《解一元一次方程》PPT课件
合集下载
5.2 解一元一次方程第4课时 利用去分母解一元一次方程(共31张PPT)【人教2024版七上数学】
解得x=360.
答:该单位参加旅游的职工有360人.
5.清人徐子云《算法大成》中有一首诗: 巍巍古寺在山林,不知寺中几多僧. 三百六十四只碗,众僧刚好都用尽. 三人共食一碗饭,四人共吃一碗羹. 请问先生名算者,算来寺内几多增?
诗的意思: 3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了 364只碗,请问寺内有多少僧人?
移项 合并同类项
移项法则
合并同类项法 则
两边同除以未知 等式性质2 数的系数
移项要变号 系数相加,不漏项 不要把分子、分母搞颠倒
3
6
2
A.x=1 B.x=2 C.x=4
D.x=6
2
解方程
5 6
6 5
x-1
=2.
下面几种解法中,较简便
的是( C )
A.先两边同乘6
B.先两边同乘5
C.先去括号再移项
D.括号内先通分
3. 解下列方程:
(1) x 3 3x 4; 5 15
(2) 5y 4 y 1 2 5y 5 .
解:设寺内有x个僧人,依题意得 1 x 1 x 364. 34
解得x=624.
答:寺内有624个僧人.
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
步骤 去分母
根据
等式性质2
注意事项
1.不要漏乘不含分母的项 2. 分子是多项式应添括号
去括号
分配率 去括号法则
1.不要漏乘括号中的每一项 2.括号前是“—”号,要变号
去括号,得
18x+3x-3 =18-4x +2. 移项,得
18x+3x+4x =18 +2+3. 合并同类项,得
25x = 23. 系数化为1,得
答:该单位参加旅游的职工有360人.
5.清人徐子云《算法大成》中有一首诗: 巍巍古寺在山林,不知寺中几多僧. 三百六十四只碗,众僧刚好都用尽. 三人共食一碗饭,四人共吃一碗羹. 请问先生名算者,算来寺内几多增?
诗的意思: 3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了 364只碗,请问寺内有多少僧人?
移项 合并同类项
移项法则
合并同类项法 则
两边同除以未知 等式性质2 数的系数
移项要变号 系数相加,不漏项 不要把分子、分母搞颠倒
3
6
2
A.x=1 B.x=2 C.x=4
D.x=6
2
解方程
5 6
6 5
x-1
=2.
下面几种解法中,较简便
的是( C )
A.先两边同乘6
B.先两边同乘5
C.先去括号再移项
D.括号内先通分
3. 解下列方程:
(1) x 3 3x 4; 5 15
(2) 5y 4 y 1 2 5y 5 .
解:设寺内有x个僧人,依题意得 1 x 1 x 364. 34
解得x=624.
答:寺内有624个僧人.
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
步骤 去分母
根据
等式性质2
注意事项
1.不要漏乘不含分母的项 2. 分子是多项式应添括号
去括号
分配率 去括号法则
1.不要漏乘括号中的每一项 2.括号前是“—”号,要变号
去括号,得
18x+3x-3 =18-4x +2. 移项,得
18x+3x+4x =18 +2+3. 合并同类项,得
25x = 23. 系数化为1,得
(完整版)一元一次方程的解法PPT课件
2345 + 12x = 5129.
①
利用等式的性质,在方程①两边都减去2345,
得
2345+12x-2345= 5129-2345,
即
12x=2784.
②
方程②两边都除以12,得x=232 .
因此,热气球在后12h飞行的平均速度为232 km/h.
我们把求方程的解的过程叫做解方程. 在上面的问题中,我们根据等式性质1,在方程① 两边都减去2345,相当于作了如下变形:
-22334455 + 12x = 5129
从变形前后的两个方程可以看出,这种变形, 就是把方程中的某一项改变符号后,从方程的一边 移到另一边,我们把这种变形叫做移项.
必须牢记:移项要变号.
