小学奥数讲解 关于数论的问题
六年级数论综合奥数题
六年级数论综合奥数题一、数论基础知识回顾1. 整除的概念若整数公式除以非零整数公式,商为整数,且余数为零,我们就说公式能被公式整除(或说公式能整除公式),记作公式。
例如公式,余数为公式,则说公式。
2. 因数与倍数如果公式能被公式整除,公式就叫做公式的倍数,公式就叫做公式的因数。
例如在公式中,公式是公式的倍数,公式是公式的因数。
3. 质数与合数质数是指在大于公式的自然数中,除了公式和它本身以外不再有其他因数的自然数。
例如公式、公式、公式、公式等。
合数是指自然数中除了能被公式和本身整除外,还能被其他数(公式除外)整除的数。
例如公式,公式,所以公式、公式是合数。
4. 分解质因数把一个合数写成几个质数相乘的形式叫做分解质因数。
例如公式。
二、典型数论综合奥数题及解析求公式的因数有多少个?解析:1. 先将公式分解质因数:公式。
2. 根据因数个数定理:对于一个数公式(公式为质数,公式为正整数),它的因数个数为公式。
3. 对于公式,其因数个数为公式个。
题目2:已知两个数的最大公因数是公式,最小公倍数是公式,其中一个数是公式,求另一个数。
解析:1. 根据两个数的积等于这两个数的最大公因数和最小公倍数的积。
设另一个数为公式。
2. 则公式。
3. 先计算公式,那么公式。
题目3:有一个三位数,它是公式的倍数,且它各位数字之和是公式的倍数,百位数字与个位数字之和等于十位数字,这个三位数是多少?1. 设这个三位数为公式(公式为百位数字,公式为十位数字,公式为个位数字)。
2. 已知公式,且公式是公式的倍数。
将公式代入公式可得公式是公式的倍数,因为公式是一位数,所以公式。
3. 又因为这个数是公式的倍数,根据公式的倍数特征:各个数位上的数字之和是公式的倍数,这个数就是公式的倍数。
已知公式。
4. 满足公式的组合有公式、公式、公式、公式等,所以这个三位数可以是公式、公式、公式、公式等。
202X年小学奥数知识点梳理数论
千里之行,始于足下。
202X年小学奥数知识点梳理数论202X年小学奥数知识点梳理数论数论是数学中的一个重要分支,研究整数的性质与关系。
在小学奥数竞赛中,数论常常是一个重要的考点。
下面是202X年小学奥数的数论知识点梳理。
1. 基本概念- 整数:正整数、负整数和零的总称。
- 偶数与奇数:能被2整除的整数称为偶数,不能被2整除的整数称为奇数。
- 素数与合数:除了1和自身外,没有其他因数的整数称为素数,否则称为合数。
- 因数与倍数:如果a能够整除b,那么称a是b的因数,b是a的倍数。
2. 最大公约数与最小公倍数- 最大公约数(GCD):两个数公有的最大因数称为最大公约数。
- 最小公倍数(LCM):两个数公有的最小倍数称为最小公倍数。
3. 质因数分解- 质因数:一个整数如果除了1和它本身外没有其他因数,那么它是一个质数,否则它是合数。
将一个合数分解成质因数的乘积的形式,称为质因数分解。
- 质因数分解算法:从最小的质数2开始,依次判断是否为这个数的因数,如果是,则除以这个数,继续判断剩下的数是否能被这个质数整除,直到无法整除为止。
第1页/共3页锲而不舍,金石可镂。
4. 奇数数列与偶数数列- 一个数列中,从第一个数开始,每个数都比前一个数大2,这个数列称为奇数数列- 一个数列中,从第一个数开始,每个数都比前一个数大2,这个数列称为偶数数列5. 数组与数列- 数组是有序数的集合。
- 数列是数按一定顺序排列起来的表现形式。
6. 公式与规律- 两个偶数的和是偶数,两个奇数的和是偶数,一个偶数和一个奇数的和是奇数。
- 奇数个奇数的积是奇数,偶数个奇数的积是偶数。
- 一组数的和与这组数里所有的数的奇偶性有关。
- 奇数个奇数的和与这组奇数的个数的奇偶性有关,偶数个奇数的和与所有奇数的奇偶性有关。
- 相邻两个数之间的差是固定的。
7. 排列组合- 排列:从n个不同元素中取r个元素(r≤n)按一定的顺序排成一列,叫做从n个不同元素中取r个元素的一个排列。
