拉伸性能的测定修改版

合集下载

拉伸测试ISO标准-总则解析

拉伸测试ISO标准-总则解析
σy 屈服应变下的应力。单位为 MPa。 注释:其数值可能小于可获得的最大应力(见图 1,曲线 b 和 c)。 3.6.2 强度
σm 拉伸试验中观察到的第一个局部最大力值。单位为 MPa。 注释:其也可能是样品屈服或断裂时的力值(见图 1)。 3.6.3 x%应变处的应力
σx 当应变达到规定值 x%时的应力。单位为 MPa。 注释:x%应变处的应力值在某些情况下可能有用,如当应力/应变曲线没有屈服点时(见图 1,曲线 d)。 3.6.4 断裂应力
如使用光学引伸计,特别是对于薄片和薄膜,应在试样上标出规定的标线,标线与试样 的中点距离应大致相等(±1 mm),两标线间距离的测量精度应优于 1%。
标线不能刻划、冲刻或压印在试样上,以免损坏受试材料,应采用对受试材料无影响的 标线,而且所划的相互平行的每条标线要尽量窄。 6.4 试样检查
试样应无扭曲,相邻的平面间应相互垂直。表面和边缘应无划痕、空洞、凹陷和毛刺。 试样可与直尺、直角尺、平板比对,应用目测并用螺旋测微器检查是否符合这些要求。发现 试样有一项或几项不合要求时,应舍弃或在试验前机加工至合适的尺寸和形状。
A 初始宽度和厚度的乘积,A=bh。单位为 mm2。
பைடு நூலகம்
3.5 试验速度
v 试验过程中,试验机夹具分离速度,单位为 mm/min。 3.6 应力
σ 试样标距长度内,每单位原始横截面积上所受的法向力。单位为 MPa。 注释:为区别于与试样实际横截面相关的真实应力,该应力常被称为“工程应力”。 3.6.1 屈服应力
注塑试样需要 1o 到 2o 的拔模角以利于脱模。同时,注塑试样不可避免的存在凹陷。由 于冷却过程的不同,试样中部的厚度一般小于试样边缘。厚度差Δ h≤0.1 mm 时可以接受(见 图 3)。

拉伸性能的测定

拉伸性能的测定
上屈服强度 = 下屈服强度
2.指针方法
采用指针方法测定上屈服强度和下屈服强度时,在试验测定中要注视试验机测力表盘指针的指示,按照定义判读上屈服力和下屈服力。当指针首次停止转动保持恒定的力即为下屈服力FeL;指针首次回转前指示的最大力判为上屈服力FeH;当指针出现多次回转,则不考虑第1次回转,而取其余这些回转指示的最低力判为下屈服力FeL;当只有一次回转,则取回转的最低力判为下屈服力FeL。
对于上和下屈服强度位置判定的基本原则如下:
a)屈服前的第1个峰值应力(第1个极大值应力)判为上屈服强度,不管其后的峰值应力比它大或比它小。
b)屈服阶段中如呈现两个或两个以上的谷值应力,舍去第1个谷值应力(第1个极小值应力)不计,取其余谷值应力中之最小者判为下屈服强度。如只呈现1个下降谷,此谷值应力判为下屈服强度。
1、图示法,用记录装置绘制力-延伸曲线或者力-夹头拉移曲线(在加载速率恒定的情况下也可用力-时间曲线),曲线至少要记录到屈服阶段结束。在曲线上确定屈服阶段中力值首次下降前的最大力FeH——上屈服力;不计初始瞬时效应时的最小力FeL——下屈服力,屈服平台不变的力也记为FeL——下屈服力。用测得的上、下屈服力FeH、FeL除以试样原始截面So就可以得到上、下屈服强度。
非比例延伸强度
常规平行线方法测定Rp0.2曲线原点修正
2、滞后环法有些金属材料(铜合金、铝合金等)的拉伸曲线没有明显的弹性直线段,无法用作平行线的方法来测定规定非比例延伸强度。在此情况下,可采用滞后环法。其核心是用滞后环顶点的连线来替代拉伸图中的弹性直线段。具体方法如下:对试样连续施力,超过预期规定的非比例延伸强度相应的力值后,将其卸载至上述所施力的10%左右,接着再加力并超过前次达到的力值。正常情况下,这一过程将给出一个滞后环曲线。通过环的两端点作一条直线作为基准线。从拉伸曲线的原点O起,在延伸上取OC=Leεp,过C点作一直线与基准线平行,该直线与拉伸曲线的交截点即为规定非比例延伸强度所对应的力值Fp。同样由于很多因素的影响,曲线的原点可能需要修正。可以采各种方法修正曲线的原点。一般采用这样的方法:在曲线图上穿过其斜率最接近于滞后环斜率的弹性上升部分,划一条平行于滞后环所确定的直线的平行线,此平行线与延伸轴的交截点即为曲线的修正原点。其他方法,例如将弹性上升段的曲线趋势反向延伸与延伸轴交截,交截点作为修正原点。

拉伸性能的测定修改版(优.选)

拉伸性能的测定修改版(优.选)

拉伸性能的测定修改号0页数第 1 页共12 页拉伸性能的测定1.原理沿试样纵向主轴恒速拉伸,直到断裂或应力(负荷)或应变(伸长)达到某一预定值,测量这一过程中试样承受的负荷及其伸长。

2.术语和定义2.1标距()试样中间部分两标线之间的初始距离,以mm为单位。

2.2实验速度()在实验过程中,实验机夹具分离速度,以mm/min为单位。

2.3拉伸应力tensil e stress σ在试样标距长度内任何给定时刻每单位原始横截面积上所受的拉伸力以MPa为单位。

2.3.1拉伸屈服应力, 屈服应力tensile stress at yield yield stress σy发生应力不增加而应变增加时的最初应力以MPa为单位该应力值可能小于材料的最大应力(见图1中的曲线b和曲线c)。

2.3.2拉伸断裂应力tensile stress at break σB试样断裂时的拉伸应力(见图1)以MPa为单位。

2.3.3拉伸强度tensile strength σM在拉伸试验过程中试样承受的最大拉伸应力(见图1)以MPa为单位。

2.3.4 x%应变拉伸应力(见4.4) tensile stress at x% strain σx应变达到规定值x%时的应力以MPa为单位。

适用于既无屈服点又不易拉断的软而韧的材料应力-应变曲线上无明显屈服点的情况见图1中的曲线d)x 值应按有关产品标准规定或由相关方商定。

但在任何情况下x 都必须小于拉伸强度所对应的应变。

如土工格栅产品中的2%、5%拉伸力。

此条用于取代92版的“偏置屈服应力”2.4拉伸应变tensile strain ε标距原始单位长度的增量用无量纲的比值或百分数(%)表示。

适用于脆性材料活韧性材料在屈服点以前的应变超过屈服点后的应变则以“拉伸标称应变”代替。

2.4.1拉伸屈服应变tensile strain at yield εy屈服应力时的拉伸应变见4.3.1和图1中的曲线b和曲线c用无量纲的比值或百分数%拉伸性能的测定修改号0页数第 2 页共12 页表示。

拉伸试验测定结果的数据处理和分析

拉伸试验测定结果的数据处理和分析

拉伸试验测定结果的数据处理和分析The Standardization Office was revised on the afternoon of December 13, 2020拉伸试验测定结果的数据处理和分析一、试验结果的处理有以下情况之一者,可判定拉伸试验结果无效:(1)试样断在机械刻划的标距上或标距外,且造成断后伸长率不符合规定的最小值者。

