n 阶方阵,则ij ij AE E A =,即()(1)(1)()()i n n j in n j j n i n O OA O A O -⨯⨯-⨯--⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中()11,i i j j jn ni a A A a a a ⎛⎫ ⎪== ⎪ ⎪⎝⎭.即()1(1)1(1)()()i i n j ji ii jjjn n j i n n j j n n n i n ij ni a O a a a a a O A O A O O a a -⨯⨯-⨯-⨯-⨯⎛⎫⎪⎪ ⎪⎛⎫---- ⎪⎪-==⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪ ⎪⎝⎭. 最后的矩阵的等式中对应位置元素相等,则得0,,0,ki jka k i a k j =≠⎧⎪⎨=≠⎪⎩,且i j a a =.取遍1,2,,i n =,1,2,,j n =,得结论成立.13. 设方阵A 满足k A O =,k 为正整数.证明:I A +可逆,并求1()I A -+.(P111) 解:设B A =-,则k B O =,且212121()()k k k k k I B I B B B I B B B B B B B I B I ----++++=++++-----=-=.即I A I B +=-可逆,且111121()()()(1)k k k ii i i i I A I B I B B BB A -----==+=-=++++==-∑∑.方法21()()()()kkki ik iki A I I I C A I I O -=+-=-++-=∑ ⇒ 110()(1)()n i in i n i A I C A I I ---=+-+=∑.第6次作业答案18. 证明:不存在n 阶复方阵,A B 满足:AB BA I -=.(P111)证明:由于111111()()nn n n nn ik ki ik ki ik ki i k i k k i tr AB a b a b a b tr BA ======⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑∑,所以()0tr AB BA -=,而()tr I n =,故AB BA I -≠.20. 略.21. 略.22. 计算下列矩阵的逆矩阵:(P111)(1)101-4-1-3-4-22-14423-32⎛⎫⎪⎪ ⎪⎪⎝⎭; (4)12kA A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭,i A 是in 阶方阵.解:(1)10141000101410001014100013420100033611000336110021440010012122010003147/31/3102332000103510200100841101---⎛⎫⎛⎫⎛⎫⎪⎪⎪---------- ⎪ ⎪ ⎪→→⎪ ⎪ ⎪----- ⎪ ⎪⎪-----⎝⎭⎝⎭⎝⎭→101410001014100001121/31/30001121/31/30000114/37/91/91/3000114/37/91/91/30000124/365/91/98/3100165/3721/37224/3729/372--⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪→⎪ ⎪---- ⎪ ⎪--⎝⎭⎝⎭→101065/931/938/313/3101101/6221/624/313/6200107/18223/1821/317/62000165/3721/37224/3729/372-⎛⎫ ⎪---⎪ ⎪-- ⎪-⎝⎭→100049/18625/1867/3113/6201002/9320/935/312/3100107/18223/1821/317/6200165/3721/3722/313/124⎛⎫⎪--- ⎪⎪-- ⎪-⎝⎭.则矩阵逆为49/18625/1867/3113/622/9320/935/312/317/18223/1821/317/6265/3721/3722/313/124⎛⎫ ⎪--- ⎪ ⎪-- ⎪-⎝⎭.(4)由于111122211K K K A I A A A I A I A ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭111112221K K K A I A A I A A I A ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 则其逆为11211K A A A ---⎛⎫ ⎪⎪⎪ ⎪ ⎪⎝⎭.23. 求解下列矩阵方程:(2)010010123001001246.100000369X X ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(P111)解:设111213212223313233a a a X a a a aa a ⎛⎫⎪= ⎪⎪⎝⎭则 2122231112************3233212231322133221112133132111231133201001001230010010246.1000000369a a a a a a a a a a X X a a a a a a a a a a a a a a a a a a a a --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭得381415112511X ⎛⎫⎪= ⎪⎪⎝⎭.第7次作业答案24. 求以下排列的逆序数,并指出其奇偶性:(P112)(1)(6,8,1,4,7,5,3,2,9); (2)(6,4,2,1,9,7,3,5,8); (3)(7,5,2,3,9,8,1,6,4).解:=5+6+0+2+3+2+1+0+0=19逆序数为奇排列;(6,8,1,4,7,5,3,2,9)=5+3+1+0+4+2+0+0+0=15逆序数为奇排列;=6+4+1+1+4+3+0+1+0=20m 逆序数为偶排列.(6,4,2,1,9,7,3,5,8) (7,5,2,3,9,8,1,25. 计算下列行列式:(P112)(1)101-4-1-3-4-22-14423-32; (2)14-1-11-2-11-33-4-201-1-1; (3)x ax bx c y ay b y c z az b z c+++++++++; (4)12kA A A ,i A 是i n 阶方阵; (5)121,212n nn n n nna a a a a a -; (6)12111111111na a a +++(7)1111n n nna b a b c d c d ; (8)111212122212nn n n n na b a b a b a b a b a b a b a b a b ---------.解:(1)11-411-411-4-1-3-4-20-3-3-60-3-3-63141(3)3(12148)372.2-1440-1212003148423-3203-5100-84===⋅-⋅=-+⋅=--(2)14-1-114-1-11111111-2-110-602810(1)1575(1)0810(1)(1)(3260)28.-33-4-2015-7-56460206401-1-101-1-1----==---=-=-=--+=------(3)0.x a x b x c a b b c x cy ay b y c a b b c y c z az b z c a b b c z c+++--++++=--+=+++--+ 101111011110100.1000010000x a x b x c x x y a y b y c y a b c y a b c z az bz c z z +++⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪+++=== ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭111110.010010a b cab ca xb yc z x a x b x cx a x b x c xx x x x xy a y b y c y a y b y c y y y y x y x y x z az bz cz az bz czz zz xz xz x+++++++++--+++====+++----++++++----。

济大线代大作业答案

济大线代大作业答案
由此可解得 B = -6, D = -27. *解 2: L 在 xOy 平面内,则 L 与 z = 0 有无穷多个交点,即方程组
济南大学
线性代数大作业
参考解答
第 7 页 共 18

x 2y z 9 0 x 2y 9 0 也即 有无穷多解, 3 x By z D 0 有无穷多解, 3x By D 0 z0

1 0 k 3 R 1 1 0 R ( 1 , 2 , 3 ) 3 , 0 1 1
1 0 k ∴ 1 1 0 k 1 0 0 1 1

k 1 。
5.解 1:过 L 的平面束方程为
( x 2 y z 9) (3x By z D) 0
济南大学
线性代数大作业
参考解答
第 4 页 共 18

4.解: AP PB
A PBP
1
0 1 0 2 0 0 6 1 1
A 2 PBP 1 PBP 1 PB 2 P 1 , 同理 A5 PB5 P 1
又 B B ,故
有条件知行列式可被 16 整除.
济南大学
线性代数大作业
参考解答
第 3 页 共 18

第二章 矩阵及其运算
一、是非题 二、填空题
1. √ 2. × 3. × 4. × 5. √ 4. a 0
1. 4 ; 2
3. a11a 22 a nn 0
2.
1 0 0 0
B
0 0 1 0
1 0 2. 解:D r2 r1 (1), r3 r1 (1), r4 r1 (1) 0 0 1 0 r3 r2 (2), r4 r2 (3) 0 0 1 1 0 0 1 1 2 3 =1 1 3 3 10 1 1 2 3 1 1 2 3 5 9 9 19

