人教版九年级数学下册第二十七章《相似——相似三角形》同步检测2附答案(1)
人教版九年级数学下册27.2 相似三角形 同步练习1 含答案
27.2.1相似三角形的判定(1)1、已知D 、E 分别是ΔABC 的边AB 、AC 上的点,请你添加一个条件, 使ΔABC 与ΔAED 相似. (只需添加一个你认为适当的条件即可).2、如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )A AC AE AB AD = B FB EA CF CE =C BD AD BC DE = D CBCF AB EF =3、如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形 ( )A 1对B 2对C 3对D 4对4、如图,在大小为4×4的正方形网格中,是相似三角形的是( )① ② ③ ④A.①和②B.②和③C.①和③D.②和④.5、如图,在正方形网格上有6个斜三角形:①ΔABC ,②ΔBCD ,③ΔBDE ,④ΔBFG ,⑤ΔFGH ,⑥ΔEFK.其中②~⑥中,与三角形①相似的是( )(A)②③④ (B)③④⑤ (C)④⑤⑥ (D)②③⑥6、在方格纸中,每个小格的顶点叫做格点.以格点连线为边的三角形叫做格点三角形.如图,请你在4×4的方格纸中,画一个格点三角形A 1B 1C 1,使ΔA 1B 1C 1与格点三角形AB C 相似(相似比不为1).7、如图,ΔABC 与ΔADB 中,∠ABC=∠ADB=90°,AC=5cm ,AB=4cm ,如果图中的两个直角三角形相似,求AD 的长.8、一个钢筋三角架三边长分别为20cm ,50cm ,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,写出所有不同的截法?答案1、D E ∥BC2、C3、C4、C5、B6、略7、AD=516cm 8、两种截法(1)新截三角形的三边分别是10cm,25cm,30c m (2)新截三角形的三边分别是12cm,30cm,36cm。
人教版九年级数学下《第27章相似》专项训练(2)含答案.doc
第27章相似专项训练专训1证明三角形相似的方法名师点金:要找三角形相似的条件,关键抓住以下几点:(1)已知角相等时,找两对对应角相等,若只能找到一对对应角相等,判断夹相等的角的两边是否对应成比例;(2)无法找到角相等时,判断三边是否对应成比例;(3)考虑平行线截三角形相似定理及相似三角形的“传递性...”.利用平行线判定两三角形相似1.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求(第1题)利用边或角的关系判定两直角三角形相似2.下面关于直角三角形相似叙述错误的是()A.有一锐角对应相等的两个直角三角形相似B.两直角边对应成比例的两个直角三角形相似C.有一条直角边相等的两个直角三角形相似D.两个等腰直角三角形相似3.如图,BC⊥AD,垂足为C,AD=6.4,CD=1.6,BC=9.3,CE=3.1,求证:△ABC∽△DEC.(第3题)利用角判定两三角形相似4.如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长,与CE交于点E.(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,求BE的长.(第4题)利用边角判定两三角形相似5.如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.(第5题)求证:△ABD∽△CAE.利用三边判定两三角形相似6.如图,AD是△ABC的高,E,F分别是AB,AC的中点.求证:△DEF ∽△ABC.(第6题)专训2巧作平行线构造相似三角形名师点金:解题时,往往会遇到要证的问题与相似三角形联系不上或者说图中根本不存在相似三角形的情况,添加辅助线构造相似三角形是这类几何证明题的一种重要方法.常作的辅助线有以下几种:(1)由比例式作平行线;(2)有中点时,作中位线;(3)根据比例式,构造相似三角形.巧连线段的中点构造相似三角形1.如图,在△ABC中,E,F是边BC上的两个三等分点,D是AC的中点,BD分别交AE,AF于点P,Q,求(第1题)上一点,=,(第2题)3.如图,过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和点E.求证:=(第3题)过一边上的点作平行线构造相似三角形AC,在边AB上取一点的延长线交于点P.求证:(第4题)(第5题①) 作辅助线的方法二:(第5题②)作辅助线的方法三:(第5题③)作辅助线的方法四:(第5题④)专训3用线段成比例法解四边形问题名师点金:利用线段成比例不仅能解三角形问题,还能解四边形问题.在中考中涉及相似、线段成比例的四边形的题型有填空题、选择题、解答题,是中考热门命题点之一.一、选择题1.如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF =NM=2,ME=3,则AN=()(第1题)A.3 B.4 C.5 D.62.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD 边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF的面积为()(第3题)(第4题)二、填空题4.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB =4,BC=2,那么线段EF的长为________.三、解答题5.如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1________S2+S3(填“>”“=”或“<”);(2)写出图中的三对相似三角形,并选择其中一对进行证明.(第5题)6.如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A,C 重合,直线MN交AC于O.(1)求证:△COM∽△CBA;(2)求线段OM的长度.(第6题)7.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(第7题)8.如图,E,F分别是正方形ABCD的边DC,CB上的点,且DE=CF,以AE为边作正方形AEHG,HE与BC交于点Q,连接DF.(1)求证:△ADE≌△DCF.(2)若E为CD的中点,求证:Q为CF的中点.(3)连接AQ,设S△CEQ=S1,S△AED=S2,S△EAQ=S3,在(2)的条件下,判断S1+S2=S3是否成立?并说明理由.(第8题)(第9题)10.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD;(2)已知=,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.(第10题)(第1题)(第2题)2.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC 于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3 D.3.23.如图,A,B,C,D是⊙O上的四个点,AB=AC,AD交BC于点E,AE=3,ED=4,则AB的长为()5(第3题)(第4题)二、填空题4.如图,AB是⊙O的直径,点C在圆上,CD⊥AB,DE∥BC,则图中与△ABC相似的三角形有________个.5.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则x-y 的最大值是________.(第5题)三、解答题6.如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.(第6题)7.如图,在△ABC中,BA=BC,以AB为直径作半圆O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为点E.(第7题)(1)求证:DE为半圆O的切线;(2)求证:DB2=AB·BE.8.如图,AB是圆O的直径,点C,D在圆O上,且AD平分∠CAB.过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与圆O相切;(第8题)9.如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.(1)猜想ED与⊙O的位置关系,并证明你的猜想;(2)若AB=6,AD=5,求AF的长.(第9题)10.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.(第10题)11.如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,=(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.(第11题)答案又∵BP=PR=PQ+QR=3PQ∴=.C.证明:∵AD=6.4,CD=1.6(第4题)是等边三角形,120°=60°.ABD∽△CED.于点M,则AM=CM ∵AD=2CD,∴CD=2,AD=4.则MD=1.+MD2=27.AD CD,即27ED=2,∴==∴=(第1题)(第2题)AB交AE的延长线于点DF.DAF=∠G,ADF=∠CDG,=CD,∴△ADF≌△GDC(AAS).∴AF=CG.∵=,∴=AB∥CG.∴△ABE∽△GCE.BE EC=ABCG=ABAF=52CF交AD的延长线于点∴=(第3题)(第4题)∥AB交DP于点EFC.AED.=∠CEP.∴EC=CF∥AB,交DEAM=CM.MCF.AME≌△CMF.∴专训3一、1.B 2.C 3.D三、5.解:(1)=(2)△BCF∽△DBC∽△CDE;选△BCF∽△CDE,证明:在矩形ABCD中,∠BCD=90°,且点C在边EF上,∴∠BCF+∠DCE=90°.在矩形BDEF中,∠F=∠E=90°,∴在Rt△BCF中,∠CBF+∠BCF=90°,∴∠CBF=∠DCE,∴△BCF∽△CDE.(答案不唯一)6.(1)证明:由折叠可知,∠COM=90°,∴∠B=∠COM.又∠MCO=∠ACB,∴△COM∽△CBA.∵=,∴DG∥BE,∴△DPG3x专训4一、1.D 2.B 3.C二、4.4 5.2三、6.(1)证明:∵⊙O与DE相切于点B,AB为⊙O的直径,∴∠ABE=90°,∴∠BAE+∠E=90°.又∵∠DAE=90°,∴∠BAD+∠BAE=90°,∴∠BAD =∠E.(2)解:如图,连接BC,∵AB为⊙O的直径,∴∠ACB=90°.∵AC=8,(第6题)(第7题)∵AB为半圆O的直径,∴∠AB中点,∴OD∥BC.的切线.,∴∠CBD=∠DBA.,即DB2=AB·BE.,如图.因为OA=OD,所以∠=∠CAD,所以∠ODA垂直于EF,所以EF则CD=BD.因为AD=42,所因为∠OAD=∠CAD,所以642=2DE,所以(第8题)∵=,∴作OH⊥AD于点H。
人教版九年级数学下册第二十七章相似——相似三角形同步检测2附答案
人教版九年级数学下册第二十七章《相似——相似三角形》同步检测2附答案一.选择题1.下列图形不一定相似的是( ).A .有一个角是120°的两个等腰三角形;B .有一个角是60°的两个等腰三角形C .两个等腰直角三角形;D .有一个角是45°的两个等腰三角形2.如图1,已知△ABC ,D ,E 分别是AB ,AC 边上的点.AD=3cm ,AB=8cm ,AC=•10cm .若△ADE ∽△ABC ,则AE 的值为( ).A .1541215125...41554512cm B cm cm C cm cm D cm 或或(1) (2) (3)3.满足下列条件的各对三角形中相似的两个三角形有( ).①∠A=60°,AB=5cm ,AC=10cm ;∠A ′=60°,A ′B ′=3cm ,A ′C ′=10cm②∠A=45°,AB=4cm ,BC=6cm ;∠D=45°,DE=2cm ,DF=3cm③∠C=∠E=30°,AB=8cm ,BC=4cm ;DF=6cm ,FE=3cm④∠A=∠A ′,且AB ·A ′B ′=AC ·A ′B ′4.如图2,点D 为△ABC 的AB 边一点(AB>AC ),下列条件不一定能保证△ACD ∽△ABC 的是( ).A .∠ADC=∠ACB B .∠ACD=∠BC ..DC AD AD AC D BC AC AC AB ==5.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图. 已知桌面直径为 1.2米,桌面离地面1米. 若灯泡离地面3米,则地面上阴影部分的面积为 ( -)A.、0.36π米2 B 、0.81π米2 C 、2π米2 D 、3.24π米 26.(山东)如图,小正方形的边长均为1,则右图中的三角形(阴影部分)•与△ABC 相似的是( ).二、填空题7.已知三角形的三条边长分别为1,2,3,请你写出另外三条线段长,•使这三条线段构成的三角形与已知三角形相似:________,________,_______.8.如图3,若AC2=CD·CB,则△_______∽△_______,∠ADC=________.(4) (5) (6) (7)9.如图4,△ABC中,CD⊥AB于D,AD=8,CD=6,则当BD=______时,△ADC•∽△CDB,∠ACB=_______°.10.如图5,已知AC与BD相交于点O,且AO:OC=BO:OD=2:3,AB=5,则CD=______.11.如图6,等腰三角形ABC中,∠A=36°,若BC2=CD·CA,则∠DBC=•_____•°,•图中有_____个等腰三角形.12.如图7,为测得一养鱼池的两端A,B间的距离,可在平地上取一直接到达A和B•的点O,连接AO,BO并分别延长到C,D,使OC=12OA,OD=12OB,如果量得CD=30m,•那么池塘宽AB=________.三.解答题13.如图,已知△ABC中,AC=10,AB=16,问在AB边上是否存在这样的点P,•使△APC∽△ACB,若存在,求A P的长;若不存在,请说明理由.14.如图,是利用木杆撬石头的示意图.现有一块石头,要使其滚动,杠杆的B端必须向上翘起12cm,已知杠杆的动力臂OA与阻力臂OB之比为5:1,求要使这块石头滚动,至少要将杠杆A端下压多少厘米.15.已知:如图,∠ABE=90°,且AB=BC=CD=DE,请认真研究图形与所给条件,然后回答:图中是否存在相似的三角形?若存在,请加以说明;若不存在,请说明理由.16.如图,在ΔABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x.(1)当x为何值时,PQ∥BC?(2)当31=∆∆ABC BCQ S S ,求ABCBPQS S ∆∆的值;17.在△ABC 中,AE ∶EB=1 ∶2,EF ∥BC ,AD ∥BC 交CE 的延长线于D ,求S △AEF ∶S △BCE 的值.18.如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上,(1)若这个矩形是正方形,那么边长是多少?(2)若这个矩形的长是宽的2倍,则边长是多少?答案一.选择题1.D 点拨:若45°角在一个三角形中做顶角,在另一个三角形中做底角,则这两个三角形形状不同. 2.C 点拨:两个三角形有公共角,只须满足两边对应成比例,则对应边有两种可能.3.A 点拨:(2),(3)不满足位置关系.4.C 点拨:不能满足位置关系.5.B6. B二.填空题7.答案不唯一,略8.△ACD ∽△BCA ∠BAC9.92 90°10.7.5 点拨:由题意△AOB ∽△COD ,∴23AB CD =. 11.36° 3个12.60m三.解答题13.存在,若使△APC ∽△ACB ,则应满足:10025164AP AC AP AC AB =∴==,. 14.15OB OA =,∴12cm ×5=60cm ,至少要将杠杆A 端下压60cm .15.存在,△ACD ∽△ECA , 设AB=a ,则AC 2=a ,CE=2a , 22,222.AE CD a CE AC a AC CD CE AC∴===∴=, 又∵∠ACE=∠ECA ,∴△ACD ∽△ECA .16. (1)x=730s (2)92 17.6118、(1)48 mm (2)宽是7240mm ,长7480mm.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
人教版九年级下册数学 27.2相似三角形 同步练习(含解析)
27.2相似三角形同步练习一.选择题1.如图,△ABC∽△DCA,∠B=33°,∠D=117°,则∠BAD的度数是()A.150°B.147°C.135°D.120°2.两个相似三角形对应角平分线的比为4:3,那么这两个三角形的面积的比是()A.2:3B.4:9C.16:36D.16:93.下列条件中,不能判断△ABC与△DEF相似的是()A.∠A=∠D,∠B=∠F B.且∠B=∠DC.D.且∠A=∠D4.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中能判断△ABC∽△AED 的是()①∠AED=∠B;②∠ADE=∠C;③=;④=.A.①②B.①②③C.①②④D.①②③④5.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=5:2,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.5:7B.10:4C.25:4D.25:496.已知点E、F分别在△ABC的AB、AC边上,则下列判断正确的是()A.若△AEF与△ABC相似,则EF∥BCB.若AE×BE=AF×FC,则△AEF与△ABC相似C.若,则△AEF与△ABC相似D.若AF•BE=AE•FC,则△AEF与△ABC相似7.如图,在△ABC,D是BC上一点,BD:CD=1:2,E是AD上一点,DE:AE=1:2,连接CE,CE的延长线交AB于F,则AF:AB为()A.1:2B.2:3C.4:3D.4:78.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则△DEF与四边形EFCO的面积比为()A.1:4B.1:5C.1:6D.1:79.如图,AD∥BC,∠D=90°,AD=3,BC=4,DC=6,若在边DC上有点P,使△P AD 与△PBC相似,则这样的点P有()A.1 个B.2 个C.3 个D.4 个10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于F,连接DF,若BF=,BC =3,则DF=()A.4B.3C.2D.二.填空题11.已知△ABC∽△A′B′C′,且AB=3cm,A′B′=5cm,则相似比为.12.如图,△ABC中,CA=CB,点E在BC边上,点D在AC边上,连接AE、DE,若AB =AE,2∠AEB+∠ADE=180°,BE=8,CD=,则CE=.13.如图,在△ABC中,若DE∥BC,EF∥CD,AE=2EC,则AF:FD:DB=.14.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值是.15.如图,在矩形ABCD中,AD=2,AB=4,E、F分别是AB、CD边上的动点,EF⊥AC,则AF+CE的最小值为.三.解答题16.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.17.如图,在△ABC中,点D、E分别在AB、AC上,DE、BC的延长线相交于点F,且EF•DF=CF•BF.求证:△CAB∽△DAE.18.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.参考答案一.选择题1.解:∵△ABC∽△DCA,∴∠BAC=∠D=117°,∠DAC=∠B=33°,∴∠BAD=∠BAC+∠DAC=150°,故选:A.2.解:∵两个相似三角形对应角平分线的比为4:3,∴它们的相似比为4:3,∴它们的面积比为16:9.故选:D.3.解:A、∠A=∠D,∠B=∠F,可以得出△ABC∽△DFE,故此选项不合题意;B、=且∠B=∠D,不是两边成比例且夹角相等,故此选项符合题意;C、==,可以得出△ABC∽△DEF,故此选项不合题意;D、=且∠A=∠D,可以得出△ABC∽△DEF,故此选项不合题意;故选:B.4.解:∵∠A=∠A,∴∠AED=∠B或∠ADE=∠C时,△ABC∽△AED.∵=,∴=∵∠A=∠A,∴△ABC∽△AED,故①②③可以判断三角形相似,故选:B.5.