2010级《弹塑性力学》力学

合集下载

《弹塑性力学》第四章 应力应变关系(本构方程)共42页文档

《弹塑性力学》第四章 应力应变关系(本构方程)共42页文档

应变能增量A 中有体积分和面积分,利用
柯西公式和散度定理将面积分换成体积分。
17.04.2020
8
§4-1 应变能、应变能密度与弹性材料的 本构关系
A V fiu id V s F iu id S U VW d V
SF i uidSS(ij ui)njdS V(jiui),j dV
17.04.2020
19
§4-2 线弹性体的本构关系
2.2 具有一个弹性对称面的材料
若物体内各点都有这样一 x3 个平面,对此平面对称方
向其弹性性质相同,则称
此平面为弹性对称面,垂
直弹性对称面的方向称为
弹性主轴。
x1
弹性主轴
x2
17.04.2020
20
§4-2 线弹性体的本构关系
如取弹性对称面为x1 —x2
{}=[c]{}
T 11 22 33 23 31 12
T 11 22 33 23 31 12
17.04.2020
16
§4-2 线弹性体的本构关系
2.1 各向异性材料
{}=[c]{}
C11 C12
C C21 C22
C61 C62
C16
C26
C66
17.04.2020
17.04.2020
3
§4-1 应变能、应变能密度与弹性材料的 本构关系
外力做实功 A: A=U 物体的应变能U
U VWdV
W:应变能密度——单位体积的应变能。
17.04.2020
4
§4-1 应变能、应变能密度与弹性材料的 本构关系
1.2 应变能密度W与材料的i
第四章 应力应变关系(本构方程)
本章讨论弹性力学的第三个基本规律。 应力、应变之关系,这是变形体力学研究问题 基础之一。在前面第二、三章分别讨论了变形 体的平衡规律和几何规律(包括协调条件)。

弹塑性力学讲义 第十章弹性力学的能量原理

弹塑性力学讲义 第十章弹性力学的能量原理
V
V S

V
=0 , 得
(k ) ij


ij dV V f i u i dV S X i u i dS ——虚位移方程

V ( ij , j f i )u i dV S
(k )

(k ) ( X i n j ij )dS 0
ui(k)为可能位移,同时满足本构方程。而 =0,表明由 ui(k)
V V

V
(1) ( 2 ) ij ij
(1) ( 2 ) ( 2 ) (1) ( 2 ) (1) dV Eijkl kl ij dV E klij kl ij dV ij ij dV V
W12=W21
第一种状态的外力在第二种状态的相应弹性位移上所做 的功等于第二种状态外力在第一种状态的相应弹性位移上 所做的功。
1 ( k1 ) ( k 2 ) 1 ( k1 ) ( k 2 ) ij u i , j ji u j ,i 2 2
( k1 ) ( k 2 ) ( k1 ) ( k 2 ) ij u dV ,j i ij ij dV V V
代入虚功方程左端,得
( k1 ) ( k2 ) ( k1 ) ( k2 ) We f i ui( k2 ) dV ij dV ij ij dV , j ui V V V
导出ij 满足静力方程, 所以由=0 即为真解应满足的控制方程。
(k)
最小势能原理的表述: 在位移满足几何方程和位移边界条件的前 提下, 如果由位移导出的相应应力还满足平衡微分方程和力的边界条 件,则该位移必使势能
为驻值(极值) 。如可能位移使 的变分