线性代数与空间解析几何及其应用课后习题1.1

线性代数与空间解析几何及其应用课后习题1.1

1.11. 图1-1表示了B 省的3个城市123,,B B B 与C 省的3个城市123,,C C C 的交通连接图,称为一个交通网络.每条线上的数字表示此通路上不同的运路(公路,铁路,水路,空路)数目.若以(,1,2,3)ij a i j =表示从i B 到j C 的运路数,试写出矩阵()ij a =A.图1-1解:111213212223313233042213430a a a A a a a a a a ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.2. 当22812x y u u z x ⎛⎫⎛⎫=⎪ ⎪-⎝⎭⎝⎭时,,,,x y z u 各取何值?解 由2,2,1,82x u y u z x ===-=可得,4,1,1,2x y z u =-=-==-.. 3. 写出即是上三角形矩阵又是下三角行矩阵的n 阶矩阵的一般形式.解112200000nn a a A a ⋅⋅⋅⎛⎫ ⎪⋅⋅⋅⎪= ⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪⋅⋅⋅⎝⎭4. 下列矩阵哪些是行阶梯形矩阵,哪些不是?(1)321400010000⎛⎫⎪⎪ ⎪⎝⎭;(2)321401560245⎛⎫ ⎪ ⎪ ⎪⎝⎭;(3)321401060010⎛⎫ ⎪ ⎪ ⎪⎝⎭;(4)321400000010⎛⎫ ⎪ ⎪ ⎪⎝⎭. 解(1),(3)是,(2),(4)不是.5. 下列矩阵哪些是行简化的阶梯形矩阵,哪些不是?1021102011101101(1)0101;(2)0100;(3)0000;(4)0011.0010000100010000⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭解(1),(3)不是,(2),(4)是. 6. 写出线性方程组12n x x x b +++=的系数矩阵和增广矩阵,增广矩阵的行和列是多少?它是不是行阶梯形矩阵?是不是行简化阶梯形矩阵?解系数矩阵A =111000000n n⨯⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭,增广矩阵(1)11100000000n n b ⨯+⋅⋅⋅⎛⎫ ⎪⋅⋅⋅ ⎪= ⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪⋅⋅⋅⎝⎭A .增广矩阵n 行,1n +列,它是行阶梯形矩阵,也是行简化的阶梯形矩阵习题1.21. 已知A =131023⎛⎫ ⎪- ⎪ ⎪⎝⎭, B =202111-⎛⎫ ⎪- ⎪ ⎪-⎝⎭, C =122113-⎛⎫⎪ ⎪ ⎪-⎝⎭.求:2+C A ;-+A B C ; 32-++A B C .解 1723243-⎛⎫ ⎪+= ⎪ ⎪-⎝⎭C A ;251241⎛⎫ ⎪-+=- ⎪⎪-⎝⎭A B C ;913211136-⎛⎫ ⎪-++=- ⎪ ⎪--⎝⎭A B C .2. 已知两个线性变换112321233123x y y y x y y y x y y y =++⎧⎪=+-⎨⎪=-+⎩及1123212332323245y z z z y z z z y z z =++⎧⎪=--+⎨⎪=+⎩,把它们分别表示为矩阵形式,并求从123,,z z z 到123,,x x x 的线性变换.解 111122223333111123111;124;111051x y y z x y y z x y y z ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪⎪=-=-- ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111222333111123058111124056111051290x z z x z z x z z ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎪ ⎪⎪=---=- ⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪⎪⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 即 12322331258,56,29.x z z x z z x z z =+⎧⎪=-+⎨⎪=+⎩ 3. 已知矩阵1321⎛⎫=⎪-⎝⎭A ,3012⎛⎫= ⎪⎝⎭B ,381204⎛⎫= ⎪⎝⎭C .求:-AB BA ;BC ;CB ;22+A B ;T C A .解 3303-⎛⎫-=⎪-⎝⎭AB BA ;9243789⎛⎫= ⎪⎝⎭BC ;CB 无意义;22160511⎛⎫+= ⎪⎝⎭A B ;7782491T ⎛⎫⎪= ⎪ ⎪-⎝⎭C A .4. 设310121342⎛⎫ ⎪=-⎪ ⎪⎝⎭A ,102111211⎛⎫ ⎪=- ⎪ ⎪⎝⎭B ,且矩阵X 满足方程32-=A X B ,求X . 解 341251127115222⎛⎫- ⎪ ⎪⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭X . 5. 设101λ⎛⎫=⎪⎝⎭A ,求2A ,3A ,nA (n 为正整数). 解 21021λ⎛⎫=⎪⎝⎭A ,31031λ⎛⎫= ⎪⎝⎭A ,101n n λ⎛⎫= ⎪⎝⎭A .6. 某机械公司生产甲、乙、丙三种型号的机械,2000年和2001年的年产量如表1-1表1-1 表2-2型号产量甲 乙 丙2000年70 50 60 2001年80 60 70这三种机械的本价与销售价如表2-2所示,求两年的总成本和总销售额.解 设67705060,7880607089⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭A B ,则6770506012501430788060701460167089⎛⎫⎛⎫⎛⎫⎪=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭C AB . 即2000年的总成本是1250,销售总额是1430;2001年的总成本是1460,销售总额价格 型号 单位成本价 销售价甲6 7 乙7 8 丙8 9是1670.7. 已知()1,2,3T=α,11(1,,)23T =β,设T =A αβ,求nA .解 1()()()()()()()Tn T TTT T TT Tn n ==A αβA αβαβαβαβαβαβαβαβ-个个=, 而111(1,,)23233T ⎛⎫⎪== ⎪ ⎪⎝⎭βα),所以111333n n T n T n ---===A αβαβA . 8. 1143011-⎛⎫=⎪-⎝⎭A ,求23456()()+-+-+-+A E E A A A A A A . 解 原式=1043012-⎛⎫⎪-⎝⎭,2114114103011301101--⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭A E ,34567,,,,=====A A A E A A A E A A ,原式=71043012-⎛⎫+=+= ⎪-⎝⎭A E A E9. 设A 为m 阶对称矩阵,B 为m n ⨯矩阵,证明:TB AB 为n 阶对称矩阵. 证 ()()TTTT TT===B A B A B B B A BB A B,即T B AB 为对称矩阵. 10. 设A 为n 阶对称矩阵,B 为n 阶反对称矩阵,证明ΑΒ为反对称矩阵的充分必要条件是=ΑΒΒΑ.证 充分性,T T ==-A A ΒB ,又=ΑΒΒΑ,所以()T T T==-=-ΑΒΒΑΒΑΑΒ,即ΑΒ为反对称矩阵.必要性 由()T=-AB AB ,又T T T ==-AB B A BA (),所以=ΑΒΒΑ. 习题1.31. 用分块矩阵计算下列矩阵乘积:(1) 321021201102240110104003-⎛⎫⎛⎫ ⎪⎪⎪⎪ ⎪⎪-- ⎪⎪⎝⎭⎝⎭;(2) 11001000310010000100013100210214-⎛⎫⎛⎫⎪⎪-- ⎪⎪⎪⎪-⎪⎪-⎝⎭⎝⎭.解 (1) 设111221223210201124011040-⎛⎫ ⎪⎛⎫⎪== ⎪ ⎪-⎝⎭⎪⎝⎭A A A A A ,112121021003⎛⎫ ⎪⎛⎫ ⎪== ⎪ ⎪-⎝⎭ ⎪⎝⎭B B B ,则 1112111111122121222121112221+⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭A A B A B A B AB A A B A B A B ,而1111322167200242⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭A B , 1221101010110313--⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭A B .则111112217735⎛⎫+= ⎪⎝⎭A B A B .同理211122214921-⎛⎫+= ⎪-⎝⎭A B A B ,故原式77354921⎛⎫ ⎪ ⎪=⎪- ⎪-⎝⎭AB . (2) 11112122212211001000310010000100013100210214-⎛⎫⎛⎫⎪⎪--⎛⎫⎛⎫⎪⎪=⎪⎪ ⎪⎪-⎝⎭⎝⎭⎪⎪-⎝⎭⎝⎭A B A A B B 00 11112111222122220⎛⎫=⎪+⎝⎭A B A B A B A B 2000400010000056⎛⎫⎪ ⎪= ⎪- ⎪-⎝⎭. 2. 设34004300,0024002⎛⎫⎪-⎪= ⎪⎪⎝⎭A 求2k A . 解 设123424,4302⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭A A ,则2134342504343025⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭A ,24221112250025⎛⎫==⋅⋅⋅⎪⎝⎭A A A ,,由数学归纳法可得21250025kkk ⎛⎫= ⎪⎝⎭A ,同理可得1224404kk kk k +⎛⎫= ⎪⎝⎭A .于是,有221212250000025000044004kk k kk k k k k +⎛⎫ ⎪⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭A A A .3. 设A 为m n ⨯实矩阵,若,T=A A 0则=A 0.证 将A 按列分块:12=(,,,)n ⋅⋅⋅A βββ,则12T T TT n ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ββA β,于是1111212212221212(,,,)T T T T n T T T T Tn n T T T Tn n n n n ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ββββββββββββββA A ββββββββββ, 由,T =A A 0得0(1,2,,)T i i i n ==ββ,又因A 为实矩阵,故(1,2,,)0i i n ==β,故=A 0.4. 设120000=00n a a a ⎛⎫ ⎪⎪⎪ ⎪⎝⎭A ,其中当i j ≠时i j a a ≠(,1,2,,)i j n =.证明:与A可交换的矩阵只能是对角矩阵.证 设1111n n nn b b b b ⎛⎫⎪=⎪ ⎪⎝⎭B 与A 可交换,即 11111111110000000000n n n n nn n nn n a b b b b a a b b b b a ⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪= ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, 即11111211111212122122222121222212211222n n n n n n n n n n n n n n n n a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b ⎛⎫⎛⎫⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,由于1,,n a a 互异,比较非对角元素得i ij j ij a b a b = 即0i j ij a a b =(-),于是0()ij b i j =≠,故与A 可交换的矩阵1122000000000000nn b b b ⎛⎫⎪⎪= ⎪⎪⎝⎭B 为对角阵. 5. 当太空卫星发射之后,为使卫星在精确计算过的轨道上运行,需要校正它的位置.雷达屏幕给出一组矩阵1,,k x x ,它们给出卫星在不同时间里的位置与计划轨道的比较.设()12,,,k k =X x x x ,矩阵Tk k k=G X X 需要在雷达分析数据时计算出来,当1k +x 到达时,新的1k +G 必须计算出来.因数据矩阵高速达到,所以计算负担很重,而分块矩阵的计算在其中起了很大的作用.试写出从k G 计算1k +G 的矩阵形式. 解 由于()12,,,k k =X x x x ,所以()11,k k k ++=X X x ,又Tk k k=G X X ,因此 ()1111111,T TT T k k k k k k k k k k T k +++++++⎛⎫===+ ⎪⎝⎭X G X X X x X X x x x . 习题1.41. 