(2)操作不当(3)试验期间仪器设备发生故障,影响了性能测定的准确性。

遇有试验结果无效时,应补做同样数量的试验。

但若试验表明材料性能不合格,则在同一炉号材料或同一批坯料中加倍取样复检。

若再不合格,该炉号材料或该批坯料就判废或降级处理。

此外,试验时出现2个或2个以上的缩颈,以及断样显示出肉眼可见的冶金缺陷(分层、气泡、夹渣)时,应在试验记录和报告中注明二、数值修约(一)数值进舍规则数值的进舍规则可概括为“四舍六入五考虑,五后非零应进一,五后皆零视奇偶,五前为偶应舍去,五前为奇则进一”。

具体说明如下:(1)在拟舍弃的数字中,若左边第一个数字小于5(不包括5)时,则舍去,即所拟保留的末位数字不变。

例如、将13.346修约到保留一位小数,得13.3。

(2)在拟舍弃的数字中,若左边第一个数字大于5(不包括5)时,则进1,即所拟保留的末位数字加1。

例如,将52. 463修约到保留一位小数,得52.5。

(3)在拟舍弃的数字中,若左边第一个数字等于5,其右边的数字并非全部为零时,则进1,所拟保留的末位数字加1。

例如,将2.1502修约到只保留一位小数。

得2.2。

(4)在拟舍弃的数字中若左边第一个数字等于5,其右边无数字或数字皆为零碎时,所拟保留的末位数字若为奇数则进1,若为偶数(包括0)则舍弃。

例如,将下列数字修约到只保留一位小数。

修约前 0.45 0.750 2.0500 3.15修约后 0.4 0.8 2.0 3.2(5)所拟舍弃的数字若为两位数字以上时,不得连续进行多次修约,应根据所拟舍弃数字中左边第一个数字的大小,按上述规则一次修约出结果。

ISO 527-2塑料拉伸性能测试方法

ISO 527-2塑料拉伸性能测试方法

塑料拉伸性能的测定第二部分:模塑和挤塑塑料的试验条件1 范围1.1GB/T 1040的本部分在第1部分基础上规定了用于测定模塑和挤塑塑料拉伸性能的实验条件。

1.2本部分适合下述范围的材料:----硬质和半硬质的热塑性模塑、挤塑和铸塑材料,除未填冲类型外还包括列入用短纤棒、细棒、小薄片或细粒料填充和增强的复合材料,但不包括纺织纤维增强的复合材料;----硬质和半硬质热固性模塑和铸塑材料,包括填充和增强的复合材料,但不包括纺织纤维增强的复合材料;----热致液晶聚合物。

本部分不适用于纺织纤维增强的复合材料、硬质微孔材料或含有微孔材料夹层结构的材料2.名词和定义见ISO 527-1:2012,章节33原理和方法见ISO 527-1:2012,章节44仪器4.1概述见ISO 527-1:2012,章节5,特别是5.1.1致5.1.44.2引伸计4.3测试记录装置5测试样品5.1形状和尺寸只要可能,试样应为如图一所示的1A型和1B型的哑铃型试样,直接模塑的多用途试样选择1A型,机加工试样选择1B型。

关于使用小试样时的规定,见附录A/ISO 20753注:具有4mm厚的IA型和1B型试样分别和ISO 3167规定的A型和B型多用途试样相同。

与ISO 20753的A1和A2也相同5.2试样的制备应按照相关材料规范制备试样,当无规范或无其他规定时,应按ISO293、ISO 294-1,ISO295或者ISO 10724-1以适宜的方法从材料直接压塑制备试样,或按照ISO 2818由压塑或注塑板材经机加工制备试样。

试样所有表面应吴可见裂痕、划痕或其他缺陷。

如果模塑试样存在毛刺应去掉,注意不要损伤模塑表面。

由制件机加工制备试样时应取平面或曲率最小的区域。

除非确实需要,对于增强塑料试样不宜使用机加工来减少厚度,表面经过机加工的试样与未经机加工的试样实验结果不能互相比较。

5.3标线见ISO 527-1:2012,6.35.4检查测试样品见ISO 527-1:2012,6.45.5各向异性5.6测试样数量见ISO 527-1:2012,章节7.6 状态调节见ISO 527-1:2012,章节87 测试过程见ISO 527-1:2012,章节9在测量弹性模量时,1A型、IB型试样的试验速度应为1mm/min,对于小试样见附录A。

ISO-527-2塑料拉伸性能测试方法

ISO-527-2塑料拉伸性能测试方法

塑料拉伸性能的测定第二部分:模塑和挤塑塑料的试验条件1 围1.1GB/T 1040的本部分在第1部分基础上规定了用于测定模塑和挤塑塑料拉伸性能的实验条件。

1.2本部分适合下述围的材料:----硬质和半硬质的热塑性模塑、挤塑和铸塑材料,除未填冲类型外还包括列入用短纤棒、细棒、小薄片或细粒料填充和增强的复合材料,但不包括纺织纤维增强的复合材料; ----硬质和半硬质热固性模塑和铸塑材料,包括填充和增强的复合材料,但不包括纺织纤维增强的复合材料;----热致液晶聚合物。

本部分不适用于纺织纤维增强的复合材料、硬质微孔材料或含有微孔材料夹层结构的材料2.名词和定义见ISO 527-1:2012,章节33原理和方法见ISO 527-1:2012,章节44仪器4.1概述见ISO 527-1:2012,章节5,特别是5.1.1致5.1.44.2引伸计4.3测试记录装置5测试样品5.1形状和尺寸只要可能,试样应为如图一所示的1A型和1B型的哑铃型试样,直接模塑的多用途试样选择1A型,机加工试样选择1B型。

关于使用小试样时的规定,见附录A/ISO 20753注:具有4mm厚的IA型和1B型试样分别和ISO 3167规定的A型和B型多用途试样相同。

与ISO 20753的A1和A2也相同5.2试样的制备应按照相关材料规制备试样,当无规或无其他规定时,应按ISO293、ISO 294-1,ISO295或者ISO 10724-1以适宜的方法从材料直接压塑制备试样,或按照ISO 2818由压塑或注塑板材经机加工制备试样。

试样所有表面应吴可见裂痕、划痕或其他缺陷。

如果模塑试样存在毛刺应去掉,注意不要损伤模塑表面。

由制件机加工制备试样时应取平面或曲率最小的区域。

除非确实需要,对于增强塑料试样不宜使用机加工来减少厚度,表面经过机加工的试样与未经机加工的试样实验结果不能互相比较。

5.3标线见ISO 527-1:2012,6.35.4检查测试样品见ISO 527-1:2012,6.45.5各向异性5.6测试样数量见 ISO 527-1:2012,章节7.6 状态调节见 ISO 527-1:2012,章节87 测试过程见 ISO 527-1:2012,章节9在测量弹性模量时,1A型、IB型试样的试验速度应为1mm/min,对于小试样见附录A。

拉伸性能的测定修改版

拉伸性能的测定修改版

拉伸性能的测定1.原理沿试样纵向主轴恒速拉伸,直到断裂或应力(负荷)或应变(伸长)达到某一预定值,测量这一过程中试样承受的负荷及其伸长。

2.术语和定义2.1标距(L0)试样中间部分两标线之间的初始距离,以mm为单位。

2.2实验速度(υ)在实验过程中,实验机夹具分离速度,以mm/min为单位。

2.3拉伸应力tensile stress σ在试样标距长度内 任何给定时刻每单位原始横截面积上所受的拉伸力 以MPa为单位。

2.3.1拉伸屈服应力, 屈服应力tensile stress at yield yield stress σy发生应力不增加而应变增加时的最初应力 以MPa为单位 该应力值可能小于材料的最大应力(见图1中的曲线b和曲线c)。

