《离散数学》平时作业-2020年秋季华南理工大学网络教育学院
2020《离散数学》作业题及答案
2020《离散数学》作业题及答案一、单选题 ( 每题4分, 共23道小题, 总分值92分 )1.(4分)答:D{ 131 }{ 9666 }{ 2906 } 2.(4分)答:A3.(4分)答:A4.(4分)答:D5.(4分)答:B6.(4分)答:C7.(4分)答:B8.(4分)答:C9.(4分)答:D10.(4分)11.设命题公式G=(P∧Q)→P,则G是 ( )。
(4分)A. 恒假的B. 恒真的C. 可满足的D. 析取范式12.设G是由5个结点组成的完全图,则从G中删去( )条边可以得到树.(4分)A. 4B. 5C. 6D. 1013.(4分)14.(4分)15.(4分)16.(4分)17.10 设G为9阶无向图,每个结点度数不是3就是2,则G中至多有个3度结点(4分)A. 7B. 8C. 9D. 618.(4分)19.(4分)20.在命题演算中,语句为真为假的一种性质称为( )(4分)A. 真值B. 陈述句C. 命题D. 谓词21.(4分)22.(4分)23.(4分)二、判断题 ( 每题4分, 共2道小题, 总分值8分 )1.(4分)2.(4分)19秋《离散数学》作业_2显示答案一、单选题 ( 每题4分, 共23道小题, 总分值92分 )1.(4分)A. (A)B. (B)C. (C)D. (D)2.(4分)3.(4分)A. (A)B. (B)C. (C)D. (D)4.设A、B为集合,A的元素都是B的元素,那么()(4分)A. B是A的子集B. A是B的子集C. A和B是等价的D. B的元素也是A的元素5.(4分)A. (A)B. (B)C. (C)D. (D)6.(4分)7.(4分)8.同类型的代数系统不具有的特征是()(4分)A. 子代数的个数相同B. 运算个数相同C. 相同的构成成分D. 相同元数的运算个数相同9.(4分)A. (A)B. (B)C. (C)D. (D)10.(4分)A. (A)B. (B)C. (C)D. (D)11.(4分)12.(4分)13.(4分)14.(4分)15.(4分)16.(4分)A. (A)B. (B)C. (C)D. (D)17.(4分)18.(4分)19.(4分)20.(4分)21.至少要去掉多少条边才能将一个10阶完全图变成非连通图()(4分)A. 6B. 9C. 10D. 1522.(4分)A. (A)B. (B)C. (C)D. (D)23.(4分)二、判断题 ( 每题4分, 共2道小题, 总分值8分 )1.(4分)2.(4分)19秋《离散数学》作业_3显示答案一、单选题 ( 每题4分, 共23道小题, 总分值92分 )1.(4分)2.(4分)3.n个结点、m条边的无向连通图是树当且仅当m=_____。
2020年国家开放大学秋季期末考试 计算机专业《离散数学(本)》试题及答案
座位号rn
国家开放大学 2020 年秋季学期期末统一考试
离散数学(本) 试题
巨
_ ---
2021 年 1 月
三 四
得 分 1 评卷人
一、单项选择题(每小题 4 分,本题共 20 分)
1. 若集合 A={a,b,c,d}, 则下列表述正确的是(
).
A. {a} EA
B.a t/: A
()
A. 正确
B. 错误
得 分 1 评卷人
三、逻辑公式翻译(每小题 6 分,本题共 12 分)
11. 将语句“他上午去教室上课,下午去体育馆参加比赛.“翻译成命题公式. 12. 将语句“如果他接受了这个任务,他一定能完成的.”翻译成命题公式.
得 分 1 评卷人
四、计算题(每小题 12 分,本题共 48 分)
(2 分) (6 分) (2 分) (6 分)
(3 分) (6 分) (9 分) (12 分)
lh~
(2)deg(v1) =l,
deg(v2) = 1,
deg(v3) =3,
deg(v4) = 1
22
。内 图一
(4 分) (8 分)
(3) 补图如图二所示:
V
v勹 ' ~
汇:
囚
15. (l)G 的图形如图三所示: g
C.{a,b,c}CA
D. {a,b,c,d} EA
2. 设集合 A ={1,2 ,3 ,4,5 ,6} ,B ={1,2 ,3} ,A 到 B 的关系 R={<x,y>lxEA,y EB
且 X =y 勹,则 R = ( ) .