解:设DE=5k,EC=2k,则CD=7k,∵四边形ABCD是平行四边形,∴AB=CD=7k,DE∥AB,∴△DEF∽△BAF,∴===,故选:D.6.解:选项A错误,∵△AEF与△ABC相似,可能是∠AEF=∠C,推不出EF∥BC.选项B错误,由AE×BE=AF×FC,推不出△AEF与△ABC相似.选项C错误,由,推不出△AEF与△ABC相似.选项D正确.理由:∵AF•BE=AE•FC,∴=,∴EF∥BC,∴△AEF∽△ABC.故选:D.7.解:过D作DH∥AB交CF于H,如图,∵DH∥BF,∴=,∵BD:CD=1:2,∴CD:BC=2:3,∴BF=DH,∵DH∥AF,∴==2,∴AF=2DH,∴AF:BF=2DH:DH=4:3,∴AF:AB=4:7.故选:D.8.解:∵四边形ABCD是平行四边形,∴BO=DO,AB∥CD,∵E为OD的中点,∴DE=EO=DO,∴BO=2EO,BE=3DE,∵DF∥AB,∴△DFE∽△BAE,∴=()2=,设S△DEF=x,则S△BEA=9x,∵BO=2OE,∴S△AOB=6x=S△DOC,∴四边形EFCO的面积=5x,∴△DEF与四边形EFCO的面积比=1:5,故选:B.9.解:∵AB⊥BC,∴∠B=90°.∵AD∥BC∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°.设DP的长为x,则CP长为6﹣x.若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则DP:CP=AD:BC,即x:(6﹣x)=3:4,解得:x=②若△APD∽△BPC,则DP:PC=AD:BC,即x:4=3:(6﹣x),整理得:x2﹣6x+12=0,∵△<0,这种情形不存在,∴满足条件的点P的个数是1个,故选:A.10.解:如图,连接BD,∵∠AEF=∠BEA,∠AFE=∠BAE=90°,∴△AEF∽△BEA,∴=,∵AE=ED,∴=,又∵∠FED=∠DEB,∴△FED∽△DEB,∴∠EFD=∠EDB,∵∠EFD+∠DFC=90°,∠EDB+∠ODC=90°,∴∠DFC=∠ODC,∵在矩形ABCD中,OC=AC,OD=BD,AC=BD,∴OD=OC,∴∠OCD=∠ODC,∴∠DFC=∠OCD,∴DF=DC,在Rt△BCF中,FC===2,∵AD∥BC,∴△AEF∽△CBF,∴==,∴AF=FC=,∴AB===3,∴DF=3,故选:B.二.填空题11.解:由题意得,=,∵△ABC∽△A′B′C′,∴△ABC与△A′B′C′的相似比为=,故答案为:.12.解:如图,过点A作AM⊥BE于E,过点D作DN⊥EC于N,∵CA=CB,AB=AE,∴∠B=∠CAB,∠B=∠AEB,∴∠B=∠CAB=∠AEB,∵∠B+∠BAC+∠C=180°,∠B+∠AEB+∠BAE=180°,∴∠C=∠BAE,∴2∠AEB+∠C=180°,又∵2∠AEB+∠ADE=180°,∴∠C=∠ADE,又∵∠ADE=∠C+∠DEC,∴∠C=∠DEC,∴DE=DC=,∵AB=AE,AM⊥BE,DE=CC,DN⊥EC,∴BM=ME=BE=4,EN=NC=EC,AM∥DN,∴△CDN∽△CAM,∴,∴,∴EC=12,EC=﹣5(不合题意舍去),故答案为:12.13.解:∵EF∥CD,AE=2EC,∴==2,∵DE∥BC,∴==2,设DF=m,则AF=2m,AD=3m,DB=m,∴AF:DF:DB=2m:m:m=4:2:3.故答案为:4:2:3.14.解:∵DE∥AC,∴△DOE∽△COA,∴=()2=,∴=,∵DE∥AC,∴△BDE∽△BAC,∴=,∴=,故答案为:.15.解:如图所示:设DF=x,则FC=4﹣x;过点C作CG∥EF,且CG=EF,连接FG,当点A、F、G三点共线时,AF+FG的最值小;∵CG∥EF,且CG=EF,∴四边形CEFG是平行四边形;∴EC∥FG,EC=FG,又∵点A、F、G三点共线,∴AF∥EC,又∵四边形ABCD是矩形,∴AE∥DC,∠D=90°,∴四边形AECF是平行四边形,∴OA=OC,OE=OF,又∵EF⊥AC,AF=CF=4﹣x,在Rt△ADF中,由勾股定理得:AD2+DF2=AF2,又∵AD=2,DF=x,则FC=4﹣x,∴22+x2=(4﹣x)2,解得:x=,∴AF=,在Rt△ADC中,由勾股定理得:AD2+DC2=AC2,∴AC=,∴AO=,又∵OF∥CG,∴△AOF∽△ACG,∴=,∴AG=5,又∵AG=AF+FG,FG=EC,∴AF+EC=5,故答案为5.三.解答题16.证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD∥BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴,∴PB2=PE•PF,∴PD2=PE•PF.17.证明:∵EF•DF=CF•BF.∴,∵∠EFC=∠BFD,∴△EFC∽△BFD,∴∠CEF=∠B,∴∠B=∠AED,∵∠CAB=∠DAE,∴△CAB∽△DAE.18.(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴,∵,BC=3,∴,∴BC=.。
人教版九年级数学下册第二十七章《相似——相似三角形》同步测试含答案
人教版九年级数学下册第二十七章《相似——相似三角形》同步测试题一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.82.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm 3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.76.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:27.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.48.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2 9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为_________.(填出一个正确的即可)12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为_________ cm.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=_________.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为_________.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=_________cm时,四边形ABCN的面积最大,最大面积为_________cm2.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是_________(写出所有正确结论的序号).17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有_________条;(2)如图②,∠C=90°,∠B=30°,当=_________时,P(l x)截得的三角形面积为△ABC面积的.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是_________.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=_________.(用含n的式子表示)20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是_________.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.22.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.23.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.24.(2013•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.25.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.26.(2013•汕头)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.27.(2013•朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求⊙O的半径.(2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.28.(2013•成都)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A,B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)参考答案与解析一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.8考点:相似三角形的判定与性质;勾股定理;平行四边形的性质.分析:判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.解答:解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,AD∥BC,∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,∴AB=BE=6,AD=DF=9,∴△ADF是等腰三角形,△ABE是等腰三角形,∵AD∥BC,∴△EFC是等腰三角形,且FC=CE,∴EC=FC=9﹣6=3,在△ABG中,BG⊥AE,AB=6,BG=4,∴AG==2,∴AE=2AG=4,∴△ABE的周长等于16,又∵△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选D.点评:本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大.2.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm考点:相似三角形的判定与性质;平行四边形的性质.分析:由边形ABCD是平行四边形,可得AB∥CD,即可证得△AFE∽△DEC,然后由相似三角形的对应边成比例,求得答案.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AFE∽△DEC,∴AE:DE=AF:CD,∵AE=2ED,CD=3cm,∴AF=2CD=6cm.故选B.点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.考点:相似三角形的判定与性质;等腰三角形的判定与性质.专题:压轴题.分析:依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解答:解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=,=,=,=,∵AB=AC,∴CD=CE,解得:CD=CE=,DE=,EF=.故选C.点评:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.考点:相似三角形的应用;正方形的性质;几何概率.专题:压轴题.分析:求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;解答:解:设正方形的ABCD的边长为a,则BF=BC=,AN=NM=MC=a,∴阴影部分的面积为()2+(a)2=a2,∴小鸟在花圃上的概率为=故选C.点评:本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.7考点:圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.分析:根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.解答:解:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选B.点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.6.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2考点:相似三角形的判定与性质;平行四边形的性质.分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB 的值,由AB=CD即可得出结论.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.7.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△AB F∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.4考点:相似三角形的判定与性质;全等三角形的判定与性质;直角梯形.专题:压轴题.分析:如解答图所示:结论①正确:证明△ACM≌△ABF即可;结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.解答:解:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.故选D.点评:本题是几何综合题,考查了相似三角形的判定、全等三角形的判定与性质、正方形、等腰直角三角形、直角梯形、等腰三角形等知识点,有一定的难度.解答中四点共圆的证法,仅供同学们参考.8.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD 的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2考点:相似三角形的判定与性质;平行四边形的性质.分析:首先证明△DFE∽△BAE,然后利用对应变成比例,E为OD的中点,求出DF:AB 的值,又知AB=DC,即可得出DF:FC的值.解答:解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴=,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.点评:本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.考点:圆周角定理;圆内接四边形的性质;相似三角形的判定与性质.专题:计算题;压轴题.分析:根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC==,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=•PC=PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.解答:解:∵AB为⊙O的直径,∴AB=5,∠ACB=90°,∵tan∠ABC=,∴=,∵CP⊥CQ,∴∠PCQ=90°,而∠A=∠P,∴△ACB∽△PCQ,∴=,∴CQ=•PC=PC,当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=×5=.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤考点:切线的性质;切线长定理;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项⑤正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DE•CD,选项①正确;又ABCD为直角梯形,利用梯形的面积计算后得到梯形ABCD的面积为AB(AD+BC),将AD+BC化为CD,可得出梯形面积为AB•CD,选项④错误,而OD不一定等于OC,选项③错误,即可得到正确的选项.解答:解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;而S梯形ABCD=AB•(AD+BC)=AB•CD,选项④错误;由OD不一定等于OC,选项③错误,则正确的选项有①②⑤.故选A点评:此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质,以及梯形面积的求法,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为4s.(填出一个正确的即可)考点:圆周角定理;垂径定理;相似三角形的判定与性质.专题:压轴题;开放型.分析:根据圆周角定理得到∠C=90°,由于∠ABC=60°,BC=4cm,根据含30度的直角三角形三边的关系得到AB=2BC=8cm,而F是弦BC的中点,所以当EF∥AC时,△BEF 是直角三角形,此时E为AB的中点,易得t=4s;当从A点出发运动到B点名,再运动到O点时,此时t=12s;也可以过F点作AB的垂线,点E点运动到垂足时,△BEF 是直角三角形.解答:解:∵AB是⊙O的直径,∴∠C=90°,而∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵F是弦BC的中点,∴当EF∥AC时,△BEF是直角三角形,此时E为AB的中点,即AE=AO=4cm,∴t==4(s).故答案为4s.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆周角定理的推论以及含30度的直角三角形三边的关系.12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质.专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=12.考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.专题:压轴题.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为 1.5米.考点:相似三角形的应用.分析:根据球网和击球时球拍的垂直线段平行即DE∥BC可知,△ADE∽△ACB,根据其相似比即可求解.解答:解:∵DE∥BC,∴△ADE∽△ACB,即=,则=,∴h=1.5m.故答案为:1.5米.点评:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=cm时,四边形ABCN的面积最大,最大面积为cm2.考点:相似三角形的判定与性质;二次函数的最值;正方形的性质.专题:压轴题.分析:设BM=xcm,则MC=1﹣xcm,当AM⊥MN时,利用互余关系可证△ABM∽△MCN,利用相似比求CN,根据梯形的面积公式表示四边形ABCN的面积,用二次函数的性质求面积的最大值.解答:解:设BM=xcm,则MC=1﹣xcm,∵∠AMN=90°,∴∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=∠MNC,又∵∠B=∠C∴△ABM∽△MCN,则,即,解得CN==x(1﹣x),∴S四边形ABCN=×1×[1+x(1﹣x)]=﹣x2+x+,∵﹣<0,∴当x=﹣=cm时,S四边形ABCN最大,最大值是﹣×()2+×+=cm2.故答案是:,.点评:本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是②③④(写出所有正确结论的序号).考点:切线的性质;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接BD,由GD为圆O的切线,根据弦切角等于夹弧所对的圆周角得到∠GDP=∠ABD,再由AB为圆的直径,根据直径所对的圆周角为直角得到∠ACB为直角,由CE垂直于AB,得到∠AFP为直角,再由一对公共角,得到三角形APF与三角形ABD相似,根据相似三角形的对应角相等可得出∠APF等于∠ABD,根据等量代换及对顶角相等可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,选项②正确;由直径AB垂直于弦CE,利用垂径定理得到A为的中点,得到两条弧相等,再由C为的中点,得到两条弧相等,等量代换得到三条弧相等,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,选项③正确;利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,得到三角形ACQ 与三角形ABC相似,根据相似得比例得到AC2=CQ•CB,连接CD,同理可得出三角形ACP与三角形ACD相似,根据相似三角形对应边成比例可得出AC2=AP•AD,等量代换可得出AP•AD=CQ•CB,选项④正确.