导数与微分练习题
第二章导数和微分练习题
导数定义 1. A24.81.36.27.)(310)(3D C B A t t t s 时的瞬时速度为,则质点在程与时间的函数关系为设质点做直线运动,路=+=2。
B.)(21.)(2.)(.)()()2(lim )(0000000D x f C x f B x f A xx f x x f x f x '''=∆-∆+'→∆存在,则极限设3。
B.)(21.)(2.)(.)()()(lim )(0000000D x f C x f B x f A hh x f h x f x f h '''=--+'→存在,则极限设4. C)(21.)(21.)(2.)(2.)(2)()(lim )(00000000x f D x f C x f B x f A xx f x x f x f x ''-'-'=∆-∆-'→∆存在,则极限设5。
A.)(21.)(2.)(.)()]()1([lim )(0000000D x f C x f B x f A x f n x f n x f x '''=-+'→∆存在,则极限设6。
B不连续也不可导可导但不连续连续但不可导既连续又可导处在点函数....)(0sin D C B A x x y == 7. A不连续也不可导可导但不连续连续但不可导既连续又可导处在点函数....)(00,00,1sin 2D C B A x x x xx y =⎪⎩⎪⎨⎧=≠=8。
D不存在处的导数是在函数.2.1.0.)(0)(D C B A x x x f ==9. A不存在处的导数是在函数.2.1.0.)(0)(D C B A x x x x f ==10. D11. A不存在点的导数是在函数.2.1.0.)(00,00,1sin )(23D C B A x x x xx x f =⎪⎩⎪⎨⎧≤>=导数几何意义 1。
导数与微分练习题及解析
导数与微分练习题及解析在微积分学中,导数和微分是最基本的概念之一。
它们可以帮助我们研究函数的变化率和性质,广泛应用于物理、经济、工程等各个领域。
为了帮助你更好地理解导数和微分的概念,以下是一些练习题及其解析。
练习题1:求函数f(x) = x^2 + 3x + 2在x = 2处的导数和切线方程。
解析:首先,我们求函数f(x)的导数。
使用求导法则,对于多项式函数来说,可以将每一项的指数与系数相乘,并将指数减一,得到函数的导数。
f'(x) = 2x + 3接下来,我们计算x = 2处的导数值。
f'(2) = 2(2) + 3 = 7切线方程的一般形式为y = mx + b,其中m代表斜率,b代表截距。
根据导数的定义,导数即为切线的斜率。
所以切线的斜率为m = 7。
将切点的坐标代入切线方程,我们可以得到b的值。
2 = 7(2) + b2 = 14 + bb = -12最终的切线方程为y = 7x - 12。
练习题2:求函数f(x) = e^x * sin(x)的导数。
解析:考虑到函数f(x) = e^x * sin(x)是两个函数的乘积,我们可以使用乘积法则来求导。
乘积法则的公式为:(uv)' = u'v + uv'对于e^x和sin(x)两个函数,它们的导数分别为e^x和cos(x)。
根据乘积法则,我们可以将这两个导数与原函数进行组合,得到最终的导数为:f'(x) = (e^x * cos(x)) + (e^x * sin(x))练习题3:求函数f(x) = ln(x^2 + 1)的导数和微分。
解析:首先,我们求函数f(x)的导数。
根据链式法则,可以分别计算外函数和内函数的导数。
设内函数为u = x^2 + 1,则内函数的导数为du/dx = 2x。
外函数为f(u) = ln(u),则外函数的导数为df/du = 1/u。
根据链式法则,函数f(x)的导数为:f'(x) = df/du * du/dx= (1/u) * (2x)= 2x / (x^2 + 1)接下来,我们计算函数f(x)的微分。
第三章 导数与微分 习题及答案
第三章 导数与微分同步练习 一、填空 1、若[]1cos 1)0()(lim=--→xf x f x x ,则)0(f '= 。
2、设)100()3)(2)(1()(----=x x x x x x f ,则)0(f '= 。
3、若)(x e f y -=,且x x x f ln )(=',则1=x dxdy = 。
4、若)()(x f x f =-,且3)1(=-'f ,则)1(f '= 。
5、设某商品的需求函数是Q=10-0.2p ,则当价格p=10时,降价10%,需求量将 。
6、设某商品的需求函数为:Q=100-2p ,则当Q=50时,其边际收益为 。
7、已知x x y ln =,则)10(y = 。
8、已知2arcsin )(),2323(x x f x x f y ='+-=,则:0=x dxdy = 。
9、设1111ln22++-+=x x y ,则y '= 。
10、设方程y y x =确定y 是x 的函数,则dy = 。
11、已知()xke x f =',其中k 为常数,求()x f 的反函数的二阶导数=22dyxd 。
二、选择1、设f 可微,则=---→1)1()2(lim1x f x f x ( )A 、)1(-'-x fB 、)1(-'fC 、)1(f '-D 、)2(f ' 2、若2)(0-='x f ,则=--→)()2(lim000x f x x f xx ( )A 、41 B 、41- C 、1 D 、-1 3、设⎪⎩⎪⎨⎧=≠=0001arctan )(x x xx x f ,则)(x f 在0=x 处( )A 、不连续B 、极限不存在 C、连续且可导 D、连续但不可导 4、下列函数在[]1,1-上可微的有( ) A、x x y sin 32+= B、x x y sin =C、21x x y +=D、x x y cos += 5、设)(x f 为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=( ) A、在0=x 处极限不存在 B、有跳跃间断点0=x C、在0=x 处右极限不存在 D、有可去间断点0=x6、设函数)(),(21x y x y 的弹性分别为)0(,≠b b a ,则函数)()(21x y x y y =的弹性为( ) A、b a - B、b aC、2112y by ay - D、以上都不对 7、已知)(x f e y =,则y ''=( )A、)(x f e B、)]()([)(x f x f e x f ''+' C、)()(x f e x f '' D、)}()]({[2)(x f x f e x f ''+'8、设函数⎩⎨⎧≤+>+=11)ln()(2x bx x x a x f 在1=x 处可导。
导数与微分习题
习题2.1(B )1. 设()||()f x x a x ϕ=-,()x ϕ连续且()0a ϕ≠。
证明()f x 在a 点不可导。
2. 给定曲线254y x x =++。
(1) 确定b ,使直线3y x b =+为曲线的切线; (2) 确定m ,使直线y mx =为曲线的切线。
3.证明:双曲线1xy =上任意点处的切线与两坐标轴构成的三角形的面积都等于2。
4.证明:抛物线1212()()(0,)y a x x x x a x x =--≠<与x 轴相交所成两角α与β(0,)2παβ<<彼此相等。
习题2.2(B )1. 证明:双曲线xy a =上任意点处的切线介于两坐标轴间的一段被切点所平分。