A. {< 1 , 1 > , < 2, 4 >}
华南理工大学2019秋-离散数学作业
华南理工大学网络教育学院2019–2020学年度第一学期《离散数学》作业1、用推理规则证明Q,⌝P → R,P → S,⌝ S⇒Q∧R证(1)P → S P(2)⌝ S P(3)⌝P(1)(2)拒取式(4)⌝P → R P(5)R (3)(4)假言推理(6)Q P(7)Q∧R(5)(6)合取2、用推理规则证明⌝(P∧⌝Q),⌝Q∨R,⌝ R⇒⌝P证(1)⌝Q∨R P(2)⌝ R P(3)⌝Q(1)(2)析取三段论(4)⌝(P∧⌝Q)P(5)⌝P ∨ Q (4)等价转换(6)⌝P (3)(5)析取三段论3.设命题公式为⌝Q∧(P→Q)→⌝P。
(1)求此命题公式的真值表;解(1)真值表如下P Q ⌝Q P→Q ⌝Q∧(P→Q)⌝P⌝Q∧(P→Q)→⌝P0 0 1 1 1 1 10 1 0 1 0 1 11 0 1 0 0 0 11 1 0 1 0 0 1(2)求此命题公式的析取范式;解:⌝Q∧(P→Q)→⌝P⇔⌝(⌝Q∧(⌝P∨Q))∨⌝P⇔(Q∨⌝(⌝P∨Q))∨⌝P⇔⌝(⌝P∨Q)∨(Q∨⌝P)⇔1(析取范式)⇔(⌝P∧⌝Q)∨(⌝P∧Q)∨(P∧⌝Q)∨(P∧Q)(主析取范式)(3)判断该命题公式的类型。
解:该公式为重言式4.在一阶逻辑中构造下面推理的证明每个喜欢步行的人都不喜欢坐汽车。
每个人或者喜欢坐汽车或者喜欢骑自行车。
有的人不喜欢骑自行车。
因而有的人不喜欢步行。
令F(x):x喜欢步行。
G(x):x喜欢坐汽车。
H(x):x喜欢骑自行车。
解:前提是:∀x(F(x)→⌝ G(x)),∀x(G(x)∨H(x)),∃ x⌝ H(x)。
结论:∃ x ⌝F(x)。
证(1)∃ x ⌝H(x)P(2)⌝H(c)ES(1)(3)∀x(G(x)∨H(x))P(4) G(c)∨H(c)US(3)(5) G(c)T(2,4)I(6)∀x(F(x)→⌝ G(x))P(7)F(c)→⌝ G(c)US(6)(8)⌝ F(c)T(5,7)I(9)(∃x)⌝ F(x)EG(8)5.用直接证法证明:前提:(∀x)(C(x)→W(x)∧R(x)),(∃x)(C(x)∧Q(x))结论:(∃x)(Q(x)∧R(x))。
《离散数学》作业参考答案
7 (P→Q) (P→R) ( P Q) ( P R) (合取范式) ( P Q (R R) ( P ( Q Q) R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R)(主合取范式)
(P ( Q Q)) (( P P) Q) (P Q) (P Q) ( P Q) (P Q) (P Q) (P Q) ( P Q)(主析取范式) 2.Q→( P R) Q P R(主合取范式) (Q→( P R)) ( P Q R) ( P Q R) ( P Q R) ( P Q R) (P Q R)
E
(6)
(8)
E
前提
(9) E E
(7),(8)
8 、A→(C B),B→ A,D→ C A→ D.
证明:
(1) A
附加前提
(2) A→(C B) 前提
(3) C B
(1),(2)
(4) B→ A
前提
(5) B
(1),(4)
(6) C
(3),(5)
(7) D→ C
前提
(8) D
( P (Q Q)) (( P P) Q) ( P Q) ( P Q) ( P Q) (P Q) ( P Q) ( P Q) (P Q)(主析取范式) 4. (P→Q) (R P) ( P Q) (R P) (P Q) (R P)(析取范式) (P Q (R R)) (P ( Q Q) R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R)(主析取范式) ( (P→Q) (R P)) (P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R)
20年7月考试《离散数学》考核作业及参考答案
东北大学继续教育学院离散数学试卷(作业考核线上2) A 卷(共 4 页)1.分别说明联结词⌝、∧、∨、→和↔在自然语言中表示什么含义。
解:(1) ⌝叫做否定。
(2) ∧叫做合取。
(3) ∨叫做析取。
(4) →叫做蕴涵。
(5) ↔叫做等价。
“⌝”表示“…不成立”,“不…”。
“∧”表示“并且”、“不但…而且...”、“既…又...”等。
“∨”表示“或者”,是可兼取的或。
“→”表示如果… ,则…;只要… ,就…;只有… , 才…;仅当… 。
“↔”表示“当且仅当”、“充分且必要”。
2.分别列出P↔解:二. (10分) 1.指出下面的命题公式中哪些是永真式(只写题号即可)。
(1). (P∧(P→Q))→Q (2). P→(P∨Q)(3). (P∧Q)→Q (4). (P∨Q)→P答:(1),(2),(3)是永真式。
2.然后对上面的永真式任选其中一个给予证明(方法不限)。
答:证明(3).(P∧Q)→Q设前件(P∧Q)为真,则得Q为真。
所以(P∧Q)→Q 是永真式。
3.上面哪个不是永真式(找出一个即可),请说明它为什么不是永真式。
解:(4). (P∨Q)→P 不是永真式。
因为如果前件P∨Q为真,后件P不一定为真。
所以(P∨Q)→P 不是永真式。
三. (14分) 用谓词逻辑推理的方法证明下面推理的有效性。
要求按照推理的格式书写推理过程。