2.3.2拉伸断裂应力tensile stress at break σB试样断裂时的拉伸应力(见图1) 以MPa为单位。

2.3.3拉伸强度tensile strength σM在拉伸试验过程中 试样承受的最大拉伸应力(见图1) 以MPa为单位。

2.3.4 x%应变拉伸应力(见4.4) tensile stress at x% strain σx应变达到规定值 x% 时的应力 以MPa为单位。

适用于既无屈服点又不易拉断的软而韧的材料 应力-应变曲线上无明显屈服点的情况 见图1中的曲线d) x 值应按有关产品标准规定或由相关方商定。

但在任何情况下 x 都必须小于拉伸强度所对应的应变。

如土工格栅产品中的2%、5%拉伸力。

此条用于取代92版的“偏置屈服应力”2.4拉伸应变tensile strain ε标距原始单位长度的增量 用无量纲的比值或百分数(%)表示。

适用于脆性材料活韧性材料在屈服点以前的应变 超过屈服点后的应变则以“拉伸标称应变”代替。

2.4.1拉伸屈服应变tensile strain at yield εy屈服应力时的拉伸应变 见4.3.1和图1中的曲线b和曲线c 用无量纲的比值或百分数%表示。

金属室温拉伸力学性能的测定

金属室温拉伸力学性能的测定

金属室温拉伸力学性能的测定主讲教师:一、实验目的1.掌握金属材料屈服强度ζs 、抗拉强度ζb 、断后伸长率δ和断面收缩率ψ的测试方法。

2.了解用引伸仪测定金属材料弹性模量E的方法。

二、实验原理拉伸实验是用拉力拉伸试样,一般拉至断裂,以测定材料的一项或几项力学性能。

常温下的拉伸实验是测定材料力学性能的基本实验,可用以测定弹性常数E和泊松比μ,屈服强度ζs(上屈服强度或下屈服强度),规定非比例延伸强度,如ζp0.2,抗拉强度ζb,断后伸长率δ和断面收缩率ψ等,这些力学性能指标都是工程设计的重要依据。

二、实验原理1.弹性模量E的测定弹性模量是应力低于比例极限时应力与应变的比值,即ζ Fl0E 1 ε Al 为检查载荷与变形的关系是否符合虎克定律,减少测量误差,试验一般用等增量法加载,即把载荷分成若干相等的加载等级ΔF(图1a),然后逐级加载。

为保证应力不超出比例极限,加载前先估算出试样的屈服载荷,以屈服载荷的70-80作为测定弹性模量的最高载荷Fn。

此外,为使试验机夹紧试样,消除引伸仪和试验机机构的间隙,以及开始阶段引伸仪刀刃在试样上的可能滑动,对试样应施加一个初始载荷F0,F0可取为屈服载荷的10,从F0到Fn将载荷分成n级,且n不小于5,于是Fn F0F n≥5 n 例如低碳钢的下屈服强度ζs300MPa,试样直径d10mm,则1 2 π d × ζ s × 80 N 18850 N Fn 取为18KN或19KN 4 1 2 Fn π d × ζ s ×10 N 2356 N 取为3KN或4KN 4 实验时,从F0到Fn逐级加载,载荷的每级增量ΔF。

对应着每个载荷Fii1,2,…,n,记录下相应的伸长Δli,Δli1与Δli的差值即为变形增δΔli,它是ΔF引起的伸长增量。

在逐级加载中,若得到的各级δΔli基本相等,就表明Δl与F成线性关系,符合虎克定律。

完成一次加载过程,将得到Fi和Δli的一组数据,按线性拟合法求得:∑Fi n∑Fi 2 l0 2 E 2 ∑Fi ∑li n∑Fi li A除用线性拟合法确定E外,还可用下述弹性模量平均法。

拉伸试验测定结果的数据处理和分析

拉伸试验测定结果的数据处理和分析

拉伸试验测定结果的数据处理和分析一、试验结果的处理有以下情况之一者,可判定拉伸试验结果无效:(1)试样断在机械刻划的标距上或标距外,且造成断后伸长率不符合规定的最小值者。

(2)操作不当(3)试验期间仪器设备发生故障,影响了性能测定的准确性。

遇有试验结果无效时,应补做同样数量的试验。

但若试验表明材料性能不合格,则在同一炉号材料或同一批坯料中加倍取样复检。

若再不合格,该炉号材料或该批坯料就判废或降级处理。

此外,试验时出现2个或2个以上的缩颈,以及断样显示出肉眼可见的冶金缺陷(分层、气泡、夹渣)时,应在试验记录和报告中注明二、数值修约(一)数值进舍规则数值的进舍规则可概括为“四舍六入五考虑,五后非零应进一,五后皆零视奇偶,五前为偶应舍去,五前为奇则进一”。

具体说明如下:(1)在拟舍弃的数字中,若左边第一个数字小于5(不包括5)时,则舍去,即所拟保留的末位数字不变。

例如、将13.346修约到保留一位小数,得13.3。

(2)在拟舍弃的数字中,若左边第一个数字大于5(不包括5)时,则进1,即所拟保留的末位数字加1。

例如,将52. 463修约到保留一位小数,得52.5。

(3)在拟舍弃的数字中,若左边第一个数字等于5,其右边的数字并非全部为零时,则进1,所拟保留的末位数字加1。

例如,将2.1502修约到只保留一位小数。

得2.2。

(4)在拟舍弃的数字中若左边第一个数字等于5,其右边无数字或数字皆为零碎时,所拟保留的末位数字若为奇数则进1,若为偶数(包括0)则舍弃。

例如,将下列数字修约到只保留一位小数。

修约前 0.45 0.750 2.0500 3.15修约后 0.4 0.8 2.0 3.2(5)所拟舍弃的数字若为两位数字以上时,不得连续进行多次修约,应根据所拟舍弃数字中左边第一个数字的大小,按上述规则一次修约出结果。

例如,将17.4548修约成整数。

正确的做法是:17.4548→17不正确的做法是:17.455→17.46→17.5→18(二)非整数单位的修约试验数值有时要求以5为间隔修约。

塑料 熔融状态下热塑性塑料拉伸性能的测定-最新国标

塑料 熔融状态下热塑性塑料拉伸性能的测定-最新国标

塑料熔融状态下热塑性塑料拉伸性能的测定1 范围本文件规定了一种测定塑料熔融拉伸和断裂特性的方法。

本文件为在特定的挤出温度和拉伸条件下,测定熔体束变形时产生的张力。

本文件的数据在非等温和非均匀变形条件下得到,能有效的解释拉伸流动中聚合物的行为。

本文件适用于可使用毛细管挤出流变仪或配有毛细管口模的挤出机或其他挤出机挤出,具有足够的熔体强度的热塑性模塑和挤出的材料。

本文件适用于化学性质稳定的材料,可产生均匀的挤出物,不含异质、气泡、未融杂质等。

本文件可提供以下信息:所有挤出技术的加工性能;机械和热历史的影响;化学结构的影响,例如支化、缠结和分子质量。

该技术是用于测量材料拉伸流动特性的多种技术之一,该测量方法并不一定能再现热塑性塑料在加工过程中的拉伸条件。

2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。

其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 2918 塑料试样状态调节和试验的标准环境(GB/T 2918—2018,ISO 291:2008,MOD)GB/T 3682.1 塑料热塑性塑料熔体质量流动速率(MFR)和熔体体积流动速率(MVR)的测定第1部分:标准方法(GB/T 3682.1—2018,ISO 1133-1:2011,MOD)GB/T 3682.2 塑料热塑性塑料熔体质量流动速率(MFR)和熔体体积流动速率(MVR)的测定第2部分:对时间-温度历史和(或)湿度敏感的材料的试验方法温度控制(GB/T 3682.2—2018,ISO 1133-2:2011,MOD)GB/T 25278 塑料用毛细管和狭缝口模流变仪测定塑料的流动性(GB/T 25278—2010,ISO 11443:2005,MOD)3 术语和定义下列术语和定义适用于本文件。