设A 是三阶方阵,将A 的第1列与第2列变换得到B ,再把B 的第2列加到第3 列得到C ,以满足=AQ C 的可逆矩阵Q 为( ).01001001001()100;()101;()100;()100101001011001A B C D ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 分析 C 是对A 实行两次初等列变换得到的,因此C 可由A 与初等矩阵的乘积表示.解 −−−−→A B 初等列变换,即为010100001⎛⎫⎪= ⎪ ⎪⎝⎭B A ,−−−−→B C 初等列变换,即为100011001⎛⎫ ⎪= ⎪ ⎪⎝⎭C B ,所以010100011100011100001001001C A A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.因此应选()D .2. 把下列矩阵化为行最简形矩阵:10210231(1)2031;(2)0343;30430471--⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 11343231373354112024(3);(4)22320328303342123743----⎛⎫⎛⎫ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪----⎝⎭⎝⎭.解 10050105(1)0013;(2)0013;00000000⎛⎫⎛⎫⎪ ⎪-⎪⎪ ⎪ ⎪⎝⎭⎝⎭ 11023102020012201103(3);(4)00000000140000000000---⎛⎫⎛⎫⎪⎪-- ⎪ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭. 3. 设111213113112321333212223212223313233313233333,a a a a a a a a a a a a a a a a a a a a a ---⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A B ,问B 是A 经过哪种类型的初等变换得到的?并写出相应的初等矩阵.解 111213212223313233103(3(3),1)010001a a a a a a a a a -⎛⎫⎛⎫⎪ ⎪=-=⎪ ⎪⎪ ⎪⎝⎭⎝⎭B E A . 4. 设201413411234⎛⎫ ⎪=- ⎪ ⎪⎝⎭A .(1) 求(1(2),2)E A ; (2) (2,3)E A ; (3) (3(2))E A .解 10020142014(1)(1(2),2)01013411341201123452512⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭E A ; 1002014201(2)(2,3)00113411234010********⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭E A ; 100201421(3)(3(2))0101341134100212342468⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭E A. 5. 把矩阵4321⎛⎫=⎪⎝⎭A 表示成初等矩阵的乘积.解 12212432121214301r r r r ↔-⎛⎫⎛⎫⎛⎫=−−−→−−−→⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A1121220100101r r r ⨯-⎛⎫⎛⎫−−−→−−−→= ⎪ ⎪⎝⎭⎝⎭E即(1,2)(1(2),2)(2(1),1)(1(2))=A E E E E习题1.51. 设航线图如图1-3所示,(1) 写出邻接矩阵;(2) 求出顶点3V 到1V 长为3条航线的条数;(3) 是否存在从顶点4V 到2V 的长为3的航路? 图1-3解 (1)0100001111011000⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭A ; (2)2条:3241V V V V →→→;3231V V V V →→→;.(3)不存在 32101121122120011⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭A . 2. 设{}123456,,,,,X x x x x x x =表示6个人的集合.用R 表示他们彼此之间的相貌相像的程度,如表1-3,表中i x 行和j x 列交叉处的数字表示第i 个人i x 与第j 个人j x 的相貌的相像程度,则R 是X 上的Fuzzy 关系,其隶属函数(,)R i j x x μ就是i x 行与j x 列交叉处的数字,又(,)R i i x x μ=1表示任何个人自身与自身完全相象,(,)(,)R i j R j i x x x x μμ=表示第i 个人i x 与第j 个人j x 的相貌的相像程度与j x 和i x 的相像程度相同,写出这个Fuzzy 矩阵,并求出它的合成.解 10.8210.820.200.850.350.650.82100.900.120.120.20010.120.850.250.850.900.1210.250.200.350.120.850.251⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭A ,210.820.820.200.820.350.8210.850.350.850.350.820.8510.200.900.350.200.350.2010.250.850.820.850.900.2510.350.350.350.350.850.351⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭A A A .复习题一1. 若1122125212111231c a c b ⎛⎫⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪--⎝⎭⎝⎭ ⎪-⎝⎭C ,则=C _________. 解 由415a +-=,得110,4a c ==;又由1261b -++=-,得223,7b c =-=-. 答案4517⎛⎫⎪--⎝⎭.2. 设α为3行的列矩阵,若111111111T -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭αα,则=ααT_________.解 设(,,)T x y z =α,则222Tx xy xz xyy yz xz yzz ⎛⎫ ⎪= ⎪ ⎪⎝⎭αα,故2221x y z ===.因而 2223T x y z =++=αα.答案为3.3. 设111213122223212223111213313233311132123313,a a a a a a a a a a a a a a a a a a a a a ⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭A B ,1010100001⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,2100010101⎛⎫⎪= ⎪ ⎪⎝⎭P ,则必有__________.(A )12=AP P B ; (B)12P P A =B ;(C)21AP P =B ;(D)21P P A =B .解 解法一 选(B).首先,用初等矩阵右乘A 表示A 作行变换,故可排除(A),(C).2P A 表示将A 的第1行加于第3行,12()P P A 表示再将1,2两行变换.解法二 此题考察矩阵的初等变换和初等矩阵,比较矩阵A 和B ,可发现把矩阵A 的 第一行加到第三行,再把第二行与第一行互换,则可得到矩阵B ,而对矩阵做初等行变换,就相当于对矩阵左乘相应的初等矩阵,故上述过程恰相当于先对A 左乘2P ,再左乘1P ,即12P P A =B ,应选(B).4. 设1212(,,,),(,,,)n n a a a b b b ==αβ,求(1) ,TTαβαβ;(2) 令求T=γαβ,求kγ.解 (1) 12121122(,,,)Tn n n n b ba a a ab a b a b b ⎛⎫⎪ ⎪==+++ ⎪ ⎪⎝⎭αβ,()1111212212221212n n Tn n n n n n a a b a b a b a a b a b a b b b b a a b a b a b ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αβ. (2) ()()()kTTT =γαβαβαβ ()()()T T T T =αβαβαβαβ11()nTk i j i a b-==∑αβ11()nk Ti j i a b -==∑αβ11()nk i j i a b -==∑γ.5. 设()12=+A B E ,证明:2=A A 当且仅当2=B E . 证 先证必要性设2=A A ,因为()()()2221112242⎡⎤=+=++==+⎢⎥⎣⎦A B E B B E A B E ,即 ()22222++=+=+B B E B E B E ,所以2=B E .再证充分性设2=B E ,则有()()()2211122442=++=++=+=A B B E E B E B E A . 6. 任意一个n n ⨯矩阵都可以表示成一个对称矩阵与一个反对称矩阵之和.证 任一n n ⨯矩阵都可以表示为:22T T+-=+A A A A A ,因为 222T T T⎛⎫+++== ⎪⎝⎭A A A A A A , 即2T +A A 为对称矩阵,又222TT T T ⎛⎫---==- ⎪⎝⎭A A A A A A ,即2T-A A 为反对称矩阵. 7. 证明:如果A 是实对称矩阵且=A 20,那么=A 0.证 设111nn n nn a a a a ⎛⎫⎪=⎪⎪⎝⎭A ,因为T=A A ,所以 2221112122222122222212******nnn n nn a a a a a a a a a T⎛⎫+++⎪+++⎪=== ⎪ ⎪ ⎪+++⎝⎭A AA AA , 又因为=A 20,所以222120,12,i i in a a a i n+++==,,.由于()12,,;12,,ij a i n j n ==,,均为实数,故有120i i in a a a ===,12,,i n =,.即=A 0.8. 设,A B 均为n 阶对称矩阵,证明AB 是对称矩阵的充要条件是A 与B 可变换.证 由于,A B 是对称的,故,T T==A A B B ,如果=AB BA ,则可得()TT T ===AB B A BA AB ,即乘积AB 是对称的.反之,若AB 是对称的,即()T =AB AB ,则()TT T===AB AB B A BA ,即A 与B是可变换的.9. 设A 是任一方阵,证明,T T +A A AA 均为对称矩阵. 证 ()()()(),TTTTT TTT T T TT +=+=+==A AA A A A A AAA A A. 10. 设111222333⎛⎫⎪= ⎪ ⎪⎝⎭A ,求24100,,A A A .解 ()121,1,13⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,所以()()()()2111121,1,121,1,1261,1,1621,1,163333⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪====⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦A A ,同理34100996,6==A A A A .11. 设111212122212n n n n n n a b a b a b a b a b a b a b a b a b ⎛⎫⎪⎪= ⎪ ⎪⎝⎭A ,试计算mA ,其中m 为正整数. 解 为简化高阶幂mA 的计算,首先将其分解为一个列向量与一个行向量的乘积,为此令()()1212,,,,,,,Tn n a a a b b b ==αβ,则=A αβ,且1212(,,,)n n i i i n a a b b b a b a ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭∑βα 为一个数.为方便计算,令λ=βα,则()()()()()()1111.mmm m m m λλ----======βαA αβαβαβαββαβαβαβαβαββααβαβA 个12. 设11r r a a ⎛⎫⎪=⎪ ⎪⎝⎭E A E ,其中当i j ≠时i a ≠j a (),1,2,i j n =,i E 是i n 阶单位矩阵,1ri i n n ==∑.证明:与A 可交换的矩阵只能是准对角矩阵1r ⎛⎫⎪⎪⎪⎝⎭A A ,其中i A 是i n 阶矩阵.证 设1112112r r r rr ⎛⎫⎪=⎪ ⎪⎝⎭B B B B B B B 与A 可变换,其中B 与A 分块方式相同, 111211112111111212r r r r r r rr r r rr r r a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭B B B B B B E E E B B B B B B E , 即111112111112121121112r r r r r r r r rr r r r rr a a a a a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭B B B B B B BB B B B B ,由于12,r a a a 互异,比较非对角块元素得i ij j ij a a =B B ,即()0i j ij a a -=B ,于是()0ij i j =≠B , 因此与A 可交换的矩阵1122rr ⎛⎫⎪⎪= ⎪ ⎪⎝⎭B B B B 是准对角矩阵.。