∀x(B(x)→⌝C(x)), ∃xA(x), ∀x(⌝A(x)∨C(x)) ⇒∃x⌝B(x)解:⑴∃xA(x) P⑵ A(a) ES ⑴⑶∀x(⌝A(x)∨ C(x)) P⑷⌝A(a)∨C(a) US ⑶⑸ C(a) T⑵⑷ I⑹∀ x(B(x)→⌝C(x)) P⑺ B(a)→⌝C(a) US ⑹⑻⌝B(a) T ⑸⑺ I⑼∃x⌝B((x) EG ⑻四.(12分) 令全集E={1,2},A={1}, P(A)表示集合A的幂集。
(注意:要求有计算过程,不能直接写出计算结果!)解:因为P(E)={Φ,{1},{2}, {1,2}} 所以P(E)有4个元素。
华南理工网络教育学院离散数学试题A
华南理工网络教育学院离散数学试题A一、选择题1、在下列命题中,不是命题的是()A.这是一个苹果B.今天是星期一C.苏州在南京的南边D.明天会下雨吗?E.所有猫都是动物2、下列命题中,真命题是()A.如果a>b,那么ac>bcB.如果a>b,c>d,那么a+c>b+dC.如果a>b>0,c>d>0,那么ac>bdD.如果a>b>0,那么对任意实数c,ac>bc3、下列命题中,假命题是()A.如果一个命题的逆命题是真命题,那么这个命题是假命题B.如果一个命题的否命题是假命题,那么这个命题是真命题C.如果一个命题的逆否命题是假命题,那么这个命题是假命题D.如果一个命题的否命题是真命题,那么这个命题是真命题二、填空题1、填空题中的空档里,请按照数学表达式的正确格式填写答案。
设A和B是两个集合,用符号表示它们之间的关系,相交关系为 A ∩B,全集为 U,则 A的补集表示为 A'。
2、如果一个命题的逆命题是真命题,那么这个命题是____________。
3、如果一个命题的否命题是假命题,那么这个命题____________。
4、如果一个命题的逆否命题是假命题,那么这个命题是____________。
5、在下列各小题中,选择一个适当的答案填入空格内。
(1)如果a>b>0,那么对任意实数c,ac________bc;(2)如果a>b>0,c>d>0,那么ac________bd;(3)如果a>b>0,那么对任意实数c,ac________bc;(4)如果a>b>0,那么对任意实数c,ac________bc。
答案:(1)> (2)> (3)> (4)<解析:根据不等式的性质进行判断。
6、下列各小题中,选择一个适当的答案填入空格内。
(1)如果a<b<0,那么对任意实数c,ac________bc;(2)如果a<b<0,c<d<0,那么ac________bd;(3)如果a<b<0,那么对任意实数c,ac________bc;(4)如果a<b<0,那么对任意实数c,ac________bc。
(完整版)《离散数学》同步练习答案
华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。
q:派小李去开会.则命题:“派小王或小李中的一人去开会" 可符号化为:(p q) (p q)。
(2)设A,B都是命题公式,A B,则A B的真值是T。
(3)设:p:刘平聪明。
q:刘平用功。
在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p q .(4)设A , B 代表任意的命题公式,则蕴涵等值式为A B A B。
(5)设,p:径一事;q:长一智。
在命题逻辑中,命题:“不径一事,不长一智。
" 可符号化为: p q 。
(6)设A , B 代表任意的命题公式,则德摩根律为(A B)Û A B)。
(7)设,p:选小王当班长;q:选小李当班长.则命题:“选小王或小李中的一人当班长。
”可符号化为: (p q)(p q) .(8)设,P:他聪明;Q:他用功。
在命题逻辑中,命题:“他既聪明又用功。
" 可符号化为:P Q .(9)对于命题公式A,B,当且仅当 A B 是重言式时,称“A蕴含B”,并记为A B。
(10)设:P:我们划船.Q:我们跑步.在命题逻辑中,命题:“我们不能既划船又跑步.”可符号化为:(P Q) 。
(11)设P,Q是命题公式,德·摩根律为:(P Q)P Q) 。
(12)设P:你努力.Q:你失败。
在命题逻辑中,命题:“除非你努力,否则你将失败。
”可符号化为:P Q .(13)设p:小王是100米赛跑冠军。
q:小王是400米赛跑冠军。
在命题逻辑中,命题:“小王是100米或400米赛跑冠军.”可符号化为:p q。
(14)设A,C为两个命题公式,当且仅当A C为一重言式时,称C可由A逻辑地推出。
二.判断题1.设A,B是命题公式,则蕴涵等值式为A B A B。
()2.命题公式p q r是析取范式。
( √ )3.陈述句“x + y > 5”是命题。
最新电大《离散数学》形考作业任务01-07网考试题及答案-
最新电大《离散数学》形考作业任务01-07网考试题及答案:最新电大《离散数学》形考作业任务01-07网考试题及答案 100%通过考试说明:《离散数学》形考共有7个任务。
任务3、任务5、任务7是主观题,任务2、任务4、任务6是客观题,任务2、任务4、任务6需在考试中多次抽取试卷,直到出现02任务_0001或02任务_0009、04任务_0001或04任务_0009、06任务_0001或06任务_0009试卷,就可以按照该套试卷答案答题。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他教学考一体化答案,敬请查看。
01任务一、单项选择题(共 8 道试题,共 80 分。