在解方程时,我们通过移项,把方程中含未知 数的项移到等号的一边,把不含未知数的项移到等 号的另一边.
例1 解下列方程:
解方程
应改为 4 x +6 =2+x 2(2x+3)=2+x
解 去括号,得 4x+3=2+x 应改为 4 x – x = 2-6
移项,得 4x +x = 2-3
化简,得
5x = -1
应改为 3x =-4
方程两边都除以5 ,得
方程两边都除以3,得
x
=
-
1 5
应改为
x
=
-4 3
2. 解下列方程.
(1) (4y+8)+2(3y-7)= 0 ; (2) 2(2x -1)-2(4x+3)= 7; (3) 3(x -4)= 4x-1.
y
;
(2)
5
+3x 2
解一元一次方程课件(共20张PPT)人教版初中数学七年级上册
x=20
(四)例题规范,巩固新知
1.解方程:2x- 5 x=6-8 2
解:合并同类项,得- 1 x=-2 2
系数化为1,得 x=4
(三)例题规范,巩固新知
2.解方程:7x-2.5x+3x-1.5x=-154-6 3. 解:合并同类项,得 6x= 78.
系数化为1,得 x= 13.
(四)基础训练,学以致用
还有不同的设法吗? 还可以列怎样的方程?
方法二:
方法三:
设去年购买计算机x台. 设今年购买计算机x台.
x +x+2x=140 2
x + x +x=140 42
(三)合作探究,归纳方法
如何将此方程转化为x=a(a为常数)的形式?
x+2x+4x=140
合并同类项
7 x=140
系数化为1
等式性质2 理论依据?
1. 什么是同类项?
2.计算:(1)3x-x (2)10x+0.5x (3)7xy-3xy+8ab-2xy-5ab
3.等式的基本性质有哪些?
二.新授
(一)介绍数学史,创设情境
约公元820年,中亚细亚数学家阿尔-花 拉子米写了一本代数书,重点论述怎样 解方程.这本书的拉丁文译本取名为 《对消与还原》.“对消”与“还原”是 什么意思呢?
1.解下列方程:
(1)5 x-2 x=9 (2)x + 3x =7
22 (3)-3 x+0.5 x=10
(4)7x-4.5x=2.5 3-5
例2 有一列数,按一定规律排列成1,-3,9,-27
81,-243,…。其中某三个相邻数的和-1701,这
三个数各是多少?
解:设所求三个数分别是x,-3x,9x. 由三个数的和是-1701,得
解一元一次方程(移项)ppt课件
200分 300分
全球通
130 17元0元
神州行 120元 180元
问题:什么情况 下用“全球通” 优惠一些?什
么情况下用 “神州行”优
惠一些?
(2)设累计通话t分钟,则用“全球通”要收费(50+0.4t)元,用 “神州行”要收费0.6t。如果两种收费一样,则 0.6t=50+0.4t解此方程得: 0.2t=50 ∴ t=250
把某项从等式一边移到另一边时有什么变化?
一般地,把方程中的项改变符号后,从方程的一边移到另一边,这种变形叫做移项
上面方程的变形,相当于把原方程左边的20变为-20移到右 边,把右边的4x变为-4x移到左边.
问题4
移项的依据是什么? 等式的性质1.
注:一般的我们把含未知数的项移到等号的 左边,把常数项移到等号的右边。
3x +20 =x 4 -25 1、使方程右边不含x 的项
等式两边减4x,得:
3x+20-4x=4x-25-4x 3x+20-4x=-25
2、使方程左边不含常数项 等式两边减2Байду номын сангаас,得:
3x+20-4x-20=-25- 3x-4x=20-25-20
3x+20 = 4x- 25
3x-4x=-25-20
(2)设累计通话 t 分,则按方式一要收费 (30+0.3t) 元, 按方式二要收费 0.4t 元,如果两种计费方式的收费一样,
0 . 4 t 3 则 0 0 . 3 t .