3.1拉伸drawing毛细管流变仪、挤出机或其他挤出装置连续挤出时,聚合物熔体拉丝的过程。

金属材料的室温拉伸试验已修改

金属材料的室温拉伸试验已修改
• 头部宽度: ≥1.2b0 • 原始标距 L0: L0 ≥ 15mm,短试样(优先)L0=5.65 s01/2 ,长试样L0=11.3
s01/2 若L0<15mm,采用非比例试样
• 平行长度 LC : LC ≥ Lo+ b0/2 ,仲裁试验: LC =Lo+2b0 • 过渡弧半径 r : r≥20mm • 不带头试样(宽度不大于20mm,不加工):L =50mm, L =L +3b
注:1、优先采用比例系数k=5.65的短比例试样。 若标距小于15mm,建议采用非比例试样。
2、如需要,厚度小于0.5mm的试样在其平行长度上可以带小凸耳以便 于装夹引伸计。上、下两凸耳宽度中心线间的距离为原始标距。
a0<3mm薄板比例试样
r 3.2
ao
bo
Lo Lc
Lt
• 原始宽度b0 :10、12.5、15、20mm
do
圆形截面比例试样
r 0.8
LL0 Lc Lt
• 原始直径 d0 :3、5、6、8、10、15、20、25,优先采用5、10、20mm • 原始标距 L0: L0≥15mm,短试样(优先) L0=5 d0 ,长试样L0=10 d0 • 平行长度 LC : LC ≥ Lo+ d0/2 ,仲裁试验: LC =Lo+2d0 • 试样总长度 Lt :取决于夹持方法,原则上Lt>Lc+4 d0 • 过渡圆半径 r : r≥0.75d0
GB/T 228-2002
尺寸公差 形状公差
±0.05
0.02
±0.06
0.03
±0.07
0.04
±0.09
0.04
±0.10
0.05

gb-t1040塑料拉伸性能的测定-标准修订报批稿简介

gb-t1040塑料拉伸性能的测定-标准修订报批稿简介

GB/T 1040标准修订报批稿简介国家塑料制品质量监督检验中心刘山生[摘 要]本文简单介绍了国家标准GB/T 1040修订报批稿与替代标准间定义、试样、试验速度等的变化及对试验机、引伸计的不同要求,强调了试样的对中要求。

[关键词] 标准、拉伸、应力、应变一、修订标准与代替标准的对应关系GB/T 1040《塑料 拉伸性能的测定》共分为五个部分:——GB/T 1040-1:总则。

ISO 527-1:1993 IDT本部分代替GB/T 1039-1992《塑料力学性能试验方法总则》、代替GB/T 1040-1992《塑料拉伸性能试验方法》——GB/T 1040-2:模塑和挤塑塑料的试验条件。

ISO 527-2:1993 IDT本部分代替GB/T 1040-1992、GB/T 16421-1996《塑料拉伸性能小试样试验方法》 ——GB/T 1040-3:薄膜和薄片的试验条件。

ISO 527-3:1995 IDT本部分代替GB/T 13022-1991《塑料 薄膜拉伸性能试验方法》——GB/T 1040-4:各向同性和正交各向异性纤维复合增强材料的试验条件。

ISO 527-4:1997 IDT本部分代替GB/T 1040-1992、GB/T 1447-1983《玻璃纤维增强塑料拉伸性能试验方法》——GB/T 1040-5:单向纤维增强复合材料的试验条件。

ISO 527-5:1997 IDT 本部分代替GB/T 3354-1999《定向纤维增强塑料拉伸性能试验方法》和GB/T 1040-1992 二、标准术语的变化——GB/T 1040-92共有以下6个术语:拉伸强度、拉伸断裂应力、拉伸屈服应力、偏置屈服应力、断裂伸长率、拉伸应力-应变曲线。

——GB/T 1040-1共有以下16个术语:1、标距 gauge length L0试样中间部分两标线之间的初始距离,以mm为单位。

2、试验速度 speed of testing V在试验过程中,试验机夹具分离的速度,以mm/min为单位。

gbt88041-2003热塑性塑料管材拉伸性能测[资料]

gbt88041-2003热塑性塑料管材拉伸性能测[资料]

GBT88041-2003 热塑性塑料管材拉伸性能测pdf文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