2. 确定,,,a b c d 的值,使曲线432y ax bx cx d =+++与115y x =-在点(1,6)相切,经过点(1,8)- 并在点(0,3)有一水平的切线。
3. 定义双曲函数如下:双曲正弦函数2x x e e shx --=;双曲余弦函数2x xe e chx -+=;双曲正切函数shx thx chx =;双曲余切函数coth chx x shx=。
证明:(1)()'shx chx =; (2)()'chx shx =; (3)21()'thx ch x =; (4)21()'cothx sh x=。
习题2.3(B )求下列函数的导数:(1)xx e y e e =+; (2)axx a y a a =+ (3)1tan 2xy =; (4)(1cot )3xx y e =+;(5) sin xy x=; (6)cot 2(tan 2)x y x =。
习题2.4 (B)1. 设2(arcsin )y x =,证明:y 满足2(1)'''2x y xy --=。
2. 求下列函数的n 阶导数: (1)211y x =-; (2)2sin y x =;(3)1nx y x=-。
导数与微分习题及答案
第二章 导数与微分(A)1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( )A .()x x f ∆+0B .()x x f ∆+0C .()()00x f x x f -∆+D .()x x f ∆02.设()x f 在0x 处可,则()()=∆-∆-→∆xx f x x f x 000lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f '3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数()u f y =是可导的,且2x u =,则=dxdy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x5.若函数()x f 在点a 连续,则()x f 在点a ( )A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6.()2-=x x f 在点2=x 处的导数是( )A .1B .0C .-1D .不存在7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( )A .8B .12C .-6D .68.设()x f e y =且()x f 二阶可导,则=''y ( )A .()x f eB .()()x f e x f ''C .()()()[]x f x f e x f '''D .()()[](){}x f x f e x f ''+'2 9.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=bC .2-=a ,1=bD .2=a ,1-=b10.若函数()x f 在点0x 处有导数,而函数()x g 在点0x 处没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .恰有一个有导数D .至少一个有导数11.函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数12.已知()()[]x g f x F =,在0x x =处可导,则( )A .()x f ,()x g 都必须可导B .()x f 必须可导C .()x g 必须可导D .()x f 和()x g 都不一定可导13.xarctg y 1=,则='y ( ) A .211x +- B .211x + C .221x x +- D . 221x x + 14.设()x f 在点a x =处为二阶可导,则()()=-+→hh a f h a f h 0lim ( ) A .()2a f '' B .()a f '' C .()a f ''2 D .()a f ''- 15.设()x f 在()b a ,内连续,且()b a x ,0∈,则在点0x 处( )A .()x f 的极限存在,且可导B .()x f 的极限存在,但不一定可导C .()x f 的极限不存在D .()x f 的极限不一定存在16.设()x f 在点a x =处可导,则()()=--→hh a f a f n 0lim 。
掌握函数的导数与微分练习题
掌握函数的导数与微分练习题函数的导数与微分是微积分的重要内容,对于学习者而言,掌握这一部分知识对于提高解题能力和理解数学概念非常重要。
本文将通过练习题的方式,帮助读者巩固对函数的导数与微分的理解,并培养解题的思维能力。
1. 求解下列函数的导数:(1) f(x) = 3x² - 2x + 1解答:f'(x) = 6x - 2(2) g(x) = 5sin(x) + 2cos(x)解答:g'(x) = 5cos(x) - 2sin(x)2. 对下列函数进行微分:(1) h(x) = x³ - 4x² + 2x解答:dh(x) = 3x² - 8x + 2(2) k(x) = 2e^x + 3ln(x)解答:dk(x) = 2e^x + 3/x3. 求解给定函数在指定点的导数:(1) y = 2x³,求导数在x=2处的值。
解答:y' = 6x²y'(2) = 6(2)² = 24(2) y = x^4 - 2x²,求导数在x=-1处的值。
解答:y' = 4x³ - 4xy'(-1) = 4(-1)³ - 4(-1) = -44. 求解给定函数的极值点:(1) y = x³ - 12x² + 36x解答:为求取极值点,先求导数:y' = 3x² - 24x + 36令y' = 0,求解方程得:x = 2 或 x = 6将以上两个x值代入原函数求y值得到极值点:当x=2时,y = 2³ - 12(2)² + 36(2) = 16 - 48 + 72 = 40当x=6时,y = 6³ - 12(6)² + 36(6) = 216 - 432 + 216 = 0因此,函数y = x³ - 12x² + 36x在x = 2处有极小值,极小值为40,在x = 6处有极大值,极大值为0。
高等数学第二章导数与微分习题
h0
h
lim f ( x) f ( x x) f ( x) .
x0
x
lim f ( x x) f ( x x)
x0
x
lim f ( x x) f ( x) f ( x) f ( x x)
x0
x
lim f ( x x) f ( x) lim f ( x) f ( x x)
习题课
f (a) lim f ( x) f (a) lim ( x a)F ( x) 0
xa x a
xa
xa
1
lim ( x a)F ( x) 0
x a 0
xa
g
(a
)
x
lim
a 0
g(
x) x
g(a a
)
2
例2.
研究函数
f
(
x
)
1 x 1 x
解 . lim f ( x) lim
x0
x
x0
x
14
例16 .
f
(
x)
ln x
(1
x)
x0 x0
求 f ( x) .
)[
f (0 0) f (0) ln(1 x) x0 0 ,
0
f (0 0) lim x 0 , f ( x) 在 x 0 处连续 .
x 0
f (0)
ln(1
x)
x
0
1
1
x
1
x0
f (0)
lim
(n)
(1)n n! ( x 1)n1
,
23
例24 . 试从 d x 1 导出: d y y
1.