《弹塑性力学》第十一章 塑性力学基础

《弹塑性力学》第十一章 塑性力学基础

2021/8/9
30
§11-2 一维问题弹塑性分析
s
-
+
+ -
+ +
s
- = +-
s
M I
y
y y0
x
y0s
y
M I
y
y0 y y0
s
M I
y
y y0
2021/8/9
31
§11-2 一维问题弹塑性分析
2.3 梁具有一个对称轴截面的弹塑性弯曲:
M
x
y
b
M
z
h
y
具有一个对称轴截面梁的弹塑性弯曲特点: 随着弯矩的增大,中性轴的位置而变化。
(a段进入塑性屈服,但 b 段仍处于弹性)
N2=P- N1=P-sA 力 P 作用点的伸长取决于b 段杆的变形
b
N2b EA
(P
s A)b
EA
2021/8/9
17
§11-2 一维问题弹塑性分析
b
N2b EA
(P s A)b
EA
Pe s A(1 a b) s A Pe (1 a b)
应力较少)屈服条件是不变的。当应力满足
屈服条件时,卸载将有残余变形,即塑性变
形存在。卸载按线性弹性。
C
s A B
’s s
A
B
C
o
p
e
p
e
o O’
p e
软钢 -
合金钢 -
2021/8/9
5
§11-1 金属材料的力学实验及几种简化力学模型
而对于合金钢,无明显屈服,当 s时进
入强化阶段,在加载即发生弹性变形和塑性变

弹塑性力学第一章绪论

弹塑性力学第一章绪论
*
*
§1-5 笛卡尔坐标系下的矢量、 张量基本知识
5.1 力学中常用的物理量
1.标量:
只有大小、没有方向性的物理量,与坐标系选择无关。 用字母表示,如温度T、时间t、密度 等。标量无下标。
诌脱揣刻迂釜斌谬痔垫会弘猜签伞汉相驶菱慈珠妙萌惦枣肘扯撕砾络眉洋《弹塑性力学》第一章 绪论《弹塑性力学》第一章 绪论
参考书目
碉自冯冯伦瀑瓣且柄愤烯桃珊骡逆谩焰舆缀隆坯汾烂样鬼彼邱护堤狰轿讳《弹塑性力学》第一章 绪论《弹塑性力学》第一章 绪论
*
*
§1-1 弹塑性力学的任务和对象
第一章 绪论
§1-2 基本假设和基本规律
§1-3 弹性力学的研究方法
§1-4 弹性力学的发展梗概(略)
§1-5 笛卡尔坐标系下的矢量、张 量基本知识
*
*
§1-2 基本假设和基本规律
假设3:小变形假设。物体在外因作用下,物体产生的变形与其本身几何尺寸相比很小。
假设4:应力与应变关系为线性。此假设适用于线弹性理论。
墒拐疙交峨扳令毯阻仙宛零盾蹿偏由净砒辈爱孵寨碧酣剥低麻针把雷体踏《弹塑性力学》第一章 绪论《弹塑性力学》第一章 绪论
*
*
§1-2 基本假设和基本规律
数学方法:精确解法(解析解)、近似解法、 数值解法。 实验方法:电测方法、光测方法等。
§1-4 弹性力学的发展梗概(略)
今奶椽四拌怪鳞蕉姜谷菠颁功怨宗萤驮眯澜欠绸张懒龚菇喜然烤鸯弗啡棵《弹塑性力学》第一章 绪论《弹塑性力学》第一章 绪论
*
*
§1-5 笛卡尔坐标系下的矢量、张 量基本知识
由 ij 定义及哑标、自由标定义,可得:
北驮藻稗热椿簇痔逛匪拎烧曲承倦彰砚滋尽孽揩轰俐碱失瓜轧搪疟贮市活《弹塑性力学》第一章 绪论《弹塑性力学》第一章 绪论