解答:解:∠BAD与∠ABC不一定相等,选项①错误;连接BD,如图所示:∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CE⊥AB,∴∠AFP=90°,∴∠ADB=∠AFP,又∠PAF=∠BAD,∴△APF∽△ABD,∴∠ABD=∠APF,又∠APF=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;∵直径AB⊥CE,∴A为的中点,即=,又C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP,又AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,选项③正确;连接CD,如图所示:∵=,∴∠B=∠CAD,又∠ACQ=∠BCA,∴△ACQ∽△BCA,∴=,即AC2=CQ•CB,∵=,∴∠ACP=∠ADC,又∠CAP=∠DAC,∴△ACP∽△ADC,∴=,即AC2=AP•AD,∴AP•AD=CQ•CB,选项④正确,则正确的选项序号有②③④.故答案为:②③④点评:此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,熟练掌握性质及定理是解本题的关键.17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有1条;(2)如图②,∠C=90°,∠B=30°,当=或或时,P(l x)截得的三角形面积为△ABC面积的.考点:相似三角形的判定与性质.专题:压轴题.分析:(1)过点P作l3∥BC交AC于Q,则△APQ∽△ABC,l3是第3条相似线;(2)按照相似线的定义,找出所有符合条件的相似线.总共有4条,注意不要遗漏.解答:解:(1)存在另外 1 条相似线.如图1所示,过点P作l3∥BC交AC于Q,则△APQ∽△ABC;故答案为:1;(2)设P(l x)截得的三角形面积为S,S=S△ABC,则相似比为1:2.如图2所示,共有4条相似线:①第1条l1,此时P为斜边AB中点,l1∥AC,∴=;②第2条l2,此时P为斜边AB中点,l2∥BC,∴=;③第3条l3,此时BP与BC为对应边,且=,∴==;④第4条l4,此时AP与AC为对应边,且=,∴==,∴=.故答案为:或或.点评:本题引入“相似线”的新定义,考查相似三角形的判定与性质和解直角三角形的运算;难点在于找出所有的相似线,不要遗漏.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是①③.考点:相似三角形的判定与性质;勾股定理;等腰直角三角形.专题:压轴题.分析:首先根据题意易证得△AFG∽△CFB,根据相似三角形的对应边成比例与BA=BC,继而证得正确;由点D是AB的中点,易证得BC=2BD,由等角的余角相等,可得∠DBE=∠BCD,即可得AG=AB,继而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性质,可得AC=AB,即可求得AF=AB;则可得S△ABC=6S△BDF.解答:解:∵在Rt△ABC中,∠ABC=90°,∴AB⊥BC,AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠DBE+∠BDE=∠BDE+∠BCD=90°,∴∠DBE=∠BCD,∵AB=CB,点D是AB的中点,∴BD=AB=CB,∵tan∠BCD==,∴在Rt△ABG中,tan∠DBE==,∵=,∴FG=FB,∵GE≠BF,∴点F不是GE的中点.故②错误;∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;∵BD=AB,AF=AC,∴S△ABC=6S△BDF,故④错误.故答案为:①③.点评:此题考查了相似三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题难度适中,解题的关键是证得△AFG∽△CFB,注意掌握数形结合思想与转化思想的应用.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=.(用含n的式子表示)考点:相似三角形的判定与性质.专题:压轴题;规律型.分析:由n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,即可求得△B1C1M n的面积,又由B n C n∥B1C1,即可得△B n C n M n∽△B1C1M n,然后利用相似三角形的面积比等于相似比的平方,求得答案.解答:解:∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn:S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.点评:此题考查了相似三角形的判定与性质、正方形的性质以及直角三角形面积的公式.此题难度较大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是.考点:相似三角形的判定与性质;等腰直角三角形.专题:规律型.分析:求出第一个、第二个、第三个内接正方形的边长,总结规律可得出第n个小正方形A nB n D n E n的边长.解答:解:∵∠A=∠B=45°,∴AE1=A1E=A1B1=B1D1=D1B,∴第一个内接正方形的边长=AB=1;同理可得:第二个内接正方形的边长=A1B1=AB=;第三个内接正方形的边长=A2B2=AB=;故可推出第n个小正方形A n B n D n E n的边长=AB=.故答案为:.点评:本题考查了相似三角形的判定与性质、等腰直角三角形的性质,解答本题的关键是求出前几个内接正方形的边长,得出一般规律.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.解答:(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,。
人教版九年级数学下册27.2 相似三角形同步练习及答案【优选新版】
27.2 相似三角形专题一相似形中的开放题1.如图,在正方形网2.格中,点A、B、C、D都是格点,点E是线段AC上任意一点.如果AD=1,那么当AE= 时,以点A、D、E为顶点的三角形与△ABC相似.1.已知:如图,△ABC中,点D、E分别在边AB、AC上.连接DE并延长交BC 的延长线于点F,连接DC、BE,∠BDE+∠BCE=180°.(1)写出图中三对相似三角形(注意:不得添加字母和线);(2)请你在所找出的相似三角形中选取一对,说明它们相似的理由.专题二相似形中的实际应用题3.如图,已知零件的外径为a,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=n,且量得CD=b,求厚度x.专题三相似形中的探究规律题4.某班在布置新年联欢晚会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条,如图在Rt△ABC中,∠C=90°,AC=30 cm,AB=50 cm,依次裁下宽为1 cm的矩形纸条a1、a2、a2…若使裁得的矩形纸条的长都不小于5 cm,则每张直角三角形彩纸能裁成的矩形纸条的总数是( )A.24 B.25 C.26 D.275.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.(1)如图①,四边形DEFG为△ABC的内接正方形,求正方形的边长;(2)如图②,正方形DKHG,EKHF组成的矩形内接于△ABC,求正方形的边长;(3)如图③,三个正方形组成的矩形内接于△ABC,求正方形的边长;(4)如图④,n个正方形组成的矩形内接于△ABC,求正方形的边长.专题四相似形中的阅读理解题6.某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去,例如,可以定义:圆心角相等且半径和弧长对应成比例的两个扇形叫相似扇形;相似扇形有性质:弧长比等于半径比,面积比等于半径比的平方…,请你协助他们探索下列问题:(1)写出判定扇形相似的一种方法:若,则两个扇形相似;(2)有两个圆心角相同的扇形,其中一个半径为a,弧长为m,另一个半径为2a,则它的弧长为;(3)如图1,是—完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同,面积是它的一半的纸扇(如图2),求新做纸扇(扇形)的圆心角和半径.图1 图2专题五相似形中的操作题7.宽与长的比是215的矩形叫黄金矩形,心理测试表明:黄金矩形令人赏心悦目,它给我们以协调、匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;第四步:过E作EF⊥AD,交AD的延长线于F.请你根据以上作法,证明矩形DCEF为黄金矩形.8.如图①,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.(1)操作:如图②,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).求证:BH•GD=BF2;(2)操作:如图③,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.探究:FD+DG= DB,请给予证明.专题六 相似形中的综合题 9.正方形ABCD 的边长为4,M 、N 分别是BC 、CD 上的两个动点,且始终保持AM ⊥MN .当BM = 时,四边形ABCN 的面积最大.10.如图,在锐角△ABC 中,AC 是最短边,以AC 的中点O 为圆心,21AC 长为半径作⊙O ,交BC 于E ,过O 作OD ∥BC 交⊙O 于D ,连接AE 、AD 、DC .(1)求证:D 是 AE的中点; (2)求证:∠DAO =∠B +∠BAD ; (3)若21=∆∆OCD CEF S S ,且AC =4,求CF 的长.【知识要点】1.平行线分线段成比例定理:三条平行线截两条直线,所得对应线段成比例. 2.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等. 3.平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似. 4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似.5.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似. 6.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. 7.相似三角形周长的比等于相似比.相似多边形周长的比等于相似比. 8.相似三角形对应高的比等于相似比.9.相似三角形面积的比等于相似比的平方. 相似多边形面积的比等于相似比的平方.【温馨提示】1.平行线分线段成比例时,一定找准对应线段.2.当已知两个三角形有一组对应角相等,利用夹这个角的两边对应成比例来判定它们相似时,比例式常有两种情况,考虑不全面是遗漏解的主要原因.3.数学猜想需要严密的推理论证说明其正确性,规律的发现与提出需要从特殊到一般的数学归纳思想,平时要养成观察、分析问题的习惯.【方法技巧】1.相似三角形对应角平分线的比等于相似比;相似三角形对应中线的比等于相似比.2.在平面几何中,求图形中等积式或等比式时,一般地首先通过观察找出图形中相似的三角形,再从理论上证明观察结论的正确性,最后运用相似形的性质来解决问题.参考答案 1.22或42 【解析】根据题意得AD =1,AB=3,AC=26, ∵∠A=∠A ,∴若△ADE∽△ABC 时,ACAEAB AD =,即2631AE =,解得AE =22. 若△ADE∽△ACB 时,AB AE AC AD =3AE=,解得AE=42. ∴当AE =22或42时,以点A 、D 、E 为顶点的三角形与△ABC 相似.2.解:(1)△ADE∽△ACB ,△CEF∽△DBF ,△EFB∽△CFD (不唯一).(2)由∠BDE+∠BCE =180°,可得∠ADE=∠BCE . ∵∠A=∠A,∴△ADE∽△ACB ; ∴AC AD =ABAE.∵ ∠A=∠A , ∴△AEB∽△ADC ;∵∠BDE+∠BC E =180°,∠BCE+∠ECF =180°, ∴∠ECF=∠BDF , 又∠F=∠F , ∴△CEF∽△DBF ;∴BF EF =DFCF,而∠F=∠F ,∴△EFB∽△CFD . 3.解:∵ OA :OC =OB :OD =n 且∠AOB=∠COD,∴△AOB∽△COD .∵ OA:OC =AB:CD =n ,又∵CD =b,∴AB=CD ·n =nb ,∴x =a -AB 2 =a -nb2. 4.C 【解析】设裁成的矩形纸条的总数为n ,且每条纸条的长度都不小于5cm,40(cm)BC ==.设矩形纸条的长边分别与AC 、AB 交于点M 、N ,因为△AMN ∽△ACB ,所以BC MN AC AM =.又因为AM=AC-1·n=30-n ,MN ≥5 cm ,所以4053030≥-n ,得n ≤26.25,所以n 最多取整数26.5.解:(1)在题图①中过点C 作CN ⊥AB 于点N ,交GF 于点M .因为∠C =90°,AC =4,BC =3,所以AB =5. 因为21×5CN=21×3×4,所以CN=512. 因为GF∥AB ,所以∠CGF=∠A,∠CFG=∠B ,所以△CGF∽△CAB ,所以ABGFCN CM =. 设正方形的边长为x ,则1251255xx -=,解得3760=x .所以正方形的边长为3760.(2)同(1),有12251255xx -=,解得4960=x .(3)同(1),有12351255x x -=,解得6160=x . (4)同(1),有1251255x nx -=,解得n x 122560+=. 6.解:(1)答案不唯一,如“圆心角相等” “半径和弧长对应成比例”(2)由相似扇形的性质知半径和弧长对应成比例,设另一个扇形的弧长为x ,则a a 2=xm,∴x =2m. (3)∵两个扇形相似,∴新做扇形的圆心角与原来扇形的圆心角相等,等于120°. 设新做扇形的半径为γ,则230γ⎛⎫ ⎪⎝⎭=21,γ=152,即新做扇形的半径为152㎝. 7.证明:在正方形ABCD 中,取AB=2a ,∵N 为BC 的中点,∴12NC BC a ==. 在Rt△DNC 中,2222(2)5.ND NC CD a a a =+=+= ∵NE=ND ,∴(51)CE NE CN a =-=-. ∴2152)15(-=-=a a CD CE ,故矩形DCEF 为黄金矩形. 8.解:(1)证明:∵将菱形纸片AB (E )CD (F )沿对角线BD (EF )剪开,∴∠B =∠D .∵将△ECF 的顶点F 固定在△ABD 的BD 边上的中点处,△ECF 绕点F 在BD 边上方左右旋转,∴BF =DF .∵∠HFG =∠B ,∴∠GFD =∠BHF ,∴△BFH∽△DGF ,∴BF BHDG DF=, ∴BH•GD =BF 2.(2)证明:∵AG∥CE ,∴∠FAG∥∠C .∵∠CFE=∠CEF ,∴∠AGF=∠CFE ,∴AF=AG . ∵∠BAD=∠C ,∴∠BAF=∠DAG ,△ABF≌△ADG ,∴FB=DG ,∴FD+DG=DB , 9.210.解:(1)证明:∵AC 是⊙O 的直径,∴AE ⊥BC. ∵OD ∥BC ,∴AE ⊥OD ,∴D 是 ⌒AE的中点. (2)方法一:证明:如图,延长OD 交AB 于G ,则OG ∥BC .∴∠AGD=∠B .∵OA=OD ,∴∠DAO=∠ADO . ∵∠ADO=∠BAD+∠AGD ,∴∠DAO=∠B +∠BAD. 方法二:证明:如图,延长AD 交BC 于H ,则∠ADO=∠AHC .∵∠AHC=∠B +∠BAD ,∴∠ADO =∠B +∠BAD . ∵OA=OD ,∴∠DAO=∠B +∠BAD . (3) ∵AO=OC ,∴12OCD ACD S S ∆∆=.∵12CEF OCD S S ∆∆=,∴14CEF ACD S S ∆∆=.∵∠ACD=∠FCE ,∠ADC=∠FEC =90°,∴△ACD∽△FCE .∴2CEF ACD S CF S AC ∆∆⎛⎫= ⎪⎝⎭,即2144CF ⎛⎫= ⎪⎝⎭,∴CF =2.。
人教版数学九年级下册数学:27.2.1 相似三角形的判定 同步练习(附答案)
27.2.1 相似三角形的判定第1课时 平行线分线段成比例1.如图所示,△ADE ∽△ACB ,∠AED =∠B ,那么下列比例式成立的是( ) A.AD AC =AE AB =DE BC B.AD AB =AE ACC.AD AE =AC AB =DE BC D.AD AB =AE EC =DE BC2.两个三角形相似,且相似比k =1,则这两个三角形 .3.如图,在△ABC 中,DE ∥BC ,AD =6,DB =3,AE =4,则EC 的长为( )A .1B .2C .3D .44.如图,直线l 1∥l 2∥l 3,直线AC 交l 1,l 2,l 3于点A ,B ,C ,直线DF 交l 1,l 2,l 3于点D ,E ,F ,已知AB AC =13,则EFDE= .5.如图,在▱ABCD 中,EF ∥AB 交AD 于点E ,交BD 于点F ,DE ∶EA =3∶4,EF =3,则CD 的长为( )A .4B .7C .3D .126.如图,点E ,F 分别在△ABC 的边AB ,AC 上,且EF ∥BC ,点M 在边BC 上,AM 与EF 交于点D ,则图中相似三角形共有( )A .4对B .3对C .2对D .1对7.在△ABC 中,AB =6,AC =9,点P 是直线AB 上一点,且AP =2,过点P 作BC 边的平行线,交直线AC 于点M ,则MC 的长为 .8.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB 于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.ABAE=AGADB.DFCF=DGADC.FGAC=EGBDD.AEBE=CFDF9.如图,AG∶GD=4∶1,BD∶DC=2∶3,则AE∶EC的值是()A.3∶2B.4∶3C.6∶5D.8∶510.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A,B,C都在横格线上,若线段AB=4 cm,则线段BC=cm.11.如图,在△ABC中,点D,E分别为AB,AC的中点,连接DE,线段BE,CD相交于点O,若OD=2,则OC=.12.如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F,若CD=5,BC=8,AE=2,则AF=.13.中国高铁近年来用震惊世界的速度不断发展,已成为当代中国一张耀眼的“国家名片”,修建高铁时常常要逢山开道、遇水搭桥,如图,某高铁在修建时需打通一直线隧道MN(M、N为山的两侧),工程人员为了计算M、N两点之间的直线距离,选择作MN的平行线BC,并测得AM=900米, AB=30米,BC=45米,求直线隧道MN的长.14.如图,延长正方形ABCD的一边CB至点E,ED与AB相交于点F,过点F作FG∥BE 交AE于点G,求证:GF=FB.15.如图,AD∥EG∥BC,EG分别交AB,DB,AC于点E,F,G,已知AD=6,BC=10,AE=3,AB=5,求EG,FG的长.第2课时 相似三角形的判定定理1,21.将一个三角形的各边长都缩小12后,得到的三角形与原三角形( )A .一定相似B .一定不相似C .不一定相似D .无法确定2.若△ABC 各边分别为AB =10 cm ,BC =8 cm ,AC =6 cm ,△DEF 的两边为DE =5 cm ,EF =4 cm ,则当DF = cm 时,△ABC ∽△DEF. 3.试判断图中的两个三角形是否相似,并说明理由.4.网格图中每个方格都是边长为1的正方形.若A ,B ,C ,D ,E ,F 都是格点,试说明△ABC ∽△DEF.5.