解析几何第一章习题及解答

解析几何第一章习题及解答

第一章 向量代数习题1.11. 试证向量加法的结合律,即对任意向量,,a b c 成立()().a b c a b c ++=++证明:作向量,,AB a BC b CD c ===(如下图),则 ()(),a b c AB BC CD AC CD AD ++=++=+=()(),a b c AB BC CD AB BD AD ++=++=+=故()().a b c a b c ++=++2. 设,,a b c 两两不共线,试证顺次将它们的终点与始点相连而成一个三角形的充要条件是0.a b c ++=证明:必要性,设,,a b c 的终点与始点相连而成一个三角形ABC ∆,则0.a b c AB BC CA AC CA AA ++=++=+== 充分性,作向量,,AB a BC b CD c ===,由于0,a b c AB BC CD AC CD AD =++=++=+=所以点A 与D 重合,即三向量,,a b c 的终点与始点相连构成一个三角形。

ABCabcABCDabca b +b c +3. 试证三角形的三中线可以构成一个三角形。

证明:设三角形ABC ∆三边,,AB BC CA 的中点分别是,,D E F (如下图),并且记,,a AB b BC c CA ===,则根据书中例 1.1.1,三条中线表示的向量分别是111(),(),(),222CD c b AE a c BF b a =-=-=- 所以,111()()()0,222CD AE BF c b a c b a ++=-+-+-=故由上题结论得三角形的三中线,,CD AE BF 可以构成一个三角形。

4. 用向量法证明梯形两腰中点连线平行于上、下底且等于它们长度和的一半。

证明:如下图,梯形ABCD 两腰,BC AD 中点分别为,E F ,记向量,AB a FA b ==,则,DF b =而向量DC 与AB 共线且同向,所以存在实数0,λ>使得.DC AB λ=现在,FB b a =+,FC b a λ=-+由于E 是BC 的中点,所以1111()()(1)(1).2222FE FB FC b a a b a AB λλλ=+=++-=+=+且 111(1)()().222FE AB AB AB AB DC λλ=+=+=+ 故梯形两腰中点连线平行于上、下底且等于它们长度和的一半。

线性代数第一章习题参考答案

线性代数第一章习题参考答案

解:4234231142342311)1342(4432231144322311)1324()1()1(a a a a a a a a a a a a a a a a =--=-ττ4.计算abcdef abcdef abcdef abcdef efcf bfde cd bdae ac ab r r r r c c c r f r d r a c ec c c b 420020111111111111111111111)1(12133213213211,1,11,1,1-=--=--=---=-----++5.求解下列方程10132301311113230121111112121)1(12322+-++-++=+-++-+=+-+-+++x x x x x x x x x x x x c c r r 1132104201)3(113210111)3(21+-+--++=+-+-++=-x x x x x x x x x r r 3,3,30)3)(3(11421)3(3212-==-==-+=+---++=x x x x x x x x x 得二列展开cx b x a x b c a c a b x c x b x a c b a x c b a x c b a x ====------=32133332222,,0))()()()()((1111)2(得四阶范得蒙行列式6.证明322)(11122)1(b a b b a a b ab a -=+右左证明三行展开先后=-=-=-----=----=+=+--323322222)(11)()()()1(100211122)1(:2132b a b a b a ba ba b a b b a a b b a b a b b ab ab a b b a ab ab ac c c c1432222222222222222222222222(1)(2)(3)(1)2369(1)(2)(3)(1)2369(3))(1)(2)(3)(1)2369(1)(2)(3)(1)2369c c c ca a a a a a a ab b b b b b b b cc c c cc c cd d d d d d d d --++++++++++++==++++++++++++二三列成比例))()()()()()((1111)4(44442222d c b a d c d b c b d a c a b a d c b a dcbad c b a D +++------==44444333332222211111)(x d c b a xdcbax d c b a x d c b a x f 五阶范得蒙行列式解考虑函数=(5)))()()()()()(())()()()()()(()()())()()()()()()()()((454545453453d c d b c b d a c a b a d c b a A M D d c d b c b d a c a b a d c b a A ,A x x f ,Mx x f D a b b c a b c d b d a d d x c x b x a x ------+++-==------+++-=----------=于是的系数是中而对应的余子式中是(5)n n a a a a a xx x x 12101000000000100001----解:nn n n n n n n n n nn x a x a a x a x a a a a a a a xx x x D +++=-++--+--=---=+++-++++-10)1()1(1211110121)1()1()1()1()1(1000000000100001按最后一行展开7、设n 阶行列式)det(ij a D =把D 的上下翻转、或逆时针旋转090、或依副对角线翻转、依次得111131111211111,,a a a a D a a a a D a a a a D n n nn n nn n nnnn=== 证明D D D D D n n =-==-32)1(21,)1(证明:将D 上下翻转,相当于将对D 的行进行)1(21-n n 相邻对换得1D ,故D D n nn 2)1(1)1(--=将D 逆时针旋转090相当于将T D 上下翻转,故D n n D n n D T 2)1(2)1(2-=-=D 依副对角线翻转相当于将D 逆时针旋转090变为2D , 然后再2D 左右翻转变为3D ,故D D D D n n n n n n =--=-=---2)1(2)1(22)1(3)1()1()1(8、计算下列行列式(k D 为k 阶行列式)(1)aa D n 11=,其中对角线上元素都是a ,未写出的元素都是0;解:)1()1(0100)1(1122211111-=-+=-+==--++-+a a a a a aa a a D n n n n n n n n n n 列展开按行展开按(2)x a a a x a a a x D n=解:xaa x a a a n x x a aa x a a a x D nc c c n111])1([21-+==+++12)]()1([0001])1([1--≥--+=---+=n r r k a x a n x ax a x a a a n x k(3)111111)()1()1()()1()1(11111n a n a a a n a n a a a n a n a a a D n n n n n nnm n -+---+---+--=----+解:11111(1)(1)22111111(1)(1)()(1)(1)()111111111111()()()((1)(1)()(1)(1)()n nnn n n n n n n n n n n j i n n n n mnnna a a n a n a a a n a n D a a a n a n a a a n a n j i a a a n a n a a a n a n ----++++≥>≥------+---+-=--+---+-=-=--=--+---+-∏上下翻11)n j i i j +≥>≥-∏(4)n n nnn d c d c b a b a D11112=(未写出的均为0)解:)1(2)1(211112)(02232--↔↔-===n n n n n n n nnn r r c c nnnnn D c b d a D d c b a d c d c b a b a D mn得递推公式)1(22)(--=n n n n n n D c b d a D ,而11112c b d a D -=递归得∏=-=ni i i i i n c b d a D 12)((5)det(),||n ij ij D a a i j ==-解111,2,,1120121111110121111210311111230123010001200(1)(1)211201231i i j r r n i n c c n n n n D n n n n n n n n n n n n +-=-+-------==-------------==---------解:11211*222,3,,1111111(6)1111111111101111000111100:01111i n nr r n i n nna a D a a a a a D D a a -=+++=++-+-===+-解111211121,2,,12111(1)1110001(1)0000i inc c na n i ni ina a a a a a a a a a ++==++++==+∑9.设3351110232152113-----=D ,D 的),(j i 元的代数余子式为ij A ,求44333231223A A A A +-+解:24335122313215211322344333231=-----=+-+A A A A。

