离散傅里叶变换及其快速算法与应用共42页
合集下载
第2章 离散傅里叶变换和快速算法.ppt
真正的傅里叶变换有4种: CTFS给连续周期信号用, CTFT给连续非周期信号用, DTFS给离散周期信号用, DTFT给离散非周期信号用。
杨毅明 第2章 离散傅里叶变换和快速算法
2.1.1 离散傅里叶级数
离散傅里叶级数的定义:
X~ (k )
N 1 ~x (n)e
j 2 N
kn
n0
~x (n)
杨毅明 第2章 离散傅里叶变换和快速算法
2.2 利用DFT做连续信号的频谱分析
离散傅里叶变换可以用来分析连续时间信号的频谱,其 原理如下:
这种方法存在如下问题: 混叠,泄漏,栅栏效应,分辨率,周期效应。 根据例6(书上63页)说明上面5个问题。
杨毅明 第2章 离散傅里叶变换和快速算法
clear;close all; f=10;a=4;T=1/(a*f);t=0:T:3; x=sin(2*pi*f*t); subplot(211);plot(t,x);xlabel('t/s');ylabel('x(t)'); N=length(t);n=0:N-1;k=n; W=exp(-j*2*pi/N*k'*n); X=W*conj(x'); subplot(212);stem(k,abs(X),'.');xlabel('k');ylabel('X(k)');
N 1 ~x1 (m) ~x2 (n rL m) RN (n)
m0
r
yL (n rL) RN (n) r
杨毅明 第2章 离散傅里叶变换和快速算法
yL(n)和yC(n) 的关系
yC (n) yL (n rL) RN (n) r
杨毅明 第2章 离散傅里叶变换和快速算法
2.1.1 离散傅里叶级数
离散傅里叶级数的定义:
X~ (k )
N 1 ~x (n)e
j 2 N
kn
n0
~x (n)
杨毅明 第2章 离散傅里叶变换和快速算法
2.2 利用DFT做连续信号的频谱分析
离散傅里叶变换可以用来分析连续时间信号的频谱,其 原理如下:
这种方法存在如下问题: 混叠,泄漏,栅栏效应,分辨率,周期效应。 根据例6(书上63页)说明上面5个问题。
杨毅明 第2章 离散傅里叶变换和快速算法
clear;close all; f=10;a=4;T=1/(a*f);t=0:T:3; x=sin(2*pi*f*t); subplot(211);plot(t,x);xlabel('t/s');ylabel('x(t)'); N=length(t);n=0:N-1;k=n; W=exp(-j*2*pi/N*k'*n); X=W*conj(x'); subplot(212);stem(k,abs(X),'.');xlabel('k');ylabel('X(k)');
N 1 ~x1 (m) ~x2 (n rL m) RN (n)
m0
r
yL (n rL) RN (n) r
杨毅明 第2章 离散傅里叶变换和快速算法
yL(n)和yC(n) 的关系
yC (n) yL (n rL) RN (n) r
5_离散傅里叶变换与快速傅里叶变换
6 X (k ) X * (( N k )) N RN (k ), 若 x(n) imagenary
2016/6/2 大连理工大学 26
• 【满足圆周共轭对称性的序列】
2016/6/2
大连理工大学
27
• 【圆周卷积和性质】
– 若: DFT x1(n) X1(k ), DFT x2 (n) X 2 (k )
* * 2 DFT x (( n )) R ( n ) X (k ) N N 1 * 3 DFTRe x(n) X ep (k ) X (( k )) X (( N k )) N RN ( k ) N 2 1 * 4 DFT jIm x(n) X op (k ) X (( k )) X (( N k )) N RN ( k ) N 2 5 X (k ) X * (( N k )) N RN (k ), 若 x(n) real
( n) 和 a k 分别表示周期性信号和频谱。 –定义新符号: x
–定义矩形序列符号 RN (n) 和
RN (k )
为
1, 0 n N 1 1, 0 k N 1 RN (n) 或 RN (k ) 0, 其它 n 0, 其它 k
( n) 和 a k –有限长序列 x(n) 和 ak 可以认为是周期性序列 x 的一个周期。