G T 0 .1 2 0 B/ 8 4 - 0 3 8前GBT 4 0 3热塑性塑料管材 0-20《 / 8 8言拉伸性能测定》分为三个部分 :—第 1 部分 : 试验方法总则 ; —第2 部分 : 聚氯乙烯(VCU)抓化聚抓乙烯 (VCC 和高抗冲聚抓乙烯( V - 硬 P - , P -) P CHD管材 ; —第3 部分 : 烃管材 . 聚烯本部分为G / 80-20 的第 1 BT 4 03 8 部分. 等同采用 I 65-: 9 S 29 1 7热塑性塑料管材拉伸性 O 1 9能测定第 I 部分 : 试验方法总则》 .本部分与 G / 80. 0 和 BT 43 0 一起, BT 42 03 G / 80. 03 8 -2 8 -2 代替G / 80. 80.-180 BT 41 842 98 8本标准与 B T 4 98 G / 80- 18 相比, 8 主要变化如下 : 1 本标准在结构上分为三个部分 , G / 80- 18 是由两个部分组成 : 而 B T 4 98 8 - GBT 4 1 98 热塑性塑料管材拉伸性能试验方法聚氯乙烯管材》 0.-18《 / 8 8 — - 98 热塑性塑料管材拉伸性能试验方法聚乙始管材》 0. 19K G / 8 42 B T 8 2 .原标准中试样状态调节时间为 4h而现在改为根据试样的厚度来确定 ; , 3 试样的数量由 5 改为由公称外径来确定 ; 个 4 增加了原理一章 ; 5 增加了附录 A, 本部分的附录 A 为资料性附录. 本标准由中国轻工业联合会提出.本标准由全国塑料制品标准化委员会(C8 . T 4) 归口本部分由华亚芜湖塑胶有限公司负责起草 , 福建亚通新材料科技股份有限公司参加起草 . 本部分主要起草人 : 高仅雨 , 周令仁 , 魏作友 .Gs T 0 . - 2 0 / 8 4 1 03 8引言IO 5 S 6 9的第一部分规定了一种用于确定热塑性塑料管材拉伸性能的短期性能的试验方法 . 2 本方法为进一步的研究与开发提供数据 . 当力的应用条件和本试验方法有相当大的差别时 ,本试验方法不能作为应用的重要依据 , 应用此类需要相应的冲击 , 和疲劳试验蠕变拉伸性能试验方法应主要为材料制成管材后进行试验 , 试验结果能对材料加工控制有利 , 能作但不为管材长期性能的质量评定依据. IO 5 是在 IO 7基础上起草制定的. S 6 9 2 S 5 2 为使用方便起 , 草了用于确定热塑性塑料管材拉伸性能的完整文件 , 如需要更详细 , 参见可I O 2 S 5 7,应当注意的是 IO 7 S 5 应用于材料制成片材形式 , IO 5 应用于材料制成管状形式 . 2 而 S 6 9 2 应考虑到只用所提供的管材进行测试 , 例如不减少壁厚 , 困难在于试验试样的选择. IO 7 S 5 规定了试样为几毫米厚 , 2 而管材的壁厚可达到 6 mm, 0 正是这个原因, 两标准之间有一定的差别 .对薄壁管材 , 试样可用裁刀裁切 ; 对于厚壁管材只有通过机械加工制样 IO 5 S 6 9由三部分组成, 2 第一部分总则 , 规定了热塑性塑料管材拉伸性能测定的一般条件 , 余两其部分分别给出了不同材料管材的试验步骤 ( 见前言) . 对于各种材料的基本规定在相关的部分中以资料性附录给出.GB T 84 / 80热塑性塑料管材拉伸性能测定第 1 部分 : 试验方法总则范围G / 80 的本部分规定了热塑性塑料管材的拉伸性能的试验方法 ,4 BT 8 拉伸性能主要包括以下性能 : —拉伸屈服应力 ; —断裂伸长率. 本部分适用于各种类型的热塑性塑料管材 . 2 规范性引用文件下列文件中的条款通过本部分的引用而成为本部分的条款.凡是注日期的引用文件 , 随后所有其的修改单 ( 不包括勘误的内容) 或修订版均不适用于本部分 , 然而, 鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本.凡是不注日期的引用文件 , 新版本适用于本部分. 其最 G / 3 0 92 6- 18 数据的统计处理和解释均值的估计和置信区间(e IO 0 :90 B T 3 nq 2 218 ) S 6 G / 8 42 0 0. 03 热塑性塑料管材拉伸性能测定第 2 B T 8 -2 部分 : 聚氯乙烯 (VCU)氯化聚硬 P - , 抓乙烯( V - ) P CC 和高抗冲聚抓乙烯 ( V - ) P CHI管材( t S 65- :97 i IO 92 19) d 2 G / 80.-20 43 03 热塑性塑料管材拉伸性能测试第 3 BT 8 部分: 聚烯烃管材(t 65-: 9) ( IO 931 7 i S 2 d 9GB/ 1 20 7 0 - 1 9 橡腔期料拉力 , 力 , 曲试验机 T 97 压弯原理枯犬要隶 (d IO 8 3 1 9 ) it 5 9 9 3 S沿热塑性塑料管材的纵向裁切或机械加工制取规定形状和尺寸的试样 .通过拉力试验机在规定的条件下测得管材的拉伸性能 .设备41 拉力试验机 . 应符合 G / 1 0 B T 20和 42434 4 7 . ,. ,. 的规定 .42 夹具 .用于夹持试样的夹具连在试验机上 , 使试样的长轴与通过夹具中心线的拉力方向重合 .试样应夹紧, 使它相对于夹具尽可能不发生位移. 夹具装置系统不得引起试样在夹具处过早断裂.43 负载显示计 . 拉力显示仪应能显示被夹具固定的试样在试验的整个过程中所受拉力 , 它在一定速率下测定时不受惯性滞后的影响且其测定的准确度应控制在实际值的士1 %范围内.注意事项应按照 G / 120 B T 0 7的要求 .44 引伸计 . 测定试样在试验过程中任一时刻的长度变化 .此仪表在一定试验速度时必须不受惯性滞后的影响且能测量误差范围在 1 %内的形变.试验时, 此仪表应安置在使试样经受最小的伤害和变形的位置 , 且它与试样之间不发生相对滑移 . 夹具应避免滑移 , 以防影响伸长率测量的精确性.注: 用自动记录试样的长度变化或任何其他变化的仪表推荐使4 .5 测量仪器GB T 0 . 2 0 / 8 4 1 03 8 -用于测量试样厚度和宽度的仪器 , 精度为 00 mm, . 146 裁刀 .应可裁出符合 G / 80 . G / 80. B T 42 8 或 B T 43中的相应要求的试样 . 8 47 制样机和铣刀 . 应能制备符合 G / 842 G / 80. B T 0. B T 43中相应要求的试样 . 8 或 85 试样5 1 试样要求 . 试样应符合 B T 42 G / 80 . 或 G / 80 . 8B T 43中相应要求的试样类型. 8 52 试样的制备 . 52 1 从管材上取样条 .. 从管材上取样条时不应加热或压平, 样条的纵向平行于管材的轴线 , 取样位置应符合 a或 b的要求. ) ) a 公称外径小于或等于 6 mm 的管材 ) 3 取长度约 5 mm的管段. 10 以一条任意直线为参考线 , 沿圆周方向取样 .除特殊情况外 , 每个样品应取三个样条 , 以便获得三个试样( 见表 1 . )公称外径 d / mm 样条数1<4<7 5 53表 1 取样数量7<4<20 5 8520 d<40 8蕊 55d 妻40 58b 公称外径大于 6 mm 的管材 ) 3 取长度约 5 m 10 的管段 . m 如图 1 所示沿管段周边均匀取样条 . 除另有规定外 , 按表 1应中的要求根据管材的公称外径把管段沿圆周边分成一系列样条, 每块样条制取试样 1 . 片1 —2— 3 —扇形块;样条; 试样.GB T 8 4 1 2 0 / 8 0 . 0 3 - 5 2 2 试样的选择 .. 522 1 选择……根据不同材料制品标准的要求 , 选择采用冲裁或机械加工方法从样条中间部位制取试样 . 5222 冲裁方法…… 应按照 G / 8 4 2 B T 0. G / 80. 8 或 B T 43中所要求的外形 , 8 选择合适的没有刻痕 , 口干净的裁刀刀(.) 46 ,从样条 ( 21上冲裁试样. ..) 5 5223 机械加工方法 ,.. 用机械加工方法制取试样 , 需采用铣削 . 铣削时应尽量避免使试样发热 , 避免出现如裂痕 , 刮伤及其他使试样表面品质降低的可见缺陷 .注 : 于机械加工程序建议用户参考 10 1( 关 S 2 8见附录 w 8 )5224 标线…… 从中心点近似等距离划两条标线 , 标线间距离应精确到 10 0, 划标线时不得以任何方式刮伤, 冲击或施压于试样 .以避免试样受损伤 .标线不应对被测试样产生不良影响 , 标注的线条应尽可能窄 . 5225 试样数量……除相关标准另有规定外 , 样应根据管材的公称外径按照表 1中所列数目进行裁切 . 试状态调节除生产检验或相关标准另有规定外 , 试样应在管材生产 1h之后测试.试验前根据试样厚度 , 5 应将试样置于2℃ 士2 3 ℃的环境中进行状态调节 , 时间不少于表 2 规定.管材壁厚 e m / -e <3 - 3 e < 8 < m 8 e,< 6 1 成 . ,衰 2 状态调节时间状态调节时间1h 5 i 士 mn 3 h 1 mi 土 5 n 6h 3 mi 士 0 n 1 h 士 1h 0 1 h 士 1h 61<e -<3 6 23镇e , 2 m试验速度试验速度和管材的材质和壁厚有关. 按产品标准或 G / 80. G / 80. BT 42 BT 43 8 或 8 的要求确定试验速度co 氏歇 8. 3试验步骤试验应在温度2℃ 士2 3 ℃环境下按下列步骤进行 . 测量试样标距间中部的宽度和最小厚度 , 精确到 .0 mm, .1 计算最小截面积 . 将试样安装在拉力试验机上 (.) 41并使其轴线与拉伸应力的方向一致 , 夹具松紧适宜以防止试使样滑脱 (.) 42 e 84 使用引伸计 , . 将其放置或调整在试样的标线上 (. ) 44 , 85 选定试验速度进行试验 . . 86 记录试样的应力/ . 应变曲线直至试样断裂 , 并在此曲线上标出试样达到屈服点时的应力和断裂时标距间的长度 ; 或直接记录屈服点处的应力值及断裂时标线间的长度 . 如试样从夹具处滑脱或在平行部位之外渐宽处发生拉伸变形并断裂 , 应重新取相同数量的试样进GB T 8 4 1 2 0 / 8 0 . 0 3 - 行试验 . 9 试验结果9 1 拉伸屈服应力 . 对于每个试样, 拉伸屈服应力以试样的初始截面积为基础 , 按式( 劝计算 .式中:a= F A/ ········……(1) ········ ······ ··. 拉伸屈服应力, 单位为兆 M a) 帕( P0 ;F —屈服点的拉力 , 单位为牛顿 ( ; N) A 样的原始截面积 , —试单位为平方毫米( m'. m ) 所得结果保留三位有效数字.注: 屈服应力实际上应按屈服时的截面积计算, 为了方便,但通常取试样的原始截面积计算.9 2 断裂伸长率 . 对于每个试样, 断裂伸长率按式 () 2计算 .式中 :£ ( 一L)L X = L o o 0 / 1 0 ·,·""·"… …( ) ······· . 2: 断裂伸长率 , —单位为 %; L —断裂时标线间的长度 ,单位为毫米 ( m) m ; L—标线间的原始长度, o 单位为毫米 ( m) m , 所得结果保留三位有效数字 93 统计参数 .如有要求可按 G / 36 中 BT 0 所示程序计算标准偏差和平均值的 9 置信度. 3 59 4 补做试验 . 如果所测的一个或多个试样的试验结果异常应取双倍试样重做试验 , 如五个试样中的两个试样例结果异常 , 则应再取四个试样补做试验. 1 试验报告 0 试验报告应包括下列内容 :a BT 4 ) / 80 的本部分及相关部分; G 8b 试样的详细标识包括原材料组成, ) 类型 , 源, 来公称尺寸等 ; c 试样的类型及其制备方法; ) d 试验室环境温度及试样的调节方法 ; ) e 试样数量; ) f 试验速度 ; ) 9 拉伸屈服应力 , ) 注明单个值 , 算术平均值和标准偏差 ; h 断裂伸长率 , ) 注明单个值 , 算术平均值和标准偏差 ;i BT 0 中 ) / 8 4 未规定的操 G 8 作详细情况及可能对结果产生影响的任何情况, 存在于试样上和断裂的截面中的任何特殊细节( 譬如杂质) ; 1 试验日 . ) 期1 1 P- 1 / ) M N mm'GB T 8 4 1 2 0 / 8 0 .- 0 3附录参考资A 料( 料性附录) 资A 1B T 1- 19 塑料试样状态调节和试验的标准环境( t 2 119 ) . G / 2 8 98 9 i IO :97 d S 9 A 2 S 57119 塑料 . IO -:93 2 A 3 S 57219 塑料 . IO -;93 2 拉伸性能测试方法拉伸性能测试方法第1 部分 : 方法测试第2 部分 : 塑与挤出管材的测试环境模时针旋转法 (q IO 2 : ev 3 7 S 1A 4 S 21 :94 塑料机械加工试样的制备 . IO 8 19 8 A 5B T 12 0 1 热塑性塑料管材耐外冲击性能试验方法 . G / 1 5-20 41 4) 991。