d d
2x y2
导数与微分习题及答案
第二章 导数与微分(A)1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( ) A .()x x f ∆+0 B .()x x f ∆+0 C .()()00x f x x f -∆+ D .()x x f ∆0 2.设()x f 在0x 处可,那么()()=∆-∆-→∆xx f x x f x 000lim( )A .()0x f '-B .()0x f -'C .()0x f 'D .()02x f ' 3.函数()x f 在点0x 持续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分没必要要条件 C .充分必要条件 D .既不充分也没必要要条件 4.设函数()u f y =是可导的,且2x u =,那么=dxdy( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.假设函数()x f 在点a 持续,那么()x f 在点a ( )A .左导数存在;B .右导数存在;C .左右导数都存在D .有概念 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .68.设()x f e y =且()x f 二阶可导,那么=''y ( )A .()x f eB .()()x f e x f ''C .()()()[]x f x f e x f '''D .()()[](){}x f x f e x f ''+'29.假设()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0=x 处可导,那么a ,b 的值应为( )A .2=a ,1=bB . 1=a ,2=bC .2-=a ,1=bD .2=a ,1-=b10.假设函数()x f 在点0x 处有导数,而函数()x g 在点0x 处没有导数,那么()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .必然都没有导数B .必然都有导数C .恰有一个有导数D .至少一个有导数11.函数()x f 与()x g 在0x 处都没有导数,那么()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .必然都没有导数B .必然都有导数C .至少一个有导数D .最多一个有导数 12.已知()()[]x g f x F =,在0x x =处可导,那么( ) A .()x f ,()x g 都必需可导 B .()x f 必需可导C .()x g 必需可导D .()x f 和()x g 都不必然可导 13.xarctgy 1=,那么='y ( ) A .211x +- B .211x + C .221x x +- D . 221x x +14.设()x f 在点a x =处为二阶可导,那么()()=-+→hh a f h a f h 0lim ( )A .()2a f ''B .()a f ''C .()a f ''2D .()a f ''- 15.设()x f 在()b a ,内持续,且()b a x ,0∈,那么在点0x 处( )A .()x f 的极限存在,且可导B .()x f 的极限存在,但不必然可导C .()x f 的极限不存在D .()x f 的极限不必然存在 16.设()x f 在点a x =处可导,那么()()=--→hh a f a f n 0lim。
导数与微分习题及答案
导数与微分习题及答案导数与微分习题及答案在数学学科中,导数与微分是非常重要的概念。
它们不仅在数学分析中有广泛的应用,还在物理、经济学等领域中起着重要的作用。
本文将为大家提供一些导数与微分的习题,并附上详细的答案,希望能够帮助大家更好地理解和掌握这一内容。
1. 习题一:求函数 f(x) = x^2 + 3x - 2 在点 x = 2 处的导数。
解答:根据导数的定义,我们有f'(x) = lim(h→0) [f(x+h) - f(x)] / h。
代入函数 f(x) = x^2 + 3x - 2 和 x = 2,得到f'(2) = lim(h→0) [(2+h)^2 + 3(2+h) - 2 - (2^2 + 3(2) - 2)] / h。
化简后得到f'(2) = lim(h→0) [4h + h^2 + 6h] / h = lim(h→0) (h^2 + 10h) / h = lim(h→0) (h + 10) = 10。
因此,函数 f(x) = x^2 + 3x - 2 在点 x = 2 处的导数为 10。
2. 习题二:求函数 g(x) = 2sin(x) + cos(x) 在点x = π/4 处的导数。
解答:同样地,我们可以利用导数的定义来求解。
根据定义,g'(x) = lim(h→0) [g(x+h) - g(x)] / h。
代入函数 g(x) = 2sin(x) + cos(x) 和x = π/4,得到g'(π/4) = lim(h→0) [2sin(π/4+h) + cos(π/4+h) - (2sin(π/4) + cos(π/4))] / h。
化简后得到g'(π/4) = lim(h→0) [2(sin(π/4)cos(h) + cos(π/4)sin(h)) + (cos(π/4)cos(h) -sin(π/4)sin(h))] / h。
第三章 导数与微分习题
习 题 三1.根据导数的定义求下列函数的导数:(1)221x y -= (2)21x y = (3)32x y =2.给定函数f (x )=ax 2+bx +c ,其中a 、b 、c 为常量,求:)(x f ',)0(f ',)21(f ',)2(a b f -' 3.一物体的运动方程为s =t 3+10,求该物体在t =3时的瞬时速度。
4.求在抛物线y =x 2上点x =3处的切线方程。
5.自变量x 取哪些值时,抛物线y =x 2与y =x 3的切线平行?6.函数⎪⎩⎪⎨⎧≤-<≤+=x x x x x f 113101)(2在点x =1处是否可导?为什么?7.讨论函数y =x|x|在点x =0处的可导性。
8.用导数定义求⎩⎨⎧≥+<=0)1ln(1)(x s x xx f 在点x =0处的导数。
9.设⎩⎨⎧<<--+≤<-+=101101)1ln()(x xx x x x f 讨论f (x )在x =0处的连续性与可导性。
10.函数⎪⎩⎪⎨⎧=+≠=0)1ln(1sin )(12x s x x x f x 在点x =0处是否继续?是否可导?11.讨论⎪⎪⎩⎪⎪⎨⎧<≤<+≤<+≤=x xx x x x x x f 2212101201)(2在x =0,x =1,x =2处的连续性与可导性。
12.求下列各函数的导数(其中a ,b 为常量):(1)532+-=x x y (2)b a x y +=(3)3412+-=xx y (4)2222x x y += (5)x x y 31-= (6))12(2-=x x y(7))11)(1(-+=x x y (8)x x y 2)1(+=(9)ba b ax y ++= (10)))((b x a x y --=(10))1)(1(a b bx ax y ++=13.求下列各函数的导数(其中a ,b ,c ,d ,n 为常量):(1))3)(2)(1(+++=x x x y(2)x x y ln =(3)x x y n ln = (4)x y alog = (5)11-+=x x y (6)215xx y += (7)x x x y --=223 (8)n cx b a y += (9)x x y ln 1ln 1+-= (10)2211xx x x y +--+= 14.求下列各函数的导数:(1)x x x y cos sin += (2)xx y cos 1-=(3)x x x y tan tan -= (4)xx y cos 1sin 5+= (5)x x x x y sin sin += (6)x x x y ln sin ⋅= 15.求曲线x y sin =在点x =π处的切线方程。
导数与微分练习题及习题详细解答