6年级奥数数论综合问题(2)例题解析
【内容概述】我们在本讲不着重讨论n进制中运算问题,我们是关心n这个数字,即为几进制.对于进位制我们要注意本质是:n进制就是逢n进一.但是,作为数论的一部分,具体到每道题则其方法还是较复杂的.说明:在本讲中数字,不特加说明,均为十进制.【例题】题1.计算:(234)7+(656)7[分析与解]我们必须注意到7进制的运算必须是逢7进1,如下:于是,和为(1223)7题2.在几进制中有4×13=100.[分析与解]我们利用尾数分析来求解这个问题:不管在几进制均有(4)10×(3)10=(12)10.但是,式中为100,尾数为0.也就是说已经将12全部进到上一位.所以说进位制n为12的约数,也就是12,6,4,3,2.但是出现了4,所以不可能是4,3,2进制.我们知道(4)10×(13)10=(52)10,因52<100,也就是说不到10就已经进位,才能是100,于是我们知道n<10.所以,n只能是6.题6.在6进制中有三位数abc,化为9进制为cba,求这个三位数在十进制中为多少?[分析与解](abc)6=a×62+b×6+c=36a+6b+c;(cba)9=c×92+b×9+a=81c+9b+a.所以36a+6b+c=81c+9b+a;于是35a=3b+80c;因为35a是5的倍数,80c也是5的倍数.所以3b也必须是5的倍数,又(3,5)=1.所以,b=0或5.①当b=0,则35a=80c;则7a=16c;(7,16)=1,并且a、c≠0,所以a =16,c=7;但是在6、9进制,不可以有一个数字为16.②当b=5,则35a=3×5+80c;则7a=3+16c;mod7后,3+2c≡0.所以c=2或者2+7k(k为整数).因为有6进制,所以不可能有9或者9以上的数,于是c=2.于是,35a=15+80×2;a=5.于是(abc)6=(552)6=5×62+5×6+2=212.所以,这个三位数在十进制中为212.题7.N是整数,它的b进制表示是777,求最小的正整数b,使得N是十进制整数的四次方.[分析与解]我们将b进制中数改写为10进制,则(777)b=7×b2+7×b+7;则有7×b2+7×b+7=x4,我们知道N是7的倍数,所以x4也是7的倍数,又7为质数,所以x是7的倍数.于是,令x=7t,则7×b2+7×b+7=2401t3,则b2+b+1=343t4;当t=1时,b2+b+1=343,b(b+1)=342,则b=18;因为t最小,所以b也是最小的.所以有最小在18进制有(777)18=(74)10.题8.设1987可以在b进制中写成三位数,且x+y+z=1+9+8+7,试确定出所有可能的x、y、z及b.题9.(1)证明10201在大于2的任何进制的记数法中,都是一个合数.(2)证明10101在任何进制的记法中,都是一个合数.[分析与解](1)设在b进制,则(10201)b=1×b4+2×b2+1=(b2+1)2;所以不管在何进制,均是一个非1的完全平方数,当然是一个合数.(2)设在a进制,则(10101)=1×a4+1×a2+1=(a2+1)2-a2=(a2+1-a)(a2+1+a);a可以将其表达为两个均不为1的整数乘积,显然为合数.例10.下列加法算式是( )进制的不同字母代表不同的数字.[分析与解]于是,我们知道n=4,所以为4进制,则A+B+C+D=3+1+2+0=6.题11.称n个相同的数a相乘叫做a的n次方,记做a n,并规定a0=1.如果某个自然数可以写成2的两个不同次方(包括零次方)的和,我们就称这样的数为“双子数”,如9=23+20,36=25+22.它们都是双子数,那么小于1040的双子数有_______个.