流体力学课件2-2
工程流体力学 第二章

只反映 在空间点(x,y,z) 处的时间变化特性 (即不同时刻经过该空间点的流体质点具有不 同的 ),不代表同一质点物理量的变化,所 以不是质点导数。
30
2.2.4 质点导数
( x , y , z , t ) t
反映了物理量在空间点(x,y,z)处的时间变化 特性,故可用来判定流场是否是稳态流场, 若是稳态的,则
或以速度分量表示为: dx vx v x ( a, b, c, t ) dt dy vy v y ( a, b, c, t ) dt dz vz v z ( a, b, c, t ) dt
16
2.2.1 拉格朗日法
一般地,流体任意运动参数或物理量(无 论矢量或标量)都同样可表示成拉格朗日 变量函数:
(a, b, c, t )
( x, y , z , t )
23
2.2.3欧拉表达式变换为拉格朗日
已知欧拉法描述的速度场:u=x,v=-y和 初始条件: x=a,y=b. 求速度和加速度的拉格朗日描述。
24
2.2.3欧拉表达式变换为拉格朗日表达式
已知流场速度和压力分布为:
xy v vxi v y j vz k i yj ztk t 1 e At 2 p 2 x y2 z2
的有限空间或微元空间作为研究对象,通过
研究该空间的流体运动及其受力,建立相应动
力学关系。
3
2-1 流场及流动分类
流场的概念 流场所占据的空间。为描述流体在流场内各 点的运动状态,将流体的运动参数表示为流 场空间坐标(x,y,z)和时间t的函数。
v v( x, y, z, t ) vx i v y j vz k
工程流体力学2

§2-1 流体静压强及其特性
静压强:当流体处于平衡或者相对平衡状态时, 作用在流体单位面积上的力。
p lim Fn
A 0
A
pn
特性一:
流体静压强的作用方向沿着
作用面的内法线方向。
静止流体对容器的作用一定垂直于固体壁面。
§2-1 流体静压强及其特性
特性二:
静止流体中的任一点上,来自任意方向上的静压强都是相等的。
三、流体静压强的测量和液柱式测压计
常见的测压仪器有:液柱式测压计;金属式压强计(利用
金属的变形来测量压强);电测式仪表(将压强变化转化
为电信号的变化)等。
液柱式测压计的测量原理是以流体静力学基本方程 为依据的。
§2-3 重力场中流体的平衡
1、测压管
p pa
p p a gh
p pa
计。通常采用双U形管或三U形管测压计。
§2-3 重力场中流体的平衡
3. U形管差压计 用于测量两个容器或管 道流体中不同位置两点 的压强差。
p p A p B 2 gh 1 gh 2 1 gh 1 2 1 gh
§2-3 重力场中流体的平衡
§2-3 重力场中流体的平衡
水头:单位重量流体所具有的能量用液柱高度来表示。 静水头:位置水头和压强水头之和。
方程的几何意义:
在重力作用下,静止的不可压缩流体中各点的静水头都相等。
§2-3 重力场中流体的平衡
有自由液面的静压强公式: p0 p z z h g g
p p 0 gh
h 为任意点在自由液面下的深
度,即淹深。
流体内部的静压强包含两部分:
流体力学PPT课件

y1, y2...yn ——气体混合物中各组分的摩尔分率。
对于理想气体,其摩尔分率y与体积分率Φ相同。
9
第1节 流体静力学
五、比容
单位质量流体具有的体积,是密度的倒数,单位为m3/kg。
vV 1
m
10
第1节 流体静力学
1.1.2 流体的静压强
一、压强的定义
流体垂直作用在单位面积上的力(压应力)
在SI制单位中压强的单位是N/m2,称为帕斯卡, 以Pa表示。
注意:用液柱高度表示压强时,必须指明流体的 种类。
标准大气压有如下换算关系: 1atm = 1.013×105Pa =760mmHg
=10.33mH2O=1.033kg/cm2=1.013bar 1at=9.807×104Pa=735.6mmHg=10mH2O
为斜管压差计, 用以放大读数,提高测量精度。
R 与 R 的关系为 R' R
sin
式中α为倾斜角,其值越小,则读数放大倍数
越大。
19
第1节 流体静力学
(4) 双液体U管压差计(微差压差计) 内装密度接近但不互溶的两种指示液
A和C( A C),扩大室内径与U管内径 之比应大于10。
p1-p2≈(pA-pB)gR
16
第1节 流体静力学
三、流体静力学基本方程的应用
1.压强及压强差的测量 (1) U管压差计
p1p2(AB)gR
A-指示液 B-被测液体
A B
17
第1节 流体静力学
(2)倒U形压差计
p 1 p 2 R (B g A ) RB g
A-指示液 B-被测液体
A B
18
第1节 流体静力学
(3)斜管压差计 当所测量的流体压强差较小时,可将压差计倾斜放置,即
《流体力学》第二章流体静力学