移项,得 0 .4 t 0 .3 t 3.0
合并同类项,得 0.1t30 .
系数化为1,得 t 30.0
由上可知,如果一个月内通话300分,那 么两种计费方式的收费相同.
解一元一次方程课件PPT
概念和解题方法。
难度适中原则
根据学生实际水平,设置不同难 度的例题,以满足不同层次学生
的需求。
循序渐进原则
按照知识点难易程度,逐步增加 例题的复杂性和难度,帮助学生
逐步提升解题能力。
学生自主解答环节设计
独立思考
鼓励学生独立思考,自主分析问题,寻找解题思 路。
小组讨论
组织学生进行小组讨论,互相交流解题思路和方 法,拓展思维。
确定未知数的系数、将系数化为1、 求解化简后的方程。
03 实际应用问题建模
实际问题背景引入
商品打折销售
商店进行打折活动,原价与折扣 后价格的关系。
路程时间速度
物体运动中路程、时间和速度之间 的关系。
配套问题
不同物品之间的数量关系,如螺钉 和螺母等。
建立数学模型过程展示
定义变量
根据实际问题,选择合适 的未知数表示相关量。
下节课预告
提前预告下节课的教学内容,使学生 对学习有持续性和预见性。
作业布置
针对本节课的知识点,布置适当的练 习题,帮助学生巩固所学知识。
1.谢谢聆 听
方程解的应用
总结方程解在实际问题中的应用,如速度、时间、距离等问 题,强化方程解的实际意义。
学生自我评价报告收集
学生对本节课的掌握情况
收集学生对本节课知识点掌握情况的自我评价报告,便于教师了解学生的学习状况。
学生遇到的困难与问题
征集学生在学习过程中遇到的困难和问题,为下节课的教学提供参考。
下节课预告及作业布置
步骤
选定要移动的项、改变移 动项的符号、求解移动后 的方程。
示例
对于方程5x - 3 = 7,将3移至等号右侧得5x = 7 + 3,解得x = 2。
难度适中原则
根据学生实际水平,设置不同难 度的例题,以满足不同层次学生
的需求。
循序渐进原则
按照知识点难易程度,逐步增加 例题的复杂性和难度,帮助学生
逐步提升解题能力。
学生自主解答环节设计
独立思考
鼓励学生独立思考,自主分析问题,寻找解题思 路。
小组讨论
组织学生进行小组讨论,互相交流解题思路和方 法,拓展思维。
确定未知数的系数、将系数化为1、 求解化简后的方程。
03 实际应用问题建模
实际问题背景引入
商品打折销售
商店进行打折活动,原价与折扣 后价格的关系。
路程时间速度
物体运动中路程、时间和速度之间 的关系。
配套问题
不同物品之间的数量关系,如螺钉 和螺母等。
建立数学模型过程展示
定义变量
根据实际问题,选择合适 的未知数表示相关量。
下节课预告
提前预告下节课的教学内容,使学生 对学习有持续性和预见性。
作业布置
针对本节课的知识点,布置适当的练 习题,帮助学生巩固所学知识。
1.谢谢聆 听
方程解的应用
总结方程解在实际问题中的应用,如速度、时间、距离等问 题,强化方程解的实际意义。
学生自我评价报告收集
学生对本节课的掌握情况
收集学生对本节课知识点掌握情况的自我评价报告,便于教师了解学生的学习状况。
学生遇到的困难与问题
征集学生在学习过程中遇到的困难和问题,为下节课的教学提供参考。
下节课预告及作业布置
步骤
选定要移动的项、改变移 动项的符号、求解移动后 的方程。
示例
对于方程5x - 3 = 7,将3移至等号右侧得5x = 7 + 3,解得x = 2。
《解一元一次方程》PPT课件 人教版七年级数学上册【2024年秋】
得2x+8=3x-12.解得x=20.
答:这个班共有20名小朋友
课堂小结
1.移项的概念:把等式一边的某项变号后移到另一边,叫作移项.