弹塑性力学9厚壁圆筒

弹塑性力学9厚壁圆筒

1 z [ z ( r )] E
当 z 0 (平面应力)或 z const (广义平面应力) 时,得 z const ,即轴向应变为常量。
此时在 z 方向为均匀变形,垂直于轴线的平面在变 形过程中保持为平面。 边界条件: r
r a
p1 , r
采用极坐标( r ,θ)表示各应力分量。 r 0 轴对称性(应力轴对称)
径向应力与环向应力仅是r的函数,与θ无关, r (r ), (r ) r (r ), (r )
由于轴对称性,筒体只产生沿半径方向的均匀膨胀 和收缩,即只产生径向位移 u (r ) 轴向位移仅与z有关,即 w( z )
讨论
①端部为闭口时, F a 2 p
(1 2 )a 2 z p 2 2 E (b a ) a2 z 2 2 p (b a )
平面应变介于前两种情 况之间,且接近于端部 为闭口的情况,μ= 0.5 时,两种情况重合。
a2 z E z 2p 2 2 b a a2 F z ( 2p) 2 2 2 E (b a ) a
rp a
rp a
)
rp b 时,整个截面
p p s ln
s
2
(1
r
b 塑性极限压力 pl s ln a
b
2 p 2
进入塑性状态
r s (1 ln ) b
r r s ln b
应力分布情况

pe
+

pp
+

pl
+
-
r
-
r
-
r
②端部为开口时, F 0

弹塑性力学第二章

弹塑性力学第二章

一、P点的正应变
x

(u

u dx) x dx
u

u x
在这里由于小变形,由y
方向位移v所引起的PA的伸缩
是高一阶的微量,略去不计。
o
u P
v
y
P
B v v dy
y
u u dx x
A
A
x
v v dx x
B
u u dy y
图2-5
13
同理可求得:
等厚度薄板,板边承受平 行于板面并且不沿厚度变化的 面力,同时体力也平行于板面 并且不沿厚度变化。
σz = 0 τzx = 0 τzy = 0
图2-1
3
特点:
1) 长、宽尺寸远大于厚度
2) 沿板边受有平行板面的面力,且沿厚度均布,体力
平行于板面且不沿厚度变化,在平板的前后表面上
无外力作用。
y
x
注意:平面应力问题z =0,但 z 0 ,这与平面应变
它平行于上述斜面,并与经过P点而垂直于x轴和y轴的两个平
面划出一个微小的三角板或三棱柱PAB。当平面AB与P点无限
接近时,平面AB上的应力就成为上述斜面上的应力。
o
yx y
x
P
A
xy
x
y
B
N
YN
XN
N
S
N
设AB面在xy平面内的长度为dS, 厚度为一个单位长度,N 为该面的外
法线方向,其方向余弦为:
x

x
x
dx)
dy 1
x
dy1
(
yx

yx
y
dy)

弹塑性力学习题与答案

弹塑性力学习题与答案

.1 / 9本教材习题和参考答案及部分习题解答第二章2.1计算:<1>pi iq qj jk δδδδ,<2>pqi ijk jk e e A ,<3>ijp klp ki lj e e B B 。

答案<1>pi iq qj jkpk δδδδδ=; 答案 <2>pqi ijk jk pq qp e e A A A =-;解:<3>()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。

2.2证明:若ijji a a =,则0ijk jk e a =。

〔需证明2.3设a 、b 和c 是三个矢量,试证明:证:因为123111123222123333i i i i i i i i i i i i i ii ii i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。