(完整版)线性代数课后习题答案第1——5章习题详解

(完整版)线性代数课后习题答案第1——5章习题详解

第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线性代数练习册第一章部分答案(本)

线性代数练习册第一章部分答案(本)
AAT AA A2 E
1 .AAT E; 3 . A2 E 2. AT A
AAT E A1 AT ; A2 E A1 A AT A1 A
或 或
AAT E AAAT AE AT A
AAT E, A2 E A( AT A) 0, A可逆 A1 A( AT A) A1 0 AT A
2 −3 1 r2 − 2 r1 0 0 1 3 0 2r2 0 −1 −3 r − 2r 0 4 1
2 0 0
−3 1 10
2 −3 1 r1 + 3r2 0 1 0 1 3 0 r1 0 0 0 0 2 −4 −4 −2 −2 3 5 3 4 3 1 0 −1 −4 3 −4 1 −2 0 −2 −1
而 B11 所以,
(1)11 0 1 0 1 0 , 11 211 0 2 0 2 0
11
1 4 1 0 1 1 4 A11 PB11 P 1 11 1 1 0 2 3 1 1 4 213 1 1 213 1 4 1 1 213 3 1 211 1 1 3 1 211 4 211 2731 2732 683 684
1 0 0
0 5 1 3 0 0
1 (2)B = 3 2 3 解:
−1 −3 −2 −3
3 5 3 4 −1 −3 −2 −3
1 B= 3 2 3 r2 − 3r1 r3 − 2r1 r4 − 3r1
1 0 0 0
3 −1 3 − 4 −8 0 −4 8 0 −3 6 −6 0 −5 10 −10 3 1 0 0 0 1 0 0 −4 −2 0 0 2 −2 0 0 3 2 0 0 −3 2 0 0

线性代数第一章习题解答

线性代数第一章习题解答

习题 1.11.计算下列二阶行列式.(1)5324;(2)ααααcos sin sin cos .解(1)146205324=−=;(2)ααααcos sin sin cos αα22sin cos −=.2.计算下列三阶行列式.(1)501721332−−;(2)00000d c b a ;(3)222111c b a c b a ;(4)cb a b a ac b a b a a c b a ++++++232.解(1)原式62072)5(1)3(12317)3(301)5(22−=××−−××−−××−××−+××+−××=(2)原式00000000000=⋅⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅+⋅⋅=d c b a c a d b ;(3)原式))()((222222b c a c a b c b ac b a c a ab bc −−−=−−−++=;(4)原式)()()2()23)((b a ac c b a ab b a ac c b a b a a +−++++++++=3)23())(2(a c b a ab c b a b a a =++−+++−.3.用行列式解下列方程组.(1)⎩⎨⎧=+=+35324y x y x ;(2)⎪⎩⎪⎨⎧=++=++=++82683321321321x x x x x x x x x ;(3)⎩⎨⎧=−=+0231322121x x x x ;(4)⎪⎩⎪⎨⎧=−+=+=−−031231232132321x x x x x x x x .解(1)75341−==D ,253421−==D ,333212−==D 所以721==D D x ,732==D D y .(2)2121111113−==D ,21281161181−==D ,41811611832−==D ,68216118133−==D ;所以111==D D x ,222==D Dx ,333==DD x .(3)132332−=−=D ,220311−=−=D ,303122−==D 所以1321==D D x ,1332==D D y .(4)8113230121−=−−−=D ,81102311211−=−−−=D ,81032101112=−−=D ;20131301213=−=D 所以111==D D x ,122−==D Dx ,333==DD x .4.已知xx x x x x f 21112)(−−−=,求)(x f 的展开式.解xxx x x x f 21112)(−−−=22)(11)(1)(111)(2)()(2⋅⋅−⋅−⋅−⋅−⋅−−⋅⋅+−⋅⋅−+⋅−⋅=x x x x x x x x x x xx x 23223+−−=5.设b a ,为实数,问b a ,为何值时,行列式010100=−−−a b b a .解01010022=−−=−−−b a a b b a 0,022==⇒−=⇒b a b a .习题 1.21.求下列各排列的逆序数.(1)1527364;(2)624513;(3)435689712;(4))2(42)12(31n n L L −.解(1)逆序数为14;62421527364it ↓↓↓↓↓↓↓ (2)逆序数为5;311624513it ↓↓↓↓↓↓ (3)逆序数为19;554310010435689712it ↓↓↓↓↓↓↓↓↓(4)逆序数为2)1(−n n :2122210000421231↓↓−−−↓↓↓↓↓−n n n n t n i L L L L2.在由9,8,7,6,5,4,3,2,1组成的下述排列中,确定j i ,的值,使得(1)9467215j i 为奇排列;(2)4153972j i 为偶排列.解(1)j i ,为分别3和8;若8,3==j i ,则93411)946378215(=+++=τ,为奇排列;若3,8==j i ,则1234311)946873215(=++++=τ,为偶排列;(2)j i ,为分别6和8;若8,6==j i ,则205135231)397261584(=++++++=τ,为偶排列;若6,8==j i ,则215335131)397281564(=++++++=τ,为奇排列;3.在五阶行列式)det(ij a =D 展开式中,下列各项应取什么符号?为什么?(1)5145342213a a a a a ;(2)2544133251a a a a a ;(3)2344153251a a a a a ;(4)4512345321a a a a a .解(1)因5)32451(=τ,所以前面带“-”号;(2)因7)53142(=τ,所以前面带“-”号;(3)因10)12543()53142(=+ττ,所以前面带“+”号;(4)因7)13425()25314(=+ττ,所以前面带“-”号.4.下列乘积中,那些可以构成相应阶数的行列式的项?为什么?(1)12432134a a a a ;(2)14342312a a a a ;(3)5514233241a a a a a ;(4)5512233241a a a a a .解(1)可以,由于该项的四个元素乘积分别位于不同的行不同的列;(2)不可以,由于14342312a a a a 中的1434a a 都位于第四列,所以不是四阶行列式的项;(3)可以,由于该项的五个元素乘积分别位于不同的行不同的列;(4)不可以,由于5512233241a a a a a 中没有位于第四列的元素。