谱或系统的频率响应也是数字化的。 –实际应用中的信号总是有限时宽的、且为非周期的。希 望信号频谱也是有限频宽、且非周期的。 –考察前面介绍的4种傅里叶级数或傅里叶变换,没有任
何一种能够满足这种需求。
–因此,发展新的傅里叶变换方法以适应数字信号处理实 际应用的要求称为数字信号处理理论的一个重要任务。 –这就为DFT的发展提供了需求和动力。
第3章 离散傅里叶变换及其快速算法
计算中, 在DFT计算中,不论是乘法和加法,运算量均与 计算中 不论是乘法和加法, N2成正比。因此,N较大时,运算量十分可观。例 成正比。因此, 较大时 运算量十分可观。 较大时, 计算N=10点的 点的DFT,需要 次复数相乘, ,计算 点的 ,需要100次复数相乘,而 次复数相乘 N=1024点时,需要 点时, 点时 需要1048576(一百多万)次复数乘 (一百多万) 如果要求实时处理, 法,如果要求实时处理,则要求有很高的计算速 度才能完成上述计算量。 度才能完成上述计算量。 反变换IDFT与DFT的运算结构相同,只是多 与 的运算结构相同, 反变换 的运算结构相同 乘一个常数1/N,所以二者的计算量相同。 乘一个常数 ,所以二者的计算量相同。
nk X (k ) = ∑ { Re [ x( n)]Re WN − I m [ x(n)]I m [WNnk ] n =0 N −1
(
+ j Re [ x(n)]I m
(
[ ] [W ]+ I
nk N
)
nk [ x( n)]Re WN } m
[ ])
又每个复数相加包括2个实数相加,所以,每计算一个 X( k) 要进行 次实数相乘和 次实数相乘和2N+2( N-1) =2( 2N-1) 次实 ( ) 要进行4N次实数相乘和 ( ) ( ) 数相加,因此,整个DFT运算需要 2实数相乘和 (2N-1) 运算需要4N 实数相乘和2N( 数相加,因此,整个 运算需要 ) 次实数相加。 次实数相加。
虽然频谱分析和DFT运算很重要 , 但在很长 运算很重要, 虽然频谱分析和 运算很重要 一段时间里, 由于DFT运算复杂 , 并没有得到 运算复杂, 一段时间里 , 由于 运算复杂 真正的运用, 真正的运用 , 而频谱分析仍大多采用模拟信号 滤波的方法解决, 直到1965年首次提出 年首次提出DFT运 滤波的方法解决 , 直到 年首次提出 运 算的一种快速算法以后, 情况才发生了根本变 算的一种快速算法以后 , 人们开始认识到DFT运算的一些内在规律 , 运算的一些内在规律, 化 , 人们开始认识到 运算的一些内在规律 从而很快地发展和完善了一套高速有效的运算 方法——快速付里变换(FFT)算法。FFT的出 快速付里变换( 方法 快速付里变换 )算法。 的出 现 , 使 DFT 的 运 算 大 大 简 化 , 运 算 时 间 缩 短 二个数量级, 一 ~ 二个数量级 , 使 DFT的运算在实际中得到 的运算在实际中得到 广泛应用。 广泛应用。
第四章离散傅里叶变换
• 设 ~x(n)为周 期 为 N 的 周 期 序 列 , 则 其 离
散 傅 里 叶 级 数 (DFS) 变 换 对 为 :
• 正变换
X~(k)
DFS[~x(n)]
N
1
~x (n)e
j
2 N
nk
N1 ~x (n)WNnk
• 反变换
n0
n0
•
~x (n)
其中:
IDFS [ X~ (k )]
1 N
x%2 m … 5 4 3 2 1 0 5 4 3 2 1 0 … 10 x%2 1 m … 0 5 4 3 2 1 0 5 4 3 2 1 … 8 x%2 2 m … 1 0 5 4 3 2 1 0 5 4 3 2 … 6 x%2 3 m … 2 1 0 5 4 3 2 1 0 5 4 3 … 10 x%2 4 m … 3 2 1 0 5 4 3 2 1 0 5 4 … 14 x%2 5 m … 4 3 2 1 0 5 4 3 2 1 0 5 … 12
解: y%(n) x%1(m)x%2 (n m)
m0
5
x%1(m)x%2 (n m)
m0
n m …-4 -3 -2 -1 0 1 2 3 4 5 6 7 …
x%1 n / m … 1 1 0 0 1 1 1 1 0 0 1 1 … x%2 n / m … 3 4 5 0 1 2 3 4 5 0 1 2 … y%(n)
1.由非周期连续时间信号推出DFS
• X(t)经过抽样为x(nT),对离散的时间信
号进行DTFT得到周期连续频谱密度函
数。再经过抽样,得到周期性离散频
谱密度函数即为DFS.