[分析与解]我们注意到与二进制的联系:(9=23+20)10=(1001)2,(36=25+22)10=(100100)2,写成2的两个不同次方(包括零次方)的和这样的数改写为二进制后只含有2个1,我们知道:(1040=210+24)10=(10000000000+10000)2=(10000010000)2,这样二进制为11位数,但是11位数有限制;我们先看10位数,于是(**********),这样10位数,选择2个数位填1,其他为0,所以为;再考虑11位数,于是(1000001****),只有4个“*”和紧邻的“1”于是有5种选择;所以,共有+5=50种选择方法.所以这样的“双子数”为50个.题12.一个非零自然数,如果它的二进制表示中数码1的个数是偶数,则称之为“坏数”.例如:18=(10010)2是“坏数”.试求小于1024的所有坏数的个数.[分析与解]我们现把2004转化为二进制:(1024)10=210=(10000000000)2.于是,在二进制中为11位数,但是我们只用看10位数中情况,于是为==45+210+210+45+1=511.于是,小于1024的“坏数”有511个.题16.试求(22006-1)除以992的余数是多少?[分析与解]我们注意到被除数与2的次幂有关,所以,我们试图通过2进制来解决.题17.一个10进制的三位数,把它分别化为9进制和8进制数后,就又得到了2个三位数.凌老师发现这3个三位数的最高位数字恰好是3、4、5,那么这样的三位数一共有多少个?[分析与解]我们设(3ab)10=(4cd)9=(5ef)8;我们知道(4cd)9在(400)9~(488)9之间,也就是4×92~5×92-1,也就是324~406;还知道(5ef)8在(500)8~(577)8之间,也就是5×82~6×82-1,也就是320~383;又知道(3ab)10在(300)10~(399)10之间.所以,这样的三位应在在324~383之间,于是有383-324+1=60个三位数满足条件.题18.一袋花生共有2004颗,一只猴子第一天拿走一颗花生,从第二天起,每天拿走的都是以前各天的总和.①如果直到最后剩下的不足以一次拿走时却一次拿走,共需多少天?②如果到某天袋里的花生少于已拿走的总数时,这一天它又重新拿走一颗开始,按原规律进行新的一轮.如此继续,那么这袋花生被猴子拿光的时候是第几天?。
【精品资料】小学奥数知识点-数论
数论知识点整除定义及特征判断1、数的整除性:整数a除以整数b(b≠0),所得的商是整数而没有余数,则称a能被b整除,或b整除a,记作:b|a.2、整除的性质:性质1. 如果c|a,c|b,则c|(a±b)性质2. 如果bc|a,则b|a,c|a性质3. 如果c|b,b|a,则c|a3、整除问题的解决方法:整除特征法;补9、补0试除法。
4、涉及极值的整除问题:贪心法、弃倍法、逐步调整法。
5、数的整除特征:a.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;b.一个数各位数字之和能被3整除,这个数就能被3整除;一个数各位数字之和能被9整除,这个数就能被9整除;c.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;d.一个数从个位到高位,每三位进行分段,将形成的奇位之和与偶位之和以大减小,如果差可以被7、11、13整除,则此数也可被7、11、13整除;如果一个整数的末三位与末三位之前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除;e.如果逐次去掉最后一位数字并减去末位数字的2倍后能被7整除,那么这个数能被7整除;如果逐次去掉最后一位数字并减去末位数字后能被11整除,那么这个数能被11整除;如果逐次去掉最后一位数字并减去末位数字的9倍后能被13整除,那么这个数能被13整除;f.一个数从个位到高位,每两位分成一段,将每段上的数相加。
如果相加的和能被99所整除,那么这个数就能被99所整除。
奇数、偶数与奇偶性的应用一、奇数和偶数的概念:1)整数可以分成奇数和偶数两大类。