弹塑性力学-01

弹塑性力学-01

材料力学的研究对象
2
弹性力学 • 研究对象-块体板壳
弹塑性力学 • 研究对象广泛 • 数学方法
3
构件的四项基本要求
•强 •刚 度:抵抗破坏(断裂或过量塑性变形)的 度:抵抗弹性变形的能力。
能力。 • 稳定性:保持其原有平衡状态的能力。
•韧
性:抵抗大塑性变形而不破裂的能力。
4
基本任务
• 研究可变形固体受到外载荷、温度变化及边界约束
1-2
弹塑性力学的基本任务
• 工程问题的对象是结构
• 结构的功能——承受载荷
• 结构的基本单元——构件
• 构件的属性 – 承受载荷、可变形、由固体材料构成
1
构件的种类——杆件、板、壳、块体
材料力学 • 研究对象-杆件
结构力学 • 研究对象-杆系
弹塑性力学 给出用材料力学和结构力学方 法无法准确求解问题的解法 给出材料力学和结构力学无法 给出的可靠性和精确度的度量
边界条件
边值问题 求解
对工程 问题作 出评价
20
1-5 弹塑性力学中的基本假设
• 按照物体的性质以及求解的范围,忽
略一些可以暂不考虑的因素,而提出 一些基本假设,使所研究的问题限制
在方便可行的范围以内。
21
一、连续性假设:物质密实地充满物体所在空间,毫无空隙。 (应力应变和位移等力学量可以用坐标的连续函数表示,可 用微积分数学工具) 二、均匀性假设:物体内,各处的力学性质完全相同。 三、各向同性假设:组成物体的材料沿各方向的力学性质完全 相同。(这样的材料称为各项同性材料;沿各方向的力学 性质不同的材料称为各项异性材料。) 四、小变形假设:材料力学所研究的构件在载荷作用下的变形 与原始尺寸相比甚小,故对构件进行受力分析时可忽略其 变形。 五、无初应力,物体原来处于一种无应力的自然状态,在外力 作用之前,物体内各点应力为零 22

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案

厚壁筒应力问题
要点一
总结词
厚壁筒应力问题主要考察了弹塑性力学中厚壁筒结构的应 力分析和变形计算。
要点二
详细描述
厚壁筒应力问题涉及到厚壁筒结构在受到内压、外压或其 他复杂载荷作用时的应力分布和变形情况。在解题过程中 ,需要运用弹塑性力学的相关理论,如应力分析、应变分 析等,来求解结构的应力分布和变形情况。同时,还需要 考虑厚壁筒结构的特殊性,如不同材料的组合、多层结构 等,对结构应力和变形的影响。
02
弹塑性力学基础知识
应力和应变
基本概念
详细描述:应力和应变是弹塑性力学中的基本概念。应力表示物体内部相邻部分之间的相互作用力,而应变则表示物体在应 力作用下的变形程度。
屈服条件与应力-应变关系
屈服准则与流动法则
详细描述:屈服条件决定了材料在应力作用下的屈服点,是判断材料是否进入塑性状态的重要依据。 应力-应变关系则描述了材料在受力过程中应力与应变的变化规律。
弹塑性力学特点
弹塑性力学具有广泛的应用背景,涉及到众多工程领域,如结构工程、机械工 程、航空航天等。它既适用于脆性材料,也适用于塑性材料,并考虑了材料的 非线性特性。
弹塑性力学的基本假设
连续性假设
小变形假设
假设固体内部是连续的,没有空隙或 裂纹。
假设物体在外力作用下发生的变形是 微小的,不会影响物体内部应力分布。
弹塑性力学部分习题及答 案
• 弹塑性力学概述 • 弹塑性力学基础知识 • 弹塑性力学典型习题解析 • 弹塑性力学部分习题的定义与特点
弹塑性力学的定义
弹塑性力学是一门研究固体在受到外力作用时,其内部应力、应变和位移之间 关系的学科。它主要关注材料在受力过程中发生的弹性变形和塑性变形。