p z C g
pa 4 3 真空 1
p2 g
p=0
z1
z3
2
z=0
p 为压强水头 g
z 为位置水头
2.3 重力场中的平衡流体 重要结论
p p0 gh
(1) 在重力作用下的静止液体中,静压强随深度按线性 规律变化,即随深度的增加,静压强值成正比增大。 (2)在静止液体中,任意一点的静压强由两部分组成: 一部分是自由液面上的压强P0;另一部分是该点到自由 液面的单位面积上的液柱重量ρgh。 (3)在静止液体中,位于同一深度(h=常数)的各点的静 压强相等,即任一水平面都是等压面。
2.2 流体平衡微分方程 一、欧拉平衡方程
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
2 3
2
3
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
dA dA n
dF pdAn
F pdAn
A
流体静压力:作用在某一面积上的总压力; (矢量) 流体静压强:作用在某一面积上的平均压强或某一点的 (标量) 没有方向性 压强。
2.1 平衡流体上的作用力 证明:
z A
pn px
微元四面体受力分析
py
dx C x
dz O dy B y
y
p x p y p z pn
C x
pz
f
↑
z
表 面 力 质 量 力
1 d yd z 2 1 Py p y d zd x 2 1 P p d yd x z z 2 P n pn d A P x px
流体力学课件

由于坐标函数 w ( x, y, z )与质量力之间存在着上述关 系,则称函数 w 为质量力的势函数,这样的质量力称为有 势质量力。
§2-3 重力场中的平衡流体
讨论重力作用下,不可压缩平衡流体的压强分布 规律。
一、静压强基本公式(方程) 对于如图所示容器中的流体,单位质量 流体 所受质量力在各坐标方向上的分量为: mg f x 0 , f y 0 , fz g m 将上述结果代入欧拉平衡微分方程的综合表达式 得:dp gdz , 移项后得:
距A点 x 轴方向上 1/2dx 处的前、后两个面上的 表面力分别为:
p 1 dx dydz , pA x 2
p 1 dx dydz pA x 2
三、平衡微分方程 沿 x 轴方向有 Fx = 0 即:
p 1 p 1 dx dydz p A dx dydz pA x 2 x 2 dxdydzf x 0
2、液体和气体
气体远比液体具有更大的流动性。 气体在外力作用下表现出很大的可压缩性。 二、流体质点的概念及连续介质模型 流体质点—— 流体中由大量流体分子组成的, 宏观尺度非常小,而微观尺度又足够大的物理实 体。(具有宏观物理量 、T、p、v 等) 连续介质模型—— 流体是由无穷多个,无穷 小的,彼此紧密毗邻、连续不断的流体质点所组 成的一种绝无间隙的连续介质。
此式便于积分。对于各种不同质量力作用下流体 内的压强分布规律,均可由它积分得到。
五、质量力的势函数
对于不可压缩流体, =常数。 令p/ = w,因 p = p ( x, y, z ),则: w = w ( x, y, z ) 由综合式有: d (p/) = fxdx + fydy + fzdz = dw = (w/x)dx + (w/y)dy + (w/z)dz 则有 : fx= (w/x), fy= (w/y), fz= (w/z)
流体力学专题教育课件