2)能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
3)因为偶数是2的倍数,所以通常用2k这个式子来表示偶数(这里k是整数),因为任何奇数除以2其余数总是1,所以通常用式子2k+1来表示奇数(这里k是整数)。
五年级数学奥林匹克数论.doc
五年级数学奥林匹克数论(2)数字A、B和C是从1到9的三个不同的数字。
由它们组成的六个不重复数字的三位数之和是多少?这个数字有一个两位数,在它前面加上数字1可以得到一个三位数,在它后面加上数字1也可以得到一个三位数,两个三位数之间的差是666。
寻找原来的两位数。
回答:根据位值原理,在两位数之前加1等于加100。
在两位数之后加上数字1等于将两位数乘以10,然后再加上1。
让这个两位数是x(10x 1)-找到原来的两位数。
回答:根据位值原理,在两位数之前加1等于加100。
在两位数之后加上数字1等于将两位数乘以10,然后再加上1。
设这个两位数为x。
(10x 1)除数的难度:五年级数论问题难度高;完全除法的困难:中/高难度1、2、3和4(每个数字只使用一次)可以组成24个四位数,其中有多少可以被11整除?回答:可被11整除的数的特征在于:奇数位数的数字和与偶数位数的数字和之差可以除以11。
因为.1、2、数字3和4之和的差不能大于11,因此要被11整除,只有奇数位数1、2、3和4(每个数字只使用一次)可以组成24个四位数,其中有多少可以被11整除?回答:可被11整除的数的特征在于:奇数位数的数字和与偶数位数的数字和之差可以除以11。
因为.1、2、数字3和4之和的差不能大于11,因此要被11整除,只有奇数位数的数字和与偶数位数的数字和的差等于0。
因此,1和4必须同时为奇数或偶数,以满足上述要求。
当1和4都是奇数时,这四个数字是:1243、13442 7045 63 10560 84 140 ……除以7 4除以53除以3 2是:可以看出,60 63 35=158满足我们的条件,但它不是最小的自然数。
处理方法是将最小公倍数减去若干倍,使结果在最小公倍数内。
所以答案是:158:中国剩余定理难度:若干中等难度除以3、5、7和11的其余部分分别是2、3、4、5、找到满足条件的最小数量:回答:将3、5、7和11分别为4个数字、3个数字和3个数字计算公共倍数,如下表所示:3、在5和7的公共倍数中,除以11和剩余5的数字不是很容易找到,但是注意210除以11和剩余1,因此210×5=1050除以11和剩余5,因此770 693 165 1050=2678是满足条件的值,并且3、5、7和11的最小公倍数是1155,所以2678-的难度除以3、5、7和11的其余部分分别是2、3、4、5、找到满足条件的最小数量:回答:将3最小数来求解:中国剩余定理;23整除问题的整除性质;5整除相关分析(五年级奥数)五年级数论问题分析:用素数组合分解素因子的困难;平均难度是一个5位数,它的位数之和是43,并且可以被11整除。
小学奥数数论问题50道详解(一)
小学奥数数论问题50道详解(一)
1. 问题描述
这是一份详细解答小学奥数数论问题的文档,包含了50道数论问题的解答方法和策略。
2. 解答内容
以下是其中的一些问题的解答概要:
1. 问题1:某数的末两位数是7,这个数能否被3整除?
解答:对于一个数能否被3整除,可以通过判断其所有位上数字之和是否能被3整除。
这里,末两位为7,所以无法确定这个数能否被3整除。
2. 问题2:某数的末两位数是12,这个数能否被4整除?
解答:对于一个数能否被4整除,可以通过判断它的末两位是否能被4整除。
这里,末两位数为12,12不能被4整除,所以该数也不能被4整除。
3. 问题3:某数的个位是7,十位是4,这个数能否被9整除?
解答:对于一个数能否被9整除,可以通过判断其所有位上数
字之和是否能被9整除。
这里,个位为7,十位为4,所以7+4=11,11不能被9整除,所以该数也不能被9整除。
4. 问题4:某数的末两位数字是0,这个数能否被5整除?