GBT1040.1《塑料拉伸性能的测定第1部分总则》新旧版本内容的比较

GBT1040.1《塑料拉伸性能的测定第1部分总则》新旧版本内容的比较

40塑料包装2019年第29卷第2期前言拉伸性能的测试是塑料材料,特别是包装材料的一类重要的性能测试,如包装袋,拉伸性能的好坏关系到其是否能满足下游客户的需求,是产品合格与否的重要指标,对下游客户的采购要重要的参考借鉴意义。

拉伸性能测试的准确与否,与所使用的测试仪器和测试人员有关,更与采用的测试标准密切相关,因此对测试标准的准确理解是测试的关键。

去年底(2018年12月28日),国家市场监督管理总局和中国国家标准化管理委员会联合发布了GB/T1040.1-2018《塑料拉伸性能的测定第1部分:总则》[1],将于2019年11月01日实施,并将代替GB/T1040.1-2006《塑料拉伸性能的测定第1部分:总则》[2],2018年版的标准等同采用了ISO527-1:2012《塑料拉伸性能的测定第1部分:总则》,体现了与国际标准同步,将进一步规范塑料拉伸性能方面的测试,使塑料拉伸性能的数据具有更加可比性,对生产企业和检验机构具有重要的意义。

新旧版本标准的主体框架做了一些改动,例如内容上的次序“原理和方法”改在“术语和定义”后面,资料性附录做了改动等。

下面就新旧标准的主要内容差别做比较。

1范围新版标准增加了“浇铸材料”,原2006年版相比,扩大了标准的适用范围,并将2006年版标准中1.4和1.5条款内容移到新版标准中第4部分(原理和方法)中,由于这两个条款内容是有关样品的制备方面的内容,因此显得更为合理。

标准与法规解读GB/T1040.1《塑料拉伸性能的测定第1部分:总则》新旧版本内容的比较方哲坚(国家食品软包装产品及设备质量监督检验中心(广东))摘要:本文系统地比较了国家标准GB/T1040.1新旧版本的内容区别,对生产企业的出厂检验和检验机构的的拉伸性能测试具有一定的意义。

关键词:拉伸性能内容测试The difference of standard GB/T1040.1for old and new versionsZhejian Fang(China National Quality Supervision and Testing Center for Food Flexible Packaging Product and Machinery(Guangdong))Abstrac t:Summarization the difference of standard GB/T1040.1for old and new versions.And that is of significance to manufacturer and quality inspection units for determination of tensile properties.Keyw ord s:tensile properties content test2规范性引用文件这部分的改动主要是根据今年相关标准的更新,本标准引用内容的改变而做的相关改动。

ISO527-2塑料-拉伸性能的测定

ISO527-2塑料-拉伸性能的测定

塑料—拉伸性能的测定第2部分 模塑和挤塑塑料的试验条件ISO 527.2 IDTB.2.1 范围B.2.1.1 本标准根据总则中规定的一般原则,规定定了模塑和挤塑塑料拉伸性能的试验条件。

B.2.1.2 本方法有选择性的适用于下述范围材料;—硬质和半硬质热塑性模塑、挤塑和铸塑材料,包括除未填充型以外的诸如用短纤维、棒、片材或粒料,但不包括纺织纤维(见ISO 527/4和ISO527/5)填充和增强的混合料。

—硬质和半硬质热固性模塑和铸塑材料,包括填充和增强的混合料,但不包括纺织纤维作为增强的材料(见ISO 527/4和ISO527/5);—热致液晶聚合物本方法不适用于用纺织纤维增强的塑料(见ISO 527/4和ISO527/5)、硬质微孔材料或含微孔材料的夹心结构材料。

B.1.3 本方法所用的试样既可以模塑成选定的尺寸;也可以由注塑成型或压塑成型的板材经机械加工切割或冲压而成。

优先选用多用途试样(见ISO 3167/1993 塑料—多用途试样)。

B.2.2 引用标准下列文件中的条款,通过本标准的引用而成为本标准的条款。

凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本标准。

ISO 37/1997 硫化橡胶——拉伸应力——应变性能的测定ISO 293—1986 塑料——热塑料材料压塑试样ISO 294 塑料——热塑料材料注塑试样ISO 295——1991 塑料——热固料材料注塑试样ISO 527/1——1993 塑料——拉伸性能的测定——第一部分;总则ISO 1926——1979 微孔塑料——硬质材料拉伸性能的测定ISO2818 塑料——用机械加工法制备试样B.2.3 原理见B.1.3条B.2.4 定义见B.1.4中规定的定义B.2.5 设备见B.1.5条B.2.6.1 形状和尺寸只要可能,试样应为图B.2.1所示的1A或1B 样的哑铃形。

GBT228金属材料室温拉伸试验方法

GBT228金属材料室温拉伸试验方法

GB/T228.金属材料室温拉伸试验方法1 .1本标准适用范围标准适用于金属材料(包括黑色和有色金属材料,但不包括金属构件和零件)室温拉伸性能的测定(横截面尺寸≮0.1mm)。

对于小横截面尺寸的金属产品(如金属箔、超细丝和毛细管等)需双方协议。

本标准规定了试验原理、定义、符合和说明、试样及其尺寸测量、试验设备、试验要求、性能测定、测定结果数值修约和试验报告。

1.2 可测量的量:伸长率:断后伸长率(A),断裂总伸长率(At),最大力总伸长率(Agt),最大力非比例伸长率(Ag),屈服点延伸率(Ae)等的测定.强度:上屈服强度(ReH),下屈服强度(Rel),规定非比例延伸强度(Rp),规定总延伸强度(Rt),抗拉强度(Rm)的测定.断面收缩率(Z)的测定.1.3 原理试验系用静拉力对试样拉伸,测量力各相应的伸长,一般拉至断裂,测定一项或几项力学性能.1.4室温的温度范围标准中规定室温的温度范围为10~35℃,超出这一范围不属于室温。