能判定△ABC ∽△A ′B ′C ′的条件是( )A.AB A ′B ′=ACA ′C ′B.AB AC =A ′B ′A ′C ′且∠A =∠A ′ C.AB BC =A ′B ′A ′C ′且∠B =∠C ′ D.AB A ′B ′=ACA ′C ′且∠B =∠B ′6.如图,已知△ABC,则下列4个三角形中,与△ABC相似的是()7.如图,AB与CD相交于点O,OA=3,OB=5,OD=6,当OC=时,△AOC∽△BOD.8.如图,点C,D在线段AB上,∠A=∠B,AE=3,AD=2,BC=3,BF=4.5,DE=5,求CF的长.9.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=时,以A,D,E为顶点的三角形与△ABC相似.10.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P 1B.P2C.P3D.P411.如图,在△ABC中,点P在AB上,下列四个条件:①AP∶AC=AC∶AB;②AC2=AP·AB;③AB·CP=AP·CB.其中能满足△APC和△ACB相似的条件有()A.1个 B.2个C.3个D.0个12.如图,已知∠DAB=∠CAE,请补充一个条件:,使△ABC∽△ADE.13.如图,AB∥DE,AC∥DF,BC∥EF,求证:△DEF∽△ABC.14.如图,在△ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上一点,且满足AB2=DB·CE.求证:△ADB∽△EAC.15.如图,正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点,求证:△ADQ ∽△QCP.16.如图,在钝角三角形ABC中,AB=6 cm,AC=12 cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1 cm/s,点E运动的速度为2 cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是.第3课时相似三角形的判定定理31.下列各组图形中有可能不相似的是()A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形2.已知△ABC中,∠A=40°,∠B=75°,下图各三角形中与△ABC相似的是.3.如图,锐角三角形ABC的边AB,AC上的高线EC,BF相交于点D,请写出图中的两对相似三角形.(用相似符号连接) 4.如图,点B,D,C,F在一条直线上,且AB∥EF,AC∥DE,求证:△ABC∽△EFD.5.如图,∠1=∠2,∠C =∠D.求证:△ABC ∽△AED.6.在△ABC 和△A ′B ′C ′中,∠C =∠C ′=90°,AC =12,AB =15,A ′C ′=8,则当A ′B ′= 时,△ABC ∽△A ′B ′C ′.7.一个直角三角形的一条直角边长和斜边长分别为8 cm 和15 cm ,另一个直角三角形的一条直角边长和斜边长分别是6 cm 和454 cm ,这两个直角三角形 (填“是”或“不是”)相似三角形.8.一个直角三角形的两边长分别为3和6,另一个直角三角形的两边长分别为2和4,那么这两个直角三角形 (填“一定”“不一定”或“一定不”)相似.9.如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,且∠DCE =∠B.那么下列判断中,错误的是( )A .△ADE ∽△ABCB .△ADE ∽△ACDC .△DEC ∽△CDBD .△ADE ∽△DCB10.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )A .2B .4C .6D .811.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.12.如图,已知∠ACB=∠ABD=90°,AB=6,AC=2,求AD的长为多少时,图中两直角三角形相似?13.如图,在▱ABCD中,过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.求证:△ABF∽△BEC.14.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?15.如图,在△ABC中,AD,BF分别是BC,AC边上的高,过点D作AB的垂线交AB于点E,交BF于点G,交AC的延长线于点H,求证:DE2=EG·EH.参考答案:27.2.1 相似三角形的判定第1课时 平行线分线段成比例1.A2. 全等.3.B4. 2.5.B6.B7. 6或12.8.D9.D10.12.11.4.12.169.13.解:∵BC ∥MN ,∴△ABC ∽△AMN.∴AB AM =BC MN ,即30900=45MN .∴MN =1 350.答: 直线隧道MN 的长为1 350米.14.证明:∵GF ∥AD ,∴GF AD =EFED .又FB ∥DC ,∴FB DC =EFED .又AD =DC ,∴GF AD =FBAD .∴GF =FB.15.解:∵在△ABC 中,EG ∥BC ,∴△AEG ∽△ABC ,∴EG BC =AEAB .∵BC =10,AE =3,AB =5,∴EG 10=35,∴EG =6. ∵在△BAD 中,EF ∥AD ,∴△BEF ∽△BAD ,∴EF AD =BE AB. ∵AD =6,AE =3,AB =5,∴EF 6=5-35.∴EF =125. ∴FG =EG -EF =185.第2课时 相似三角形的判定定理1,21.A2.3.3.解:相似.理由如下:在Rt △ABC 中,BC =AB 2-AC 2=32-2.42=1.8,在Rt △DEF 中,DF =DE 2-EF 2=62-3.62=4.8,∴AB DE =BC EF =AC DF =12. ∴△ABC ∽△DEF.4.证明:∵AC =2,BC =12+32=10,AB =4,DF =22+22=22,EF =22+62=210,ED =8,∴AC DF =BC EF =AB DE =12. ∴△ABC ∽△DEF.5.B6.C7. 1858.解:∵AE BF =34.5=23,AD BC =23,∴AE BF =AD BC.又∵∠A =∠B ,∴△AED ∽△BFC.∴AD BC =DE CF .∴23=5CF. ∴CF =152. 9. 125或53. 10.C11.B12. AD AB =AE AC 13.证明:∵AB ∥DE ,∴△ODE ∽△OAB.∴DE AB =OE OB. ∵BC ∥EF ,∴△OEF ∽△OBC.∴EF BC =OE OB =OF OC. ∵AC ∥DF ,∴△ODF ∽△OAC.∴DF AC =OF OC. ∴DE AB =EF BC =DF AC. ∴△DEF ∽△ABC.14.证明:∵AB =AC ,∴∠ABC =∠ACB.∴∠ABD =∠ACE.∵AB 2=DB ·CE ,∴AB CE =DB AB . 又AB =AC ,∴AB CE =DB AC. ∴△ADB ∽△EAC.15.证明:设正方形的边长为4a ,则AD =CD =BC =4a.∵Q 是CD 的中点,BP =3PC ,∴DQ =CQ =2a ,PC =a.∴DQ PC =AD CQ =21. 又∵∠D =∠C =90°,∴△ADQ ∽△QCP.16.3__s 或4.8__s .第3课时 相似三角形的判定定理31.A2. △EFD ,△HGK .3. 答案不唯一,如△BDE ∽△CDF ,△ABF ∽△ACE 等.4.证明:∵AB ∥EF ,AC ∥DE ,∴∠B =∠F ,∠ACB =∠EDF.∴△ABC ∽△EFD.5.证明:∵∠1=∠2,∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠EAD.又∵∠C =∠D ,∴△ABC ∽△AED.6.10.7.是.8.不一定.9.D10.B11.6017. 12.解:①若△ABC ∽△ADB ,则AB AD =AC AB.∴AD =3; ②若△ABC ∽△DAB ,则AB AD =BC AB.∴AD =3 2.综上所述,当AD =3或32时,两直角三角形相似.13.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AD =BC.∴∠D +∠C =180°,∠ABF =∠BEC.又∵∠AFB +∠AFE =180°,且∠AFE =∠D , ∴∠C =∠AFB.又∵∠ABF =∠BEC ,∴△ABF ∽△BEC.14.解:(1)证明:∵四边形ABCD 是矩形, ∴AB ∥CD.∴△APQ ∽△CDQ.(2)当DP ⊥AC 时,∠QCD +∠QDC =90°.∵∠ADQ +∠QDC =90°,∴∠DCA =∠ADP. 又∵∠ADC =∠DAP =90°,∴△ADC ∽△PAD.∴AD PA =DC AD .∴10PA =2010,解得PA =5. ∴t =5.15.证明:∵AD ,BF 分别是BC ,AC 边上的高, ∴∠ADB =∠BED =90°.∴∠EBD +∠EDB =∠EDB +∠ADE.∴∠EBD =∠EDA.∴△AED ∽△DEB.∴AE DE =DE BE,即DE 2=AE ·BE. 又∵∠HFG =90°,∠BGE =∠HGF ,∴∠EBG =∠H.∵∠BEG =∠HEA =90°,∴△BEG ∽△HEA.∴EG AE =BE EH,即EG ·EH =AE ·BE. ∴DE 2=EG ·EH.。
九年级数学下册第二十七章相似27.2相似三角形27.2.1相似三角形的判定同步练习新版新人教版
相似三角形的判定一、基础题目1.如图,△ADE ∽△ACB ,∠AED =∠B ,那么下列比例式成立的是( ) A.AD AC =AE AB =DE BC B.AD AB =AE AC C.AD AE =AC AB =DE BC D.AE EC =DE BC2.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若BD =2AD ,则( ) A.AD AB =12 B.AE EC =12 C.AD EC =12 D.DE BC =123.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若AB BC =12,则DEEF=( ) A.13 B.12 C.23D .1第1题图 第2题图 第3题图4. 如果△ABC ∽△A′B′C′,△ABC 与△A′B′C′的相似比为2,那么△A′B′C′与△ABC 的相似比为 .5.如图,AB ∥CD ∥EF ,AF 与BE 相交于点G ,且AG =2,GD =1,DF =5,那么BCCE 的值等于 .6.如图,AB 、CD 相交于点O ,OC =2,OD =3,AC ∥BD.EF 是△ODB 的中位线,且EF =2,则AC 的长为 . 7.如图,在△ABC 中,DE ∥BC ,且AD =2,DB =3,则DEBC= .第5题图 第6题图 第7题图 8.如图,EG ∥BC ,GF ∥CD ,AE =3,EB =2,AF =6,求AD 的值.二、训练题目9.如图,△ABC 中,DE ∥BC ,EF ∥AB ,则图中相似三角形的对数是( ) A .1对 B .2对 C .3对 D .4对10.如图,在▱ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF ∶FC 等于( ) A .3∶2 B .3∶1 C .1∶1 D .1∶211.如图,在ABC ∆中,DE ∥BC ,3,2AD BD ==,则ADE ∆和ABC ∆的相似比是 ;若6DE =,则BC =第9题图 第10题图 第11题图12.一个三角形的三边长分别为8 cm,6 cm,12 cm,另一个与它相似的三角形的最短边为3 cm ,则其余两边长为______________.13.如图,在ABC ∆中,DE ∥BC ,DE 分别与,AB AC 相交于D E 、,若4AD =,2DB =,求:DE BC 的值。
九年级数学第二十七章《相似三角形的性质》同步练习(含答案)
九年级数学第二十七章《相似三角形的性质》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果△ABC ∽△DEF ,A 、B 分别对应D 、E ,且AB :DE =1:2,那么下列等式一定成立的是 A .BC :DE =1:2B .△ABC 的面积:△DEF 的面积=1:2 C .∠A 的度数:∠D 的度数=1:2D .△ABC 的周长:△DEF 的周长=1:2 【答案】D2.如图,AB 、CD 、EF 都与BD 垂直,且AB =1,CD =3,那么EF 的长是A .13B .23 C .34D .45【答案】C【解析】∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF , ∴△DEF ∽△DAB ,△BEF ∽△BCD ,∴EF DF AB DB =,EF BF CD BD =,∴EF EF DF BFAB CD DB BD+=+=1. ∵AB =1,CD =3,∴13EF EF +=1,∴EF =34.故选C .3.已知:如图,在ABCD中,AE:EB=1:2,则FE:FC=A.1:2 B.2:3 C.3:4 D.3:2 【答案】B【解析】在ABCD中,AB=CD,AB∥CD,∵BE=2AE,∴BE=23AB=23CD,∵AB∥CD,∴EFFC=BEDC=23,故选B.4.已知:如图,E是ABCD的边AD上的一点,且32AEDE=,CE交BD于点F,BF=15cm,则DF的长为A.10cm B.5cmC.6cm D.9cm【答案】C【解析】∵四边形ABCD是平行四边形,点E在边AD上,∴DE∥BC,且AD=BC,∴∠DEF=∠BCF;∠EDF=∠CBF,∴△EDF∽△CBF,∴BC BF ED DF=,∵32AEDE=,∴设AE=3k,DE=2k,则AD=BC=5k,52BC BFED DF==,∵BF=15cm,∴DF=25BF═6cm.故选C.5.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△DEF与△ABC的面积之比为A.9:1 B.1:9C.3:1 D.1:3【答案】B【解析】∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,∴△ABC与△DEF的相似比为3,∴△DEF与△ABC的相似比为1:3,∴△DEF与△ABC的面积之比为1:9,故选B.6.如图,△ABC∽△AB'C',∠A=35°,∠B=72°,则∠AC'B'的度数为A.63°B.72°C.73°D.83°【答案】C【解析】∵∠A+∠B+∠C=180°,∠A=35°,∠B=72°,∴∠C=180°–35°–72°=73°,∵△ABC∽△AB'C',∴∠AC′B′=∠C=73°,故选C.7.如图,△ABC中,E为AB中点,AB=6,AC=4.5,∠ADE=∠B,则CD=A.32B.1C.12D.23【答案】C【解析】∵E为AB中点,∴AE=12AB,∵∠ADE=∠B,∠A=∠A,∴△ADE∽△ABC,∴AE ADAC AB,∴12AB2=AD•AC,∴AD=4,∴CD=AC–AD=0.5,故选C.二、填空题:请将答案填在题中横线上.8.两个三角形相似,相似比是12,如果小三角形的面积是9,那么大三角形的面积是__________.【答案】36【解析】∵两个三角形相似,相似比是12,∴两个三角形的面积比是14,∵小三角形的面积是9,∴大三角形的面积是36,故答案为:36.9.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为__________.【答案】65或310.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是__________.【答案】3≤AP<4【解析】如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.11.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),且△CDE与△ABC相似,则点E的坐标是__________.【答案】(6,0),(6,5),(6,2),(4,2)、(4,5)、(4,0).【解析】在△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.①当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC;②当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC;③当点E的坐标为(6,2)时,∠ECD=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC;同理,当点E的坐标为(4,2)、(4,5)、(4,0),故答案为:(6,0),(6,5),(6,2),(4,2)、(4,5)、(4,0).三、解答题:解答应写出文字说明、证明过程或演算步骤.12.求证:相似三角形面积的比等于相似比的平方.(请根据题意画出图形,写出已知,求证并证明)【解析】已知:如图,已知△ABC ∽△A 1B 1C 1,顶点A 、B 、C 分别与A 1、B 1、C 1对应,△ABC 和△A 1B 1C 1的相似比为k .求证:111ABC A B C S S △△=k 2;证明:作AD ⊥BC 于D ,A 1D 1⊥B 1C 1于D 1,∵△ABC ∽△A 1B 1C 1,顶点A 、B 、C 分别与A 1、B 1、C 1对应, ∴∠B =∠B 1,∵AD 、A 1D 1分别是△ABC ,△A 1B 1C 1的高线, ∴∠BDA =∠B 1D 1A 1,∴△ABD ∽△A 1B 1D 1,∴11AD A D =11ABA B =k , ∴111ABC A B C S S △△=11111212BC AD B C A D ⋅⋅⋅⋅=k 2.13.如图所示,Rt △ABC ∽Rt △DFE ,CM 、EN 分别是斜边AB 、DF 上的中线,已知AC =9cm ,CB =12cm ,DE =3cm .(1)求CM 和EN 的长; (2)你发现CMEN的值与相似比有什么关系?得到什么结论?【解析】(1)在Rt △ABC 中,AB =22AC CB +=22912+=15,∵CM 是斜边AB 的中线, ∴CM =12AB=7.5, ∵Rt △ABC ∽Rt △DFE , ∴DE DF AC AB =,即319315DF==, ∴DF =5,∵EN 为斜边DF 上的中线,∴EN =12DF =2.5; (2)∵7.532.51CM EN ==,相似比为9331AC DE ==,∴相似三角形对应中线的比等于相似比.14.如图,点C 、D 在线段AB 上,△PCD 是等边三角形,且△ACP ∽△PDB .(1)求∠APB 的大小.(2)说明线段AC 、CD 、BD 之间的数量关系.15.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,∠A =48°,CD 是△ABC 的完美分割线,且AD =CD ,则∠ACB =__________°. (2)如图2,在△ABC 中,AC =2,BC 2,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD的长.【解析】(1)当AD=CD时,如图,∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.(2)由已知得AC=AD=2,∵△BCD∽△BAC,∴BCBA=BDBC,设BD=x2)2=x(x+2),∵x>0,∴x3–1,∵△BCD∽△BAC,∴CD BDAC BC=32,∴CD 312-×62.故答案为:96.。
人教版九年级数学下册 第二十七章 相似 27.2 相似三角形 同步练习(含答案)