)1. 本课程的教学内容分为三个单元,其中第三单元的名称是(). A. 数理逻辑 B. 集合论 C. 图论 D. 谓词逻辑 2. 本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(). A. 函数 B. 关系的概念及其运算 C. 关系的性质与闭包运算 D. 几个重要关系 3. 本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有()讲. A. 18 B. 20 C. 19 D. 17 4. 本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是(). A. 集合恒等式与等价关系的判定 B. 图论部分书面作业 C. 集合论部分书面作业 D. 网上学习问答 5. 课程学习平台左侧第1个版块名称是:(). A. 课程导学 B. 课程公告 C. 课程信息 D. 使用帮助 6. 课程学习平台右侧第5个版块名称是:(). A. 典型例题 B. 视频课堂 C. VOD点播 D. 常见问题7. “教学活动资料”版块是课程学习平台右侧的第()个版块. A. 6 B. 7 C. 8 D. 9 8. 课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(). A. 复习指导 B. 视频 C. 课件 D. 自测二、作品题(共 1 道试题,共 20 分。
2020年华南理工离散数学平时作业
1、用推理规则证明 P Q,(Q R) R,(PS) S
2、用推理规则证明 P Q,R S (P R)(Q S)
3.求公式 P Q P Q 的主析取范式与主合取范式,并写出相应的成
真赋值
《 离散数学作业 》 第 1 页 (共 6 页)
4.在一阶逻辑中构造下面推理的证明 每个喜欢步行的人都不喜欢坐汽车。每个人或者喜欢坐汽车或者喜欢骑自
7.设 R 是集合 A = {2, 3, 4, 6, 8,9,12,16}上的整除关系。 (1) 给出关系 R; (2)给出 COV A (3)画出关系 R 的哈斯图; (4)给出关系 R 的极大、极小元、最大、最小元。
《 离散数学作业 》 第 3 页 (共 6 页)
8.求带权图 G 的最小生成树,并计算它的权值。
行车。有的人不喜欢骑自行车。因而有的人不喜欢步行。 令 F(x):x 喜欢步行。G(x):x 喜欢坐汽车。H(x):x 喜欢骑自行车。
5.用直接证法证明: 前提:x(A(x) B(x)),x B(x) 结论:x A(x)
《 离散数学作业 》 第 2 页 (共 6 页)
6.设 R 是集合 A = {1, 2, 3, 4, 6, 8, 12, 24}上的整除关系。 (1) 给出关系 R;(2)画出关系 R 的哈斯图; (3)指出关系 R 的最大、最小元,极大、极小元。
9.给定权为 1,3,4,5,6;构造一颗最优二叉树。
《 离散数学作业 》 第 4 页 (共 6 页)
10、求带权为 1,2,3,4,5,6,7,8 的最优二元树 T,并给出 T 对应的二元 前缀码集合。
《 离散数学作业 》 第 5 页 (共 (共 6 页)
国家开放大学电大本科《离散数学》网络课形考网考作业及答案
国家开放大学电大本科《离散数学》网络课形考网考作业及答案100%通过考试说明:2020年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
课程总成绩 = 形成性考核×30% + 终结性考试×70%形考任务1单项选择题题目1若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:题目2若集合A={2,a,{ a },4},则下列表述正确的是( ).选择一项:题目3设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.选择一项:A. 传递B. 对称C. 自反和传递D. 自反题目4设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C =( ).选择一项:A. {1, 2, 3, 5}B. {4, 5, 6, 7}C. {2, 3, 4, 5}D. {1, 2, 3, 4}题目5如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:A. 1B. 3C. 2D. 0题目6集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().选择一项:A. 不是对称的B. 反自反C. 不是自反的D. 传递的题目7若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:题目8设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:A. 3B. 2C. 8D. 6题目9设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次。
离散数学网上作业题讲解
东北农业大学网络教育学院离散数学复习题复习题一一、证明1、对任意两个集合B A 和,证明 ()()A B A B A =⋂⋃-2、构造下面命题推理的证明如果今天是星期三,那么我有一次英语或数学测验;如果数学老师有事,那么没有数学测验;今天是星期三且数学老师有事,所以我有一次英语测验。
二 、计算1、(1)画一个有一条欧拉回路和一条汉密顿回路的图。
(2)画一个有一条欧拉回路但没有汉密顿回路的图 (3)画一个没有欧拉回路但有一条汉密顿回路的图2、设()(){}212,,,个体域为为,整除为<x x Q y x y x P ,求公式:()()()()()x Q y x P y x →∃∀,的真值。