2.移项的作用:使含未知数的项与常数项分别位于方程左、右
两边,使方程更接近于x=m的形式.
3.移项法则:移项要变号.
4.解一元一次方程的步骤:移项、合并同类项、系数化成1.
1
x+ x=19,解这个方程就可以求出“它”了.
18
探究新知
学生活动一 【一起探究】
问题:某校三年共购买计算机140台,去年购买数量
是前年的2倍,今年购买数量又是去年的2倍.前年这
个学校购买了多少台计算机?
探究新知
方法一:设前年这个学校购买了计算机x台,则去年
购买计算机 2x台,今年购买计算机4x台.
过的一元一次方程在结构上有什么不同?
(2)怎样才能将它转化为x=a(常数)的形式呢?
(3)将方程3x+20=4x-25转化为x=a的形式的依据是
什么?
探究新知
思考:(1)怎样解这个方程?方程3x+20=4x-25与前面学
过的一元一次方程在结构上有什么不同?
解:(1)把方程转化为x=m(常数)的形式,方程
第五章 一元一次方程
5.2 解一元一次方程
第2课时 利用移项解一元一次方程
学习目标
1.能够根据实际问题列出一元一次方程,进一步体会方程模型的作
用及应用价值,培养学生的模型意识.
2.通过经历“移项”这一解方程步骤的得出过程,掌握“ax+b=cx+
d”型方程的解法,培养学生的化归思想,提高学生的运算能力。
对于x+2x+4x=140这个方程
答:这个班共有20名小朋友
课堂小结
1.移项的概念:把等式一边的某项变号后移到另一边,叫作移项.
2.移项的作用:使含未知数的项与常数项分别位于方程左、右
两边,使方程更接近于x=m的形式.
3.移项法则:移项要变号.
4.解一元一次方程的步骤:移项、合并同类项、系数化成1.
1
x+ x=19,解这个方程就可以求出“它”了.
18
探究新知
学生活动一 【一起探究】
问题:某校三年共购买计算机140台,去年购买数量
是前年的2倍,今年购买数量又是去年的2倍.前年这
个学校购买了多少台计算机?
探究新知
方法一:设前年这个学校购买了计算机x台,则去年
购买计算机 2x台,今年购买计算机4x台.
过的一元一次方程在结构上有什么不同?
(2)怎样才能将它转化为x=a(常数)的形式呢?
(3)将方程3x+20=4x-25转化为x=a的形式的依据是
什么?
探究新知
思考:(1)怎样解这个方程?方程3x+20=4x-25与前面学
过的一元一次方程在结构上有什么不同?
解:(1)把方程转化为x=m(常数)的形式,方程
第五章 一元一次方程
5.2 解一元一次方程
第2课时 利用移项解一元一次方程
学习目标
1.能够根据实际问题列出一元一次方程,进一步体会方程模型的作
用及应用价值,培养学生的模型意识.
2.通过经历“移项”这一解方程步骤的得出过程,掌握“ax+b=cx+
d”型方程的解法,培养学生的化归思想,提高学生的运算能力。
对于x+2x+4x=140这个方程
求解一元一次方程ppt课件
第五章 一元一次方程
第2节 求解一元一次方程(3)
导入新课
讲授新课
课堂小结
随堂训练
学习目标
1.掌握解一元一次方程中“去分母”的方法.(重点) 2.掌握含分母的一元一次方程的解法并归纳解一元一次方程的 步骤.(难点)
情境引入
(1) 9=8-2x (2) 3x-5=5x+1 (3) 6x-5(15+2x)=-11 (4) -4(3x+5)=16
去括号,得 6x + 90 = 15 -10x + 70.
移项、合并同类项,得 16x = -5.
方程两边同除以16,得 x= 5 .
16
新课讲解
归纳总结
解一元一次方程,一般要通过去分母、去括号、移项、合并 同类项、未知数的系数化为1等步骤,把一个一元一次方程“转 化”成x=a的形式.