人教版九年级数学下册第二十七章相似27.2 相似三角形同步练习一、选择题1、能判定与相似的条件是()A. B.,且C.且D.,且2、如图,下列条件中不能判定的是()A. B.C. D.3、.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠CB.∠ADB=∠ABCC.D.4、如图1,在三角形纸片ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的有()A.①②③ B.①②④ C.①③④ D.②③④5、如图,△ABC中,点D、E分别在AB、AC边上,则下列条件中,不一定能使△AED∽△ABC的是()A.∠2=∠B B.∠1=∠C C.D.6、如图,△ABC中,BD是∠ABC的平分线,DE∥AB交BC于E,EC=6,BE=4,则AB长为()A. 6 B. 8 C.D.7、如图,DE是△ABC的中位线,已知△ABC的面积为8,则△ADE的面积为().A. 2 B. 4 C. 6 D. 88、如图所示,在河的一岸边选定一个目标A,再在河的另一岸边选定B和C,使AB⊥BC,然后选定E,使EC⊥BC,用视线确定BC和AE相交于D,此时测得BD=120米,CD=60米,为了估计河的宽度AB,还需要测量的线段是()A.CEB.DEC.CE或DED.无法确定9、已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对B.2对C.3对D.4对10、某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某同学的身高是1.5米,影长是1米,且旗杆的影长为8米,则旗杆的高度是()A.12米 B.11米 C.10米 D.9米11、.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值为()A. B. C. D.12、如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是( )A. 4.5秒B.3秒C. 3秒或4.8秒D.4.5秒或4.8秒二、填空题13、如图,是的中位线,的面积为,则四边形的面积为.14、如图,已知零件的外径为25,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量零件的内孔直径AB.若OC∶OA=1∶2,量得CD=10,则零件的厚度.15、如图,AC与BD交于点E,AB∥CD∥EF,AB=10,CD=15,则EF的长为16、已知△ABC∽△A′B′C′,且,△ABC的周长比△A′B′C′的周长少8cm,则△A′B′C′的周长为 cm 。
2023年人教版九年级数学下册第27章《相似》复习检测卷(一)附答案解析
2023年九年级数学下册第27章《相似》复习检测卷(一)考试范围:§27.1图形的相似~27.2相似三角形的判定满分:120分一、选择题(每小题3分,共30分)1.将△ABC 的每条边都扩大3倍得到△DEF ,其中点A 、B 、C 的对应点分别是D 、E 、F ,则∠D 与∠A 的关系为()A .∠D =∠AB .∠D =3∠AC .∠D =6∠AD .∠D =9∠A2.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()3.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E ,B 、D 、F ,AC =8,CE =12,BD =6,则DF 的长为()A .4B .5C .9D .74.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,F 为BC 边上一点,连接AF交DE 于点G ,则下列结论中一定正确的是()A .AD AEAB CE=B .AC AEGF BD=C .BD CEAD AE=D .AG ACAF CE=5.如图,在正方形网格上有两个三角形,且△ABC 和△DEF 相似,则∠BAC 的度数为()A .135°B .125°C .115°D .105°6.如图,△ACP ∽△ABC ,若∠A =100°,∠ACP =20°,则∠ACB 的度数是()A .80°B .60°C .50°D .30°7.如图,在□ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,则CD 的长为()A .6B .8C .9D .108.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm 、6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为()A .3cmB .4cmC .4.5cmD .5cm9.如图,在矩形ABCD 中,AB =a ,AD =3,按照图中的方式将它分成完全相同的三个矩形,如果每一个小矩形都与矩形ABCD 相似,则a 的值为()第5题第3题第4题第6题第7题第9题第10题A .22B .23C .33D .3210.如图,正方形ABCD 的边长为4,E 是BC 边上一点,过点E 作EF ⊥AE 交CD 边于点F ,则CF 的最大值是()A .0.5B .1C .1.5D .2二、填空题(每小题3分,共18分)11.如图,添加一个条件__________________,使△ADE ∽△ACB .12.如图,在□ABCD 中,E 是AD 的中点,EC 交对角线BD 于点F ,则BF ∶FD 的值为_________.13.如图,在△ABC 中,DE ∥BC ,若AD =1,BD =3,BC =8,则DE 的长为________.14.已知654a b c==,且a +b -2c =6,则a 的值为_______.15.如图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数ky x=(k >0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OCD ∽△ACO ,则直线OA 的解析式为_______.16.如图,直线l 1∥l 2∥l 3,直线l 1与l 2之间的距离为2,直线l 2与l 3之间的距离为1,等边△ABC 的三个顶点分别在直线l 1、l 2、l 3上,则等边三角形的边长是______.三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD ∽四边形A 'B 'C 'D ',∠BCD =125°,分别求x 、y 、α的值.18.(8分)如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,AE ⊥BF 于点M ,若BC =2AB ,探究AE 与BF 的数量关系,并证明你的结论.第10题第11题第16题第12题第13题第15题19.(8分)如图,在四边形ABCD中,AC平分∠BAD,∠ADC=∠ACB=90°.(1)求证:AC2=AB·AD;(2)若BC=3,AB=5,求CD的长.20.(8分)如图,在矩形ABCD中,E是AD上一点,连接BE.(1)请用尺规在BE上求作一点P,使得△PCB∽△ABE(不写作法,保留作图痕迹);(2)若AE=3,AB=4,BC=6,求EP的长.21.(8分)如图,在△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)作DE∥AB交AC于点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.22.(10分)在△ABC中,AB=6,AC=8,点D、E分别在AB、AC上,连接DE,设BD=x(0<x<6),CE=y(0<y<8).(1)当x=2,y=5时,求证:△AED∽△ABC;(2)若△ADE和△ABC相似,求y与x的函数表达式.23.(10分)如图,在△ABC中,∠ABC=90°,D是斜边AC的中点,连接DB.过点A作AE⊥BD于点F,交BC于点E.(1)求证:EB2=EF・EA;(2)若AB=4,CE=3BE,求AE的长.24.(12分)(1)【问题背景】如图1,D是等边△ABC中AB边上的点,以CD为边在CD的上方作等边△CDE,连接AE,求证:BD=AE;(2)【尝试应用】如图2,D是Rt△ABC中AB边上的一点,∠B=90°,∠BAC=30°,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,∠CED=30°,连接AE,请探究BD与AE的数量关系,并说明理由;(3)【拓展创新】如图3,在Rt△ABC中,∠ABC=90°,点D在AB边上,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,43DE ABCD BC==,DE交AC于F,若AD=3BD,求AFDF的值.《相似》阶段检测卷(一)考试范围:§27.1图形的相似~27.2相似三角形的判定满分:120分一、选择题(每小题3分,共30分)1.将△ABC 的每条边都扩大3倍得到△DEF ,其中点A 、B 、C 的对应点分别是D 、E 、F ,则∠D 与∠A 的关系为()A .∠D =∠AB .∠D =3∠AC .∠D =6∠A D .∠D =9∠A【答案】A .详解:依题意,△ABC 与△DEF 的三边成比例,∴△ABC ∽△DEF ,∴∠A =∠D ,故选A .2.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()【答案】C .详解:由两个角分别相等的两个三角形相似,知选项A 和B 中的阴影三角形与原三角形相似,选项D 中,阴影三角形的∠A 的两边分别为4-1=3,6-4=2,∵4623=,∠A =∠A ,∴选项D 中的阴影三角形与原三角形相似.而选项C 中,不能保证∠B 的两边成比例,故选C .3.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E ,B 、D 、F ,AC =8,CE =12,BD =6,则DF 的长为()A .4B .5C .9D .7【答案】C .详解:∵a ∥b ∥c ,∴AC BD CE DF =,即8612DF=,解得DF =9,故选C . 4.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,F 为BC 边上一点,连接AF 交DE 于点G ,则下列结论中一定正确的是()A .AD AEAB CE=B .AC AEGF BD=C .BD CEAD AE=D .AG ACAF CE=【答案】C .详解:∵DE ∥BC ,∴BD CE AD AE =,故C 对;AD AEAB AC=,故A 错;AG AE ADAF AC AB==,故D 错;选项B 中的4条线段不成比例,故D 错.故选C .5.如图,在正方形网格上有两个三角形,且△ABC 和△DEF 相似,则∠BAC 的度数为()A .135°B .125°C .115°D .105°【答案】A .详解:∵△ABC 和△DEF 相似,观察角的大小,∠BAC =∠DEF =90°+45°=135°,故选A . 6.如图,△ACP ∽△ABC ,若∠A =100°,∠ACP =20°,则∠ACB 的度数是()A .80°B .60°C .50°D .30°【答案】B .详解:在△ACP 中,∵∠A =100°,∠ACP =20°,∴∠APC =60°.∵△ACP ∽△ABC ,∴∠ACB =∠APC =60°,故选B .7.如图,在□ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,则CD 的长为()A .6B .8C .9D .10【答案】D .详解:∵EF ∥AB ,∴EF DEAB DA=,∵DE ∶EA =2∶3,EF =4,∴4223AB =+,∴AB =10,则CD =AB =10,故选D .8.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm 、6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为()A .3cmB .4cmC .4.5cmD .5cm【答案】C .详解:设所求的最长边为xcm ,则592.5x=,解得x =4.5,故选C .9.如图,在矩形ABCD 中,AB =a ,AD =3,按照图中的方式将它分成完全相同的三个矩形,如果每一个小矩形都与矩形ABCD 相似,则a 的值为()A .B .C .D .【答案】C .详解:小矩形的边边分别为13a 和3,∵小矩形与矩形ABCD 相似,∴13a ∶3=3∶a ,解得a =±(舍去负值),∴a =C .10.如图,正方形ABCD 的边长为4,E 是BC 边上一点,过点E 作EF ⊥AE交CD 边于点F ,则CF 的最大值是()A .0.5B .1C .1.5D .2【答案】B .详解:∵∠B =∠C =90°,AE ⊥EF ,可证△ABE ∽△ECF ,∴AB BECE CF=,设BE =x ,则CE =4-x ,∴44x x CF =-,∴CF =14x (4-x )=-14(x -2)2+1,当x =2时,CF 取得最大值1,故选B .二、填空题(每小题3分,共18分)11.如图,添加一个条件__________________,使△ADE ∽△ACB .【答案】答案不唯一,可以填下列中的一个:∠ADE =∠C ,∠AED =∠B ,AD AEAC AB=.12.如图,在□ABCD 中,E 是AD 的中点,EC 交对角线BD 于点F ,则BF ∶FD的值为_________.【答案】2.详解:∵四边形ABCD 为平行四边形,∴BC =AD ,BC ∥AD .∵E 为AD 的中点,∴BC =AD =2DE ,由AD ∥BC ,得△BCF ∽DEF ,∴BF ∶FD =BC ∶DE =2.13.如图,在△ABC 中,DE ∥BC ,若AD =1,BD =3,BC =8,则DE 的长为________.【答案】2.详解:∵DE ∥BC ,∴AD DE AB BC =,即1138DE=+,∴DE =2.14.已知654a b c==,且a +b -2c =6,则a 的值为_______.【答案】12.详解:∵654a b c==,故可设a =6x ,b =5x ,c =4x ,代入a +b -2c =6,得:6x +5x -2(4x )=6,解得x =2,∴a =6x =12.15.如图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数ky x=(k >0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OCD ∽△ACO ,则直线OA 的解析式为_______.【答案】y =2x .详解:设B (t ,k t ),则直线OA 的解析式为y =2ktx .∵B 为OA 的中点,∴A (2t ,2k t ),∴D (2t ,2k t ),OC =2t ,CD =2k t ,CA =2kt.∵△OCD ∽△ACO ,∴OC CD AC OC =,∴OC 2=AC ·CD ,∴4t 2=2k t ·2k t,∴k 2=4t 4,∵k >0,∴k =2t 2,∴直线OA 的解析式为y =2x .16.如图,直线l 1∥l 2∥l 3,直线l 1与l 2之间的距离为2,直线l 2与l 3之间的距离为1,等边△ABC 的三个顶点分别在直线l 1、l 2、l 3上,则等边三角形的边长是______.【答案】2213.F详解:过C 作CE ⊥AC 交AB 的延长线于D ,过C 作CF ⊥l 1于F ,交l 3于H ,过E 作ED ⊥FC 交延长线于D ,∵∠AFC =∠ACE=∠CDE =90°,∴△ACF ∽△CED ,∴DE CD CECF AF AC==,∵△ABC 为等边△,∴CE ,AB =BC =BE ,则CD AF .依题意,FH =FC +CH =2+1=3,由AB =BE ,l 1∥l 3∥ED ,得DH =FH =3,CD =4,∴AF CD AC .三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD ∽四边形A 'B 'C 'D ',∠BCD =125°,分别求x 、y 、α的值.【答案】∵四边形ABCD ∽四边形A 'B 'C 'D ',∴∠C ′=∠C =125°,∴∠α=360°-80°-75°-125°=80°,且AD AB BC A D A B B C =='''''',即45316x y==,解得x =20,y =12.答:x =20,y =12,α=80°.18.(8分)如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,AE ⊥BF 于点M ,若BC ,探究AE 与BF 的数量关系,并证明你的结论.【答案】BF AE ,理由如下:∵四边形ABCD 是矩形,∴∠ABC =∠C ,∵AE ⊥BF ,∴∠AMB =∠BAM +∠ABM =90°,又∵∠ABM +∠CBF =90°,∴∠BAM =∠CBF ,∴△ABE ∽△BCF ,∴AE AB BF BC ==,∴BF AE .19.(8分)如图,在四边形ABCD 中,AC 平分∠BAD ,∠ADC =∠ACB =90°.(1)求证:AC 2=AB ·AD ;(2)若BC =3,AB =5,求CD 的长.【答案】(1)∵AC 平分∠BAD ,∴∠DAC =∠CAB .∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB ,∴AD ACAC AB=,∴AC 2=AB ·AD .(2)在Rt △ABC 中,∵BC =3,AB =5,由勾股定理,得AC =4.∵AC 2=AB ·AD ,∴42=5AD ,∴AD =165.在Rt △ADC 中,CD 125.20.(8分)如图,在矩形ABCD 中,E 是AD 上一点,连接BE .(1)请用尺规在BE 上求作一点P ,使得△PCB ∽△ABE(不写作法,保留作图痕迹);(2)若AE =3,AB =4,BC =6,求EP 的长.【答案】(1)如图所示;(2)由勾股定理,得BE 5,由△PCB ∽△ABE ,得BP BC AE BE =,即635BP =,∴BP =185,∴EP =BE -BP =5-185=75.21.(8分)如图,在△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1.(1)求证:△ABD ∽△CBA ;(2)作DE ∥AB 交AC 于点E ,请直接写出另一个与△ABD 相似的三角形,并求出DE 的长.【答案】(1)∵AB =2,BC =4,BD =1,∴AB BDBC AB=,又∠ABD =∠CBA ,∴△ABD ∽△CBA .(2)如图,∵DE ∥AB ,∴△CDE ∽△CBA ,∵△ABD ∽△CBA ,∴△CDE ∽△ABD ,∴DE CD BD AB =,即4112DE -=,∴DE =1.5.22.(10分)在△ABC 中,AB =6,AC =8,点D 、E 分别在AB 、AC 上,连接DE ,设BD =x (0<x <6),CE =y (0<y <8).(1)当x =2,y =5时,求证:△AED ∽△ABC ;(2)若△ADE 和△ABC 相似,求y 与x 的函数表达式.【答案】(1)∵AB =6,BD =x =2,∴AD =4.∵AC =8,CE =y =5,∴AE =3.∴AD AEAC AB=.又∵∠EAD =∠BAC ,∴△AED ∽△ABC .(2)分两种情况,1°当△ADE ∽△ABC 时,AD AE AB AC =,则6868x y --=,∴y =43x (0<x <6).2°当△ADE ∽△ACB 时,AD AE AC AB =,则6886x y --=,∴y =34x +72(0<x <6).23.(10分)如图,在△ABC 中,∠ABC =90°,D 是斜边AC 的中点,连接DB .过点A 作AE ⊥BD 于点F ,交BC 于点E .(1)求证:EB 2=EF ・EA ;(2)若AB =4,CE =3BE ,求AE 的长.【答案】(1)∵AE ⊥BD ,∴∠BFE =90°=∠ABC .又∵∠BEF =∠AEB ,∴△EBF ∽△EAB ,∴BE EFAE BE=,∴EB 2=EF ・EA .(2)在Rt △ABC 中,∵D 为斜边AC 的中点,∴BD =CD ,∴∠DBC =∠C .由(1),得△EBF∽△EAB,∴∠EBF=∠EAB,∴∠C=∠EAB.又∠ABE=∠CBA,∴△BAE∽△BCA,∴AB BEBC AB=,∴AB2=BE·BC.∵AB=4,CE=3BE,∴BC=4BE,42=BE(4BE),∴BE=2.∴AE=.24.(12分)(1)【问题背景】如图1,D是等边△ABC中AB边上的点,以CD为边在CD的上方作等边△CDE,连接AE,求证:BD=AE;(2)【尝试应用】如图2,D是Rt△ABC中AB边上的一点,∠B=90°,∠BAC=30°,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,∠CED=30°,连接AE,请探究BD与AE的数量关系,并说明理由;(3)【拓展创新】如图3,在Rt△ABC中,∠ABC=90°,点D在AB边上,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,43DE ABCD BC==,DE交AC于F,若AD=3BD,求AFDF的值.【答案】(1)∵△ABC与△CDE均为等边三角形,∴BC=AC,CD=CE,∠ACB=∠DCE=60°,∴∠BCD=∠ACE,∴△BCD≌△ACE,∴BD=AE.(2)AE=2BD,理由如下:∵∠BAC=∠DEC=30°,∠B=∠EDC=90°,∴△ABC∽△EDC,∴BC AC CD CE=.由条件得∠ACB=∠DCE,AC=2BC,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴12BD BCAE AC==,∴AE=2BD.(3)由(2)得,△BCD∽△ACE,∴AE ACBD BC=,∵43DE ABCD BC==,∴53ACBC=,∴53AE ACBD BC==设BD=a,则AD=3BD=3a,AB=4a,BC=3a,CDa,AE=53BD=53a.∵△AFE∽△DFC ,∴53aAF AEDF CD=.。