§1.1 流体力学及其任务
流体力学旳研究措施
理论措施:根据实际问题建立理论模型,涉及微分体 积法、速度势法、保角变换法等。
数值措施:根据理论分析旳措施建立数学模型,选择 合适旳计算措施,涉及有限差分法、有限元法、特征线法、 边界元法等,利用计算机计算,得出成果。
试验措施:根据模化理论对所研究旳流动进行模拟, 经过观察和测量,取得所需成果,可直接处理工程中复杂 旳问题,并能发觉新旳流动现象。
§1.3 流体旳主要物理性质
dV / V 1 dV
dp
V dp
或
1 d dp
压缩系数旳倒数是体积弹性模量,即:
K 1 V dp dp
dV d
(1- 6) (1- 7) (1- 8)
§1.3 流体旳主要物理性质
液体旳热膨胀性用热膨胀系数来表达,它表达在一 定旳压强下,温度增长1度,密度旳相对减小率。
三种圆板旳衰减时间均相等。库仑得出结论:衰减旳 原因,不是圆板与液体之间旳相互摩擦,而是液体内部旳 摩擦。
§1.3 流体旳主要物理性质
3. 牛顿内摩擦定律
根据牛顿内摩擦定律,流体旳内摩擦力可表达为:
以应力表达
T A du
dy
du
dy
(1- 2) (1- 3)
du/dy为速度在垂直于速度旳方向上旳变化率,也称 为速度梯度 。
§1.3 流体旳主要物理性质
4. 黏性流体和无黏性流体
黏性流体(实际流体):实际中旳流体都具有黏性, 因为都是由分子构成,都存在分子间旳引力和分子旳热运 动,故都具有黏性。
无黏性流体(理想流体):假想没有黏性旳流体。
因为实际流体存在黏性使问题旳研究和分析非常复杂, 甚至难以进行,为简化起见,引入理想流体旳概念。某些 黏性流体力学旳问题往往是根据理想流体力学旳理论进行 分析和研究旳。
流体力学基本知识 ppt课件

〈2〉温度升高,气体的粘度增大(气体的内 聚力很小,它的粘滞性主要是分子间动量 交换的结果。当T上升,作相对运动的相邻 流层间的分子的动量交换加剧,使得气体 的粘度增大。)
流体力学基本知识
6
三、流体的压缩性和热胀性
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
流体力学基本知识
14
(三)流线与迹线
1.流线:流体运动时,在流速场中画出某时 刻的这样的一条空间曲线,它上面所有流 体质点在该时刻的流速矢量都与这条曲线 相切,这条曲线就称为该时刻的一条流线。
流体力学基本知识
26
四、沿程阻力系数λ和流速系数C的确定
沿程阻力系数λ 是反映边界粗糙情况和流态 对水头损失影响的一个系数。1933年尼古 拉兹表发表了其反映圆管流运情况的实验 结果,得出了一些结论:
1.层流区 2.层流转变为紊流的过渡区 3.紊流区
流体力学基本知识
27
(一)沿程阻力系数λ的经验公式 1.水力光滑区 2.水力过渡区 3.粗糙管区
2.迹线:流体运动时,流体中某一个质点在 连续时间内的运动轨迹称为迹线。流线与 迹线是两个完全不同的概念。非恒定流时 流线与迹线不相重合,在恒定流时流线与 迹线相重合。
流体力学基本知识
15
(二)恒定流与非恒定流
1.恒定流:流体运动时,流体中任一位置的 压强,流速等运动要素不随时间变化的流 动称为恒定流动。
流体力学课件第二章

2.2.2 平衡微分方程的积分
将式(2-2) 各分式分别乘以dx、dy、dz后相加,得到
p p p dx dy dz ( Xdx Ydy Zdz ) x y z
上式等号左边是压强 p(x,y,z)的全微分
dp ( Xdx Ydy Zdz ) (2 - 7)
由边界条件z=z0,p=p0,定出积分常数 c p0 gz0
代回原式,得
p p0 g ( z0 z) p p0 gh (2 - 9)
或以单位体积液体的重量除式(2-8)各项,得
p c z g g
p z c g (2 - 10)
式中 p——静止液体内某点的压强; p0——液体表面压强,自由液面压强用pa表示; h——该点到液面的距离,称淹没深度;
流体平衡微分方程的全微分式 将式(2-5)代入式(2-7),得到
dp dU p U c 积分,得 不可压缩流体在有势的质量力作用下才能静止。
2.2.3 等 压 面
压强相等的空间点构成的面(平面或曲面)称为等压 面,例如液体的自由表面。
等压面的一个重要性质是,等压面与质量力正交。
等压面上,p=常数
(2-11)
(3)平衡状态下,液体内(包括边界上)任意点压强的 变化,等值地传递到其它各点。 液体内任意点的压强
pB pA ghAB
在平衡状态下,当A点的压强增加△p,则B点的压强 变为 pB ( pA p) ghAB ( pA ghAB ) p
pB p (2 -12)
A点压强
pA pB ghAB ghAB 1000 9.8 1.5 14700 Pa
C点压强
pC pB ghBC ghBC 1000 9.8 2 19600 Pa
《流体力学》课件