解答:对于一个数能否被5整除,可以直接判断其末位是否是
0或者5。
这里,末两位数字是0,所以这个数可以被5整除。
3. 结论
这份文档提供了小学奥数数论问题的详细解答,其中包含了50道问题的解答概要。
通过阅读这份文档,学生可以深入了解解决数
论问题的方法和策略,提高他们的数论问题解决能力。
小学六年级奥数之数论的方法技巧
小学六年级奥数之数论的方法技巧小学六年级奥数之数论的方法技巧数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r且q,r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p14.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(ak+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。
这些常用的形式有:1.十进制表示形式:n=an10n+an-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2mt,其中t为奇数。
例1红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。
结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。
小学奥数中的数论问题
小学奥数中的数论问题在奥数竞赛中有一类题目叫做数论题,这一部分的题目具有抽象,思维难度大,综合运用知识点多的特点,基本上出现数论题目的时候大部分同学做得都不好。
一、小学数论究包括的主要内容我们小学所学习到的数论内容主要包含以下几类:整除问题:(1)整除的性质;(2)数的整除特征(小升初常考内容)余数问题:(1)带余除式的运用被除数=除数×商+余数.(余数总比除数小)(2)同余的性质和运用奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算质数合数:重点是质因数的分解(也称唯一分解定理)约数倍数:(1)最大公约最小公倍数两大定理一、两个自然数分别除以它们的最大公约数,所得的商互质。
二、两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
(2)约数个数决定法则(小升初常考内容)整数及分数的分解与分拆:这一部分在难度较高竞赛中常出现,属于较难的题型。
二、数论部分在考试题型中的地位在整个数学领域,数论被当之无愧的誉为“数学皇后”。
翻开任何一本数学辅导书,数论的题型都占据了显著的位置。
在小学各类数学竞赛和小升初考试中,系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。
出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。
三、孩子在学习数论部分常常会遇到的问题数学课本上的数论简单,竞赛和小升初考试的数论不简单。
有些孩子错误地认为数论的题目很简单,因为他们习惯了数学课本上的简单数论题,比如:例1:求36有多少个约数?这道题就经常在孩子们平时的作业里和单元测试里出现。
可是小升初考题里则是:例2:求3600有多少个约数?很多孩子就懵了,因为“平时考试里没有出过这么大的数!”(孩子语)于是乎也硬着头皮用课堂上求约数的方法去求,白白浪费了大把的时间,即使最后求出结果也并不划算。
小学奥数数论知识点
小学奥数数论知识点一、数的认识1. 自然数:用于计数和排序的数,包括0和正整数。
2. 奇数与偶数:奇数是不能被2整除的整数,偶数是能被2整除的整数。
3. 质数与合数:质数是只有1和本身两个因数的大于1的自然数,合数是除了1和本身外还有其他因数的自然数。
4. 因数与倍数:如果整数a能被整数b整除,a是b的倍数,b是a的因数。
二、数的运算1. 加法与减法:加法是将两个或多个数合并成一个数的运算,减法是从一个数中去掉另一个数的运算。
2. 乘法与除法:乘法是重复加法的简化,除法是将一个数分成几个相等部分的运算。
3. 余数:在除法中,被除数除以除数后剩下的数称为余数。
三、数的性质1. 唯一分解定理:每个大于1的整数都可以唯一地表示为质数的乘积。
2. 最大公约数和最小公倍数:最大公约数是两个或多个整数共有的最大的因数,最小公倍数是这些整数的最小公共倍数。
3. 奇偶性:奇数加奇数得偶数,偶数加偶数得偶数,奇数加偶数得奇数。
四、数的应用1. 约数倍数问题:涉及找出一个数的约数或倍数的问题。
2. 质数问题:涉及质数的分布、判断和性质的问题。
3. 分数的拆分与比较:涉及将分数拆分为不同单位的和,以及比较分数大小的问题。