3、一棵树有2n 个结点度数为2 ,3n 个结点度数为3,… ,k n 个结点度数为k ,问它有几个度数为1的结点。
4、设集合{}A A ,4,3,2,1=上的关系 {}4,3,3,2,1,22,1,1,1=R ,求出它的自反闭包,对称闭包和传递闭包。
三、设{}45,36,27,15,9,6,5,3,2,1=A 上的整除关系{}212121,,,a a A a a a a R 整除∈=,R 是否为A 上的偏序关系?若是, 则:1、画出R 的哈斯图;2、求{}{}{}9,2glb 9,2lub 9,2和最大下界的最小上界。
四、用推导法求公式()()R Q P →→的主析取范式和主合取范式。
五、设实数集2R 上的关系{}c bd a R d c b a dc b a +=+∈,,,,,,,2=ρ,证明:ρ是2R 上的等价关系。
六、设+R R 和分别是实数集和正实数集,+和×分别是普通加法和乘法,定义函数+→R R f :为r r f 2)(=,证明 ),(),(⨯++R R f 到是从的同构映射。
七、设R 是实数集合,}0{*-=R R ,在R R ⨯*上定义二元运算 为:()()()d bc ac d c b a +=,,, ,试证明>⨯< ,*R R 是一个群。
离散数学课程模拟题附标准答案
《离散数学》期末考试考点及模拟题答案一、考试题型及分值各种题型所占的比例:填空题10%,判断题10%,选择题20%,其它题型60%新出试卷按照如下各种题型所占的比例:填空题20%,判断题15%,选择题30%,其它题型35%二、考点1.命题逻辑熟练掌握命题及其表示;掌握常用联结词(「、八、V、f、)的使用;熟练掌握命题公式的符号化;熟练掌握使用真值表判别命题等价的方法;掌握使用等价公式判别命题等价的方法;掌握重言式与蕴含式的概念及其判别方法;了解其他联结词的使用;了解对偶的概念;掌握求命题范式的方法;熟练掌握命题演算推理的基本理论.2.谓词逻辑熟练掌握谓词的概念及其表示;熟练掌握量词的使用;掌握使用谓词公式翻译命题的方法;掌握变元的约束;掌握谓词演算中等价式与蕴含式的判别;了解前束范式的求法;熟练掌握谓词演算推理的基本理论.3.集合与关系熟练掌握集合的概念和表示法;掌握集合的基本运算;掌握序偶与笛卡尔积的概念;熟练掌握关系及其表示;掌握关系的基本性质;了解复合关系和逆关系的概念;掌握关系的闭包运算;了解集合的划分和覆盖;掌握等价关系与等价类的概念;了解相容关系的概念;掌握各种序关系的概念.4.函数熟练掌握函数的概念;掌握逆函数和复合函数的概念;了解基数的概念;了解可数集与不可数集;了解基数的比较.5.代数结构掌握代数系统的概念;掌握n元运算及其性质;掌握半群、群与子群的概念;了解阿贝尔群和循环群的概念;了解陪集与拉格朗日定理;了解同构与同态的概念;了解环与域的概念.6.图论掌握图的基本概念;掌握路与回路的概念;熟练掌握图的矩阵表示;掌握欧拉图和哈密顿图的概念;掌握平面图的概念;了解对偶图与着色;熟练掌握树与生成树的概念;了解根树及其应用.(一)参考教材与网上资料复习(二)随堂练习或作业题在在新出试卷里有较大比例提高三、模拟试卷附后(请参考学习资料,找到或者做出解答)一、考试对象计算机学科中计算机科学与技术、软件工程等专业本科生二、考试的性质、目的离散数学是随着计算机科学的发展而逐渐形成的一门学科,是近代数学的一个分支在计算机科学中,它主要应用于数据结构、操作系统、编译原理、数据库理论、形式语言与自动机、程序理论、编码理论、人工智能、数字系统逻辑设计等方面它是计算机科学各专业重要的专业基础课.本课程教学的目标是:①使学生掌握离散数学的基本理论和基本知识,为学习有关课程以及今后工作打好基础.②培养和提高学生的抽象思维与逻辑推理能力.四、考试方式及时间:考试方式:闭卷考试时间:120分钟五、课程综合评定办法1期末闭卷考试:占总成绩60%.2、平时成绩(作业、考勤情况等):占总成绩40%3、试题难易程度:基础试题:中等难度试题:较难试题:难度较大的试题 =4: 3: 2: 1六、考试教材《离散数学》左孝凌、李为^、刘永才编著,上海科学技术文献出版社附:模拟试卷华南理工大学网络教育学院2012 - 2013学年度第一学期期末考试《离散数学》试卷(模拟卷)教学中心:专业层次:学号:姓名:座号:注意事项:1.本试卷共五大题,满分100分,考试时间120分钟,闭卷;2.考前请将以上各项信息填写清楚;3.所有答案直接做在试卷上,做在草稿纸上无效;4.考试结束,试卷、草稿纸一并交回.一.判断题(每题2分,共10分)1、设A, B都是合式公式,则A A B F「B也是合式公式.(J)2. P f Q o「P v Q ,(v)3、对谓词公式(V x) (P (y) V Q (x,y)) △R (x,y)中的自由变元进行代入后得到公lllllll !lllll式(V x) (P (z) V Q (x,z)) △R (x,y) . (x)4.对任意集合 A、B、C,有(A—B) —C = (A—C) - (B—C). (j)5. 一个结点到另一个结点可达或相互可达. (X )二.单项选择题(每题2分,共20分)1.设:。
4.离散数学随堂练习4+华南理工大学网络教育