《线性代数》第1章习题详解

《线性代数》第1章习题详解

一、习题1参考答案1. 求下列排列的逆序数,并说明它们的奇偶性.(1)41253; (2)3712456; (3)57681234; (4)796815432 解(1)()4125330014τ=+++= 偶排列(2)()37124562500007τ=+++++= 奇排列(3)()576812344544000017τ=+++++++= 奇排列 (4)()7968154326755032129τ=+++++++= 奇排列 2. 确定i 和j 的值,使得9级排列.(1)1274569i j 成偶排列; (2)3972154i j 成奇排列. 解 (1) 8,3i j == (2) 8,6i j == 3.计算下列行列式.(1) 412-3- (2) 2211a a a a ++-1 (3) cos sin sin cos x xx x -(5)2322a a bab (6) 1log log 3b aab (7) 000xy x z y z--- 解(1)131523125=⨯-⨯=- (2)4(3)2(1)4212=-⨯--⨯=--3- (3)()22322211(1)11a a a a a a a a a a =-++-=--++-1 (4)22cos sin cos sin 1sin cos x x x x x x -=+= (5)233232220a a a b a b bab =-=(6)1log 3log log 2log 3b b aa ab a b=-=(7) 0000000xyxz xyz xyz y z -=+----=--4. 当x 取何值时3140010xx x≠ ? 解 因为314010xx x2242(2)x x x x =-=-所以当0x ≠且2x ≠时,恒有3140010xx x ≠5. 下列各项,哪些是五阶行列式ij a 中的一项;若是,确定该项的符号.1225324154(1);a a a a a 3112435224(2);a a a a a 4221351254(3)a a a a a解 (1)不是 (2)不是 (3)不是6. 已知行列式11121314212223243132333441424344a a a a a a a a a a a a a a a a ,写出同时含21a 和21a 的那些项,并确定它们的正负号.解 12213443a a a a (2143)2τ= 符号为正; 14213243a a a a (2134)1τ= 符号为负. 7. 用行列式定义计算下列行列式.(1) 11121314152122232425313241425152000000a a a a a a a a a a a a a a a a (2)020200002200(3) 01000200001000n n-解 (1)行列式的一般项为12345()1122334455(1)j j j j j j j j j j a a a a a τ-若345,,j j j 中有两个取1,2列,则必有一个取自3,4,5列中之一的零元素,故该行列式的值为零,即原式0=(2)行列式中只有一项(3241)13223441(1)16a a a a τ-=不为零,所以原式16= (3)行列式的展开项中只有(2,3,4)11223341,1(1)(1)!n n n n n a a a a a n τ---=- 一项不为零,所以原式1(1)!n n -=-8. 用行列式性质计算下列行列式.(1) 111314895(2)1234234134124123(3)41241202105200117⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(4)2141312112325062⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦(5)ab ac aebd cd debf cf ef---(6)a b aa a bb a aa b a解 (1) 111314895321331r rr r--111021013--232r r-111005013--23r r↔111013005---5=(2)12342341341241232341c c c c+++10234103411041210123123413411014121123=121314r rr rr r-+-+-+123401131002220111------34222r rr r-+123401131000440004---160=(3)4124120210520011712r r↔12024124105200117-2131410r rr r--120207240152200117-----24r r↔120201170152200724----3242157r rr r++1202011700178500945342r r-12020117001500945=--(4) 2141312112325062-13r r↔1232312121415062--213141325r rr rr r---12320775032301098----------232r r -12320131032301098-3242310r r r r --123201310076002118----0=(5) abac ae bdcd de bfcfef---每列都提取公因式bc eadf bc e b c e ---每列都提取公因式111111111adfbce --- 1213r r r r ++11102020abcdef -23r r ↔11120002abcdef --4abcdef = (6)0000a b a a a b b a a a b a 4321r r r r +++2222000a b a b a b a ba a bb a a a b a ++++()11110200aa b a b b a a a ba =+121314ar r br r ar r -+-+-+()1111002000a b aa b a b b a b b a a --+----- 3232r r r r +-()11110020000a b aa b b b b b --+---=()2111100201100101a b a b a b --+--- 3424r r r ar ++()211110002200110101b a b a b -+---24c c ↔()211110101200110002b a b b a-+---()()2422224b a b b a b a b =+-=-9. 证明下列等式.(1) 111222222222111333333333a b c bc a c ab a bc a b c b c a c a b a b c =-+(2)11122122111211121112111221222122212221220000a a a a a a b b c c b b a a b b c c b b = (3) ax byay bzaz bxay bzaz bx ax by az bxax by ay bz +++++++++=33()xy z a b y z x zxy+(4) 222244441111a b c da b c d a b c d ()()()()()a b a c a d b c b d =-----()()c d a b c d ⋅-+++ 证明 (1)左式123123123321213132a b c b c a c a b a b c a b c a b c =++--- 133321233212332()()()a b c b c b a c a c c a b a b =---+-=222222111333333b c a c a b a b c b c a c a b -+=右式(2)1112212211121112212221220000a a a a c c b b c c b b 按第一行展开222111121112121111122221222121220000a a a c b b a c b b c b b c b b - 111211121122122121222122b b b b a a a a b b b b =-1112111221222122a ab b a a b b =(3) ax byay bzaz bxay bzaz bx ax by az bxax by ay bz +++++++++ 按第一列分开x ay bzaz bxa y az bx ax by z ax by ay bz ++++++ y ay bzaz bxb z az bx ax by x ax by ay bz +++++++2(0)xay bz z ay az bx x z ax by y +++++分别再分(0)yz az bxb z x ax by x y ay bz++++33x y z y z x a y z x b z x y zxy x yz +分别再分332(1)x y z x y za yz x b yz x z xy zxy=+-=右边 (4) 222244441111a b c d a b c d a b c d 213141c c c c c c --- 222222244444441000a b a c a d aa b a c a d a a b a c a d a --------- 按第一列展开222222222222222()()()b ac ad ab ac ad a b b a c c a d d a --------- 每列都提取公因式222111()()()()()()b ac ad a b a c a d a b b a c c a d d a ---++++++ 1213c c c c -+-+()()()b ac ad a ---222221()()()()()b ac bd bb b ac c a b b ad d a b b a +--++-++-+ 按第一列展开()()()()()b ac ad a c b d b -----222211()()()()c bc b a c bd bd b a d b ++++++++()()()()()a b a c a d b c b d =-----()()c d a b c d -+++10.设行列式30453221--,求含有元素2的代数余子式的和. 解 含有元素2的代数余子式是12222313A A A A +++()()()()345453343050111121212222--=-+-+-+---11161026=---=- 11. 设行列式3040222207005322=--D ,求第四行各元素余子式之和的值是多少? 解 解法一:第四行各元素余子式之和的值为41424344M M M M +++040340300304222222222222700000070070=+++---780314(7)(1)(2)28=-⨯++⨯+-⨯-⨯-=-解法二:第四行各元素余子式之和的值为4142434441424344M M M M A A A A +++=-+-+3040222207001111=---按第3行展开32340(7)(1)222111+----232r r +340704111--按第2行展开34282811-=---12.已知 1012110311101254-=-D ,试求: (1) 12223242A A A A -+- (2) 41424344A A A A +++ 解 (1)方法一:虽然可以先计算处每个代数余子式,然后再求和,但是这很烦琐.利用引理知道,第一列每个元素乘以第二列的代数余子式的和等于零。

济南大学 线性代数大作业 2019.7.21

济南大学 线性代数大作业 2019.7.21

a 1
1 a


x2 x3


12

有无限多个解,
则a
___________.
5. 设 n 元非齐次线性方程组 Ax b 有解, 其中 A 为 (n 1) n 矩阵, 则| Ab | ______.
1 2 2
6.
设矩阵 A

Page 5 of 20
一、填空题
第二章 矩阵及其运算
1
1. 设 A 31 2 1 ,则 A6 ______________.
2
2. 已知 A 为 2 阶方阵, A* 是 A 的伴随矩阵,且 | A | 3 ,则 | A1 | ___ , | AA* | ____.
PB
,其中
B


0 0
0 0
01 ,
P


2 2
1 1
0 1

.
(1) 求 A ; (2) ( A) 3E 2 A2 5A5 .
Page 7 of 20
2 1 0
3.
已知
A


1
2
0


矩阵 B 满足:
ABA* 2BA* E ,其中 A* 是 A 的伴随矩阵, E 为单位阵.
0 0 1
(1) 求| B | ; (2) B 1 .
4. 已知两个线性变换

x1 x2

y1 y1

y2 y2

y3


z1 z2

y1 y2 y3 2 y1 2 y2
x3 2 y1 2 y2 y3 z3 y1 y2

线性代数第一章习题答案.pdf

线性代数第一章习题答案.pdf

习题 1.11.计算下列二阶行列式.(1)5324;(2)ααααcos sin sin cos .解(1)146205324=−=;(2)ααααcos sin sin cos αα22sin cos −=.2.计算下列三阶行列式.(1)501721332−−;(2)00000d c b a ;(3)222111c b a c b a ;(4)cb a b a ac b a b a a c b a ++++++232.解(1)原式62072)5(1)3(12317)3(301)5(22−=××−−××−−××−××−+××+−××=(2)原式00000000000=⋅⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅+⋅⋅=d c b a c a d b ;(3)原式))()((222222b c a c a b c b ac b a c a ab bc −−−=−−−++=;(4)原式)()()2()23)((b a ac c b a ab b a ac c b a b a a +−++++++++=3)23())(2(a c b a ab c b a b a a =++−+++−.3.用行列式解下列方程组.(1)⎩⎨⎧=+=+35324y x y x ;(2)⎪⎩⎪⎨⎧=++=++=++82683321321321x x x x x x x x x ;(3)⎩⎨⎧=−=+0231322121x x x x ;(4)⎪⎩⎪⎨⎧=−+=+=−−031231232132321x x x x x x x x .解(1)75341−==D ,253421−==D ,333212−==D 所以721==D D x ,732==D D y .(2)2121111113−==D ,21281161181−==D ,41811611832−==D ,68216118133−==D ;所以111==D D x ,222==D Dx ,333==DD x .(3)132332−=−=D ,220311−=−=D ,303122−==D 所以1321==D D x ,1332==D D y .(4)8113230121−=−−−=D ,81102311211−=−−−=D ,81032101112=−−=D ;20131301213=−=D 所以111==D D x ,122−==D Dx ,333==DD x .4.已知xx x x x x f 21112)(−−−=,求)(x f 的展开式.解xxx x x x f 21112)(−−−=22)(11)(1)(111)(2)()(2⋅⋅−⋅−⋅−⋅−⋅−−⋅⋅+−⋅⋅−+⋅−⋅=x x x x x x x x x x xx x 23223+−−=5.设b a ,为实数,问b a ,为何值时,行列式010100=−−−a b b a .解01010022=−−=−−−b a a b b a 0,022==⇒−=⇒b a b a .习题 1.21.求下列各排列的逆序数.(1)1527364;(2)624513;(3)435689712;(4))2(42)12(31n n L L −.解(1)逆序数为14;62421527364it ↓↓↓↓↓↓↓ (2)逆序数为5;311624513it ↓↓↓↓↓↓ (3)逆序数为19;554310010435689712it ↓↓↓↓↓↓↓↓↓(4)逆序数为2)1(−n n :2122210000421231↓↓−−−↓↓↓↓↓−n n n n t n i L L L L2.在由9,8,7,6,5,4,3,2,1组成的下述排列中,确定j i ,的值,使得(1)9467215j i 为奇排列;(2)4153972j i 为偶排列.解(1)j i ,为分别3和8;若8,3==j i ,则93411)946378215(=+++=τ,为奇排列;若3,8==j i ,则1234311)946873215(=++++=τ,为偶排列;(2)j i ,为分别6和8;若8,6==j i ,则205135231)397261584(=++++++=τ,为偶排列;若6,8==j i ,则215335131)397281564(=++++++=τ,为奇排列;3.在五阶行列式)det(ij a =D 展开式中,下列各项应取什么符号?为什么?(1)5145342213a a a a a ;(2)2544133251a a a a a ;(3)2344153251a a a a a ;(4)4512345321a a a a a .解(1)因5)32451(=τ,所以前面带“-”号;(2)因7)53142(=τ,所以前面带“-”号;(3)因10)12543()53142(=+ττ,所以前面带“+”号;(4)因7)13425()25314(=+ττ,所以前面带“-”号.4.下列乘积中,那些可以构成相应阶数的行列式的项?为什么?(1)12432134a a a a ;(2)14342312a a a a ;(3)5514233241a a a a a ;(4)5512233241a a a a a .解(1)可以,由于该项的四个元素乘积分别位于不同的行不同的列;(2)不可以,由于14342312a a a a 中的1434a a 都位于第四列,所以不是四阶行列式的项;(3)可以,由于该项的五个元素乘积分别位于不同的行不同的列;(4)不可以,由于5512233241a a a a a 中没有位于第四列的元素。