2022-2023学年人教版九年级数学下册《27-3位似》同步题型分类练习题(附答案)
2022-2023学年人教版九年级数学下册《27.3位似》同步题型分类练习题(附答案)一.位似变换1.如图,已知△ABC与△DEF位似,位似中心为O,且△ABC的面积与△DEF的面积之比是16:9,则AO:AD的值为()A.4:7B.4:3C.6:4D.9:52.如图平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为,点A,B,E在x轴上,若正方形ABCD的边长为3,则F点坐标为()A.(16.5,9)B.(18,12)C.(16.5,12)D.(16,12)3.在如图所示的网格中,以点O为位似中心,能够与四边形ABCD是位似图形的为()A.四边形NGMF B.四边形NGME C.四边形NHMF D.四边形NHME 4.如图所示,在平面直角坐标系中,A(1,0),B(0,2),C(﹣2,1),以A为位似中心,把△ABC在点A同侧按相似比1:2放大,放大后的图形记作△A'B'C',则C'的坐标为()A.(﹣6,2)B.(﹣5,2)C.(﹣4,2)D.(﹣3,2)5.如图,在直角坐标系中,矩形ABCD与矩形EFGO位似,矩形ABCD的边CD在y轴上,点B的坐标为(﹣4,4),矩形EFGO的两边都在坐标轴上,且点F的坐标为(2,1),则矩形ABCD与EFGO的位似中心的坐标是.6.如图,平面直角坐标系中,点A在x轴正半轴上,且OA=4,∠BOA=30°,∠B=90°,以点O为位似中心,在第一象限内将△AOB放大,使相似比为2:1,则点B的对应点B′的坐标为.7.如图,在平面直角坐标系中,A、B两点的坐标分别为A(﹣1,2)、B(0,2),C、D 两点的坐标分别为C(0,﹣1)、D(2,﹣1).若线段AB和线段CD是位似图形,且位似中心在y轴上,则位似中心的坐标为.8.《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为.9.如图,△ABC与△A1B1C1是以原点O为位似中心的位似图形,且位似比为1:2,则点A(1,2)在第一象限的对应点A1的坐标是.10.如图,在平面直角坐标系中,O是坐标原点,以点O为位似中心,△A1B1C1和△ABC 相似比为2:1,在网格中画出新图象△A1B1C1,若每个小正方形边长均为1,请写出A1,B1,C1的坐标.11.如图所示,由位似的正△A1B1C1,正△A2B2C2,正△A3B3C3,…正△A n B n∁n组成的相似图形,其中第一个△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,A3是OA2的中点…A n是OA n﹣1的中点,顶点B2,B3,…,B n.C2,C3,…,∁n都在B1C1边上.(1)试写出△A10B10C10和△A7B7C7的相似比和位似中心;(2)求出第n个三角形△A n B n∁n(n≥2)的周长.12.如图,△ABC中,P′是边AB上一点,四边形P'Q'M'N'是正方形,点Q',M'在边BC上,点N′在△ABC内.连接BN′,并延长交AC于点N,过点N作NM⊥BC于点M,NP⊥MN交AB于点P,PQ⊥BC于点Q.(1)求证:四边形PQMN为正方形;(2)若∠A=90°,AC=1.5m,△ABC的面积=1.5m2.求PN的长.13.(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是,若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是.(2)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣2,0),B(2,0),C(2,4),对△ABC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a,将得到的点先向右平移m单位,再向上平移n个单位(m>0,n>0),得到△A′B′C′及其内部的点,其中点A,B的对应点分别为A′(1,2),B′(3,2).△ABC内部是否存在点F,使得点F经过上述操作后得到的对应点F′与点F重合,若存在,求出点F 的坐标;若不存在请说明理由.14.在平面直角坐标系中,抛物线L:y=﹣x2+x+2与y轴交于点C,与x轴交于A、B两点(点A在点B的左侧).(1)求A、B、C三点的坐标;(2)连接AC、BC,以点C为位似中心,将△ABC扩大到原来的2倍得到△A1B1C,其中点A1、B1分别是点A、B的对应点,如何平移抛物线L才能使其同时经过点A1、B1,求出所有的平移方式.二.作图-位似变换15.如图所示△DEF是△ABC位似图形的几种画法,其中正确的个数是()A.4B.3C.2D.116.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出与△AOB的位似比为k的位似△CDE,则位似中心的坐标和k的值分别为()A.(0,0),2B.(2,2),C.(2,2),2D.(1,1),17.如图,在坐标系中,以A(0,2)为位似中心,在y轴右侧作△ABC放大2倍后的位似图形△AB'C',若C的对应点C'的坐标为(m,n),则点C的坐标为()A.(m,n+3)B.(m,n﹣3)C.(m,n+2)D.(m,n﹣2)18.如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为.19.如图,以点O为位似中心,把△ABC放大2倍得到△A'B'C'',①AB∥A'B';②△ABC∽△A'B'C';③AO:AA'=1:2;④点C、O、C'三点在同一直线上.则以上四种说法正确的是.20.如图,在平面直角坐标系中,矩形AOCB的两边OA,OC分别在x轴和y轴上,且OA =2.OC=1,则矩形AOCB的对称中心的坐标是;在第二象限内,将矩形AOCB 以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2,…,按此规律,则矩形A4OC4B4的对称中心的坐标是.21.在平面直角坐标系中,△ABC的顶点A的坐标为(2,﹣5),若以原点O为位似中心,作△ABC的位似图形△A1B1C1,使△ABC与△A1B1C1的位似比为2:1,且点A1和点A 不在同一象限内,则点A1的坐标为.22.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是.23.如图所示,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,0),B(3,1),C (2,3).请在所给直角坐标系中按要求画图和解答下列问题:(1)以原点O为位似中心,在原点的另一侧画出△ABC的位似三角形△DEF,△ABC 与△DEF的位似比为;(2)如果△ABC内部一点M的坐标为(a,b),请写出M的对应点M'的坐标(,).24.如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.(1)在平面直角坐标系中画出位似中心;(2)设点P(a,b)为△ABC内一点,确定点P在△A1B1C1内的对应点P1的坐标.25.如图,小明在学习图形的位似时,利用几何画板软件,在平面直角坐标系中画出了△ABC的位似图形△A1B1C1.(1)在图中标出△ABC和△A1B1C1的位似中心M点的位置并写出M点的坐标.(2)若以点A1为位似中心,请你帮小明在图中画出△A1B1C1的位似图形△A2B2C2,且△A1B1C1与△A2B2C2的位似比为2:1.(3)直接写出(2)中C2点的坐标.26.如图,△ABC三个顶点分别为A(0,﹣3),B(3,﹣2),C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移5个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使得△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并写出A2的坐标.27.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1)、B(﹣3,2)、C(﹣1,4).(1)以原点O为位似中心,在第二象限内画出将△ABC放大为原来的2倍后的△A1B1C1.(2)画出△ABC绕O点顺时针旋转90°后得到的△A2B2C2.28.如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,并直接写出△A′B′C′各顶点的坐标.参考答案一.位似变换1.解:∵△ABC与△DEF位似,∴△ABC∽△DEF,AC∥DF,∵△ABC的面积与△DEF的面积之比是16:9,∴=,∵AC∥DF,∴△AOC∽△DOF,∴==,∴AO:AD=4:7,故选:A.2.解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为,∴==,即==,解得:EF=12,OB=4,∴F(16,12).故选:D.3.解:如图,四边形ABCD的位似图形是四边形NGMF.故选:A.4.解:∵以A为位似中心,把△ABC按相似比1:2放大,放大后的图形记作△AB'C',∴AC=AC′,∴点C是线段AC′的中点,∵A(1,0),C(﹣2,1),∴C'的坐标为(﹣5,2).故选:B.5.解:连接BF交y轴于点P,∵C和F是对应点,∴点P为位似中心,由题意得,GF=2,AD=4,GC=4﹣1=3,∵BC∥GF,∴△BPC∽△FPG,∴=,即=2,解得,GP=1,∴OP=2,∴位似中心的坐标是(0,2),故答案为:(0,2).6.解:作BE⊥OA于E,则∠BEO=90°,∵∠ABO=90°,∠BOA=30°,∴OB=OA•cos30°=4×=2,∴BE=OB=,OE=OB•cos30°=2×=3,∴点B的坐标为:(3,),∵以点O为位似中心,在第一象限内将△AOB放大,使相似比为2:1,∴点B的对应点B'的坐标为:(3×2,×2),即(6,2),故答案为:(6,2).7.解:连接AD交BC于E,则点E为位似中心,∵A(﹣1,2)、B(0,2),C(0,﹣1)、D(2,﹣1).∴AB=1,CD=2,BC=3,∵线段AB和CD是位似图形,∴AB∥CD,∴=,即=,解得BE=1,∴OE=OB﹣BE=1,∴位似中心点E的坐标为(0,1),故答案为:(0,1).8.解:如图,连接B′D′.设B′D′的中点为O.∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,又∵正方形ABCD的面积为4,∴正方形A′B′C′D′的面积为16,∴A′B′=A′D′=4,∵∠B′A′D′=90°,∴B′D′=A′B′=4,∴正方形A′B′C′D′的外接圆的周长=4π,故答案为:4π.9.解:∵△ABC与△A1B1C1是以原点O为位似中心的位似图形,且位似比为1:2,∵A(1,2),点A(1,2)在第一象限的对应点是A1,∴点A1的坐标为:(2,4).故答案为:(2,4).10.解:如图,△A1B1C1即为所求,A1(0,8),B1(6,6),C1(6,2).11.解:(1)∵△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,∴正△A2B2C2的边长为,正△A3B3C3的边长为()2,正△A10B10C10和的边长为()9,正△A7B7C7的边长为()6,∴正△A10B10C10和正△A7B7C7的相似比==;它们的位似中心为点O;(2)∵第n个三角形△A n B n∁n(n≥2)的边长为()n﹣1,∴第n个三角形△A n B n∁n(n≥2)的周长为.12.(1)证明:∵NM⊥BC,NP⊥MN,PQ⊥BC,∴四边形PQMN为矩形,∵四边形P'Q'M'N'是正方形,∴PN∥P′N′,∴=,∵MN∥M′N′,∴=,∴=,而P′N′=M′N′,∴PN=MN,∴四边形PQMN为正方形;(2)解:作AD⊥BC于D,AD交PN于E,如图,∵△ABC的面积=1.5,∴AB•AC=1.5,∴AB=2,∴BC==2.5,∵BC•AD=1.5,∴AD==,设PN=x,则PQ=DE=x,AE=﹣x,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得x=,即PN的长为m.13.解:(1)点A′:﹣3×+1=﹣1+1=0,设点B表示的数为a,则a+1=2,解得a=3,设点E表示的数为b,则b+1=b,解得b=;故答案为:0,3,;(2)根据题意,得:,解得:,设点F的坐标为(x,y),∵对应点F′与点F重合,∴x+2=x,y+2=y,解得x=y=4,所以,点F的坐标为(4,4),∵点F的坐标为(4,4)不在△ABC内,故△ABC内部不存在点F,使得点F经过上述操作后得到的对应点F′与点F重合.14.解:(1)在y=﹣x2+x+2中,令y=0,即0=﹣x2+x+2,解得:x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),令x=0,即y=2,∴C(0,2);(2)如图,当抛物线经过A1(2,6),B1(﹣4,6)时,设抛物线的解析式,y=﹣x2+bx+c,则有,解得,,∴抛物线的解析式为y=﹣x2﹣2x+14=﹣(x+1)2+15,当抛物线经过A2(﹣2,﹣2),B2(4,﹣2)时,同法可得抛物线的解析式为:y=﹣x2+2x+6=﹣(x﹣1)2+7.∵原来的抛物线的解析式为y=﹣(x﹣)2+,∴+1=,15﹣=,∴原来抛物线向左平移,再向上平移单位得到y=﹣x2﹣2x+14.1﹣=,7﹣=,原来抛物线向右平移单位,再向上平移单位得到y=﹣x2+2x+6.二.作图-位似变换15.解:第一个图形中的位似中心为A点,第二个图形中的位似中心为AD与BC的交点,第三个图形中的位似中心为O点,第四个图形中的位似中心为O点.故选:A.16.解:如图所示:位似中心F的坐标为:(2,2),k的值为:=.故选:B.17.解:过点A作x轴的平行线DD′,作CD⊥DD′于D,作C′D′⊥DD′于D′,设C(x,y),则CD=y﹣2、AD=﹣x,C′D′=2﹣n,AD′=m,∵△AB′C′与△ABC的位似比为2:1,∴==,即==,解得:x=﹣m,y=﹣n+3,∴点C的坐标为(﹣m,﹣n+3),故选:A.18.解:由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点C的坐标为(3×,6×),即(1,2),当点C值第三象限时,C(﹣1,﹣2)故答案为:(1,2)或(﹣1,﹣2).19.解:∵以点O为位似中心,把△ABC放大2倍得到△A'B'C'',∴AB∥A'B,△ABC∽△A'B'C';AO:AA'=2:1;点C、O、C'三点在同一直线上,①①②④正确,故答案为:①②④.20.解:∵OA=2.OC=1,∴B(﹣2,1),∴矩形AOCB的对称中心的坐标为(﹣1,),∵将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,∴B1(﹣3,),同理可得B2(﹣,),B3(﹣,),B4(﹣,),∴矩形A4OC4B4的对称中心的坐标是(﹣,).故答案为(﹣1,),(﹣,).21.解:在同一象限内,∵△ABC与△A′B′C′是以原点O为位似中心的位似图形,其中相似比是2:1,A坐标为(2,﹣5),∴则点A′的坐标为:(1,﹣2.5),不在同一象限内,∵△ABC与△A′B′C′是以原点O为位似中心的位似图形,其中相似比是2:1,A坐标为(2,﹣5),∴则点A′的坐标为:(﹣1,2.5),故答案为:(﹣1,2.5).22.解:如图所示:△A1B1C1和△A′B′C′与△ABC的相似比为2,点B的对应点B1的坐标是:(4,2)或(﹣4,﹣2).故答案为:(4,2)或(﹣4,﹣2).23.解:(1)如图,△DEF即为所求;(2)M′(﹣2a,﹣2b).故答案为:﹣2a,﹣2b.24.解:(1)如图点O即为位似中心;(2)设点P(a,b)为△ABC内一点,则点P在△A1B1C1内的对应点P1的坐标(2a,2b).25.解:(1)如图,点M为所作,M点的坐标为(0,2);(2)如图,△A2B2C2即为所求;(3)C2(﹣4,2).26.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.A2的坐标(﹣2.,﹣2).27.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.28.解:(1)如图,(2)2:1,(3)A′(﹣6,0),B′(﹣3,2),C′(﹣4,4).。
人教版九年级数学下册27.2相似三角形同步练习2含答案
27.2.2 相像三角形的判断( 2)1、在△ ABC 中 , AB=8, AC=6,点 D 在 AC 上,且 AD=2,若要在AB 上找一点 E ,使△ ADE 与原三角形相像 ,那么 AE=.2、如 ,在△ ABC 中,点 D 在 AB 上, 再添一个适合的条件,使△ADC ∽△ ACB ,那么可添加的条件是AB,3、如 , DE 与 BC 不平行,当=ACABC 与ADE 相像 .4、如 , ABC 中, BC= a.(1)若 AD 1=11AC , D 1E 1=;AB ,AE 1=33 1(2)若DD=DB ,EE=EC , D E =;1 21112 1 2233(3)若 D 2D 1 D 2B ,E 2E 3=1 E 2C , D 3E 3=;3=33⋯⋯1 1 (4)若 D n - 1D n =D n - 1B ,E n - 1E n = E n - 1 C , D n E n =.335、如 ,在平行四 形ABCD 中, AB=8cm , AD=4cm ,EAD 的中点,在 AB 上取一点 F , 使△ CBF ∽△ CDE ,AF= ______cm.D CEAFB6、已知:如 ,在正方形AB CD 中 , P 是 BC 上的点,且 BP=3PC ,Q 是 CD 的中点.ADQ 与 QCP 能否相 似? 什么?7、如 ,点 C 、D 在 段 AB 上 ,且PCD 是等 三角形 .(1) 当 AC , CD , DB足 怎 的关系 ,ACP ∽Δ PDB ;( 2)当 PDB ∽Δ ACP , 求∠ APB 的度数 .- 1 -8、如图,四边形ABCD 、 CDEF、 EFGH 都是正方形 .(1) ⊿ ACF 与⊿ A CG 相像吗?谈谈你的原因.(2)求∠ 1+∠ 2 的度数 .答案: 1、8 或 32、AD=AC3、AE4、( 1)a(2)5a(3)19a32AC AB AD3927 5、 1cm6、相像 .证明略7 、 (1)CD 2=AC DB8 、(1)相像. 理(2) ∠APB=120由略(2) 45°- 2 -。
人教版数学九年级下册数学:第27章 相似 专题练习(附答案)