第四章 二元关系与函数4.1 二元关系的基本概念一、单项选择题1.设R 是X 到Y 上的关系,则一定有( )A .domR ⊆X , ranR ⊆YB .domR=X , ranR ⊆YC .domR=X , ranR=YD .FLD R=domR ∪ranR=X ∪Y2.设{}1,2,3,4,5,6A =到{}1,2,3B =的关系为(){}2,R a b a b ==,则domR 和ranR 为( ) A .{}1,2和{}1,4 B . {}1,4和{}2,1 C .{}1,4和{}1,2 D .{}4,1和{}3,13.设{}{}0,,1,3,A b B b ==,则A B U 的恒等关系为( ) A .()()(){},,1,1,3,3b b B . ()()(){}0,0,1,1,3,3 C .()()()(){}0,1,1,,,3,3,0b b D .()()()(){}0,0,1,1,3,3,,b b4.设A 为非空集合,则A 上的空关系不具有( ) A .反自反性 B . 自反性 C .对称性 D .传递性 5.A .R 在A 上反自反()R x x A x x >∉→<∈∀⇔,B .R 在A 上反对称()R x y y x R y x A y A x yx >∉→<≠∧>∈<∧∈∧∈∀∀⇔,, C .R 在A 上对称()R x y R y x A y A x y x >∈→<>∈<∧∈∧∈∀∃⇔,,D .R 在A 上传递()R z x R z y R y x A y A x y x >∈→<>∈<∧>∈<∧∈∧∈∀∀⇔,,,6. 下述说法不正确的是( )A .关系矩阵主对角线元素全是1,则该关系具有自反性质B .关系矩阵主对角线元素全是0,则该关系具有反自反性质C .关系矩阵是对称阵,则该关系具有对称性质D .关系矩阵主对角线元素有些是0,则该关系具有反自反性质7.下述说法不正确的是( )A .关系图每个顶点都有环,则该关系具有自反性质B .关系图每个顶点都没有环,则该关系具有反自反性质C .关系图没有单向边,则该关系具有对称性质D .关系图有些单向边,则该关系具有反对称性质8. 设 A = {a, b, c},要使关系{<a, b>, <b, c>, <c,c>, <b, a>}∪R 具有对称性,则( )A .R = {<c, a>}B .R = {<c, b>}C .R = { <b, a>}D .R = { <a, c>}9. A = {a , b , c },要使关系{<a , b >, <b , c >, <c , a >, <b , a >}∪R 具有对称性,则( )A .R = {<c , a >, <a , c >}B .R = {<c , b >, <b , a >}C .R = {<c , a >, <b , a >}D .R = {<c , b >, <a , c >}10. A = {a, b, c, d}, A 上的关系R = {<a, b>, <b, a>, <b, c>, <c, d>},则它的对称闭包为( )A .R = {<a, a>, <a, b>, <b, b>, <b, a>, <b, c>, <c, c>, <c, d>}B .R = {<a, b>, <b, a>, <b, c>, <c, b>, <c, d>}C .R = {<a, b>, <b, a>, <b, c>, <c, d>, <c, b>, <d, c>}D .R = {<a, a>, <a, b>, <b, a>, <b, c>, <c, d>, <d, c>}11.下列关系运算原有五个性质保留情况的说法错误的是( )A .逆关系与关系的交保持全部五个性质不变B .关系的并不保持反对称性和传递的C .关系的差不保持自反性和传递性D .复合关系仅仅不保持自反性12.设R 为定义在集合A 上的一个关系,若R 是( ),则R 为偏序关系 。
华工 2023秋 离散数学 平时作业
华工 2023秋离散数学平时作业作业一题目一请使用归纳法证明下列结论:在一副扑克牌中,无论怎样选择,其中总是存在不管选择多少张牌,至少有两张点数相同的牌。
解答使用归纳法证明:基础情况:当选择一张牌时,无论选择哪张牌,都不存在其他相同点数的牌,因为只有一张牌。
当选择一张牌时,无论选择哪张牌,都不存在其他相同点数的牌,因为只有一张牌。
归纳假设:假设选择任意n张牌时,其中至少存在两张点数相同的牌。
假设选择任意n张牌时,其中至少存在两张点数相同的牌。
归纳步骤:假设选择n+1张牌。
我们可以将这些牌分成两组:前n张牌和第n+1张牌。
根据归纳假设,前n张牌中至少存在两张点数相同的牌。
假设选择n+1张牌。
我们可以将这些牌分成两组:前n张牌和第n+1张牌。
根据归纳假设,前n张牌中至少存在两张点数相同的牌。
- 若第n+1张牌与前n张牌中的其中一张点数相同,则至少存在两张点数相同的牌。
- 若第n+1张牌为新的点数,则前n张牌中至少存在两张点数相同的牌。
根据抽屉原理,由于一副扑克牌中只有有限的不同点数,当选择的牌数超过不同点数的数量时,必然存在两张点数相同的牌。
综上所述,无论选择多少张牌,至少存在两张点数相同的牌。
题目二给定集合A={1,2,3}和集合B={x | x为自然数且1≤x≤6},找出集合A和集合B的笛卡尔积,并用集合的形式表示。
解答集合A和集合B的笛卡尔积为:A × B = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6)}作业二(待补充)......(继续完成其他题目)。
《离散数学》同步练习参考答案
华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。
q:派小李去开会。
则命题:“派小王或小李中的一人去开会”可符号化为:(p∨⌝q) ∧ (⌝p∨q) 。
(2)设A,B都是命题公式,A⇒B,则A→B的真值是T。
(3)设:p:刘平聪明。
q:刘平用功。