《线性代数》第一章习题及解答

《线性代数》第一章习题及解答

2x x 1 2 例 8 设 f (x) = 1 x 1 − 1 ,则 x 4 的系数为( ), x 3 的系数为( ).
3 2x 1 1 11 x
分析 此类确定系数的题目,首先是利用行列式的定义进行计算.如果用定义比较麻烦
时,再考虑用行列式的计算方法进行计算.
解 从 f (x) 的表达式和行列式的定义可知,当且仅当 f (x) 的主对角线的 4 个元素的
自身大的数,故这四个数的逆序数为 0;3 的前面比它大的数有 2 个(4、5),故逆序数为 2;
2 的前面比它大的数有 4 个(4、5、3、6),故逆序数为 4;7 的前面比它大的数有 1 个(8),
故逆序数为 1;于是这个排列的逆序数为 t= 0+0+2+4+1= 7,故正确答案为(B).
例 2 下列排列中( )是偶排列.
因此
(−1)t a1n−1a2n−2 Lan−11ann ,其中
t = (n −1)(n − 2) , 2
( 2007 −1)( 2007 − 2 )
D = (−1) 2 2007!= −2007!.
此题也可以按行(列)展开来计算.
例 11 计算 n 阶行列式
2 1 1L1
1 2 1L1
Dn = 1 1 2 L 1
于是 A31 + A32 + A33 = 0, A34 + A35 = 0.
12345
12345
11122
11122
A51 + A52 + A53 + A54 + A55 = 3 2 1 4 6 r4 + r2 3 2 1 4 6 = 0
22211
33333

线性代数第一章习题答案

线性代数第一章习题答案

线性代数第一章习题答案习题1:向量空间的定义向量空间是一个集合V,配合两个运算:向量加法和标量乘法,满足以下公理:1. 向量加法的封闭性:对于任意的u, v ∈ V,有u + v ∈ V。

2. 向量加法的结合律:对于任意的u, v, w ∈ V,有(u + v) + w = u + (v + w)。

3. 向量加法的交换律:对于任意的u, v ∈ V,有u + v = v + u。

4. 存在零向量:存在一个向量0 ∈ V,使得对于任意的v ∈ V,有v + 0 = v。

5. 每个向量都有一个加法逆元:对于任意的v ∈ V,存在一个向量w ∈ V,使得v + w = 0。

6. 标量乘法的封闭性:对于任意的实数k和向量v ∈ V,有k * v∈ V。

7. 标量乘法的结合律:对于任意的实数k, l和向量v ∈ V,有(k * l) * v = k * (l * v)。

8. 标量乘法与向量加法的分配律:对于任意的实数k和向量u, v ∈ V,有k * (u + v) = k * u + k * v。

9. 单位标量乘法:对于任意的向量v ∈ V,有1 * v = v。

习题2:线性组合与线性无关线性组合是指由向量空间中的向量,通过加法和标量乘法组合而成的向量。

如果一组向量\{v_1, v_2, ..., v_n\}的任何非平凡线性组合(即不是所有标量系数都是零的组合)都不能得到零向量,那么这组向量就是线性无关的。

习题3:基与维数基是向量空间中的一组线性无关的向量,任何该空间中的向量都可以唯一地表示为这组向量的线性组合。

向量空间的维数是其基中向量的数量。

习题4:线性映射的定义与性质线性映射是一个函数T: V → W,它将向量空间V中的向量映射到向量空间W中的向量,并且满足以下性质:1. 对于任意的u, v ∈ V,有T(u + v) = T(u) + T(v)。

2. 对于任意的实数k和向量v ∈ V,有T(k * v) = k * T(v)。

(完整版)线性代数课后习题答案第1——5章习题详解

(完整版)线性代数课后习题答案第1——5章习题详解

第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

解析几何 课后答案 第一章

解析几何 课后答案 第一章

第一章矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.[解]:(1)单位球面;(2)单位圆(3)直线;(4)相距为2的两点2. 设点O是正六边形ABCDEF的中心,在矢量、OB、、OD、OE、、AB、、、DE、和中,哪些矢量是相等的?[解]:如图1-1,在正六边形ABCDEF中,相等的矢量对是:图1-1.和和和和3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=NM. 当ABCD是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC, 则在∆BAC中,21AC. KL与方向相同;在∆DAC中,21AC. NM与AC方向相同,从而KL=NM且KL与NM方向相同,所以KL=.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) 、; (2) 、; (3) 、;(4) AD、; (5) BE、.[解]:相等的矢量对是(2)、(3)和(5);互为反矢量的矢量对是(1)和(4)。

§1.2 矢量的加法1.要使下列各式成立,矢量ba,应满足什么条件?(1-=+(2+=+(3-=+(4+=-C(5=[解]:(1),-=+;(2),+=+(3≥且,-=+ (4),+=-(5),≥-=-§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y . 解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, ,可 以构成一个三角形.[证明]: )(21+=)(21BC BA BM +=)(21+=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线矢量CN BM AL ,,构成一个三角形。

线性代数与空间解析几何知到章节答案智慧树2023年济南大学

线性代数与空间解析几何知到章节答案智慧树2023年济南大学

线性代数与空间解析几何知到章节测试答案智慧树2023年最新济南大学第一章测试1.若阶行列式中有个以上元素为零,则该行列式的值为___参考答案:null2.若得代数余子式,则A21=___参考答案:null3.四阶行列式中包含且带正号的项是___参考答案:null4.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为___参考答案:null5.若方程组有唯一解,则满足()参考答案:;6.设D1,D2= ,则()参考答案:D2 =12D1.7.已知4阶行列式中第1行元依次是 , 第3行元的余子式依次为, 则().参考答案:8.展开式中的最高次数是()参考答案:1;9.元素的余子式与代数余子式符号相反()参考答案:错10.如果阶排列的逆序数是 , 则排列的逆序数是()参考答案:错第二章测试1.下列是方阵的是().参考答案:单位矩阵;上三角矩阵;下三角矩阵;对角矩阵2.对任意阶方阵A,B,总有().参考答案:3.若一个n阶方阵A的行列式值不为零,则对A进行若干次矩阵的初等变换后,其行列式的值()。