弹塑性力学课件-10塑性极限分析

弹塑性力学课件-10塑性极限分析

s ij ij

1 2

s
ij
ui x j
s
ji
u j xi

体力为零时:
Fiui*dS
s
ij
* ij
dV
ST
V
13
虚功率原理:在外力作用下处于平衡的变形体,若给物 体一微小的虚变形(位移)。则外力的虚功率必等于应 力的虚功率。
fiui*dV
设机动允许的位移(速度)场 u * i
q ij*
破坏载荷: k Pi 应力场: s * ij
虚功率原理:
k Piui*dS
s
*
ij
i*j
dV
ST
V
s*
s s ij
*
ij
ij
s ij
l Piui*dS s iji*jdV
ST
V
k l
ST
s l
16
三.塑性极限分析定理
2. 上限定理:
机动允许的位移(速度)场:满足破坏机构条件(几何 方程和位移、速度边界条件),外力做功为正的位移 (速度)场。 [ 放松极限条件,选择破坏机构,并使载荷在其位移场上 做功为正]
破坏载荷:机动允许的位移场所对应的载荷。k P
k :机动允许载荷系数
限:Pl+= kP
(3)在多个破坏荷中取最小值: Plmin+
(4)检查:若内力场是静力允许的,即不违背极限条件, 则解:)Plmin+ =Pl 。否则: Plmin+ 为Pl 的一个上限解(近似
21
§10-3 梁的塑性极限分析
一.静定梁的极限分析

02应变分析(弹塑性力学讲义)

02应变分析(弹塑性力学讲义)
2 2 d x d y 2 + d y d z 2 + d z d x 2 + 3 d xy + d 2 + d zx yz 2
六、对数应变
当应变较大时,考虑一截面积为A0、长为l0 的杆,受力后 长为l ,截面积为A,当杆伸长dl 时,应变增量为:
v xy + x w yz + y u zx + z
平面问题的几何方程:
柱坐标下的几何方程: u r r 1 v u + r r w z z
x y xy
u x v y v u + x y
yz
yz
2 z x 2
2 zx 2 x + 2 zx z
xy

yz
v u + x y
w v + y z
u w + z x
xy z
yz
2v 2u + xz yz
zx
2v 2w + x zx yx zx 2w 2u + y xy zy
由体积不可压缩得:
A0l0 Al
A0 l * ln ln l0 A
l0 A A0 l
1 * ln ln(1 ) 1
1 e *
§2-4 应变协调方程(相容方程)
A
C
B
D
变形前是连续的,变形后仍然是连续的。不允许出 现裂纹或发生重叠现象。 为保证变形前后物体的连续性,应变之间必然存在 某种关系,描述这种关系的数学表达式就是应变协 调方程。
0.5

弹塑性力学第三章

弹塑性力学第三章
左右两边: f x 0, f y b 上下两边: f x b, f y 0 可见,应力函数 bxy 能解决矩形板受均布剪 力的问题。
b
y
b
x
图 3-1b
§ 3-1
多项式解答
♦ 同理,应力函数
cy 2
c 0
O
能解决矩形板在 x 方向受 均布拉力(设 c> 0 )或均 布压力 (设 c < 0 ) 的问 题,图3-1c 。
2
2 2Φ 12kxy Φ x 2 3 y 2 0 y h x 2Φ 6ky 2 3k 3 xy xy h 2h
O l y
h x
(2)边界条件:

上下边界
y y h 2
0
2

xy y h 2
h 6k 3k 2 0 3 h 2h
y
图 3-1 a
§ 3-1
多项式解答
可见,应力函数 ax 能
2
2a
O
解决矩形板在y方向受均布 拉力(设a > 0)或均布压 力(设a < 0)的问题。
2a
y 图 3-1a
x
§ 3-1
多项式解答
(2) bxy
b 0
b b
O
x 0, y 0, xy yx b
12 M x 3 y, y 0, xy yx 0 代入式(a),得: h
M x y, y 0, xy yx 0 I 结果与材料力学中完全相同。 对于长度l 远大于深度h 的梁,上面答案 是有实用价值的;对于长度l与深度h 同等大 小的所谓深梁,这个解答是不准确的。

弹塑性力学答案

弹塑性力学答案

一、简答题1答:(1)如图1所示,理想弹塑性力学模型:e s seE E σεεεσεσεε=≤==>当当(2)如图2所示,线性强化弹塑性力学模型:()1e s s eE E σεεεσσεεεε=≤=+->当当(3)如图3所示,幂强化力学模型:nA σε= (4)如图4所示,钢塑性力学模型:(a )理想钢塑性:0s sεσσεσσ=≤=>当不确定当(b )线性强化钢塑性:()0/s s sEεσσεσσσσ=≤=->当当图1理想弹塑性力学模型图2线性强化弹塑性力学模型图3幂强化力学模型(a ) (b ) 图4钢塑性力学模型2答:3答:根据德鲁克公设,()00,0pp ij ij ij ij ij d d d σσεσε-≥≥。