在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p∧q。
(4)设A , B 代表任意的命题公式,则蕴涵等值式为A → B⇔⌝A∨B。
(5)设,p:径一事;q:长一智。
在命题逻辑中,命题:“不径一事,不长一智。
”可符号化为:⌝ p→⌝q 。
(6)设A , B 代表任意的命题公式,则德∙摩根律为⌝(A ∧ B)⇔⌝A ∨⌝B)。
(7)设,p:选小王当班长;q:选小李当班长。
则命题:“选小王或小李中的一人当班长。
”可符号化为:(p∨⌝q) ∧ (⌝p∨q) 。
(8)设,P:他聪明;Q:他用功。
在命题逻辑中,命题:“他既聪明又用功。
”可符号化为:P∧Q 。
(9)对于命题公式A,B,当且仅当 A → B 是重言式时,称“A蕴含B”,并记为A⇒B。
(10)设:P:我们划船。
Q:我们跑步。
在命题逻辑中,命题:“我们不能既划船又跑步。
”可符号化为:⌝ (P∧Q) 。
(11)设P , Q是命题公式,德·摩根律为:⌝(P∨Q)⇔⌝P∧⌝Q)。
(12)设P:你努力。
Q:你失败。
在命题逻辑中,命题:“除非你努力,否则你将失败。
”可符号化为:⌝P→Q。
(13)设p:小王是100米赛跑冠军。
q:小王是400米赛跑冠军。
在命题逻辑中,命题:“小王是100米或400米赛跑冠军。
”可符号化为:p∨q。
(14)设A,C为两个命题公式,当且仅当A→C为一重言式时,称C可由A逻辑地推出。
二.判断题1.设A,B是命题公式,则蕴涵等值式为A→B⇔⌝A∧B。
(⨯)2.命题公式⌝p∧q∧⌝r是析取范式。
(√)3.陈述句“x + y > 5”是命题。
数据结构(含课程设计)平时作业2020秋华南理工大学网络教育答案
1. 评价一个好的算法,应该从哪几方面来考虑的?答:1、算法的正确性,2、算法的易读性,3、是算法的健壮性,4、是算法的时空效率(运行)。
2. 简述线性表的顺序和链式两种存储结构各自的主要特点。
答:1、顺序存储结构:存储单元地址连续,它以“物理位置相邻”来表示线性表中数据元素间的逻辑关系,可随机存取表中任一元素。
但它也使得插入和删除操作需移动大量的数据元素。
由于顺序表需要一组地址连续的存储单元,对于长度可变的线性表就需要预分配足够的空间,有可能使一部分存储空间长期闲置不能充分利用。
也可能由于估计不足,当表长超过预分配的空间而造成溢出,在这种情况下,又难于扩充连续的存储空间。
2、链式存储结构:存储单元地址为任意一组,它的存储单元可以是连续的,也可以是不连续的,甚至是零散分布在内存中的任意位置上的。
因此,链表中结点的逻辑次序和物理次序不一定相同。
在表示数据元素之间的逻辑关系时,除了存储其本身的信息之外,还需存储一个指示其直接后继的信息(即直接后继的存储位置),这两部分信息组成数据元素的存储映像,称为结点(node)3. 有一个有序表为{1,3,9,12,32,41,45,62,75,77,82,95,99},如果采用折半查找法查找关键字为82 的元素时,请分析其比较次数和每次进行比较的元素。
答:4次比较后查找成功,分别和45、77、95、82进行比较首先和中间值45比较,82比45大选择右边,右边六个数和中间值77比较,82比77大选择右边,右边3个数选择中间值95进行比较,82比95小选择左边,左边1个数和82比较相等。
4. 有5 个元素,其入栈次序为:A,B,C,D,E,在各种可能的出栈次序中,以元素C,D最先出栈(即C 第一个且D 第二个出栈)的次序有哪几个?答:有3 个: CDBAE, CDEBA, CDBEA5. 一棵二叉树的先序遍历序列为ABCDEF,中序遍历序列为CBAEDF,则后序遍历序列为什么?答:CDBAE;CDBEA;CDEBA6. 将整数序列(4,5,7,2,1,3,6)中的元素依次插入到一棵空的二叉排序树中,试构造相应的二叉排序树,要求用图形给出构造过程。
华南理工离散数学作业题版
华南理工大学网络教育学院2014–2015学年度第一学期《离散数学》作业(解答必须手写体上传,否则酌情扣分)1.设命题公式为?Q?(P?Q)??P。
(1)求此命题公式的真值表;(2)求此命题公式的析取范式;(3)判断该命题公式的类型。
解:(1)真值表如下:P Q ?Q P ?Q ?Q?(P?Q)?P ?Q?(P?Q)??P0 0 1 1 1 1 10 1 0 1 0 1 11 0 1 0 0 0 11 1 0 1 0 0 1(2)?Q?(P ?Q)??P??(?Q?(?P? Q)) ?? P?( Q?? (?P? Q)) ?? P ?? ( ?P? Q) ? (Q??P) ?1(析取范式)?(?P?? Q) ? (?P? Q) ? (P?? Q) ?(P? Q)(主析取范式)(3)该公式为重言式2.用直接证法证明前提:P?Q,P?R,Q?S结论:S?R解:(1)?S P(2)Q ?S P(3) ? Q (1)(2)(4)P? Q P(5)P (3)(4)(6) P ? R P(7)R (5)(6)(8)?S? R (1)(7)即SVR得证3.在一阶逻辑中构造下面推理的证明每个喜欢步行的人都不喜欢坐汽车。
每个人或者喜欢坐汽车或者喜欢骑自行车。
有的人不喜欢骑自行车。
因而有的人不喜欢步行。
令F(x):x喜欢步行。
G(x):x喜欢坐汽车。
H(x):x喜欢骑自行车。