第二章 导数与微分练习题及习题详细解答练习题2.11.已知质点作直线运动的方程为23s t =+,求该质点在5t =时的瞬时速度.解 由引例2.1可知,质点在任意时刻的瞬时速度d 2d sv t t==.代入5t =,得10v =. 2.求曲线cos y x =在点π(6处的切线方程和法线方程. 解 由导数的几何意义知,曲线cos y x =在π(6点切线的斜率 ππ661(cos )(sin )2x x k x x =='==-=-,所以,切线方程为1π()226y x -=--,即612π=0x y +-.法线方程为π2()6y x =-,即1262π=0x y -+. 3.讨论函数32,0()31,013,1x f x x x x x ⎧≤⎪=+<≤⎨⎪+>⎩在0x =和1=x 处的连续性与可导性.解 在0x =处,0lim ()lim 22x x f x --→→==,0lim ()lim (31)1x x f x x ++→→=+=, 由于0lim ()lim ()x x f x f x -+→→≠,所以不连续,根据可导与连续的关系知,也不可导. 在1x =处,11lim ()lim(31)4x x f x x --→→=+=,311lim ()lim(3)4x x f x x ++→→=+=,(1)4f =, 所以连续.又00(1)(1)3(1)lim lim 3x x f x f xf x x---∆→∆→+∆-∆'===∆∆, 2300(1)(1)33()()(1)lim lim 3x x f x f x x x f x x+++∆→∆→+∆-∆+∆+∆'===∆∆,所以可导.4.已知函数()f x 在点0x 处可导,且0()f x A '=,求下列极限:000(5)()(1)limx f x x f x x ∆→-∆-∆; 000(2)()(2)lim h f x h f x h →+-解 (1)000000(5)()(5)()55()55limlim x x f x x f x f x x f x f x A x x ∆→∆→-∆--∆-'=-=-=-∆-∆;(2)000000(2)()(2)()22()22limlim h h f x h f x f x h f x f x A h h →→+-+-'===.5.求抛物线2y x =上平行于直线43y x =-+的切线方程.解 由于切线平行于43y x =-+,所以斜率为4k =-.又2k y x '==,所以2x =-.对应于抛物线上的点为(2,4)-,所以切线方程为44(2)y x -=-+,即440x y ++=.练习题2.21.求下列函数的导数:(1)100(21)y x =-; (2)22e xxy +=;(3)sin(3π)y x =+; (4)2cos y x =; (5)2e sin x y x =; (6)2ln(1)y x =+; (7)tan 2y x =; (8)cot 3y x =; (9)arctan(31)y x =+; (10)arcsin(41)y x =+. 解 (1)9999100(21)(21)200(21)y x x x ''=--=-; (2)22222e (2)e (41)xxxxy x x x ++''=+=+;(3)cos(3π)(3π)3cos(3π)y x x x ''=+⋅+=+; (4)2cos (cos )2sin cos sin 2y x x x x x ''=⋅=-=-;(5)22222(e )sin e (sin )2e sin e cos e (2sin cos )xxxxxy x x x x x x '''=+=+=+; (6)22212(1)11x y x x x''=⋅+=++; (7)22sec 2(2)2sec 2y x x x ''=⋅=; (8)22csc 3(3)3csc 3y x x x ''=-⋅=-;(9)2213(31)1(31)1(31)y x x x ''=⋅+=++++;(10)(41)y x ''=+=2.设y =d d y x .解对于y =[]1ln ln(1)ln(2)ln(3)ln(4)3y x x x x =+++-+-+ 两边对x 求导,得111111()31234y y x x x x '=+--++++ 所以1111()1234y x x x x '=+--++++ 3.求曲线31x ty t =+⎧⎨=⎩上,点(1,0)处的切线方程. 解 点(1,0)对应参数t 的值为0. 设k 为曲线上对应(1,0)点的切线斜率,则32000d ()30d (1)1t t t y t t k x t ==='===='+,于是,所求切线方程为0y =,即x 轴.4.求由方程3330y x xy --=所确定的隐函数的导数d d y x. 解 方程两边对x 求导,可得22333()0y y x y xy ''--+=由上式解出y ',便得隐函数的导数为22x yy y x+'=-(20y x -≠). 练习题2.31.求下列函数的微分:(1)22sin 34y x x x =+-+; (2)2ln y x x x =-; (3)2(arccos )1y x =-; (4)arctan y x x =; (5)ln tan 2x y =; (6)sin ln 57xy x x x x=++-; (7)1cos 2xy -=; (8)3(e e )x x y -=+.解 (1)22d (sin 34)d (2sin 23)d y x x x x x x x '=+-+=+-; (2)2d (ln )d (ln 12)d y x x x x x x x '=-=+-; (3)2d ((arccos )1)d y x x x '=-=;(4)2d (arctan )d (arctan )d 1xy x x x x x x '==++; (5)2111d (ln tan )d sec d d csc d 222sin tan 2x x y x x x x x x x '==⋅⋅==;(6)2sin cos sin d (ln 57)d (ln 6)d x x x xy x x x x x x x x-'=++-=++; (7)11cos cos d (2)d 2ln 2sec tan d xxy x x x x --'==-⋅;(8)32d (e e )d 3(e e )(e e )d x x x x x xy x x ---'⎡⎤=+=+-⎣⎦. 2.填空. (1)23d d()x x =(2)21d d()1x x =+ (3)2cos2d d()x x = (4)21d d()x x= 解 (1)3x C +; (2)arctan x C +; (3)sin 2x C +; (4)1C x-+. 3解=()f x =064x =,1x ∆=.因为000()()()f x x f x f x x '+∆≈+∆,()f x ''==所以1188.062516=≈=+=.4.半径为10m 的圆盘,当半径改变1cm 时,其面积大约改变多少?解 圆盘面积函数为2S πR =,并取0R 10m =,R 1cm 0.01m ∆==.因为 S 2πR '= 所以面积改变量2S dS 2πR R 2π100.010.2π0.628m ∆≈=⋅∆=⨯⨯=≈.习题二1.如果函数()f x 在点0x 可导,求:(1)000()()limh f x h f x h →--; (2)000()()lim h f x h f x h hαβ→+--.解 (1)0000000()()()()limlim ()h h f x h f x f x h f x f x h h →-→----'=-=--; (2)00000000()()()()()()lim lim h h f x h f x h f x h f x f x f x h h hαβαβ→→+--+-+--=0000000()()()()limlim ()()h h f x h f x f x h f x f x h hαβαβαβαβ→→+---'=+=+-2.求函数3y x =在点(2,8)处的切线方程和法线方程. 解 由导数的几何意义,得3222()312x x k x x =='===切,112k =-法. 所以,切线方程为812(2)y x -=-即12160x y --=.法线方程为18(2)12y x -=--即12980x y +-=.3.设2, 1(), 1x x f x ax b x ⎧≤=⎨+>⎩,试确定,a b 的值,使()f x 在1x =处可导.解 若()f x 在1x =处可导,则必在1x =处连续.1lim ()1x f x -→=,1lim ()x f x a b +→=+, 11lim ()lim ()x x f x f x -+→→=,即1a b +=. 又2111()(1)1(1)limlim lim(1)211x x x f x f x f x x x ----→→→--'===+=--, 111()(1)1(1)(1)lim lim lim 111x x x f x f ax b a x f a x x x ++-+→→→-+--'====--- 所以 2a =,1b =-. 4.