专题1 相似三角形的基本模型模型1 A 字型及其变形(1)如图1,公共角所对的边平行(DE ∥BC),则△ADE ∽△ABC ;(2)如图2,公共角的对边不平行,且有另一组角相等(∠AED =∠ABC 或∠ADE =∠ACB),则△AED ∽△ABC.【例1】 如图,在△ABC 中,AB =5,D ,E 分别是边AC 和AB 上的点,且∠ADE =∠B ,DE =2,求AD ·BC 的值.解:∵∠ADE =∠B ,∠EAD =∠CAB , ∴△ADE ∽△ABC. ∴DE BC =AD AB. ∴AD ·BC =DE ·AB. 又∵DE =2,AB =5, ∴AD ·BC =2×5=10.1.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE =3,AC =5,BC =10,则BF 的长为 .2.如图,在锐角△ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC.模型2 X字型及其变形(1)如图1,对顶角的对边平行(AB∥CD),则△ABO∽△DCO;(2)如图2,对顶角的对边不平行,且有另一对角相等(∠B=∠D或∠A=∠C),则△ABO∽△CDO.【例2】如图,在四边形ABCD中,AB∥CD,对角线AC与BD相交于点O.求证:△ABO∽△CDO.证明:∵AB∥CD,∴∠OAB=∠OCD,∠OBA=∠ODC.∴△ABO∽△CDO.【补充设问】△AOD与△BOC相似吗?试说明理由.解:△AOD 与△BOC 不相似. 理由如下:∵∠AOD =∠COB , 要使△AOD 与△BOC 相似, ∴当满足DO CO =AO BO 或DO BO =AOCO时,即DO ·BO =AO ·CO 或DO ·CO =AO ·BO 时,△AOD 与△BOC 相似.由已证可知△ABO ∽△CDO ,∴AO CO =BO DO, 即AO ·DO =BO ·CO ,不满足证明△AOD 与△BOC 相似的条件. ∴△AOD 与△BOC 不相似.【变式】 如图,在四边形ABDC 中,若AB 不平行于CD ,∠ABC =∠ADC ,则图中的相似三角形有△COD ∽△AOB ,△AOC ∽△BOD .3.如图,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于点E ,对角线BD 交AG 于点F ,已知FG =2,则线段AE 的长度为( )A .6B .8C .10D .124.将一副三角尺如图所示叠放在一起,则BEEC的值是 .5.如图,已知∠ADE =∠ACB ,BD =8,CE =4,CF =2,求DF 的长.模型3 子母型若两个三角形有一个公共角和一条公共边,且有另一对角相等,则这两个三角形相似.如图,若∠ACD =∠B ,则△ACD ∽△ABC ,从而可得结论:AC 2=AD ·AB.【例3】 如图,P 是△ABC 的边AB 上的一点.(1)如果∠ACP =∠B ,△ACP 与△ABC 是否相似?为什么?(2)如果AP AC =AC AB ,△ACP 与△ABC 是否相似?为什么?如果AC CP =BCAC呢?解:(1)△ACP ∽△ABC.理由如下: ∵∠ACP =∠ABC , ∠PAC =∠CAB , ∴△ACP ∽△ABC.(2)AP AC =ACAB 时,△ACP ∽△ABC.理由如下:∵∠PAC =∠CAB ,且AP AC =ACAB ,∴△ACP ∽△ABC.由AC CP =BCAC不能得到△ACP 与△ABC 相似. ∵AC 与CP 的夹角为∠ACP ,BC 与AC 的夹角为∠ACB , 而∠ACP 与∠ACB 不相等,∴由AC CP =BCAC不能得到△ACP 与△ABC 相似.6.如图,在△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段AC 的长为( )A .4B .4 2C .6D .4 37.如图,在△ABC 中,D 为AB 边上一点,且∠BCD =∠A ,若BC =22,AB =3,则BD 的长为 .模型4 双垂直型直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.如图,Rt △ABC 中,CD 为斜边AB 上的高,则有△ACD ∽△ABC ∽△CBD ,从而可得结论:CD 2=BD ·AD ,BC 2=BD ·AB ,AC 2=AD ·AB.【例4】 如图,在△ABC 中,∠BAC =90°,AD ⊥BC ,垂足为D. (1)请指出图中所有的相似三角形;(2)你能得出AD2=BD·DC吗?解:(1)△BAD∽△BCA∽△ACD.(2)能得出AD2=BD·DC.理由如下:∵∠BAC=90°,∴∠BAD+∠DAC=90°.∵AD⊥BC,∴∠DAC+∠ACD=90°,∠BDA=∠ADC=90°.∴∠BAD=∠ACD.又∵∠BDA=∠ADC,∴△BAD∽△ACD.∴ADCD=BDAD,即AD2=BD·DC.8.如图,在Rt△ABC中,CD⊥AB,D为垂足,且AD=3,AC=35,则斜边AB的长为() A.3 6B.15C.9 5D.3+3 59.如图,在△ABC中,∠ACB=90°,CD是斜边AB上的高,AD=9,BD=4,那么CD=,AC=.模型5 一线三等角型(1)如图1,AB⊥BC,CD⊥BC,AP⊥PD,垂足分别为B,C,P,且三个垂足在同一直线上,则有△ABP∽△PCD(此图又叫作“三垂图”).(2)如图2,∠B=∠APD=∠C,且B,P,C在同一直线上,则①△ABP∽△PCD;②连接AD,当点P为BC的中点时,△ABP∽△PCD∽△APD.【例5】如图,在正方形ABCD中,E为边AD上的点,点F在边CD上,且CF=3FD,∠BEF =90°.(1)求证:△ABE∽△DEF;(2)若AB=4,延长EF交BC的延长线于点G,求BG的长.解:(1)证明:∵四边形ABCD为正方形,∴∠A=∠D=90°.∴∠ABE+∠AEB=90°.又∵∠BEF=90°,∴∠AEB+∠DEF=90°.∴∠ABE=∠DEF.∴△ABE∽△DEF.(2)∵AB=BC=CD=AD=4,CF=3FD,∴DF =1,CF =3. ∵△ABE ∽△DEF , ∴AE DF =AB DE ,即4-DE 1=4DE . ∴DE =2.又∵ED ∥CG ,∴△EDF ∽△GCF. ∴ED GC =DFCF.∴GC =6. ∴BG =BC +CG =10.10.如图,在等腰△ABC 中,点E ,F ,O 分别是腰AB ,AC 及底BC 边上任意一点,且∠EOF =∠B =∠C.求证:OE ·FC =FO ·OB.1.如图,在矩形ABCD 中,作DF ⊥AC ,垂足为F ,延长DF 交AB 于点E ,在图中一定和△DFC 相似的三角形有 个.2.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一条直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.3.【分类讨论思想】如图,在△ABC中,AC=6,AB=4,点D,A在直线BC同侧,且∠ACD =∠ABC,CD=2,点E是线段BC延长线上的动点.若△DCE和△ABC相似,则线段CE的长为.4.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D,F分别在边AB,AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.专题2 相似三角形的性质与判定类型1 利用相似三角形求线段长1.如图,在△ABC 中,AB =6,点D 是AB 的中点,过点D 作DE ∥BC ,交AC 于点E ,点M 在DE 上,且ME =13DM.当AM ⊥BM 时,则BC 的长为 .2.如图,已知菱形BEDF 内接于△ABC ,点E ,D ,F 分别在AB ,AC 和BC 上.若AB =15 cm ,BC =12 cm ,则菱形的边长为 cm.3.如图,在△ABC 中,AB =AC ,点D ,E 分别在边BC ,AB 上,且∠ADE =∠B.如果DE ∶AD =2∶5,BD =3,那么AC = .4.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,在Rt △MPN 中,∠MPN =90°,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当PE =2PF 时,AP = .5.如图,在△ABC 中,点D 是BA 边延长线上一点,过点D 作DE ∥BC ,交CA 的延长线于点E ,点F 是DE 延长线上一点,连接AF. (1)如果AD AB =23,DE =6,求边BC 的长;(2)如果∠FAE =∠B ,FA =6,FE =4,求DF 的长.类型2 利用相似三角形求角度6.如图,A ,B ,C ,P 四点均在边长为1的小正方形网格格点上,则∠BAC 的度数是 .7.如图,在等腰△ABC 中,AB =AC ,D 为CB 延长线上一点,E 为BC 延长线上一点,且AB 2=BD ·CE.若∠BAC =40°,则∠DAE = . 类型3 利用相似三角形求比值8.如图,AB ∥DC ,AC 与BD 交于点E ,EF ∥DC 交BC 于点F ,CE =5,CF =4,AE =BC ,则DCAB 等于( )A.23B.14C.13D.359.如图,D ,E 分别是△ABC 的边AB ,BC 上的点,且DE ∥AC ,AE ,CD 相交于点O.若S △DOE ∶S △COA =1∶25,则S △BDE 与S △CDE 的比是( )A .1∶3B .1∶4C .1∶5D .1∶2510.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,过点A 作EA ⊥CA 交DB 的延长线于点E.若AB =3,BC =4,则AOAE的值为 .类型4 利用相似三角形证明等积式与比例式11.如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,且BD =2AD ,CE =2AE.求证: (1)△ADE ∽△ABC ; (2)DF ·BF =EF ·CF.12.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,E 为AC 的中点,ED ,CB 的延长线交于点F.求证:DF CF =BCAC.类型5 利用相似求点的坐标13.如图,在平面直角坐标系xOy 中,A(-4,0),B(0,2),连接AB 并延长到点C ,连接CO.若△COB ∽△CAO ,则点C 的坐标为( )A .(1,52)B .(43,83)C .(5,25)D .(3,23)14.如图,已知直线y =-12x +2与x 轴交于点A ,与y 轴交于点B ,在x 轴上有一点C ,使B ,O ,C 三点构成的三角形与△AOB 相似,则点C 的坐标为专题3 圆与相似1.如图,⊙O 是△ABC 的外接圆,已知AD 平分∠BAC 交⊙O 于点D ,交BC 边于点E ,AD =5,BD =2,则DE 的长为( )A.35B.425 C.225 D.452.如图,已知⊙O 是等腰Rt △ABC 的外接圆,D 是AC ︵上一点,BD 交AC 于点E.若BC =4,AD =45,则AE 的长是( ) A .3 B .2 C .1 D .1.23.如图,⊙O 的两弦AB ,CD 交于点P ,连接AC ,BD ,得S △ACP ∶S △DBP =16∶9,则AC ∶BD = .4.如图,已知AB 是⊙O 的直径,C 是⊙O 上一点,∠ACB 的平分线交⊙O 于点D ,作PD ∥AB ,交CA 的延长线于点P ,连接AD ,BD.求证: (1)PD 是⊙O 的切线; (2)△PAD ∽△DBC.5.如图,以△ABC的边AC为直径的⊙O交AB边于点M,交BC边于点N,连接AN,过点C 的切线交AB的延长线于点P,∠BCP=∠BAN.求证:(1)△ABC为等腰三角形;(2)AM·CP=AN·CB.6.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.参考答案:专题1 相似三角形的基本模型1. 4.2.证明:∵AF ⊥DE ,AG ⊥BC ,∴∠AFE =∠AGC =90°. ∵∠EAF =∠GAC , ∴∠AEF =∠ACG. 又∵∠DAE =∠BAC , ∴△ADE ∽△ABC.3.D4.35.解:∵∠ADE =∠ACB ,∴180°-∠ADE =180°-∠ACB , 即∠BDF =∠ECF. 又∵∠BFD =∠EFC , ∴△BDF ∽△ECF. ∴BD EC =DF CF ,即84=DF 2. ∴DF =4. 6.B7.83. 8.B910.证明:∵∠EOC =∠EOF +∠FOC ,∠EOC =∠B +∠BEO ,∠EOF =∠B , ∴∠FOC =∠OEB. 又∵∠B =∠C , ∴△BOE ∽△CFO. ∴OE OF =OB FC, 即OE ·FC =FO ·OB.1. 5 . 2.43. 3.43或3. 4.解:(1)证明:∵AB =AC , ∴∠B =∠C.∵∠BDE =180°-∠B -∠DEB ,∠CEF =180°-∠DEF -∠DEB ,且∠DEF =∠B , ∴∠BDE =∠CEF. ∴△BDE ∽△CEF.(2)∵△BDE ∽△CEF ,∴BE CF =DEEF.∵点E 是BC 的中点,∴BE =CE. ∴CE CF =DE EF .∴CE DE =CF EF. ∵∠DEF =∠B =∠C ,∴△DEF ∽△ECF. ∴∠DFE =∠CFE ,即FE 平分∠DFC.专题2 相似三角形的性质与判定1.8. 2.203.3.152.4.3.5.解:(1)∵DE ∥BC , ∴△ADE ∽△ABC. ∴AD AB =DE BC .∴23=6BC . ∴BC =9.(2)∵∠FAE =∠B ,∠B =∠D , ∴∠FAE =∠D. 又∵∠F =∠F , ∴△FAE ∽△FDA. ∴FE FA =FA DF.∴DF =FA2FE =9.6.135°. 7.110°. 8.B 9.B 10.724.11.证明:(1)∵BD =2AD ,CE =2AE ,∴AB =3AD ,AC =3AE. ∴AD AB =AE AC =13. ∵∠A =∠A , ∴△ADE ∽△ABC. (2)∵AD AB =AE AC =13,∴DE ∥BC. ∴△DEF ∽△CBF. ∴DF CF =EF BF. ∴DF ·BF =EF ·CF.12.证明:∵∠ACB =90°,CD ⊥AB ,∴∠A +∠ACD =∠ACD +∠BCD ,∠ACB =∠BDC =90°. ∴∠A =∠BCD. ∴△ABC ∽△CBD.∴BC BD =AC CD ,即BC AC =BD CD. 又∵E 为AC 的中点,∴AE =CE =ED.∴∠A =∠EDA.∵∠EDA =∠BDF ,∴∠FCD =∠BDF.又∵∠F 为公共角,∴△FDB ∽△FCD.∴DF CF =BD CD. ∴DF CF =BC AC. 13.B14. (-4,0)或(4,0)或(-1,0)或(1,0).专题3 圆与相似1.D2.C3.4∶3.4.证明:(1)连接OD.∵∠DCA =∠DCB ,∴AD ︵=BD ︵.∴OD ⊥AB.∵AB ∥PD ,∴OD ⊥PD.∵点D 在⊙O 上,OD 为⊙O 的半径,∴PD 是⊙O 的切线.(2)∵∠PAD +∠CAD =180°,∠DBC +∠CAD =180°,∴∠PAD =∠DBC.由(1)可得:∠PDA =∠BCD =45°,∴△PAD ∽△DBC.5.证明:(1)∵AC 为⊙O 的直径,∴∠ANC =90°.∵PC 是⊙O 的切线,∴∠BCP =∠CAN.∵∠BCP =∠BAN ,∴∠BAN =∠CAN.又∵AN ⊥BC ,∴AB =AC.∴△ABC 为等腰三角形.(2)连接MN ∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB.∵∠PBC +∠ABC =∠AMN +∠ACN =180°,∴∠PBC =∠AMN.由(1)知∠BCP =∠BAN ,∴△BPC ∽△MNA.∴CB AM =CP AN,即AM ·CP =AN ·CB. 6.解:(1)证明:连接OE ,∵OB =OE ,∴∠OBE =∠OEB.∵BE 平分∠ABC ,∠OBE =∠EBC.∴∠OEB =∠EBC.∴OE ∥BC.又∵∠C =90°,∴∠OEA =90°,即AC ⊥OE.又∵OE 是⊙O 的半径,∴AC 是⊙O 的切线.(2)在△BCE 与△BED 中,∵∠C =∠BED =90°,∠EBC =∠DBE ,∴△BCE ∽△BED.∴BE BD =BC BE ,即BC =BE 2BD. ∵BE =4,BD 是⊙O 的直径,即BD =5,∴BC =165. 又∵OE ∥BC ,∴AO AB =OE BC .∵AO =AD +2.5,AB =AD +5,∴AD +2.5AD +5=2.5165. 解得AD =457.。
人教版 九年级数学下册 第27章 相似 同步训练(含答案)
人教版 九年级数学 第27章 相似 同步训练一、选择题1. 如图,在平面直角坐标系中,以原点O 为中心,将△ABO 扩大到原来的2倍,得到△A ′B ′O .若点A 的坐标是(1,2),则点A ′的坐标是( )A .(2,4)B .(-1,-2)C .(-2,-4)D .(-2,-1)2. (2020·绍兴)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2︰5,且三角板的一边长为8cm .则投影三角板的对应边长为( )A .20cmB .10cmC .8cmD .3.2cm3. (2019•沈阳)已知△ABC ∽△A'B'C',AD 和A'D'是它们的对应中线,若AD =10,A'D'=6,则△ABC 与△A'B'C'的周长比是 A .3∶5 B .9∶25 C .5∶3 D .25∶94. (2020·内江)如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,则ABC S ∆=( )A. 30B. 25C. 22.5D. 205. (2020·哈尔滨)如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作EF ∥BC ,交AD 于点F,过点E 作EG ∥AB ,交BC 于点G,则下列式子一定正确的是( )A .CDEF ECAE = B .ABEG CDEF = C .GCBG FDAF = D .AD AF BCCG =6. (2020·广西北部湾经济区)如图,在△ABC中,BC =120,高AD =60,正方形EFGH 一边在BC 上,点E ,F 分别在AB ,AC 上,AD 交EF 于点N ,则AN 的长为( )A .15B .20C .25D .307. (2020·昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC 是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE ∽△ABC(同一位置的格点三角形△ADE 只算一个),这样的格点三角形一共有( ) 个 D.7个AB二、填空题8. (2020·吉林)如图,////AB CD EF .若12=AC CE ,5BD =,则DF =______.9. (2020·南通)如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF 的顶点都在网格线的交点上,设△ABC 的周长为C 1,△DEF 的周长为C 2,则12C C 的值等于 ▲ . ABCDEF10. (2019•郴州)若32x y x +=,则yx=__________.11. (2019•永州)如图,已知点F 是△ABC 的重心,连接BF 并延长,交AC 于点E ,连接CF 并延长,交AB 于点D ,过点F 作FG ∥BC ,交AC 于点G .设三角形EFG ,四边形FBCG 的面积分别为S 1,S 2,则S 1:S 2=__________.12.如图,在R t △ABC 中,∠ACB =90°,AC =3, BC =4, CD ⊥AB ,垂足为D ,E 为BC 的中点,AE 与CD 交于点F ,则DF 的长为_________.FE DB CA13. (2020·苏州)如图,在平面直角坐标系中,点A 、B 的坐标分别为()4,0-、()0,4,点()3,C n 在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n =_________.14. (2020湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知R t△ABC是6×6网格图形中的格点三角形,则该图中所有与R t△ABC相似的格点三角形中.面积最大的三角形的斜边长是.三、解答题15. 在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.(1)如图①,当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;(2)如图②,连接A′A、B′B,设△ACA′和△BCB′的面积分别为S△ACA′和S△BCB′.求证:S△ACA′∶S△BCB′=1∶3;(3)如图③,设AC中点为E,A′B′中点为P,AC=a,连接EP,当θ=________°时,EP长度最大,最大值为________.图①图②图③16. (2020·江苏徐州)我们知道:如图①,点B把线段AC分成两部分,如果BC AB AB AC=,那么称点B为线段AC的黄金分割点.51-.