解:前题:?x (F (x) →?G(x)), ?x (G (x) ?H (x))? x ?H (x)结论:? x ?F (x)证:(1)? x ?F (x) p(2) ?H (x) ES(1)(3) ?x (G (x) ?H (x)) P(4)G (c) vH (c) US(3)(5)G (c) T(2,4)I(6)?x (F (x) →?G(x)), p(7)F (c) →?G(c) US(6)(8) ?F (c) T(5,7)I(9)( ? x) ?F (x) EG(8)4.用直接证法证明:前提:(?x)(C(x)→W(x)∧R(x)),(?x)(C(x)∧Q(x))结论:(?x)(Q(x)∧R(x))。
网络农大离散数学全套答案
第1套您已经通过该套作业,请参看正确答案1、下列语句中不是命题的是()。
A. 昨天是星期四B. 请不要生气!C. 3是素数D. 明天是个阴天参考答案: B 您的答案: B2、设p:我很累, q:我去学习, 则命题:“如果我很累, 我就不去学习”应符号化为()。
A.┐p∧q B.┐p→qC.┐p→┐q D.p→┐q参考答案: D 您的答案: D3、下列命题公式为重言式的是()。
A. p→ (p∨q)B. (p∨┐p)→qC. q∧┐qD. p→┐q参考答案: A 您的答案: A4、下列是两个命题变元的极小项的是()。
A. B.C. D.参考答案: C 您的答案: C5、下列是谓词公式的是()。
A. B.C. D.参考答案: B 您的答案: B6、下列等值式不正确的是()。
A.B.C.D.参考答案: C 您的答案: C7、设, 下面命题为假的是()。
A.B.C.D.参考答案: D 您的答案: D8、设上的关系, 则R的定义域等于()。
A.B.C.D.参考答案: A 您的答案: A9、设A={1, 2, 3}, A上二元关系S={<1, 1>, <1, 2>, <3, 2>, <3, 3>}, 则S是()。
A.自反关系B.反自反关系C.对称关系D.传递关系参考答案: D 您的答案: D10、设R是实数集合, 函数, 和,则复合函数是()。
A. B.C.D.参考答案: B 您的答案: B11、在自然数集合N上, 下列定义的运算中不可结合的是()。
A.B.C. D.参考答案: B 您的答案: B12、集合的交运算不满足()。
A. 交换律B. 结合律C. 幂等律D. 消去律参考答案: D 您的答案: D13、若是群, 则运算()。
A.满足结合律、交换律B.有么元、可结合C.有么元、可交换D.有零元、可交换参考答案: B 您的答案: B14、仅有一个孤立结点的图称为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)COVA={<2,4>,<2,6>,<3,6>,<3,9>,<4,8>,<4,12>,<6,12>,<8,16>}
8.求带权图G的最小生成树,并计算它的权值。
<24,24>}
(2)哈斯图如下所示
(3)最大元24最小元1极大元12极小元1
7.设R是集合A= {1, 6, 9,12,18,24,36}上的整除关系。
(1)给出关系R;
(2)画出关系R的哈斯图;
(3)给出关系R的极大、极小元、最大、最小元。
解:(1)R={<2,2>,<2,4>,<2,6>,<2,8>,<2,12>,<2,16>,<3,3>,<3,6>,<3,9>,<3,12>,
华南理工大学网络教育学院
2020–2021学年度第一学期
《 离散数学》作业
1、用推理规则证明PQ,(QR)R,(PS) S
证(1)(QR)R前提引入
(2)QR(1)等价转换
(3)Q(2)化简
(4)PQP
(5)P(3)(4)拒取式
(6)(PS)P
(7)PS(6)等价转换
(8)S(5)(7)析取三段论
2、用推理规则证明PQ,RS (PR)(QS)
每个喜欢步行的人都不喜欢坐汽车。每个人或者喜欢坐汽车或者喜欢骑自行车。有的人不喜欢骑自行车。因而有的人不喜欢步行。
令F(x):x喜欢步行。G(x):x喜欢坐汽车。H(x):x喜欢骑自行车。
5.用推理规则证明x(P(x)Q(x)),xP(x) xQ(x)
证(1)xB(x)前提引入
(2)B(c)(1)US
证(1)PR附加前提引入
(2)R(1)化简
(3)P(1)化简
(4)PQP
(5)Q(3)(4)假言推理
(6)RSP
(7)S(2)(6)假言推理
(8)QS(5)(7)合取
3.求公式 的主析取范式与主合取范式,并写出相应的成真赋值与成假赋值。
解
主析取范式,成真赋值10,11
主合取范式
成假赋值是00,01
4.在一阶逻辑中构造下面推理的证明;8+9=28
9.求带权图G的最小生成树,并计算它的权值。
解:C(T)=2+2+3+5+6+100=118
10、求带权为1,2,3,4,5,6,7,8的最优二元树T,并给出T对应的二元前缀码集合。
解:(B={000,001,01000,01001,0101,011,10,11},W(T)=102)
(3)x(A(x)B(x))前提引入
(4)A(c)B(c)(3)US
(5)A(c)(2)(4)I
(6)xA(x)(5)EG
6.设R是集合A = {1, 2, 3, 4, 6, 8, 12, 24}上的整除关系。
(1)给出关系R;
(2)画出关系R的哈斯图;
(3)指出关系R的最大、最小元,极大、极小元。
解:(1)R={<1,1>,<1,2>,<1,3>,<1,4>,<1,6>,<1,8>,<1,12>,<1,24>,<2,2>,<2,4>, <2,6>,<2,8>,<2,12>,<2,24>,<3,3>,<3,6>,<3,12>,<3,24>,<3,3>,<3,6>,<3,12>,<3,24>,<4,4>,<4,8>,<4,12>,<4,24>,<6,6>,<6,12>,<6,24>,<8,8>,<8,24>,<12,12>,<12,24>,