对于材料在这一温度范围内性能对温度敏感而采用更严格的温度范围试验时,应采用23±5℃的控制温度。

上述10~35℃的温度指容许的试样温度范围.1.5定义原始标距(L0):施力前的试样标距.引伸计标距(Le):测量伸长用的试样圆柱或棱柱部分的度。

断面收缩率(Z),最大力(Fm)伸长:试验期间任一时刻原始标距(L0)增量{断后伸长率(A),断裂总伸长率(At),最大力总伸长率(Agt)和最大力非比例伸长率(Ag)}.延伸: 试验期间任一给定时刻引伸计标距(Le)的增量{残余延伸率,非比例延伸率,总延伸率, 屈服点延伸率(Ae) ,最大力延伸率(Agt)等}.应力:试验期间任一时刻的力除以试样原始横截面积(S0)之商{抗拉强度(Rm) ,屈服强度{上屈服强度(ReH) ,下屈服强度(ReL) ,规定非比例延伸强度(Rp) ,规定总延伸强度(Rt),规定残余延伸强度(Rr) }.] 最大力(Fm): 试样在屈服阶段之后所能抵抗的最大力;对于无明显屈服(连续屈服)的金属材料,为试验期间的最大力。

实验5 拉伸性能测定 (2)

实验5 拉伸性能测定 (2)

试验五 拉伸性能测定一、 目的要求1. 明确试验条件。

2. 测试热塑性塑料和玻璃纤维增强塑料拉伸性能。

二、 原理拉伸试验是最基本的一种力学性能试验方法。

测定塑料、玻璃纤维织物增强塑料板材和短切玻璃纤维增强塑料的拉伸性能,包括拉伸强度、弹性模量、泊松比、伸长率、应力-应变曲线等。

拉伸试验是指在规定的温度、湿度和试验速度下,在试样上沿纵轴方向施加载荷使其破坏,此时材料的性能指标如下:1. 拉伸强度为hb P t ⋅=σ 式中 t σ——拉伸强度,Mpa ;P ——破坏载荷(或最大载荷),N ;b ——试样宽度,cm ;h ——试样厚度,cm 。

2. 拉伸破坏(或最大载荷处)的伸长率为1000⨯∆=L L b t ε 式中 t ε——试样拉伸破坏(或最大载荷处)伸长率,%;b L ∆——试样破坏时(或最大载荷处)标距0L 内伸长量,cm ; 0L ——测量的标距,cm 。

3. 拉伸弹性模量为t E =L h b PL ∆⋅⋅∆⋅0式中 t E ——拉伸弹性模量,Mpa ;P ∆——载荷-变形曲线上初始直线段的载荷增量,N ;L ∆ ——与载荷增量P ∆对应的标距0L 内的变形增量,cm 。

4. 泊松比为μ =12εε-式中 μ——泊松比;21,εε ——分别为载荷增量P ∆对应的纵向应变和横向应变。

222111/,/L L L L ∆=∆=εε式中 21,L L ——分别为纵向和横向的测量标距,cm21,L L ∆∆——分别为与载荷增量P ∆对应的标距21,L L 的变形增,cm5. 拉伸应力-应变曲线图玻璃纤维增强塑料拉伸应力-应变曲线由折线组成,折线的拐点出现在强度极限的三分之一处附近,试样拉伸过程达到此处时,可听到有开裂声,并伴随在试样表面上出现白斑。

由于折线的存在,就形成了所谓第一弹性模量和第二弹性模量问题。

形成第二弹性模量是复合材料的特点,这主要是由于在受力状况下树脂和纤维延伸率不同,在界面处出现开裂(热固性树脂延伸率仅1%左右,玻璃纤维延伸率:有碱纤维为2.7%,无碱纤维为3%),此时复合材料中有缺陷的纤维先行断裂,致使纤维总数少于起始状态,相应每根纤维上受力增加,形变也就增加,这是弹性模量降低的缘故。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉伸性能的测定1.原理沿试样纵向主轴恒速拉伸,直到断裂或应力(负荷)或应变(伸长)达到某一预定值,测量这一过程中试样承受的负荷及其伸长。

2.术语和定义2.1 标距()试样中间部分两标线之间的初始距离,以mm为单位。

2.2实验速度()在实验过程中,实验机夹具分离速度,以mm/min为单位。

2.3拉伸应力 tensile stress σ在试样标距长度内任何给定时刻每单位原始横截面积上所受的拉伸力以MPa为单位。

2.3.1拉伸屈服应力, 屈服应力 tensile stress at yield yield stress σy发生应力不增加而应变增加时的最初应力以MPa为单位该应力值可能小于材料的最大应力(见图1中的曲线b和曲线c)。

2.3.2拉伸断裂应力 tensile stress at break σB试样断裂时的拉伸应力(见图1)以MPa为单位。

2.3.3拉伸强度 tensile strength σM在拉伸试验过程中试样承受的最大拉伸应力(见图1)以MPa为单位。

2.3.4 x%应变拉伸应力(见4.4) tensile stress at x% strain σx应变达到规定值x%时的应力以MPa为单位。

适用于既无屈服点又不易拉断的软而韧的材料应力-应变曲线上无明显屈服点的情况见图1中的曲线d)x 值应按有关产品标准规定或由相关方商定。

但在任何情况下x 都必须小于拉伸强度所对应的应变。

如土工格栅产品中的2%、5%拉伸力。

此条用于取代92版的“偏置屈服应力”2.4拉伸应变 tensile strain ε标距原始单位长度的增量用无量纲的比值或百分数(%)表示。

适用于脆性材料活韧性材料在屈服点以前的应变超过屈服点后的应变则以“拉伸标称应变”代替。

2.4.1拉伸屈服应变 tensile strain at yield εy屈服应力时的拉伸应变见4.3.1和图1中的曲线b和曲线c用无量纲的比值或百分数%表示。

2.4.2拉伸断裂应变 tensile strain at break εB试样未发生屈服而断裂时与断裂应力相对应的拉伸应变见图1中的曲线a和曲线d用无量纲的比值或百分数(%)表示。

屈服后断裂的情况见5.1。

修订后的GB/T 1040不再使用“断裂伸长率”的概念而以“拉伸断裂应变”、“断裂标称应变”代替。

2.4.3拉伸强度应变 tensile strain at tensile strength εm试样未出现屈服或在屈服点时与拉伸强度相对应的拉伸应变见图1中的曲线a、c和曲线d用无量纲的比值或百分数%表示。

拉伸强度高于屈服应力的情况见5.2。

2.5拉伸标称应变 nominal tensile strain εt两夹具之间距离夹具间距原始单位长度的增量,用无量纲的比值或百分数(%)表示。

只适用于韧性材料屈服点后的应变,它表示沿试样自由长度总的相对伸长率。

由于韧性材料在屈服点后应力基本不变而应变迅速增加,试样很快变细、变长,准确测量两标线之间的距离变得相当困难,为此采用夹具间的原始距离替代试验标距、夹具间的距离增量代替伸长改称为“拉伸标称应变”。

2.5.1断裂标称应变 nominal tensile strain at break εtB试样屈服后断裂(见图1中的曲线b和曲线c)时与断裂拉伸应力(见3.2)相对应的拉伸标称应变用无量纲的比值或百分数(%)表示。

无屈服的断裂情况(见4.2)。

2.5.2拉伸强度标称应变 nominal tensile strain at tensile strength εtM拉伸强度出现在屈服之后(见图1中的曲线b)与拉伸强度对应的标称应变,用无量纲的比值或百分数(%)表示。