在应力空间中,可将0ij ijσσ-作为向量ij σ与向量0ij σ之差。

由于应力主轴与应变增量主轴是重合的,因此,在应力空间中应变增量也看作是一个向量。

利用向量点积的定义:()00cos 0p p ijij ij ij ij ij d σσεσσεϕ-=-≥,ϕ为两个向量的夹角。

由于0ij ij σσ-和p ij ε都是正值,要使上式成立,ϕ必须为锐角,因此屈服面必须是凸的。

4 答:逆解法就是先假设物体内部的应力分布规律,然后分析它所对应的边界条件,以确定这样的应力分布规律是什么问题的解答。

半逆解法就是针对求解的问题,根据材料力学已知解或弹性体的边界形状和受力情况,假设部分应力为某种形式的函数,从而推断出应力函数,从而用方程和边界条件确定尚未求出的应力分量,或完全确定原来假设的尚未全部定下来的应力。

如果能满足弹性力学的全部条件,则这个解就是正确的解答。

否则需另外假定,重新求解。

二、计算题1解:对于a 段有:0N a a a aF A E a a σσεε==∆=,对b 段有:0N b b bbP F A E b b σσεε-==∆=又a b ∆=∆ 则N bPF a b=+ 2解:代入公式,116I =,227I =-,30I = 故117.5MPa σ=,20MPa σ=,3 1.5MPa σ=-()0123/3 5.33MPa σσσσ=++=08.62MPa τ==3解:(1)代入公式,110I =,2200I =-,30I = 故主应力:120MPa σ=,20MPa σ=,310MPa σ=-12352MPa σστ-=±=±,132152MPa σστ-=±=±,123102MPa σστ-=±=±所以max 15MPa τ=(2)代入公式,160I =,21075I =,35250I =故主应力:130MPa σ=,222.1MPa σ=,37.9MPa σ=1237.12MPa σστ-=±=±,13211.052MPa σστ-=±=±,123 3.952MPa σστ-=±=±所以max 11.05MPa τ=4 证明:将213132σσσσμσσ--=-中,化简得:13=将0τ=13max 2σστ-=代入maxττ中,化简得:0max13ττ=所以,等式得证。

弹塑性力学-第四章

弹塑性力学-第四章

ur
u r ur dr r A A
x
径向线段PA的转角: 线段PB的相对伸长: 环向线段PB的转角:
1
1 0
PB PB (r ur )d rd u r (c) PB rd r
(b)
tan 1 1
ur (ur d ) ur BB PP 1 u r (d) PB r rd
剪应变为:
1 ur r
(d)
r 1 1 1 1 ur r
(e)
(2) (P,A,B)只有环向位移, 无径向位移
径向线段PA的相对伸长:
O

PA PA dr dr r 2 PA dr 0
径向线段PA的转角: (f)
r P d
2 X Y 2 2 2 ( x y ) (1 ) x y y x
2 2 2 2 ( x y ) 0 x y 4 4 4 4 4 2 2 2 4 0 x x y y
r r
d
r
P r
x
(r dr )d dr A k r r r dr r k
将上式化开:
r rd
O r r rdrd ddr r drd r

drd kr rdrd 0
两边同除以
(h)
环向线段PB的转角:
剪应变为:
r 2
u u 2 2 r r
u 2 r
(i) (j)
(3) 总应变(是指同时存在径向、环向位移的一般情形)
ur u r 0 r r1 r 2 r r ur 1 u 1 2 r r 1 ur u u r r 1 r 2 r r r u r r r ur 1 u r r