x(t)
取样
x(t)
D T
第四章离散傅里叶变换及其快速算法PPT课件
因此 , DFT与序列傅里叶变换的关系为
X(k) X(ej)2k X(ejkN ) N
N
2
N
即: X(K)也是X(ej)在w=2πkx/N(n处)e的采jn样值。如图所示
n
X(k)与X(e jω)的关系
X(ej)ej(N1)/2sisni(nN //22)
X
(k )
j3k
e8
sin( 2
对x((n))N进行DFS变换,得X((K))N。 即 X((K))N=DFS[x((n))N]
取X((K))N的第一个周期的值,则得X(K) X(K)= X((K))NRN (k)
称 X(K)为有限长序列x(n)的离散傅立叶正变换DFT x(n)为X(K)的离散傅立叶反变换IDFT
N1
X(k)X((k))NRN(k)[ x((n))NWNkn]RN(k) n0
-
o
t
(a )
x p (t )
o Tp
x (n T )
(b ) t
N点
xp(n )
nT
(c)
|X a( j )| 1
- 0
o
0
|X p ( jk )|
o
k
|X( ej)|
1/T
-
o
| X ( e jks)|
4.离散傅立叶级数
o N点
(d ) n
-
o
s
N点
图 4-1 各种形式的傅里叶变换
四种傅里叶变换形式的归纳
1)、将x(n)以N为周期进行周期延拓得x((n))N 2)、将x((n))N左移m位,得x((n+m))N 3)、取其主值序列x((n+m))N RN(N) 循环移位过程如图所示
离散傅里叶变换及快速算法
(5-5)
W e N
j
2 N
的性质:
正交性,周期性,
共轭对称性(偶序列),可约性。
§5.离散傅里叶变换及快速算法
1.离散傅里叶级数
1.2离散傅里叶级的计算
例5-1 求出下面周期序列的DFS
x(n) 0 ,1,2,3, 0 ,1,2,3, 0,1,2,3
n0
为改进嵌套循环计算的效率,将循环结构改为矩阵形式计算
§5.离散傅里叶变换及快速算法
0.概述
离散时间傅里叶变换(DTFT)是通过周期频谱 来描述一个离散信号序列,即DTFT是连续变 量w的连续函数。离散傅里叶变换(DFT)则是 针对有限长序列,是对DTFT采样后得到的离 散序列。 此种表示方法非常有利于数值计算以及数字信 号处理算法的DSP硬件实现。 本章将研究离散傅里叶级数,离散傅里叶变换 (DFT),及离散傅里叶变换的快速算法FFT。
(5-3)
n0
称之为离散傅里叶级数DFS的系数。是一个基波周期为N的 周期序列。
X (k) X (k N)
§5.离散傅里叶变换及快速算法
W e 在DFS变换中引入复数 N
j
2 N
将DFS正反变换描述为
N 1
X (k) x(n)WNnk
n0
x (n)
1 N
N 1
X (k )WNnk
k 0
n0
x(n)
1 N
N 1
X (k )WNnk
k 0
x
1 N
WN* X
WN WNkn 0
k,n
N
1
1 1
1
WN1
1
W ( N 1) N
1
W ( N 1) N
数字信号处理第三章离散傅里叶变换DFTppt课件
2 N
kn
n
xN (n) IDFT[ X (k)]
x(n)与xN (n)的关系?