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。
古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。
流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。
建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。
此后千余年间,流体力学没有重大发展。
15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。
但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。
流体力学的主要发展:17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。
他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。
使流体力学开始成为力学中的一个独立分支。
但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。
之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。
欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。
流体力学课件 ppt

流体阻力计算
利用流体动力学方程,可以计算 流体在管道中流动时的阻力,为 管道设计提供依据。
管道优化设计
通过分析流体动力学方程,可以 对管道设计进行优化,提高流体 输送效率,减少能量损失。
流体动力学方程在流体机械中的应用
泵和压缩机性能分析
流体动力学方程用于分析泵和压缩机的性能 ,预测其流量、扬程、功率等参数,为机械 设计和优化提供依据。
适用于不可压缩的流体。
方程意义
描述了流体压强与密度、重力加速度和深度之间的 关系。
Part
03
流体动力学基础
流体运动的基本概念
01
02
03
流体
流体是气体和液体的总称 ,具有流动性和不可压缩 性。
流场
流场是指流体在其中运动 的区域,可以用空间坐标 和时间描述。
流线
流线是表示流体运动方向 的曲线,在同一时间内, 流线上各点的速度矢量相 等。
能量损失的形式
流体流动的能量损失可以分为沿程损失和局部损失两种形式。沿程损失是指流体在流动过程中克服摩擦阻力而损 失的能量,局部损失是指流体在通过管道或槽道的局部障碍物时损失的能量。
Part
05
流体动力学方程的应用
流体动力学方程在管道流动中的应用
稳态流动和非稳态
流动
流体动力学方程在管道流动中可 用于描述稳态流动和非稳态流动 ,包括流速、压力、密度等参数 的变化规律。
变化的流动。
流体动力学基本方程
1 2
质量守恒方程
表示流体质量随时间变化的规律,即质量守恒原 理。
动量守恒方程
表示流体动量随时间变化的规律,即牛顿第二定 律。
3
能量守恒方程
表示流体能量随时间变化的规律,即热力学第一 定律。
《流体力学》PPT课件

h
3
流体力学的基础理论由三部分组成: 一是流体处于平衡状态时,各种作用在流体上的力之间关系
的理论,称为流体静力学; 二是流体处于流动状态时,作用在流体上的力和流动之间关
系的理论,称为流体动力学; 三是气体处于高速流动状态时,气体的运动规律的理论,称
为气体动力学。 工程流体力学的研究范畴是将流体流动作为宏观机械运动进
温度 t (℃)
20 20 20 20 20 20 20 20 20 20 20 20 -257 -195 20
密度
( kg/m3) 998
1026 1149
789 895 1588 1335 1258 678 808 850-958 918
72 1206 13555
相对密度 d
1.00 1.03 1.15 0.79 0.90 1.59 1.34 1.26 0.68 0.81 0.85-0.93 0.92 0.072 1.21 13.58
动 力 黏 度 104
( P a·s) 10.1 10.6 — 11.6 6.5 9.7 —
14900 2.9
19.2 72 —
0.21 2.8
15.6
2021/1/10
h
14
表1-2
在标准大气压和20℃常用气体性质
气体
空
气
二氧化碳
一氧化碳
氦
氢
密度
( kg/m3) 1.205 1.84 1.16
h
1
第一节 流体力学的研究对象和任务
目
第二节 流体的主要物理性质
录
第三节 流体的静压强及其分布规律
第四节 流体运动的基本知识
第五节 流动阻力和水头损失
返回
《流体力学》课件