五、解题技巧1. 枚举法:通过列举所有可能的情况来找到答案。
2. 反证法:假设某个结论是错误的,通过推理得出矛盾,从而证明原结论是正确的。
3. 归纳法:通过观察一系列特殊情况,找出一般规律。
六、例题解析1. 例题一:找出20以内的所有质数。
- 解析:20以内的质数有2, 3, 5, 7, 11, 13, 17, 19。
2. 例题二:求36和54的最大公约数。
- 解析:通过辗转相除法,可以求得36和54的最大公约数是18。
七、总结数论是数学的基础分支之一,对于培养逻辑思维和解决问题的能力具有重要作用。
小学奥数数论涉及的知识点广泛,包括数的认识、数的运算、数的性质、数的应用以及解题技巧等。
掌握这些知识点,对于提高学生的数学素养和解决复杂问题的能力至关重要。
奥数闯关数论与整数问题
奥数闯关数论与整数问题数论作为数学的一个分支,主要研究整数的性质和相互关系。
在奥林匹克数学竞赛中,数论问题常常是考察选手逻辑思维和数学推理能力的重要环节之一。
本文将介绍奥数闯关中的数论问题,重点关注整数问题,并分析解题思路和方法。
一、质数:素数的魅力质数是指除了1和自身外,没有其他因数的自然数。
质数在奥数闯关中经常出现,因此了解质数的性质及特点对解决问题至关重要。
例如,欧几里得算法是求解两个数最大公约数的重要方法,而质数的性质在这一算法中发挥了重要作用。
二、模运算:数字之间的奇妙运算模运算是指在一定范围内,通过除法运算得到的余数。
在奥数闯关中,模运算常用于寻找某个整数与其他数之间的特殊关系。
比如,当我们需要判断一个整数是否能同时被2和3整除时,可以使用模2和模3运算的性质来解决。
三、同余:数的等价性同余是指两个整数除以同一个正整数所得的余数相等。
在奥数闯关中,同余问题经常被用来证明和推导数学命题。
通过建立同余关系,我们可以将原问题转化为更易解的数论问题,从而简化解题过程。
四、因数分解:拆解质因数因数分解是将一个数分解为若干个质数乘积的过程。
因数分解在奥数闯关中起到关键作用,能够帮助我们快速求解问题。
掌握因数分解的方法,不仅可以拆解数学问题,还可以解决实际生活中与整数相关的困惑。
五、整数方程:数之间的相互关系整数方程是奥数闯关中的常见考点之一,要求我们求解满足特定条件的整数解。
通过建立代数方程,运用数论知识和数学推理,我们可以找到合适的整数解,并得到问题的正确答案。
六、整数的特殊性质:奇偶性、除尽和倍增等整数拥有许多与其他数不同的特殊性质,例如奇偶性、除尽和倍增等。
这些性质在奥数闯关中广泛应用,为解题提供了便利。
对于给定问题,我们可以利用整数的特殊性质来缩小解空间,找到有效的求解方法。
七、数论技巧与策略:掌握解题要领在奥数闯关中,除了掌握数论的基础知识外,还需要灵活运用各种数论技巧与策略。
这些技巧包括递推关系、特殊取模方法、数列性质等。
小学奥数关于数论知识点的总结
小学奥数关于数论知识点的总结数论是纯粹数学的分支之一,主要研究整数的性质。
整数可以是方程式的解(丢番图方程)。
有些解析函数(像黎曼ζ函数)中包括了一些整数、质数的性质,透过这些函数也可以了解一些数论的问题。
透过数论也可以建立实数和有理数之间的关系,并且用有理数来逼近实数(丢番图逼近)。
以下是无忧考网整理的相关资料,希望对您有所帮助。
【篇一】1. 奇偶性问题奇+奇=偶奇×奇=奇奇+偶=奇奇×偶=偶偶+偶=偶偶×偶=偶2. 位值原则形如:abc =100a+10b+c3. 数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4. 整除性质①如果c|a、c|b,那么c|(a b)。
②如果bc|a,那么b|a,c|a。
③如果b|a,c|a,且(b,c)=1,那么bc|a。
④如果c|b,b|a,那么c|a.⑤a个连续自然数中必恰有一个数能被a整除。
5. 带余除法一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q 为a除以b的不完全商(亦简称为商)。
用带余数除式又可以表示为a ÷b=q……r, 0≤r【篇二】分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即n= p1 ×p2 ×...×pk约数个数与约数和定理设自然数n的质因子分解式如n= p1 ×p2 ×...×pk 那么:n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)n的所有约数和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )同余定理①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m)②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。