弹塑性力学课后习题答案

弹塑性力学课后习题答案

(I-4) (I-5)
★ 关于求和标号,即哑标有:
◆ 求和标号可任意变换字母表示。
◆ 求和约定只适用于字母标号,不适用于数字标号。 ◆ 在运算中,括号内的求和标号应在进行其它运算前
优先求和。例:
aii2a121a222a323
(I-12)
(ai) i2(a 1 1a22 a3)3 2 (I-13)
aibjk cijk
(I-21)
◆ 张量乘法不服从交换律,但张量乘法服从分配
律和结合律。例如:
( a i j b i) c j k a i c k j b i c k j; 或 ( a i b k j ) c m a i( b j k c m )
(I-22)
C、张量函数的求导:
◆ 一个张量是坐标函数,则该张量的每个分量都
◆ 绝对标量只需一个量就可确定,而绝对矢量则需
三个分量来确定。
◆ 若我们以r表示维度,以n表示幂次,则关于三维
空间,描述一切物理恒量的分量数目可统一地表 示成:
Mrn (Ⅰ—1)
◆ 现令n为这些物理量的阶次,并统一称这些物
理量为张量。
当n=0时,零阶张量,M=1,标量; 当n=1时,一阶张量,M=3,矢量;
(I-25 )
4.张量的分解
张量一般是非对称的。若张量 aij的分量满足
aij a ji
(I-27)
则 aij 称为对称张量。 如果 的分aij量满足
aij aji
(I-28)
则称为反对称张量。显然反对称张量中标号重复的
分量(也即主对角元素)为零,即 a11a22。a330
第二章 应力理论
七应变莫尔圆41弹性变形与塑性变形的特点塑性力学的附加假设42常用简化力学模型43弹性本构方程弹性应变能函数44屈服函数主应力空间常用屈服条件47塑性本构方程简介静不定问题的解答1静力平衡分析平衡微分方程2几何变形分析几何方程3物理关系分析物理方程表明固体材料产生弹性变形或塑性变形时应力与应变以及应力率与应变率之间关系的物性方程称为本构方程关系

弹塑性力学第4章

弹塑性力学第4章
3
B 0,0,0
A 1 , 2 , 3
1
2
B点坐标原点,平均应力=0的应力状态
4.2.2屈服曲面:
f 上述屈服条件在应力空间所表达的曲面称之为屈服曲面。
1
, 2 , 3 C
f 1 , 2 , 3 C f 1 , 2 , 3 C
1 2k s , k s
2
Tresca 屈服条件可以表示为:

2 3 s 3 1 s 1 2 s
复杂应力状态下判断物体是否进入塑性阶段的公式。
Tresca 屈服条件的优缺点: 优点:当主应力顺序已知时,表达式简单 缺点: 1)当主应力顺序未知时,表达式复杂 2) 只考虑最大最小主应力 3) 屈服曲面为正六角柱面,棱边处切平面不唯一
Mises 屈服条件 用下列方程表示: 1 2 或
2
2 3 3 1 6B 2
2 2
2

x y

2
y z

2
2 2 2 6B 2 z x +6 xy yz zx


即:
f ij 0
加载过程 卸载过程
点在屈面上移动为加载过程
加载准则
f 0
f 0
f 0
理想材料 强化材料 加载
加载 中性变载
卸载 卸载
屈服条件为Mises的加载准则
J 2 0/ i 0
J 2 0/ i 0
J 2 0/ i 0
2s
3
Mises屈服条件的表达式:
x y y z z x +6 xy 2 yz 2 zx 2 2 s 2