流体力学的应用领域
总结词
流体力学的应用领域与实例
详细描述
流体力学在日常生活、工程技术和科学研究中有广学、石油和天然气工业中的流体输送等。
流体力学的发展历程
总结词
流体力学的发展历程与重要事件
详细描述
流体力学的发展经历了多个阶段,从 早期的水力学研究到近代的流体动力 学和计算流体力学的兴起。历史上, 牛顿、伯努利等科学家对流体力学的 发展做出了重要贡献。
损失计算
根据流体流动的阻力和能量损失,计算流体流动的总损失。
流体流动阻力和能量损失的减小措施
优化管道设计
采用流线型设计,减少流体与 管壁的摩擦。
合理配置局部障碍物
减少不必要的弯头、阀门等, 或优化其设计以减小局部阻力 。
选择合适的管材
选用内壁光滑、摩擦系数小的 管材。
提高流体流速
适当提高流体的流速,可以减 小沿程损失和局部损失。
流体动力学基本方程
连续性方程
表示质量守恒的方程,即单位时间内流出的质量等于单位 时间内流入的质量。
01
动量方程
表示动量守恒的方程,即单位时间内流 出的动量等于单位时间内流入的动量。
02
03
能量方程
表示能量守恒的方程,即单位时间内 流出的能量等于单位时间内流入的能 量。
流体动力学应用实例
航空航天
飞机、火箭、卫星等的设计与制造需要应用 流体动力学知识。
流动方程
描述非牛顿流体的流动规律,包括连续性方程 、动量方程等。
热力学方程
描述非牛顿流体在流动过程中的热力学状态变化。
非牛顿流体的应用实例
食品工业
01
非牛顿流体在食品工业中广泛应用于番茄酱、巧克力、奶昔等
流体力学第2章_水静力学--用