六年级奥数(精品)数论综合
第19讲数论综合知识点精讲一、特殊数的整除特征1.尾数判断法1)能被2整除的数的特征:2)能被5整除的数的特征:3)能被4(或25)整除的数的特征:4)能被8(或125)整除的数的特征:2.数字求和法:3.99的整除特性:4.奇偶位求差法:5.三位截断法:特别地:7×11×13=1001,abcabc=abc×1001二、多位数整除问题技巧:1>目的是使多位数“变短”,途径是结合数的整除特征和整除性质2>对于没有整除特性的数,利用竖式解决。
三、质数合数1.基本定义【质数】——【合数】——注:自然数包括0、1、质数、合数.【质因数】——【分解质因数】——用短除法和分拆相乘法分解质因数。
任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N=a1×a2×a3×……×a n,其中a1、a2、a3……a n都是合数N的质因数,且a1<a2<a3<……<a n。
【互质数】——【偶数】——【奇数】——2.质数重要性质1)100以内有25个质数:2)除了2和5,其余的质数个位数字只能是:3)1既不是质数,也不是合数4)在质数中只有2是偶数,其他质数都是奇数5)最小的质数是2.最小的奇质数是36)有无限多个3.质数的判断:1)定义法:判断整除性2)熟记100以内的质数3)平方判断法:例如:对2011,首先442<2011<452,然后用1至44中的全部质数去除2011,即可叛断出2011为质数. 4.合数1)无限多个2)最小的合数是43)每个合数至少有三个约数5.互质数1)什么样的两个数一定是互质数?注意:分解质因数是指一个合数写成质因数相乘的形式.因此,要分解的合数应写在等号左边,如:21=3⨯7,不能写成:3⨯7=21.6.偶数和奇数1)0属于偶数2)十进制中,个位数字是0,2,4,6,8的数是偶数;个位数字是1,3,5,7,9的数是奇数3)除2外所有的正偶数均为合数4)相邻偶数的最大公约数为2,最小公倍数是他们乘积的一半5)奇±奇=偶偶±偶=偶偶±奇=奇奇×奇=奇偶×奇=偶偶×偶=偶四、约数与倍数1.约数与倍数概念:2.一个数约数的个数:3.平方数与约数个数的关系:4.最大公约数与最小公倍数求法:分解质因数:辗转相除法:5.两数的最大公约数乘以最小公倍数等于这两个数的乘积。
奥数六大板块-第2讲-数论板块
奥孚培优小学奥数思维训练(数论板块)目录1、奇偶性分析2、整除问题3、质数与合数4、约数与倍数5、余数问题奇偶性分析知识点说明:● 奇数与偶数的运算规律:⏹ 偶数±偶数=偶数,奇数±奇数=偶数 ⏹ 偶数±奇数=奇数⏹ 偶数个奇数的和或差是偶数 ⏹ 奇数个奇数的和或差是奇数⏹ 偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数⏹ 在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性 ⏹ 对于任意2个整数a 、b 有a b +与a b -奇偶性相同典型题讲解:例1. 有一个数列:1、1、2、3、5、8、13、21、34后面每一个数都等于它前面两个数的和,那么这个数列前2011项有多少个奇数?例2. 是否存在自然数a 和b ,使得()115ab a b +=?例3.桌子上有6只开口向上的杯子,每次同时翻动其中的4只杯子,问能否经过若干次翻动,使得全部杯子的开口全都向下?(拓展)桌子上有6只开口向上的杯子,每次同时翻动其中的5只杯子,问能否经过若干次翻动,使得全部杯子的开口全都向下?(拓展)桌子上有5个开口向上的杯子,现在允许每次同时翻动其中的3个,问能否经过若干次翻动,使得5个杯子的开口全都向下?(拓展)桌子上有5个开口向上的杯子,现在允许每次同时翻动其中的4个,问能否经过若干次翻动,使得5个杯子的开口全都向下?例4.(拓展)在一次聚会中,朋友们陆续来到,见面时,有些人互相握手问好,主人很高兴,笑着说:“不管你们怎么握手,你们之中握过奇数次手的人肯定有偶数个”。