求下列各函数的导数:(1)231251y x x x =-++; (2)2sin y x x =; (3)1cos y x x =+; (4)1ln 1ln xy x-=+.解 (1)23413(251)45y x x x x x''=-++=++;(2)22(sin )2sin cos y x x x x x x ''==+; (3)221(cos )sin 1()cos (cos )(cos )x x x y x x x x x x '+-''==-=+++;(4)21ln (1ln )(1ln )(1ln )(1ln )()1ln (1ln )x x x x x y x x ''--+--+''==++ 2211(1ln )(1ln )2(1ln )(1ln )x x x x x x x -+--==-++ . 5.求下列函数的导数:(1)36()y x x =-; (2)y =;(3)2sin (21)y x =-; (4)21sin y x x=; (5)ln1xy x=-; (6)[]ln ln(ln )y x =; (7)ln(y x =; (8)arcsin 2x y x =+解 (1)3533526()()6()(31)y x x x x x x x ''=--=--;(2)322(1)y x -'==-; (3)2sin(21)cos(21)(21)2sin(42)y x x x x ''=-⋅-⋅-=-; (4)22221111111()sin(sin )2sin cos ()2sin cos y x x x x x x x x x x x x'''=+=+⋅-=-; (5)lnln ln(1)1x y x x x ==---,∴1111(1)y x x x x -'=-=--; (6)[]{}[]1ln ln(ln )ln(ln )(ln )ln ln(ln )y x x x x x x ''''=⋅⋅=;(7)((1y x ''==+=;(8)1arcsin22x y '=++arcsin arcsin 22x x=+=.6.若以310cm /s 的速率给一个球形气球充气,那么当气球半径为2cm 时,它的表面积增加的有多快?解 设气球的体积为V ,半径为R ,表面积为S ,则34π3V R =,24πS R =. d d d d d d V V R t R t =⋅,d d d d d d S S Rt R t =⋅, 2d d d d dV 12d 8πd d d d dt 4πd S S V R V R t R t V R R t ∴=⋅⋅=⋅⋅=, 将3d 10cm /s d V t =,2cm R =代入得,2d 10cm /s d St=.7.求下列函数的高阶导数:(1)2sin 2y x x =,求y '''; (2)y =5x y =''. 解 (1)Q 22sin 22cos2y x x x x '=+,22sin 24cos24cos24sin 2y x x x x x x x ''=++-22sin 28cos 24sin 2x x x x x =+-,∴24cos28cos216sin 28sin 28cos2y x x x x x x x x '''=+---212cos 224sin 28cos 2x x x x x =--.(2)Q 2y '==y ''==23222(24)(16)x x x -=-,∴5x y =''1027=. 8.求由下列方程所确定的隐函数的导数: (1)3330y x xy +-=; (2)arctan ln yx=. 解 (1)方程两边对x 求导,得22333()0y y x y xy ''+-+=,从中解出y ',得22y x y y x-'=-. (2)方程两边对x 求导,得2222112221()xy y x yy y x x y x''-+⋅=⋅++, 从中解出y ',得x yy x y+'=-. 9.用对数求导法求下列各函数的导数:(1)y =; (2)cos (sin )x y x = (s i n 0)x >.解 (1)方程两边取对数,得11ln ln(23)ln(6)ln(1)43y x x x =++--+,两边对x 求导,得1211234(6)3(1)y y x x x '=+-+-+, 即211[234(6)3(1)y x x x '=+-+-+ (2)方程两边取对数,得cos ln ln(sin )cos lnsin x y x x x ==⋅两边对x 求导,得11sin ln sin cos cos sin y x x x x y x'=-⋅+⋅⋅ sin lnsin cos cot x x x x =-⋅+⋅,即cos (sin )(sin lnsin cos cot )x y x x x x x '=-⋅+⋅.10.求由下列各参数方程所确定的函数()y y x =的导数:(1)33cos sin x a t y b t ⎧=⎪⎨=⎪⎩; (2)e cos e sin tt x t y t ⎧=⎪⎨=⎪⎩,求π2d d t y x =. 解 (1)22d d 3sin cos d tan d d 3cos sin d yy b t t bt t x x a t t a t===--;(2)Q d d e (sin cos )sin cos d d d e (cos sin )cos sin d t t yy t t t tt x x t t t t t++===--, ∴π2d d t y x =π2sin cos 101cos sin 01t t tt t=++===---. 11.求下列函数的微分: (1)ln sin2x y =; (2)1arctan 1x y x+=-; (3)e 0x yxy -=; (4)24ln y y x +=.解 (1)111d (lnsin )d (cos )d cot d 22222sin 2x x xy x x x x '==⋅⋅=; (2)2221(1)(1)1d d d 1(1)11()1x x y x x x x x x-++=⋅=+-++- (3)方程两边同时取微分,得d(e )d()0x yxy -=,2d de (d d )0x yy x x yy x x y y-⋅-+=, 整理得22d d xy y y x x xy-=+.(4)方程两边同时取微分,得312d d 4d y y y x x y+=, 整理得324d d 21x yy x y =+.12.利用微分求近似值:(1)sin3030︒'; (2解 (1)设()sin f x x =,则0π306x ︒==,π30360x '∆==,()cos f x x '=.11 / 11 000sin3030()()()f x x f x f x x ︒''=+∆≈+∆πππsincos 0.507666360=+⋅≈ (2)设()f x =064x =,1x ∆=,561()6f x x -'=.000()()()f x x f x f x x '=+∆≈+∆5611(64)12 2.00526192-⋅=+≈ 13.已知单摆的振动周期2T =2980cm/s g =,l 为摆长(单位为cm ),设原摆长为20cm ,为使周期T 增大0.05s ,摆长约需加长多少?解由2T =224πgT l =,02T =0.05s T ∆=,22πgT l '=. 所以027d 0.050.050.05 2.23cm 2ππgT l l l T '∆≈=⋅∆=⋅===≈, 即摆长约需加长2.23cm .。
高等数学导数与微分练习题
作业习题1、求以下函数的导数。
(1) yx 3 (x 21) 2;(2) ysin x ; ( 3) y e ax sin bx ;x(4)y ln(xx 2a 2);()x 1 ;(6) y x x。
5 yarctan1 ( ) 2、求以下隐函数的导数。
x 1 x(1) y sin x cos(x y) 0 ;(2)已知 e yxy e,求 y (0) 。
3、求参数方程x a(t sin t) 0) 所确立函数的一阶导数dy与二阶导数ya(1(acost )dx2d y。
dx 24、求以下函数的高阶导数。
(1),(n)( ) 2 求(50)。
y x求 y ;2 y x sin 2x, y5、求以下函数的微分。
(1) y x x ,( x 0) ;(2) yarcsin x 。
1 x 26、求双曲线 x2y 21,在点 ( 2a, 3b) 处的切线方程与法线方程。
a 2b 27、用定义求 f (0) ,此中 f (x)x 2sin 1 ,x0,并议论导函数的连续性。
0, x x 0.作业习题参照答案:1、(1)解: y[ x 3 (x 2 1) 2 ] ( x 3 ) ( x 2 1) 2 x 3[( x 2 1)](2)解: (3)解:x 2 ( x 2 1)(7 x 23) 。