(1)在图①中,若AC=20cm,则AB的长为cm;(2)如图②,用边长为20cm的正方形纸片进行如下操作:对折正方形ABCD得折痕EF,连接CE,将CB折叠到CE上,点B的对应点H,得折痕CG.试说明:G是AB的黄金分割点;(3)如图③,小明进一步探究:在边长为a的正方形ABCD的边AD上任取点E (AE>DE),连接BE,作CF⊥BE,交AB于点F,延长EF、CB交于点P.他发现当PB与BC满足某种关系时,E、F恰好分别是AD、AB的黄金分割点.请猜想小明的发现,并说明理由.A CBHGB CA DPEFDA图①图②图③17. 如图,在平面直角坐标系xOy中,直线y=-x+3与x轴交于点C,与直线AD交于点A(43,53),点D的坐标为(0,1).(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD 与△BCE相似时,求点E的坐标.人教版九年级数学第27章相似同步训练-答案一、选择题1. 【答案】C解析:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以-2,故点A的坐标是(1,2),则点A′的坐标是(-2,-4).2. 【答案】A【解析】本题考查了相似三角形的性质.相似三角形的对应边之比等于相似比,所以8︰(投影三角形的对应边长)=2︰5,则投影三角形的对应边长是20 cm.因此本题选A.3. 【答案】C【解析】∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=6,∴△ABC与△A'B'C'的周长比=AD∶A′D′=10∶6=5∶3.故选C.4. 【答案】D【解析】本题考查了相似三角形的判定与性质,解答本题的关键是得出DE 是中位线,从而判断△ADE ∽△ABC ,然后掌握相似三角形的面积比等于相似比的平方即可求解本题.首先判断出△ADE ∽△ABC ,然后根据相似三角形的面积比等于相似比的平方即可求出△ABC 的面积.根据题意,点D 和点E 分别是AB 和AC 的中点,则DE ∥BC 且DE=12BC ,故可以判断出△ADE ∽△ABC,根据相似三角形的面积比等于相似比的平方,可知ADE S ∆:ABC S ∆=1:4,则BCED S 四边形:ABC S ∆=3:4,题中已知15BCED S =四边形,故可得ADE S ∆=5,ABC S ∆=20,因此本题选D .5. 【答案】C 【解析】本题考查了平行线分线段成比例和由平行判定相似,∵EF ∥BC ,∴EC AE FD AF =,∵EF ∥BC ,∴ECAE GC BG =,∴GC BGFD AF =因此本题选C .6. 【答案】B【解析】设正方形EFGH 的边长EF =EH =x , ∵四边EFGH 是正方形,∴∠HEF =∠EHG =90°,EF ∥BC , ∴△AEF ∽△ABC , ∵AD 是△ABC的高,∴∠HDN =90°, ∴四边形EHDN 是矩形, ∴DN =EH =x , ∵△AEF ∽△ABC , ∴(相似三角形对应边上的高的比等于相似比),∵BC =120,AD =60, ∴AN =60﹣x , ∴,解得:x =40,∴AN =60﹣x =60﹣40=20.因此本题选B .7. 【答案】A【解析】本题考查了相似三角形的判定.符合条件的三角形有四个,如图所示:C因此本题选A.二、填空题 8. 【答案】10【解析】∵////AB CD EF ,∴AC BDCE DF=, 又∵12=AC CE ,5BD =,∴512DF =,∴10DF =,故答案为:10.9. 【答案】2【解析】由图形易证△ABC 与△DEF 相似,且相似比为1:1:2.10. 【答案】12【解析】∵32x y x +=,∴223x y x +=, 故2y =x ,则12y x =,故答案为:12.11. 【答案】18【解析】∵点F 是△ABC 的重心,∴BF =2EF ,∴BE =3EF , ∵FG ∥BC ,∴△EFG ∽△EBC ,∴13EF BE =,1EBC S S =△(13)219=, ∴S 1∶S 2,故答案为:18.12. 【答案】5485【解析】本题考查平行线分线段成比例定理,相似三角形的判定与性质.已知∠ACB =90°,AC =3, BC =4,由勾股定理,得AB =5.CD ⊥AB ,由三角形的面积,得CD =AC BC AB ⋅=125.易得△ABC ∽△ACD ∽△CBD ,由相似三角形对应边成比例,得AD =AC AC AB ⋅=95,BD =BC BC AB ⋅=165.过点E 作EG ∥AB 交CD于点G ,由平行线分线段成比例,得DG =12CD =65,EG =85,所以DF ADGF EG=,即956855DFDF =-,所以DF =,故答案为5485. GF E DB CA13. 【答案】145或2.8【解析】本题考查了平面直角坐标系中点的坐标特征,等腰三角形的性质,相似三角形的判定和性质,过点C 作CD ⊥y 轴于点D ,设AC 交y 轴于点E ,∴CD ∥x 轴,∴∠CAO=∠ACD, △DEC ∽△OEA ,∵2BCA CAO ∠=∠,∴∠BCD=∠ACD, ∴BD=DE,设BD=DE=x ,则OE=4-2x ,∴DC AO =DE EO ,即34=x4-2x ,解得x =1.2.∴OE=4-2x =1.6,∴n =OD=DE+OE=1.2+1.6=2.8.14. 【答案】解:∵在R t △ABC 中,AC =1,BC =2,∴AB ,AC :BC =1:2,∴与R t △ABC 相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE ,EF =2,DF =5的三角形, ∵,∴△ABC ∽△DEF ,∴∠DEF =∠C =90°,∴此时△DEF 的面积为:22=10,△DEF 为面积最大的三角形,其斜边长为:5.故答案为:5.三、解答题15. 【答案】(1)证:∵AB ∥CB ′,∴∠BCB ′=∠ABC =30°, ∴∠ACA ′=30°;又∵∠ACB =90°,∴A ′CD =60°,又∠CA ′B ′=∠CAB =60°. ∴△A ′CD 是等边三角形.(2)证:∵AC =A ′C ,BC =B ′C ,∴AC BC =A ′CB ′C.又∠ACA ′=∠BCB ′,∴△ACA ′∽△BCB ′. ∵AC BC =tan30°=33,∴S △ACA ′∶S △BCB ′=AC 2∶BC 2=1∶3.(3)120,3a2.16. 【答案】解: (1)10.解:∵ABAC=,AC=20,∴AB=10.(2)延长CG 交DA 的延长线于点J ,由折叠可知:∠BCG=∠ECG ,∵AD ∥BC ,∴∠J=∠BCG=∠ECG ,∴JE=CE.由折叠可知:E 、F 为AD 、BC 的中点,∴DE=AE=10,由勾股定理可得:==∴EJ=AJ=JE-AE=,∵AJ ∥BC ,∴△AGJ ∽△BGC,∴AG AJ BG BC ==,∴G 是AB 的黄金分割点.J(3)PB=BC ,理由如下:∵E 为AD 的黄金分割点,且AE>DE ,∴ a.∵CF ⊥BE ,∴∠ABE+∠CBE=∠CBE+∠BCF=90˚,∴∠ABE=∠FCB,在△BEA 和△CFB 中,∵90ABE FCB AB BC A FBC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△BEA ≌△CFB ,∴a.∴AF BF BF AB==,∵AE ∥BP ,∴△AEF ∽△BPF,∴AE AF BF PB BF AB ==, ∵AE=BF,∴PB=AB ,∴PB=BC.17. 【答案】解:(1)设直线AD 的解析式为y =kx +b(k≠0),将D(0,1)、A(43,53)代入解析式得⎩⎪⎨⎪⎧b =143k +b =53, 解得⎩⎪⎨⎪⎧b =1k =12,解图∴直线AD 的解析式为y =12x +1.(3分)(2)直线AD 的解析式为 y =12x +1,令y =0,得x =-2, ∴B(-2,0),即OB =2.∵直线AC 的解析式为y =-x +3,令y =0,得x =3, ∴C(3,0),即BC =5,设E(x ,12x +1),①当E 1C ⊥BC 时,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC , ∴△BOD ∽△BCE 1,此时点C 和点E 1的横坐标相同,将x =3代入y =12x +1,解得:y =52,∴E 1(3,52).(6分)②当CE 2⊥AD 时,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2, ∴△BOD ∽△BE 2C ,如解图,过点E 2作E 2F ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°. ∵∠E 2BF +∠BE 2F =90°, ∠CE 2F +∠BE 2F =90°, ∴∠E 2BF =∠CE 2F ,∴△E 2BF ∽△CE 2F ,则E 2F BF =CFE 2F ,即E 2F 2=CF·BF , (12x +1)2=(3-x)(x +2),解得:x1=2,x2=-2(舍去),∴E2(2,2);(9分)③当∠EBC=90°时,此情况不存在.综上所述,点E的坐标为E1(3,52)或E2(2,2).(10分)。
人教版初3数学9年级下册 第27章(相似)单元测试2(含答案)
....三、解答题16.已知,如图,在四边形ABCD 中,ABC BCD ∠=∠ ,点 E 在边BC 上AE ∥CD ,DE ∥AB , 过点 C 作CF ∥AD ,交线段 AE 于点 F , 联结 BF .(1)求证: ABF EAD ≅△△;(2)如果射线 BF 经过点 D , 求证: 2BE EC BC =⋅.17.已知:如图,梯形ABCD 中,AD BC ∥,6AB DC ==,E 是对角线BD 上一点,4DE =,BCE ABD ∠=∠.(1)求证:ABD ECB ∽△△;(2)如果:3:5AD BC =,求AD 的长.18.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为 E ,ED 的延长线与AC 的延长线交于点F ,(1)求证:DE是⊙O的切线;(2)若⊙O的半径为4,∠F =30°,求DE的长.参考答案:1.A【详解】解:∵两个相似三角形的周长比为1:4,∴两个相似三角形的相似比为1:4,∴它们的对应角平分线之比为1:4,故选:A.2.D【详解】解:A.∵∠A=∠A,∠ACD=∠B,∴△ACD∽△ABC,故本选项不符合题意;B.∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC,故本选项不符合题意;C.∵AC2=AD•AB,∴AC AB AD AC=,∵∠A=∠A,∴△ACD∽△ABC,故本选项不符合题意;D.∵BC2=BD•AB,∴BC AB BD BC=,添加∠A=∠A,不能推出△ACD∽△ABC,故本选项符合题意.故选:D3.C【详解】A.2:34≠:5,故四条线段不成比例,不符合题意,B.1:35≠:10,故四条线段不成比例,不符合题意,C.2:34=:6,故四条线段成比例,符符合题意,D.1:35≠:7,故四条线段不成比例,不符合题意.故选:C.4.C【详解】解:∵三角形ABC和三角形ADE都是等腰直角三角形,∴AC=2AB,AD=2AE,AB AE∵∠BAC=∠EAD,∴∠BAE=∠CAD,∴△BAE∽△CAD,所以①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴MP ME MA MD=,∵∠PMA=∠DME,∴△PMA∽△EMD,∴∠APD=∠AED=90°,故②正确,∵∠CAE=180°−∠BAC−∠EAD=90°,∴△CAP∽△CMA,∴AC CP MC CA=∴AC2=CP•CM,∵AC=2BC,∴2CB2=CP•CM,所以③正确;故选:C.5.D【详解】∵在Rt△ABC中,∠A=90°,AB=AC,∴∠B=∠C=45°,242BC AB==∵∠AEC=∠B+∠BAE=∠AED+∠CED,∠AED=45°,∴∠BAE=∠CED∴△ABE∽△ECD∴AB BE EC CD=又∵AB=4,BE=2,∴AB BEBC BE CD=-,即4232CD=故选:A .10.A【详解】∵DE 是ABC ∆的中位线,∴DE ∥BC ,BC =2DE ,∴△DEF ∽△CBF ,∴22()2CBF DEF S BC S DE∆∆==,∴4CBF DEF S S ∆∆=,∵1DEF S ∆=,∴4CBF S ∆=,∵BE 是中线,∴ABE S ∆=CBE S ∆,∵DE 是ABC ∆的中位线,∴DE ∥BC ,∴BDE S ∆=CDE S ∆,∴BDF S ∆=CFE S ∆,∴BDF S ∆+ADE S ∆+DEF S ∆=CFE S ∆+CBF S ∆,∴ADE S ∆+DEF S ∆=CBF S ∆,∴ADE S ∆=3,故选A .11.2或5或8【详解】∵四边形ABCD 是矩形∴BC =AD =4,CD =AB =10当△ADP ∽△PCB 时,AD DP PC BC=,即DP PC AD BC ⨯=⨯∴DP (10−DP )=16即210160DP DP -+=解得:DP =2或DP =8当△ADP ∽△BCP 时,1AD DP BC PC == ∴DP =PC∵DP +PC =10''4FA A G BC +== ,AE EF DG +=,∴344334n m m n+=⎧⎨+=⎩,解得2425n =,96425DG n ∴==,5425CG CD DG ∴=-=,∴5425A H '=,故答案为:5425.16.(1)证明:∵//AE CD ,∴AEB BCD ∠=∠,//AF CD ,∴AEB ABC ∠=∠,即AEB ABE ∠=∠,∴AB AE =.∵//DE AB ,∴DEC ABC ∠=∠,BAF AED =∠∠,∴DEC BCD ∠=∠,即DEC ECD ∠=∠,∴DE CD =.又∵CF //AD ,∴四边形AFCD 为平行四边形,∴AF CD =,∴AF DE =,∴在ABF 和EAD 中,AB EA BAF AED AF ED =⎧⎪∠=∠⎨⎪=⎩,∴()ABF EAD SAS ≅ .(2)证明:如图,连接DF .∵射线 BF 经过点 D ,∴点B 、F 、D 共线.∵//AE CD ,即//EF CD ,∴BDC CDE ∽△△.∴CD BD DE CD=,∵6DC =,4DE =,∴9BD =,∴5BE BD DE =-=∵ABD ECB ∽△△,∴AD BD BE BC=,∵:3:5AD BC =,设3AD x =,5BC x =,∴3955x x=,解得3x =±(舍去负值),∴3x =,即33AD =.18.(1)见解析(2)23(1)证明:连接AD 、OD ,∵OA=OD ,∴∠OAD =∠ODA ,∵AC 是⊙O 的直径,∴∠ADC =90°即AD ⊥BC ,又AB=AC ,∴∠BAD =∠OAD ,∴∠EAD =∠ODA ,∴OD ∥AB ,∵DE ⊥AB ,∴OD ⊥DE ,又OD 是半径,∴DE 是⊙O 的切线;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学下册第二十七章《相似——相似三角形》同步检测2附答案(1)——相似三角形》同步检测2附答案
(1)
一.选择题
1.下列图形不一定相似的是〖 〗.
A .有一个角是120°的两个等腰三角形;
B .有一个角是60°的两个等腰三角形
C .两个等腰直角三角形;
D .有一个角是45°的两个等腰三角形
2.如图1,已知△ABC,D,E 分别是AB,AC 边上的点.AD=3cm,AB=8cm,AC=•10cm .若△ADE ∽△ABC,则AE 的值为〖 〗.
A .1541215125...41554512cm
B cm cm
C cm cm
D cm 或或
〔1) 〔2) 〔3)
3.满足下列条件的各对三角形中相似的两个三角形有〖 〗.
①∠A=60°,AB=5cm,AC=10cm ;∠A ′=60°,A ′B ′=3cm,A ′C ′=10cm
②∠A=45°,AB=4cm,BC=6cm ;∠D=45°,DE=2cm,DF=3cm
③∠C=∠E=30°,AB=8cm,BC=4cm ;DF=6cm,FE=3cm
④∠A=∠A ′,且AB ·A ′B ′=AC ·A ′B ′
4.如图2,点D 为△ABC 的AB 边一点〖AB>AC 〗,下列条件不一定能保证△ACD ∽△ABC 的是〖 〗.
A .∠ADC=∠AC
B B .∠ACD=∠B
C ..DC A
D AD AC D BC AC AC AB
== 5.如图,这是圆桌正上方的灯泡〖看作一个点〗发出的光线照射到桌面后在地面上形成〖圆形〗的示意图. 已知桌面直径为1.2米,桌面离地面1米. 若灯泡离地面3米,则地面上阴影部分的面积为 〖 -〗
A.、0.36π米2 B 、0.81π米2 C 、2π米2 D 、3.24π米2
6.〖山东〗如图,小正方形的边长均为1,则右图中的三角形〖阴影部分〗•与△ABC 相似的是〖 〗.
二、填空题
7.已知三角形的三条边长分别为1,2,3,请你写出另外三条线段长,•使这三条线段构
成的三角形与已知三角形相似:________,________,_______.
8.如图3,若AC2=CD·CB,则△_______∽△_______,∠ADC=________.
〔4) 〔5) 〔6) 〔7)
9.如图4,△ABC中,CD⊥AB于D,AD=8,CD=6,则当BD=______时,△ADC•∽△CDB,∠ACB=_______°.
10.如图5,已知AC与B D相交于点O,且AO:OC=BO:OD=2:3,AB=5,则CD=______.11.如图6,等腰三角形ABC中,∠A=36°,若BC2=CD·CA,则∠DBC=•_____•°,•图中有_____个等腰三角形.
12.如图7,为测得一养鱼池的两端A,B间的距离,可在平地上取一直接到达A和B•的点O,
连接AO,BO并分别延长到C,D,使OC=1
2
OA,OD=
1
2
OB,如果量得CD=30m,•那么池塘宽
AB=________.
三.解答题
13.如图,已知△ABC中,AC=10,AB=16,问在AB边上是否存在这样的点P,•使△APC∽△ACB,若存在,求A P的长;若不存在,请说明理由.
14.如图,是利用木杆撬石头的示意图.现有一块石头,要使其滚动,杠杆的B端必须向上翘起12cm,已知杠杆的动力臂OA与阻力臂OB之比为5:1,求要使这块石头滚动,至少要将杠杆A端下压多少厘米.
15.已知:如图,∠ABE=90°,且AB=BC=CD=DE,请认真研究图形与所给条件,然后回答:图中是否存在相似的三角形?若存在,请加以说明;若不存在,请说明理由.
16.如图,在ΔABC 中,BA=BC=20cm ,AC=30cm,点P 从A 点出发,沿着AB 以每秒4c m 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,设运动时间为x.〖1〗当x 为何值时,P Q ∥BC ?〖2〗当31=∆∆ABC BCQ S S ,求ABC BPQ S S ∆∆的值;
17.在△ABC 中,AE ∶EB=1 ∶2,EF ∥BC,AD ∥BC 交CE 的延长线于D,求S △AEF ∶S △BCE 的值.
18.如图,△ABC 是一块锐角三角形余料,边BC=120mm, 高AD=80mm, 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上,
〖1〗若这个矩形是正方形,那么边长是多少?
〖2〗若这个矩形的长是宽的2倍,则边长是多少?
答案
一.选择题
1.D 点拨:若45°角在一个三角形中做顶角,在另一个三角形中做底角,则这两个三角形形状不同.
2.C 点拨:两个三角形有公共角,只须满足两边对应成比例,则对应边有两种可能.
3.A 点拨:〖2〗,〖3〗不满足位置关系.
4.C 点拨:不能满足位置关系.
5.B
6. B
二.填空题
7.答案不唯一,略
8.△ACD ∽△BCA ∠BAC
9.92 90° 10.7.5 点拨:由题意△AOB ∽△COD,∴23AB CD =. 11.36° 3个
12.60m 三.解答题
13.存在,若使△APC ∽△ACB,则应满足:
10025164AP AC AP AC AB =∴==,. 14.15
OB OA =,∴12cm ×5=60cm,至少要将杠杆A 端下压60cm . 15.存在,△ACD ∽△ECA,
设AB=a,则AC 2=a,CE=2a,
22,222.AE CD a CE AC a AC CD CE AC ∴
===∴=, 又∵∠ACE=∠ECA,∴△ACD ∽△ECA .
16. 〖1〗x=
730s 〔2)92 17.6
1 18、〖1〗48 mm 〖2〗宽是
7240mm,长7
480mm.。