新课讲解
典例析
?×28
1 (x 14) 1 (x 20).
4(x 14) 7(x 20).
7
4
结论 方程的左、右两边同时乘各分母的最小公倍数可去掉分母.
依据是等式的基本性质2.
新课讲解
典例分析
例1.解方程:1 ( x 15) 1 1 ( x 7).
5
23
解:去分母,得 6(x + 15) = 15 - 10(x- 7).
3
4
这个变形( )
A.分母的最小公倍数找错了
B.漏乘了不含分母的项
C.分子中的多项式没有添括号,符号不对
D.正确
当堂小练
3.如果代数式 3x +2与- 2x-1互为相反数,那么x的值
2
3
是( )
A.- 6 B.- 18
5
13
第2节 求解一元一次方程(3)
导入新课
讲授新课
课堂小结
随堂训练
学习目标
1.掌握解一元一次方程中“去分母”的方法.(重点) 2.掌握含分母的一元一次方程的解法并归纳解一元一次方程的 步骤.(难点)
情境引入
(1) 9=8-2x (2) 3x-5=5x+1 (3) 6x-5(15+2x)=-11 (4) -4(3x+5)=16
去括号,得 6x + 90 = 15 -10x + 70.
移项、合并同类项,得 16x = -5.
方程两边同除以16,得 x= 5 .
16
新课讲解
归纳总结
解一元一次方程,一般要通过去分母、去括号、移项、合并 同类项、未知数的系数化为1等步骤,把一个一元一次方程“转 化”成x=a的形式.
新课讲解
典例析
?×28
1 (x 14) 1 (x 20).
4(x 14) 7(x 20).
7
4
结论 方程的左、右两边同时乘各分母的最小公倍数可去掉分母.
依据是等式的基本性质2.
新课讲解
典例分析
例1.解方程:1 ( x 15) 1 1 ( x 7).
5
23
解:去分母,得 6(x + 15) = 15 - 10(x- 7).
3
4
这个变形( )
A.分母的最小公倍数找错了
B.漏乘了不含分母的项
C.分子中的多项式没有添括号,符号不对
D.正确
当堂小练
3.如果代数式 3x +2与- 2x-1互为相反数,那么x的值
2
3
是( )
A.- 6 B.- 18
5
13
《解方程》一元一次方程PPT课件 (共11张PPT)
作业:
课本习题5.3.
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
他正为选哪一种方式犹豫呢!你能帮助 他作个选择吗? 你会吗??? (1)一个月内通话200分和300分, 按两种计费方式各需交多少元? 通话200分,按两种计费方式各需交费: 50+0.40×200=130(元) 0.60×200=120(元)
(2)对于某个通话时间,两种计费方式的收 费会一样吗?
本节课你有什么感受和收获?
小结
内容:引导学生结合本课时的内容,归纳总结解 一元一次方程的“移项法则”及此过程中的注意事 项。 目的:让学生及时归纳那总结所学知识,及时反思, 因为反思是进步的关键因素。 实际效果: 学生不仅会对课上的知识点进行梳理总结,而 且还会对课上感悟到的数学思想 ----- “转化的思 想方法”准确地应用到以后的数学学习中。 学生在合作学习中感受到伙伴优于自己的学习热情, 学习策略,他们会互相借鉴,取长补短,共同进步的。
第五章 一元一次方程
解方程
回顾
解方程: 5x-2=8
方程两边都加上2,得 5x -2 +2=8+2 即: 观察知 5x=10
-2 =8 5x-2
5x=8+2 +2
移项法则:把方程中的某一项,改变符号后,从 方程的一边移到另一边,这种变形叫做移项.
移项变号
注 意
例1、解方程:
(1)2x+6=1 (2)3x+3=2x&收费 (50+0.4t)元,用“神州行”要收费0.6t元, 如果两种计费方式的收费一样,则