参考答案:保持不为零4.若阶方阵与等价,则正确的关系式为()。

参考答案:5.已知()参考答案:6.设,则 =()。

参考答案:7.已知矩阵()参考答案:8.()参考答案:9.设A为四阶矩阵,且矩阵A的秩R(A)=3,则R(A*)=()。

参考答案:110.A,B为n阶方阵,且AB=O,则下式正确的为()。

.参考答案:|A|=0或|B|=0第三章测试1.设,,是三维向量,且满足,其中,,则向量 =()参考答案:;2.若向量组线性无关,则对任何一组不全为零的数,都有 . ()参考答案:对3. , ,线性相关. ()参考答案:对4.向量组,,的秩为,则()参考答案:2;5.向量组的秩一定小于该向量组中向量的个数. ()参考答案:错6.设A是n阶矩阵,且,则下列结论正确的是()参考答案:若则;7.已知向量组是向量空间R3的一个基,则()参考答案:a -5.8.已知两向量正交,则k=()参考答案:1;9.向量组的秩为()参考答案:210.证明:向量组线性相关.参考答案:null第四章测试1.已知向量正交,则k为()参考答案:-12.设=()参考答案:3.命题()参考答案:都错误4.已知向量则有()参考答案:a=2,b=15.两平面和的位置关系是()参考答案:垂直6.两平面,的位置关系是()参考答案:相交但不垂直第五章测试1.设A为n阶方程,且,则Ax=O的通解为()参考答案:2.设A为n阶方程,Ax=0只有零解,则只有玲姐的方程组个数是()参考答案:3.设n阶方针A的伴随矩阵为,则对应齐次方程组Ax=0的基础解系为()参考答案:仅含一个非零解向量4.已知非齐次线性方程组有三个线性无关姐,则方程组系数矩阵A的秩为()参考答案:25.非齐次线性方程组:(其中a,b,c,d两两不等)解的情况是()参考答案:无解第六章测试1.已知3阶方阵A的特征值为,1,2,则 ___参考答案:null2.已知3阶方阵的特征值为1,2,3,则的特征值为___参考答案:null3.已知三阶矩阵均为奇异阵,则 ___参考答案:null4.设A是阶实对称矩阵,且,若A的秩为,则A相似于___参考答案:null5.设为n阶( )可逆矩阵,是的一个特征值,则的伴随矩阵的伴随矩阵的特征值之一是().参考答案:;6.设则().参考答案:.7.相似矩阵具有相同的特征值和特征向量()参考答案:错8.设是阶实对称矩阵,是阶可逆矩阵.已知维列向量是的属于特征值的特征向量,则矩阵属于特征值的特征向量是.()参考答案:;9.已知矩阵,证明:当a=2时,矩阵A与对角矩阵相似,并写出与A相似的对角矩阵 .参考答案:null10.设,正交矩阵P使得P T AP为对角阵,如果P的第一列为,求a,P.参考答案:null第七章测试1.阶对称矩阵正定的充分必要条件是()。

大学_大学线性代数课后答案_1

大学_大学线性代数课后答案_1

大学线性代数课后答案大学线性代数内容简介第一章矩阵与行列式1.0 预备知识1.0.1 集合1.0.2 数集1.0.3 数域1.0.4 求和号1.1 线性型和矩阵概念的引入1.1.1 矩阵的定义1.1.2 常用矩阵1.2 矩阵的运算1.2.1 矩阵的线性运算1.2.2 矩阵的乘法1.2.3 方阵的幂与方阵多项式1.3 方阵的行列式1.3.1 行列式的递归定义1.3.2 排列1.3.3 行列式的等价定义1.4 行列式的'基本性质1.4.1 转置行列式1.4.2 行线性性1.4.3 行列式的初等变换1.5 Laplace定理1.5.1 子式余子式代数余子式1.5.2 Laplace定理1.5.3 行列式的按行展开与按列展开 1.5.4 方阵乘积的行列式1.6 行列式的计算1.6.1 三角化1.6.2 降阶法与镶边法1.6.3 归纳与递推1.7 可逆矩阵1.7.1 可逆矩阵1.7.2 矩阵可逆的条件1.7.3 逆矩阵的求法1.8 分块矩阵1.8.1 矩阵的分块1.8.2 分块矩阵的运算1.8.3 分块对角矩阵习题一第二章线性方程组理论2.1 解线性方程组的消元法2.1.1 线性方程组的矩阵形式2.1.2 线性方程组的初等变换2.1.3 梯矩阵和简化梯矩阵2. 2向量空间Kn2.2.1 向量空间Kn及其运算性质2.2.2 子空间2.3 向量组的秩2.3.1 线性组合、线性方程组的向量形式 2.3.2 线性相关与线性无关2.3.3 极大线性无关组、向量组的秩2.4 矩阵的相抵标准形2.4.1 初等矩阵和矩阵的初等变换2.4.2 矩阵的秩2.5 Cramer法则2.5.1 Cramer法则2.5.2 求逆矩阵的初等变换法2.5.3 矩阵方程2.6 线性方程组解的结构2.6.1 线性方程组相容性判别准则2.6.2 齐次线性方程组的解空间2.6.3 非齐次线性方程组解的结构2.7 分块矩阵的初等变换2.7.1 分块矩阵的初等变换2.7.2 分块初等矩阵2.7.3 行列式和矩阵计算中的分块技巧习题二第三章相似矩阵3.1 方阵的特征值与特征向量3.1.1 方阵的特征值与特征向量3.1.2 特征值与特征向量的求法3.1.3 特征向量的性质3.2.1 矩阵相似的概念3.2.2 相似矩阵的性质3.3 矩阵相似于对角矩阵的条件3.3.1 矩阵相似于对角矩阵的条件3.3.2 特征值的代数重数和几何重数3.3.3 矩阵Jordan标准形3.4 方阵的最小多项式3.4.1 方阵的化零多项式3.4.2 最小多项式3.4.3 最小多项式与方阵相似于对角矩阵的条件 3.5 相似标准形的若干简单应用3.5.1 行列式求值与方阵求幂3.5.2 求与给定方阵可交换的方阵习题三第四章二次型与对称矩阵4.1 二次型及其标准形4.1.1 二次型及其矩阵表示4.1.2 二次型的标准形4.1.3 实对称矩阵的合同标准形4.2 惯性定理与二次型分类4.2.1 惯性定理4.2.2 二次型的分类4.3 正定二次型4.3.1 正定二次型4.3.2 二次型正定性判别法4.4 正交向量组与正交矩阵4.4.1 向量的内积4.4.2 正交向量组4.4.3 正交矩阵4.5 实对称矩阵的正交相似标准形4.5.1 实对称矩阵的特征值和特征向量 4.5.2 实对称矩阵的正交相似标准形 4.5.3 用正交替换化二次型为标准形习题四第五章线性空间与线性变换5.1 线性空间的概念5.1.1 线性空间的定义5.1.2 线性空间的简单性质5.1.3 线性子空间5.2 线性空间的同构5.2.1 基底,维数与坐标5.2.2 基变换与坐标变换5.2.3 线性空间的同构5.3 欧氏空间5.3.1 欧氏空间的定义与基本性质5.3.2 标准正交基5.3.3 欧氏空间的同构5.4 线性变换5.4.1 线性变换的概念与运算5.4.2 线性变换的性质5.5 线性变换的矩阵5.5.1 线性变换在给定基下的矩阵5.5.2 线性变换在不同基下矩阵间的关系习题五索引参考文献大学线性代数目录《大学数学线性代数》是普通高等教育“十一五”国家级规划教材“大学数学”系列教材之一,秉承上海交通大学数学基础课程“基础厚、要求严、重实践”的特点编写而成。

线性代数与解析几何 代万基 第一章书后解答

线性代数与解析几何  代万基  第一章书后解答

思考题1-11. 不成立。

因为222(),+=+++A B A AB BA B AB 不一定等于BA . 2. 成立。

因为22(),+=+++A E A AE EA E =AE EA . 3. 成立。

因为22()(),+-=-+-=-A E A E A AE EA E A E2()()-+=-A E A E A E .4. 不成立。

因为矩阵的乘法不满足消去律,由222()=AB A B ,得不出=AB BA .5. 不成立。

反例,1111⎡⎤=⎢⎥--⎣⎦A 。

6. 不成立。

反例,1000⎡⎤=⎢⎥⎣⎦A 。

7. 不成立。

反例,1001⎡⎤=⎢⎥-⎣⎦A 。

8. 成立。

因为,()().Tk TT kk===A A A A A9. 不成立。

因为,()()()(1),Tk TT kkkk=-==-=-A A A A A A 结论与k 的奇偶性有关。

10. 成立。

由对称阵的定义可知结论成立。

习题1-11.111100-⎡⎤=⎢⎥⎣⎦X2.1,2x y ==3.BAABC ABABC 、、正确,依次为55⨯矩阵、41⨯矩阵、41⨯矩阵。

4.(1)3-3-5-7915⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(2)10530100⎡⎤⎢⎥-⎣⎦;(3)32659110-4⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(4)1432321211⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(5)222111222333121213132323222a x a x a x a x x a x x a x x +++++;(6)157063004⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(7)050505050-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦5.(1)111112221222331332k a k a k a k a k a k a ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,在矩阵A 的左边乘以对角矩阵时,其乘积等于用该对角矩阵的对角元分别乘以矩阵A 的各行; (2)111212313121222323k a k a k a k a k a k a ⎡⎤⎢⎥⎣⎦,在矩阵A 的右边乘以对角矩阵时,其乘积等于用该对角矩阵的对角元分别乘以矩阵A 的各列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档