没有屈服或拉伸强度出现在屈服点时的情况,见4.3。

2.6拉伸弹性模量 modulus of elasticity in tension E t应力σ2与σ1的差值(σ2-σ1)与对应的应变ε2与ε1的差值(ε2–ε1;ε1=0.0005ε2=0.0025)的比值 [见图1中的曲线d和10.3中的公式(8)]以MPa为单位。

此定义不适用于薄膜和橡胶。

注:借助计算机可以用监测点间曲线部分的线性回归代替以两个不同的应力-应变点来测量模量Et。

此定义的几何意义就是应力-应变曲线上(σ1,ε1)点与(σ2,ε2)两点间割线的斜率。

由于曲线不是完全平滑的此方法的测试误差较大。

2.7泊松比 Poisson’s ratio μ在纵向应变对法向应变关系曲线的起始线性部分内垂直于拉伸方向上的两坐标轴之一的拉伸应变ε与拉伸方向上的应变ε之比的负值, 用无量纲的比值表示。

按照相应的轴向,泊松比可用μb(宽度方向)或μh(厚度方向)来标识。

μn=式中:μn——泊松比,以法向n=b(宽度)或h(厚度)上的无量纲比值表示ε——纵向应变εn—— n=b(宽度)或h(厚度)时的法向应变。

泊松比优先用于长纤维增强材料。

由于标准的变化,在标准发布实施后将要求试验机提供的数据类型、计算方式符合标准的要求。

试验机企业需要修改试验程序以适应新标准的要求3 .GB/T 1040对试验机的要求3.1、试验机3.1.1 概述试验机应符合ISO 5893 和本标准5.1.2~5.1.5的规定。

3.1.2 试验速度试验机应能达到表1所规定的试验速度(见4.2)。

试验速度仍为9种但1mm/min的允许偏差由±50%提高到±20%试验机企业应引起注意。

表1 推荐的试验速度速度mm/min 公差%1 a)2 a)5102050100200500a)这些公差均小于GB/T 17200所标明的允差。

3.1.3 夹具用于夹持试样的夹具与试验机相连,使试样的长轴与通过夹具中心线的拉力方向重合,例如可通过夹具上的对中销来达到。

应尽可能防止被夹持试样相对于夹具滑动。

推荐使用下述类型的夹具,当施加在试样上的拉力增加时,能保持或增加对试样的夹持力,且不会在夹持处引起试样过早破坏。

3.1.4 负荷指示装置负荷指示器应带有能显示试样所承受的总拉伸负荷的装置。

该装置在规定的试验速度下应无惯性滞后,指示负荷的准确度至少为实际值的1%,应注意之处均列在GB/T 17200中有对应国家标准。

3.1.5 引伸计引伸计应符合GB/T 17200 规定,应能测量试验过程中任何时刻试样标距的相对变化。

该仪器最好,但不是必须能自动记录这种变化且在规定的试验速度下应基本上无惯性滞后并能以相关值的1%或更佳精度测量标距的变化。

这相当于在测量模量时,在50mm标距基础上能准确至±1μm。

当引伸计连接在试样上时,应小心操作以使试样产生的变形和损坏减至最小。

引伸计和试样之间基本无滑动。

试样也可以装纵向应变规,其精度应为对应值的1%或更优。

用于测量模量时,相当于应变精度为20×10-6(20微应变)。

选择应变规表面处理和粘接剂应以能显示被试材料的所有性能为宜。

3.2 测量试样宽度和厚度的仪器3.2.1 硬质材料应使用测微计或等效的仪器测量,其读数精度为0.02mm或更优。

测量头的尺寸和形状应适合于被测量的试样,不应使试样承受压力而明显改变所测量的尺寸。

3.2.2 软材料应使用读数精度为0.02mm或更优的度盘式测微计来测量试样,其压头应带有圆形平面,同时在测量时能施加(20)kPa的压力。

4.试样4.1试样形状和尺寸要求选用的是高分子材料检测的形状和尺寸(参照标准——国标GB/T 1040-92中的)其它国标的尺寸要求一览:高分子试样的制备和尺寸要求I :I型试样及尺寸试样的制备和尺寸要求III :III型试样及尺寸试样的制备和尺寸要求IV :IV型试样及尺寸4.2 试样的制备尺寸要求:塑料材料选择试样类型试样材料类型试样制备方法最佳厚度mm 试验速度硬质热塑性塑热塑性增强塑料Ⅰ注塑模压 4 B C D E F硬质热塑性塑料板热固性塑料板含层压板机械加工 2A B C D E FG软质热塑性塑料及板Ⅱ注塑、模压板材机械加工和冲切加工2 F G H I热固性塑料(含填充、增强塑料)Ⅲ注塑模压 C热固性塑料板Ⅳ机械加工 B C DA:1mm/min, B:2mm/min, C:5mm/min, D:10mm/min, E:20mm/min, F:50mm/min, G:100mm/min ,H:200mm/min,I:500mm/min4.3 标线如果使用光学引伸计,特别是对于薄片和薄膜,应在试样上标出规定的标线,标线与试样的中心距离大致相等,两标线间的距离的测量精度应达到1%或更优。

标线不能刻划或者冲刻或者压印在试样上,以免损坏受试材料,应采用对受试材料无影响的标线,而且所划的每条线要尽量窄。

4.4 试样的检查试样应无扭曲,相邻的平面间应相互垂直。

表面和边缘应无划痕、空洞、凹陷和毛刺。

试样可与直尺、直角尺、平板比对,应用目测并用螺旋微测器检查是否符合这些要求。

经检查发现试样有一项或几项不合要求时,应舍弃或在实验前机器加工至合适的尺寸和形状。

5 试样数量5.1每个受试方向和每项性能(拉伸模量、拉伸强度等)的实验数量不少于5个。

如果需要精密度更高的平均值,试样数量可多于5个,可用置信区间(95%概率,见ISO 2602:1980)估算得出。

5.2应废弃在肩部断裂或者塑形变形扩展到整个肩宽的哑铃形试样并取样重新实验。

5.3当试样在夹具内出现滑移或在距任一夹具10mm以内断裂,或者明显缺陷导致过早破坏时,由此试样得到的数据不应用来分析结果,应取试样重新实验。

由于这些数据的变化是受试材料性能变化的函数,因此,无论数据怎样变化,不应随意舍弃数据。

注:如果多数的破坏出现在可接受破坏判据以外时,可用统计学分析得出数据。

但一般认为最后的实验结果可能是过低的。

在这种情况下,最好重复实验,以减少不可接受实验结果的可能性。

6 实验步骤6.1 实验环境应在与试样状态调节相同环境下进行实验,除非有关方面另有商定,例如在高温或低温下实验。

6.2 试样尺寸在每个试样中部距离标距每端5mm以内测量宽度b和厚度h。

宽度b精确至0.1mm,厚度h精确至0.02。

记录每个试样宽度和厚度的算术平均值,以便用于其他计算。

6.3 夹持将试样放到夹具中,务必使试样的长轴线与实验机的轴线成一条直线。

当使用夹具对中时,为得到准确对中,应在紧固夹具前稍微绷紧试样,然后平稳而牢固地夹紧夹具,以防止试样滑移。

6.4 预应力试样在实验前应处于基本不受力状态。

但在薄膜试样对中时可能产生这种预应力,特别是较软材料由于夹持压力,也能引起这种预应力。

在测量模量时,实验初始应力0,不应超过下值,见式(1):|0|5E t (1)与此相对应的预应变应满足00.05%。

当测量相关应力(如:y、M、B)时,应满足式(2):0 (2)6.5 引伸计的安装平衡预应力后,将校准过的引伸计安装到试样的标距上并调正,根据3.1.5所述,装上纵向应变规。

相关文档
最新文档