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案


根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析

弹塑性力学

弹塑性力学
F Xi Yj Z k
—— 作用于物体表面单位面积上的外力
z
Q
X Y Z —— 面力矢量在坐标轴上投影
单位: 1N/m2 =1Pa (帕)
Z
k i
x O j
X
S Y
y
1MN/m2 = 106Pa = 1MPa (兆帕)
(1) F 是坐标的连续分布函数;
说明: (2) F 的加载方式是任意的;
l,m,n的线性齐次方程。若有非零解,则此方程组的 系数行列式应当等于零,即
x v xy xz yx y v yz 0 zx zy z v
展开行列式得到 其中
v I1 v I 2 v I 3 0
3 2
2 2 2 I 2 x y y z z x ( xy yz zx ) 2 2 2 I 3 x y z 2 xy yz zx ( x yz y zx z xy ) I1 x y z
( x v )l xy m xz n 0 yx l ( y v )m yz n 0 zx l zy m ( z v )n 0
几何关系
l m n 1
2 2 2
l,m,n不能同时为零 ,因此前式为包括三个未知量
y
x
Z
t/2
y
薄板如图:厚度为t,以薄板的中面为xy面,以垂直 于中面的任一直线为z轴,建立坐标系如图所示。 因板面上(z = t/2)不受力,所以有:
(

z z t 2
)
0, (

zx z t 2
)
0, (

弹塑性力学(

弹塑性力学(
1 2 3
23
三向应力状态( Three—Dimensional State of Stress): 三个主应力都不为零的应力状态。
2 3
1 x
x x
x
zx
xz
二向应力状态(Plane State of Stress): 一个主应力为零的应力状态。
单向应力状态(Unidirectional State of Stress): 一个主应力不为零的应力状态。
n=cos(N,z) SDOAB=nS 26
1、斜截面上的应力 z
Fx 0
px S x lS yx mS zx nS 0
C pz
px l x m yx n zx
N
py l xy m y n zy
yx xy
x
pz l xz m yz n z
y
弹塑性力学 前言
❖弹塑性力学的定义 ❖弹塑性力学中的简化假设 ❖弹塑性力学的研究方法 ❖弹塑性力学的主要内容
1
弹塑性力学的定义
❖ 弹塑性力学的定义:弹塑性力学是固体力学的一个重 要分支,是研究弹性体和弹塑性体在载荷作用下应力 分布规律和变形规律的一门学科。
❖ 任务:
❖ 根据实验观察结果寻求弹塑性状态下的变形规律,建立本构关系及 有关基本理论。
②全应力:p ΔA0 ΔA
O
全应力分解为:
x
z
垂直于截面的应力称为“正应力”:
pcosa
位于截面内的应力称为“切应力”: O
psina
DF M
DA
y
n
M ap
y
x 19
应力状态
➢ 一点的应力状态: 过一点有无数的截面,这一点的各个截面上应力情况的集合,

弹塑性力学第10章结构的塑性极限分析与安定性ppt课件

弹塑性力学第10章结构的塑性极限分析与安定性ppt课件
正如普通结构铰的作用一样,跨中出现了 塑性铰。
➢ 塑性铰与结构铰的比较:
相同点——允许梁产生转动;
不同点——①塑性铰的存在是由于该截面上存 在弯矩M = Mp;②塑性铰为单向铰,即梁截面 的转动方向与塑性极限弯矩的方向一致,否则 将使塑性铰消失。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加消费 者购买 商品的 价款或 接受服 务的费 用
10-2 塑性极限分析的定理与方法
➢ 结构塑性极限分析中的几个假设: (1)材料的应力-应变模型是理想刚塑性的,
即不考虑材料的弹性变形及强化效应。 (2)在达到塑性极限状态的瞬间之前,结构
的变形足够小,且不会失去稳定性。 (3)所有外载荷都按同一比例增加。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
We= P Wi = Mp + 2Mp + Mp 由We= Wi 以及 = 2/l得
Pl+ = 8Mp/l 由于上限解与下限解相
同,该结果即为极限 载荷的完全解。
Pl- = Pl+ = Pl = 8Mp/l
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
➢弯矩与曲率的关系
Ks Kp
31
Ms Mp
1/2
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档