流体静力学
§2-1 静水压强及其基本特性 §2-2 液体平衡微分方程及其积分 §2-3 重力作用下静水压强的分布规律 §2-4 几种质量力作用下液体的相对平衡 §2-5 作用于平面上的静水总压力 §2-6 作用于曲面上的静水总压力
流体静力学就是研究平衡流体的力学规律及其应用的科 学。 所谓平衡 或者说静止), 平衡( ),是指流体宏观质点之间没有 所谓平衡(或者说静止),是指流体宏观质点之间没有 相对运动,达到了相对的平衡。 相对运动,达到了相对的平衡。 因此流体处于静止状态包括了两种形式: 因此流体处于静止状态包括了两种形式: 一种是流体对地球无相对运动,叫绝对静止, 一种是流体对地球无相对运动,叫绝对静止,也称 为重力场中的流体平衡。 为重力场中的流体平衡。如盛装在固定不动容器中的液 体。 另一种是流体整体对地球有相对运动, 另一种是流体整体对地球有相对运动,但流体对运动 容器无相对运动,流体质点之间也无相对运动, 容器无相对运动,流体质点之间也无相对运动,这种静 止叫相对静止或叫流体的相对平衡。 止叫相对静止或叫流体的相对平衡。例如盛装在作等加 速直线运动和作等角速度旋转运动的容器内的液体。 速直线运动和作等角速度旋转运动的容器内的液体。
p0
z y
x
h1 z0 1 z1
dp = ρ ( Xdx + Ydy + Zdz )
0
z2 0
(2-4)
返回
2
h2
z
若取图示1 若取图示1、2两点,则得: 两点,则得
Z1 +
p1 p = Z2 + 2 ρg ρg
p0
y
x
h1 z0 1 z1
上式为重力作用下静止液体中的压强分布规律。 上式为重力作用下静止液体中的压强分布规律。 对于流体中的任意点和表面点运用此方程, 对于流体中的任意点和表面点运用此方程, 可得: 可得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四. 压强的度量单位
• 定义式: (N/m2 ; Pa)
1公斤力/米2 = 9.8 N/m2
• 液柱高度:
h = P/γ
(m)
• 大气压:
1标准物理大气压(atm)=1.033公斤力/厘米2=101325帕 1工程大气压(at)=98000帕=10mH20=735.6mmHg
• 大气压与大气压强:
面打孔,接出一端开口与大气相通的玻璃管,即为测压管。
测压管内的静止液面上
p = 0 ,其液面高程即为
pA /
测点处的 z p ,所以
pB /
叫测压管水头。
zA
zB
O
O
• 测静压只须一根测压管
如果容器内的液体是静
止的,一根测压管测得
的测压管水头也就是容
器内液体中任何一点的
pA /
测压管水头。如接上多
O
A
A点相 对压强
A点绝
B
对压强
相对压强基准 B点真空压强
B点绝对压强
绝对压强基准
O
• 今后讨论压强一般指
相对压强,省略下标, 记为 p,若指绝对压强 则特别注明。
压强
大气压强 pa
O
A
A点相 对压强
A点绝
B
对压强
相对压强基准 B点真空压强
B点绝对压强
绝对压强基准
O
方程的物理意义:
三. 位置水头、压强水头、测压管水头
X 0;Y 0; Z g
代入压力差公式
dp (Xdx Ydy Zdz)
积分得: p gz C '
积分常数根据液体自由表面上的边界条件确定:
z z0 ; p p0
C' p0 gz0
静力学基本方程的两 种表达形式
代入公式 p g得z : C '
p p0 g(z0 z) p0 gh
➢ 静力奇象
• 只要平面的面积和形心处的淹深
相同,则平板所受到的静水压力也
相同。
h
➢ 注意点
当平板左侧液面压强p01不等于平板右侧所受 压强p02时,平板所受总压力:
P P左 P右 p01A sinA zc p02 A ( p01 p02 ) A hc A
• 压差计:
测定两处压强差。
pAg(h h' H ) pB gh' pA pB g(h H )
pA AhAg pB B ghB p ghp pA pB B ghB p ghp AghA
• 微压计: 测定压强差很小的仪器。
p g(L sin A2 L) gL(sin A2 )
hv
pB
g
测压管
h'
p
' A
pa
gh
g g
h pA
g
pA gh
真空计或倒式测压管
• U形测压管: 当测压管压强较大或液柱较高时,可在U形管
中装入密度较大的介质从而用较短的测压管
测定较大的压强或真空度。
测定3atm以内的压强。
U
U
形
形
测
真
压
空
管
计
p
' A
pa
( ph2
h1 ) g
pA ( ph2 h1)g
zC
J Cx zC A
结论:
1. 平面上静水压强的平均值为作用面(平面图形)形心处的 压强。总压力大小等于作用面形心 C 处的压强 pC 乘上作用 面的面积 A .
2. 平面上均匀分布力的合力作用点将是其形心,而静压强分 布是不均匀的,浸没在液面下越深处压强越大,所以总压 力作用点位于作用面形心以下。
取研究对象
➢取一四面体OABC,三条边
相互垂直且与坐标重合,
受力分析
质量力
X 1 dxdydz
6
Y 1 dxdydz