y( sin x )xcos x sin x 。
xx 2y (e ax sin bx)ae ax sin bx be ax cosbxe ax (a sin bx b cosbx) 。
(4)解: y[ln( xx 2 a 2 )]1 a2 [ x x 2 a 2 ]x x 21[1x]1。
xx 2 a 2x 2x 2a 2a 2(5)解: y(arctanx1)1( x1)x 11 ( x 12 x 1x )1(x 1) 2 ( x 1) (x 1) 1 。
2( x21)(x1)2x21xxln x(6)解: y[() x]1 x)(e1 x( x ) x ( 1 ln 1 x ) 。
导数与微分习题及答案
第二章导数与微分(A)1 .设函数y 二f x ,当自变量x 由x 0改变到x 0 * e x 时,相应函数的改变量 y =()A. f x 0 : =x B . fx^_x C . f x 0 : =x f x 0D . f x 0 x2. 设f(x )在 x 处可,则曲区弋ix °)= () A. - f x oB . f -X 。
C . f x oD . 2f x o3 .函数f x 在点x 0连续,是f x 在点x 0可导的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数y = f u 是可导的,且u =x 2,则dy=()dxA. f x 2B . xf x 2C . 2xf x 2D . x 2f x 25. 若函数f x 在点a 连续,则f x 在点a () A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6 . f(x)=x-2在点x=2处的导数是() A . 1 B . 0 C . -1 D .不存在 7.曲线y =2x 3 -5x 2 • 4x -5在点2,-1处切线斜率等于()A . 8B . 12C . -6D . 68. 设y=e f 卜且f(x 二阶可导,则y"=() A . e f (x ) B . e f *)f "(x ) C . e f (x )〔f "(x f "(x jD . e f (x X 【f *(x 9 + f*(x 》e axx < 09. 若f"〔b+sin2x, x,0在x=°处可导'则a,b的值应为()717118.210. 若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F X 二 f X g X , G X A f X — g X 在 x ° 处()A .一定都没有导数B . 一定都有导数C .恰有一个有导数D .至少一个有导数11. 函数fx 与g X 在X o 处都没有导数,则Fx 二fx^gx , G x i= f x -g x 在 X o 处()A .一定都没有导数B . 一定都有导数C .至少一个有导数D .至多一个有导数12. 已知F x 二f !g x 1,在x 二X 。
导数微分练习题专升本
导数微分练习题专升本### 导数微分练习题#### 一、基础导数题1. 求导函数:设 \( f(x) = 3x^2 + 2x - 5 \),求 \( f'(x) \)。
2. 复合函数求导:若 \( g(x) = (2x^3 - x)^4 \),求 \( g'(x) \)。
3. 隐函数求导:给定 \( xy^2 - x^3 + y = 6 \),求 \( y' \)。
4. 参数方程求导:设 \( x = t^2 \),\( y = t^3 \),求\( \frac{dy}{dx} \)。
5. 高阶导数:若 \( f(x) = x^3 \),求 \( f'''(x) \)。
#### 二、导数的应用6. 切线问题:已知 \( f(x) = x^2 \),求在 \( x = 1 \) 处的切线方程。
7. 单调性:判断函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的单调性。
8. 极值问题:求函数 \( h(x) = x^3 - 3x^2 + 2x \) 的极值点。
9. 凹凸性:判断函数 \( k(x) = -x^4 + 4x^3 - 3x^2 \) 的凹凸性。
10. 函数的增长速度:比较 \( f(x) = e^x \) 和 \( g(x) = x^2 \) 在 \( x \) 趋于无穷大时的增长速度。
#### 三、微分练习题11. 一阶微分:设 \( z = x^2y + xy^2 \),求 \( dz \)。
12. 隐函数微分:若 \( x^2 + y^2 = 4 \),求 \( dy \)。
13. 参数方程微分:给定 \( x = e^{\theta} \),\( y =e^{2\theta} \),求 \( dy \)。
14. 函数的线性近似:使用 \( f(x) = \sin(x) \) 在 \( x = 0 \) 处的线性近似来估计 \( \sin(0.1) \)。
高等数学-——导数与微分练习题.pdf
C:若函数 f (x) 在点 x0 处不可导,则函数 f (x) 在点 x0 处左、右导数只有一个不存在
x≥0
()
(5)若 f (x) = x −1 , 则 f (x) 在 x = 1 处可导
()
(6) f (x) = 3 x 在 (−∞, +∞) 内均可导
()
(7)若函数 f (u) 可导,则 [ f (ln x)]′ = f ′(ln x)
()
(8)若 y = x2ex ,则 y′′ − 2 y′ + y = 0
dx
五、证明题
1.
设函数
f (x) = arctan 1+ x ,证明 dy 1− x
=
x
1 2+
1
dx
2.
证明:函数
f
(
x
)
=
⎧ ax + b, ⎨⎩ex −1, x
x ≤
> 0
0
在 x = 0 处可导的充要条件是 a = 1, b = 0 .
3.
证明:
f
(
x)
=
⎧⎪ ⎨
x3
sin
1 x
,
x
≠
0
在定义域内处处可微.
则 a, b 之值为(
)
A: a = 2,b = −1 B: a = 1,b = −3
C: a = 0,b = −2
D: a = −3,b = 1
(5)下列结论正确的是(
)
A:若左、右导数都存在,则函数 f (x) 在点 x0 处可导
B:函数 f (x) 在点 x0 处不可导的充要条件是左、右导数都不存在
⎛ ⎜⎝
arctan
第二章导数与微分练习题无答案
第二章导数与微分一、选择题1、设函数y=/(x),当自变量X由%改变到与+Δx时,相应函数的该变量Ay=()。
A/(⅞+-)A/U o)+∆x C./(x0+∆x)-∕(x o)D./(X0)ΔΛ^2、若函数F(X)在点与处可导,则Iim/(1-Ay)-/("二()oΔκ->O ∖χA-Γ(x0)B.f(-x0)Cr(Xo)D2f(x0)∖-x i,x<∖3、设∕*)=13 ,则/(x)在X=I处的( )。
[x2,x>∖A.左、右导数都存在B.左导数存在、右导数不存在C.左导数不存在、右导数存在D.左、右导数都不存在4、函数/(x)在点/连续,是/(外在点与可导的( )oA必要不充分条件 B.充分不必要条件C充分必要条件 D.既不充分也不必要条件5、曲线y=2x3-5X2+4%一5在点(2,-1)处切线的斜率是( )。
A8 8.12C.-6 D.6'e ax x<06、若/(%)=《' " 在X=O处可导,则a/的值应为( )。
Z?+sin2x,x≥0A.a=2,b=↑B.a=l,b=2C.a=-2,b=XD.a=2,b=-∖7、若/(L)=X,贝∣J∕'(x)=()oXA-B.-- C.∖ D.--VXXX X8、设函数)=/(〃)是可导的,且〃=/,则◎=()。
dxA∕,(X2) B.√,(X2) C.2xf∖X1) D.x2f,(x2)9、若y=cosx,则yW )。
A.cos(x -------- )B.COS(X+——)C.cos( ------- x)2 2 210、曲线卜二sm∕在/=工处的切线方程为( )。
y=cos2, 4A2^^x-y-2=0 B.√2x-4γ-l=0C.2√2x+y-2=0D.√2x+4y-l=011、设函数y=y(x)由方程孙-e'+"=O所确定,则y'(0)=(AO B.1C.2D312、函数/(幻在某一点。
微积分练习题