26
离散傅里叶变换(DFT)
xN (n)
~
x(n)
~
X (k)
X (k)
~
x(n)
~
IDFS[ X (k)]
1 N
N 1 ~
X (k )WNkn
k 0
1 0
1 N
N 1
[
如果序列x(n)的长度为M ,则只有当频域采样点数 N M时,才有xN (n) IDFT[ X (k)] x(n)
28
离散傅里叶变换(DFT)
[例] 已知 x(n) R8 (n) ,X (e j ) FT[x(n)] 对 X (e j )
采样得
X (k)
X (e j )
, k
2 6
k
1 N
N 1
X1(l) X 2 ((k
k 0
l))N
RN (k)
1 N
X1(k)
NX 2 (k)
1 N
N 1
X 2 (l) X1((k
k 0
l))N RN (k)
1 N
X 2 (k )
NX 1 (k )
22
离散傅里叶变换(DFT) 4.复共轭序列的DFT
X (k) DFT[x(n)]
证明: DFT[x(n)] X (N k)且X (N ) X 0
第三章 离散傅里叶变换(DFT)
离散傅里叶变换(DFT)
离散傅里叶变换的定义
主
离散傅里叶变换的基本性质
要
内
容
频率域采样
DFT的应用举例
2
离散傅里叶变换及其快速算法与应用44页PPT
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
离散傅里叶变换及其快速算法与应用
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆因为它们而变得规矩起来。——德谟耶克斯
第四章 离散傅里叶变换及其快速算法
离散 连续
周期延拓 非周期
4.1 离散傅里叶变换的定义
kn X (k ) DFT [ x(n)] x(n)WN , n 0 N 1 N 1 n 0 2 kn N
= x ( n )e
j
k=0, 1, , N-1
X ( k )WN kn k 0 N 1
1 x(n) IDFT [ X (k )] N 1 N
4 N
x D1X N
W N ( N 1 ) 2 ( N 1 ) WN W N ( N 1 )( N 1 ) 1
1
D
1 N
W N 2 ( N 1 )
1 DN N
dftmtx(N) 函数产生N×N的DFT矩阵DN conj(dftmtx(N))/N 函数产生N×N的IDFT矩阵DN-1
二、 圆周移位性质
1. 序列的圆周移位 x(n)的圆周移位定义为
y(n)=x((n+m))N RN(n) 其过程为: 1)、将x(n)以N为周期进行周期延拓得x((n))N 2)、将x((n))N左移m位,得x((n+m))N 3)、取其主值序列x((n+m))N RN(n) 循环移位过程如图所示
WNN 1
2 WN ( N 1)
WNN 1 2 WN ( N 1) ( WN N 1) ( N 1)
DFT
IDFT矩阵形式为
1 1 1 W 1 N 1 D 1 1 W N 2 N N 1 W N ( N 1 ) 1 W N 2 W
0 n N `1 0 k N `1
DFT 则: x1 (n) x2 (n) X1 ( K ) X 2 ( K )
离散傅里叶变换及其快速算法
w nk N
又如
w
N N
/
2
1,
因此
w(kN / 2) N
wNk
利用这些周期性和对称性,使DFT运算中有些项可合并;
2)利用
w
nk N
的周期性和对称性,把长度为N点的大点数的DFT
运算依次分解为若干个小点数的DFT。因为DFT的计算量正比于N2,
N小,计算量也就小。
FFT算法正是基于这样的基本思想发展起来的。它有多种形式,
n0
N / 21
X (2r 1) [x(n) x(n N / 2)]WNn(2r1)
n0
N / 21
[x(n) (n)=x(n)+x(n+N/2) b(n)=[x(n)-x(n+N/2]wnN
这两个序列都是N/2点的序列,将其代入上两式,得
结果仍然储存在同一组存储器中,直到最后 输出,中间无需其它存储器,这叫原位计算 。 每一级运算均可在原位进行,这种原位运算 结构可节省存储单元,降低设备成本,还可 节省寻址的时间。
21
(3)序数重排
对按时间抽取FFT的原位运算结构,当运算完毕
时,正好顺序存放着 X(0),X(1),X(2),
…,X(7),因此可直接按顺序输出,但这种原
但基本上可分为两类:时间抽取法和频率抽取法。
6
2、按时间抽取的FFT(N点DFT运算的分解) 先从一个特殊情况开始,假定N是2的整数次方,
N=2M,M:正整数
首先将序列x(n)分解为两组,一组为偶数项,一组为奇数 项,
x(2r) x1(r) x(2r 1) x2 (r
)
r 0,1,, N/2-1
位运算的输入 x(n)却不能按这种自然顺序存入
相关主题