6
Z 1 dxdydz
6
1 px 2 dydz
py
1 2
dxdz
pz
1 2
dxdy
表面力
导出关系式 对于任一轴:
Fx 0; Fy 0; Fz 0
对于x轴
px
1 2
dydz
平均压强的极限为:
p lim p dp
A(02.A1.1)dA
式中p为O点的流体静压强。
➢二、静压强的特性
1.静水压强垂直指向作用面,即内法线方向。 (垂直性)
反证 法
2.静止液体中任意点处各个方向的静水压强相等 (各向等值性)
px py pz pn
证明思路
取研究对象 受力分析 导出关系式 得出结论
或由式 p g整z 理C得:'
z p C
g
二. 绝对压强、相对压强、真空
• 压强 p记值的零点不同,有不同的名称:
绝对压强 以完全真空为 零点,记为 p′
相对压强 以当地大气压 pa 为零点,记为 p
两者的关系为: p= p′- pa
真空压强 相对压 强为负值时, 其绝对值称为 真空压强。
压强
大气压强 pa
绝对平衡:相对于固结坐标系无运动; 相对平衡:相对于参考坐标系无运动。
静止流体的基本特点: 流体质点间无相对运动,粘性表现不出来。γ、ρ可视为常数
第一节 静压强的特性
❖ 基本概念 ❖ 流体静压强的特性
➢一、基本概念
1.静压强 作用在单位面积上的力。
面积ΔA上的平均压强: p =ΔP/ΔA
当面积ΔA无限缩小趋近于零时,
p1 p2 p3 p4 pC pD
但如果写出等式 p1 p3;p2 p4 将是错误的 。因为处于 A、B两容器中的液体, 即非紧密连续,又不是 同一性质的液体,就不 能应用上述等压面的条件。
第三节 流体的静力学基本方程
一. 重力作用下的平衡方程 方程的导出:
在重力场中,单位质量力只有重力,即:
第二节 流体的平衡微分方程
质量力
微元体受力表分面析力
方程式推导思路:
流体静力平衡 微分方程
(欧拉平衡方程)
对连续的同一不可压缩流体, 在重力场中
将微分方程积分
流体静力平衡方程
一、 平衡微分方程的推导
取研究对象
在静止流体中取出六面体 流体微元,分析其在 x 方向 的受力。
微元所受 x 方向上 的质量力为
面必定是等压面。
2、等压面的应用 (连通器原理——同一水平面上各点的静压强相等,见后)
3、等压面的应用条件:同一、静止、连续的不可压缩流体
4、 结论: 在重力场中,任意形式的连通器内,在紧密连续而又 属于同一性质的静止的均质液体中,深度相同的点, 其压强必然相等。
例题:在右图所示盛有三种液体的连通器中,就必然存在:
• 当平板左右两面都受到p0的作用时: p ghc A
求解原理: 合力对任一轴的力矩 等于其分力对同一轴的力矩和。
➢ 总压力的作用点
P zD h z d A
A
sin z2 d A
A
sin J x
sin (Jcx zc2 A)
• 同理:
xD
xC
J Cxy zC A
zD
• 在静水压强分布公式 z p C 中,各项都为长度量纲,称
为水头(液柱高)。
➢ z —— 位置水头,以任取水平面为基准面 z=0 ,铅垂向
上为正。
➢
p
—— 压强水头,以大气压为基准,用相对压强代入计 算。
➢ z p —— 测压管水头。
• 测压管水头的含义 在内有液体的容器壁选定测点,垂直于壁
X d x d y d z
表面力在 x 方向上的分量只
有左右一对面元上的压力,
合力为
p d y d z ( p p d x) d y d z p d x d y d z
x
x
平衡方程为
X p 0 x
或
X 1 p 0 x
同理有 和
Y 1 p 0 y
Z 1 p 0 z
• 平衡微
0
0
pn
An
c os (n,
x)
X
1 6
dxdydz
0
px
pn
X
1 3
dx
0
当dx 0;
px pn
得出结论
pn px py pz
px py pz pn
上式表明:只要O点的位置坐标为定值时,则自各 个方向作用于O点的流体静压强是完全等值的。
上式也表明:平衡流体中任意点 的压强只是位置坐标的函数,与 其作用方向无关。
• 虚线相对压强;实线绝对压强
如图所示的密闭容器中,液面
压强p0=9.8kPa,A点压强
为49kPa,则B点压强为多少 , 在液面下的深度为多少 。
39.2kPa ; 3m
露天水池水深5m处的相对压强为:
A. 5kPa ; B. 49kPa ; C. 147kPa ; D. 205kPa
观看动画
什么是等压面?等压面的条件是什么? 等压面是指流体中压强相等的各点所组成的面。只有重 力作用下的等压面应满足的条件是:静止、连通、连续 均质流体、同一水平面。
压力表和测压计上测得的压强是绝对压强还是相对压强?
相对压强。
如图所示,若某点测压管水头为 -0.5m,压强水头为1.5m,则 测压管最小长度应该为多少?
测压管最小长度为1.5m。
五. 测压原理
• 用测压管测量 测压管的一端接大气,这样就把测管水头揭 示出来了。再利用液体的平衡规律,可知连通的静止液体区域 中任何一点的压强,包括测点处的压强。
• 静压强在平面域 A 上分布不均匀,沿铅垂方向呈线性分布。
P
H
H
H
P