微积分练习题一、极限与连续(1) lim(x→0) (sin x / x)(2) lim(x→1) (x^2 1) / (x 1)(3) lim(x→∞) (1 + 1/x)^x(1) f(x) = |x| 1,在x = 0处(2) f(x) = (x^2 1) / (x 1),在x = 1处(3) f(x) = sqrt(x + 2) 2,在x = 1处二、导数与微分(1) f(x) = x^3 3x + 2(2) f(x) = e^x sin x(3) f(x) = ln(sqrt(1 + x^2))(1) f(x) = x^2 + 3x 5(2) f(x) = cos(2x)(3) f(x) = 1 / (1 x)三、高阶导数与微分方程(1) f(x) = x^4 2x^2 + 1(2) f(x) = e^x cos x(3) f(x) = ln(x^2 + 1)(1) y' = 2x + y(2) y'' 2y' + y = e^x(3) (1 + x^2) y'' + 2x y' = 0四、不定积分与定积分(1) ∫(x^2 + 1) dx(2) ∫(e^x x) dx(3) ∫(1 / (x^2 + 1)) dx(1) ∫_{0}^{1} (3x^2 2x + 1) dx(2) ∫_{π}^{π} (sin x) dx(3) ∫_{1}^{e} (1 / x) dx五、多元函数微分学(1) f(x, y) = x^2 + y^2(2) f(x, y) = e^(x + y) sin(x y)(3) f(x, y) = ln(x^2 + y^2)(1) f(x, y) = x^3 + y^3(2) f(x, y) = sin(x + y)(3) f(x, y) = sqrt(x^2 + y^2)六、重积分(1) ∬_D (x^2 + y^2) dxdy,其中D为圆心在原点,半径为1的圆(2) ∬_D (x y) dxdy,其中D为矩形区域0 ≤ x ≤ 1,0 ≤ y ≤ 2(3) ∬_D (e^(x + y)) dxdy,其中D为三角形区域0 ≤ x ≤ 1,0 ≤ y ≤ x(1) ∭_E (x^2 + y^2 + z^2) dxdydz,其中E为立方体区域0 ≤ x ≤ 1,0 ≤ y ≤ 1,0 ≤ z ≤ 1(2) ∭_E (xyz) dxdydz,其中E为长方体区域0 ≤ x ≤ 2,0 ≤ y ≤ 3,0 ≤ z ≤ 4七、级数(1) Σ (1/n^2),n从1到∞(2) Σ (n/(n+1)^2),n从1到∞(3) Σ ( (1)^n / n ),n从1到∞(1) Σ (x^n / n),n从1到∞(2) Σ (n! x^n),n从0到∞(3) Σ ( (n^2 + 1)^n x^n ),n从0到∞八、微分方程的应用(1) 物体在空气中自由下落,其速度v与时间t的关系,已知阻力与速度成正比。
最新高等数学(同济第五版)第二章导数与微分-练习题册
第二章 导 数 与 微 分第 一 节 作 业一、填空题:1. 假定:,)('0按照导数定义存在x f.)()(lim )2(.)()(lim)1(000000=--+=∆-∆-→→∆h h x f h x f x x f x x f h x2. 设=⋅=',5322y xx x y 则 .3. 曲线y=e x 在点(0,1)处的切线方程为 .4. 已知物体的运动规律为 s=t 3(米),则这物体在t=2(秒)时的速度为 . 二、选择题(单选):1. 设f(x)=x(x-1)(x+2)(x-3)(x+4)…(x+100),则f’(1)的值等于: (A )101!; (B )100!101-; (C )-100; (D ).99!100 答:( ).1)(;1)(;21)(;0)(:)0(',0,00,1)(.22-⎪⎩⎪⎨⎧=≠-=-D C B A f x x x e x f x为则设答:( ) 三、试解下列各题:1. 讨论函数.00,00,1sin 处的连续性与可导性在=⎪⎩⎪⎨⎧=≠=x x x xx y2. 已知).(',0,,sin )(x f x x x x x f 求⎩⎨⎧≥<=3. 设?,,1)(,1,1,)(2应取什么值处可导在为了使b a x x f x b ax x x x f =⎩⎨⎧>+≤=四、试证明下列各题:1. 证明:双曲线xy=a 2上任一点处的切线与两坐标轴构成的三角形的面积等于2a2.2. 如果f(x)为偶函数,且f’(0)存在,证明f’(0)=0.第 二 节 作 业一、填空题:.)]sin )(cos cos [(sin .2.',3ln .12=+-=+=x x x x dxdy x e y x则设二、选择题(单选):.)()()(;)()()(;)()()(;)()()(:,)(,)(00必可导必不可导必不可导必可导处则在不可导可导处设在x g x f D x g x f C x g x f B x g x f A x x g x f x -+答:( ) 三、试解下列各题: 1. 设.,cos 21sin 4πϕϕρϕϕϕρ=+=d d 求2. 求曲线y=2sinx+x 2上横坐标为x=0的点处的切线方程和法线方程。
导数和微分练习题(答案版)
1. 13arctan )1()(2+--=x x x x f ,求f’(1) 2. 设1lim )()1()1(2+++=--∞>-x n x n n e b ax e x x f 是区间),(+∞-∞内是可导函数,试确定常数a,b 3. 设f(x)是周期为2的周期函数,且在点x=1处连续,22cos ]3)(ln[lim 1=+>-xx f x π,求曲线y=f(x)在(-1,f(-1))处的切线方程。
4. 设函数在),(+∞-∞内有定义,对任意的x,y 都有)()()(x f e y f e y x f y x +=+,e f =)0(',求f (x )的表达式5. 设函数0,)(;0,)()(==≠-=-x a x f x x e x x f xϕ,其中的)(x ϕ具有二阶导数,且1)0(',1)0(-==ϕϕ1) 确定常数a 的值,使得f (x )在x=0时连续2) 求f’(x);3) 讨论f’(x)在区间),(+∞-∞内的连续性6. 设函数)()()(x g x f x F =,如果f(x)在x 0点可导,g (x )在x 0点连续不可导,证明:F(x)在x 0点可导⇔f(x 0)=07. 设曲线y=f(x)与曲线y e y x =-++)14tan(π在(1,0)处有公切线. 1)求公切线方程2)计算极限)1(lim +∞>-n n nf n 8. 设f(x)是周期为3的连续函数,在点x=0的某一邻域内恒有x x x f x f 2tan 6)tan 1(2)tan 1(+=--+,已知f(x)在点x=1处可导,求曲线y=f(x)在点(10.f(10))处的切线方程。
9. 设函数f(x)在x ≤x 0时具有二阶导数,00200,)()()(;),()(x x c x x b x x a x F x x x f x F >+-+-=≤=,试确定常数a ,b ,c ,使得F(x)在x 0处二阶可导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 导数与微分第一节 导数概念一.填空题1.若)(0x f '存在,则xx f x x f x ∆-∆-→∆)()(lim000=2. 若)(0x f '存在,hh x f h x f h )()(lim000--+→= .000(3)()limx f x x f x x∆→+∆-∆= .3.设20-=')(x f , 则=--→)()2(lim)000x f x x f xx4.已知物体的运动规律为2t t s +=(米),则物体在2=t 秒时的瞬时速度为 5.曲线x y cos =上点(3π,21)处的切线方程为 ,法线方程为 6.用箭头⇒或⇏表示在一点处函数极限存在、连续、可导、可微之间的关系,;可微 ⇔可导<≠⇒| 连续 <≠⇒ 极限存在。
二、选择题1.设0)0(=f ,且)0(f '存在,则xx f x )(lim 0→= [ ](A ))(x f ' ( B) )0(f ' (C) )0(f (D) 21)0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则xx b x f x a x f x ∆∆--∆+→∆)()(lim 0 = [ ](A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2ba +)(x f ' 3.函数在点x 处连续是在该点x 处可导的条件[ ](A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要4.设曲线22-+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ ] (A )(0,1) ( B) (1, 0) (C) ( 0,0) (D) (1,1):5.设函数|sin |)(x x f =,则 )(x f 在0=x 处 [ ] (A )不连续。
(B )连续,但不可导。
(C)可导,但不连续。
(D )可导,且导数也连续。
三、设函数⎩⎨⎧>+≤=11)(2x b ax x x x f 为了使函数)(x f 在1=x 处连续且可导,a ,b 应取什么值。
四、如果)(x f 为偶函数,且)0(f '存在,证明)0(f '=0。
五、 证明:双曲线2a xy =上任一点处的切线与两坐标轴构成三角形的面积为定值。
《第二节 求导法则(一)一、填空题1.x x y sin )sec 2(+=, y '= ; xe y sin -=, y '= .2.)2cos(xe y =,y '= ; y =xx2sin ,y '= 3.2tanln θρ=,ρ'= ; =r 2ln log 2+x x , r '=4. )tan ln(sec t t w +=, w '= . 2arccos()y x x =+,y '=5. ='+)1(2x ; (c x ++21 )'= .6. ]2tan [ln 'x = ; (c x x +++)1ln(2)'= .{二、选择题1.已知y=xxsin ,则 y '= [ ] (A )2cos sin x x x x - (B) 2sin cos x x x x - (C) 2sin sin xx x x - (D)x x x x sin cos 23-2. 已知y=xx cos 1sin + ,则y '=[ ] (A )1cos 21cos +-x x (B) 1cos 2cos 1-+x x (C) x cos 11+ (D) xx cos 11cos 2+-3. 已知xe y sec =,则y '=[ ](A )xxxe e e tan sec (B) x xe e tan sec(C) x e tan (D)xx e e cot4.已知)1ln(2x x y ++=,则y '=[ ] (A )211x + (B)21x + (C)21x x+ (D)12-x)5.已知xy cot ln ==,则4|π='x y =[ ](A )1 (B )2 (C )2/1- (D) 2- 6.已知xxy +-=11,则y '=[ ] (A ) 2)1(2+x (B) 2)1(2+-x (C) 2)1(2+x x (D) 2)1(2+-x x三、计算下列函数的导数:(1) y =+ (2) )tan(ln x y = (3) veu 1sin 2-= (4 ) )(ln sec 3x y =(5) ln(y x = (6) 1arctan 1xy x-=+ 四、-五、设)(x f 可导,求下列函数y 的导数dxdy (1))()(x f xee f y =(2))(cos )(sin 22x f x f y +=(3) )](arctan[x f y = (4))](sin[)(sin x f x f y +=第二节 求导法则(二)一、填空题: 1.x ey x 3cos 2-=,='y ; x y 2ln 1+=,='y2.xy 1arccos =,='y ; xarx e y tan =, ='y3.xx y sin 21sin 2arcsin ++=,='y<4.设1ln arctan 22--=x xxe e e y ,则==1x dx dy5.设322)(xe x y -+=,则='=0|x y6.设)(x f 有连续的导数,0)0(=f ,且b f =')0(,若函数⎪⎩⎪⎨⎧=≠+=0,0,sin )()(x A x xx a x f x F 在0=x 处连续,则常数A =二、选择题: 1.设)(x f y -=,则='y[ ](A ))(x f ' (B ))(x f '- (C ))(x f -' (D ))(x f -'- 2.设周期函数)(x f 在),(∞+∞-可导,周期为4, 又 12)1()1(lim 0-=--→xx f f x , 则曲线)(x f y =在点))5(,5(f 处的切线的斜率为[ ] ( (A )21(B )0 (C )1- (D )2- 3.已知 212arctan 21x x y -=,则 y '=[ ] (A ) 112+x (B) 21x + (C) 112+x (D) 12-x4.已知)ln arcsin(x x y =,则y '=[ ](A )x ln (B) 2)ln (1ln x x x x - (C)2)ln (1ln 1x x x -+ (D)1ln )ln (12--x x x三、已知2arctan )(,2323x x f x x f y ='⎪⎭⎫⎝⎛+-=,求:0|=x dx dy四、设0>x 时,可导函数)(x f 满足:xx f x f 3)1(2)(=+,求)(x f ' )0(>x 六、已知)(2)(x fa x =ψ,且)(ln 1)(x f a x f ⋅=',证明:)(2)(x x ψψ='七、证明:可导的奇函数的导数是偶函数。
?第三节 隐函数及由参数方程所确定的函数的导数一、填空题1.设yxe y +=1,则y '= . 2. 设)tan(r r +=θ,则r '= . 3. 设xyy x arctan ln22=+,则y '= 。
4.设⎩⎨⎧==te y t e x t t cos sin ,则dx dy= ,3|π=t dx dy = 。
二、选择题1. 由方程0sin =+yxe y 所确定的曲线)(x y y =在(0,0)点处的切线斜率为 [ ] (A )1- (B )1 (C )21 (D )21- <2.设由方程22=xy 所确定的隐函数为)(x y y =,则dy =[ ](A )dx x y 2- (B )dx x y 2 (C )dx x y - (D )dx xy3. 设由方程0sin 21=+-y y x 所确定的隐函数为)(x y y =,则dxdy= [ ](A )y cos 22- (B )y sin 22+ (C )y cos 22+ (D )xcos 22-4. 设由方程⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 所确定的函数为)(x y y =,则在2π=t 处的导数为 [ ](A )1- (B )1 (C )0 (D )21-5.设由方程arctan x y t ⎧⎪=⎨=⎪⎩)(x y y =,则=dx dy [ ](A(B )1t(C )12t ; (D )t ..三、求下列函数的导数dydx~1.222333x y a += , 2. 33cos sin x a ty a t⎧=⎨=⎩3.2310xy x y ye +++= 4. x e x x y -=1sin四、求曲线⎩⎨⎧=--=+-0201sin 3θθθy e x x 在0=θ处的切线方程,法线方程第四节 高阶导数一、填空题1.设φφcos =r ,则r '= , r ''= . 2.设)1ln(2x x y ++=,则y '= ,y ''=3若)(2t f y =, 且)(t f '' 存在,则dt dy= ,22dty d =>4.设yxe y +=1,则y '= , y ''=5.设⎩⎨⎧-==arctgt t y t f x )(,且2tdx dy =,则22dx y d = 。
6. 设12-+=x nex y ,则)(n y=7.设()(1)(2)(2014)f x x x x x =---,则)0(f '= .二、选择题 1.若xx y ln 2=, 则y ''=[ ](A )x ln 2 (B )1ln 2+x (C )2ln 2+x (D )3ln 2+x 2.设)(u f y =,xeu =,则22dx y d =[ ] (A ))(2u f ex'' (B ))()(2u f u u f u '+'' (C ))(2u f e '' (D ))()(u uf u f u +''$3.设xy 2sin =则=)(n y[ ] (A )]2)1(2sin[21π-+-n x n (B )]2)1(2cos[21π-+-n x n(C )]2)1(2sin[21π-++n x n (D )]2)1(2sin[2π-+n x n 4. 设xxe y =,则=)(n y[ ](A ))(n x e x + (B ))(n x e x - (C ))(2n x e x+ (D )nxxe三、设)(x f ''存在,求下列函数y 的二阶导数22dxyd 1.)(xe f y = 2.)](ln[x f y =四、求下列函数y 的二阶导数22dxyd 1. cos sin x a ty b t=⎧⎨=⎩(2. arctan yx = 五、设123y x =-,求)(n y第五节 函数的微分一. 已知x x y -=2,计算在2=x 处(1)当1.0=∆x 时,=∆y ,dy = (2)当001.0=∆x 时,y ∆= , dy = 。