请你想一想,主人说的对吗?为什么?整除问题知识点说明:● 带余除法基本关系式:=⨯+被除数除数商余数,余数小于被除数● 位值原理:通俗地讲就是,一个多位数可以用它每一位上的数字来表示.例:10000100010010abcde a b c d e =⨯+⨯+⨯+⨯+● 特殊数的整除判定:⏹ 一个数的末位能被2(或5)整除,这个数就能被2(或5)整除 ⏹ 一个数的末两位能被4(或25)整除,这个数就能被4(或25)整除 ⏹ 一个数的末三位能被8(或125)整除,这个数就能被8(或125)整除 ⏹ 一个数的各位数字之和能被3(或9)整除,这个数就能被3(或9)整除⏹ 一个数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,这个数就能被11整除 ⏹ 一个数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,这个数就能被7、11或13整除 ⏹ 一个数从右向左,每两位一截得到若干个两位数(若该数由奇数个数字组成,会有一个一位数),若这些数之和能被99整除,这个数就能被99整除 ● 简单的整除性质:⏹ 性质1:如果c a ,c b ,那么()c a b ± ⏹ 性质2:如果b a ,c b ,那么c a⏹ 性质3:如果bc a ,那么b a ,c a典型题讲解:例1. 在一个除法算式中,如果商是16,余数是8,那么被除数与除数之和最小是多少?例2. 如果70ab a b ⨯=,那么ab 等于多少?例3. 已知九位数2007122A B 既是9的倍数,又是11的倍数,那么这个九位数是多少?例4. 已知四十一位数205209555999个个能被7整除,那么中间方格内的数字是多少?例5. 已知:23!2582067388849766000D C AB =,则四位数ABCD 是多少?质数与合数知识点说明:●质数与合数的概念:⏹特殊的质数与合数◆0和1既不是质数也不是合数,因此,我们可以说,自然数可以分成三部分,即:0和1,质数,合数◆最小的质数是2,最小的合数是4◆常用的100以内的质数:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97⏹质数的判定:“连续小质数试除法”●质因数分解:⏹质因数分解:把一个合数写成几个质数相乘的形式,叫做分解质因数。
6年级奥数数论综合问题(1)例题解析
【内容概述】进位制的概念、四则运算法则及整数在不同进位制之间的转化,利用恰当的进位制解数论问题.取整符号[]与取小数部分符号{}的定义与基本性质,包含这两种符号的算式与方程的求解.两次与分式不定方程,不便直接转化为不定方程的数论问题.各种数论证明题.【例题】1.用a,b,c,d,e分别代表五进制中五个互不相同的数字,如果(ade)5,(adc)5,(aab)5是由小到大排列的连续正整数,那么(cde)5所表示的整数写成十进制的表示是多少?[分析与解]注意(adc)5+(1)5=(aab)5,第二位改变了,也就是说求和过程个位有进位,则b=0,而c=(10)5-(1)5=(4)5,则c=4.而(ade)5+(1)5=(adc)5,所以e+1=c,则e=3.又d+1=a,所以d=1,a=2.那么,(cde)5为(413)5=4×52+1×5+3=108.即(cde)5所表示的整数写成十进制的表示是108.批注:二进制中是逢二进一,五进制中是逢五进一。
2.算式1534×25=43214是几进位制数的乘法?[分析与解]注意到尾数,在足够大的进位制中有乘积的个位数字为4×5=20,但是现在为4,说明进走20-4=16,所以进位制为16的约数:16、8、4、2.因为原式中有数字5,所以不可能为4、2进位,而在十进制中有1534×25=38350<43214,所以在原式中不到10就有进位,即进位制小于10,于是原式为8进制.3.设l,3,9,27,81,243是6个给定的数,从这6个数中取出若干个数,每个数至多取一次,然后将取出的数相加得到一个和数,这样共可得到63个不同的和数.把这些数从小到大排列起来依次是1,3,4,9,l0,12,…,那么其中第39个数是多少?[分析与解]我们知道1,3,9,27,81,243都是3的若干次幂,写成3进制依次为:(1)3,(10)3,(100)3,(1000)3,(10000)3,(100000)3,则从中任意选取若干数,且不重复,那么它们的和在3进制中都只是由1和0组成.但是在3进制中,并不是所有的数字都是只由0,1组成,这就给计数造成了困难.而2进制中所有的数字都是只由1和0组成.于是,我们想到使用2进制,在2进制中第39个非零自然数,即39应记为:(100111)2.在3进制中,只用1和0表示的数,第39个也是100111,有(100111)3=1×35+1×32+1×3+1=256.即其中第39个数是256.评注:这道题我们不厌其烦的详细说明这些,只是想帮助大家复习进位制中的n进制与十进制的互相转化.此63个数的范围在3进制中的范围是(1)3~(111111)3而且不会有进位产生,也就是都是由0和1这两个数字组成的,所以我们可以把其想象为二进制,中的第39个数是什么?4.求方程19[x]-96{x}=0的解的个数.[分析与解]有{x}为一个数的小数部分,显然小于1,则96{x}小于96,而19[x]=96{x},所以19[x]小于96,即[x]小于,又[x]为整数,所以[x]可以取0,1,2,3,4,5,对应有6组解.进一步计算有0,,,,,为原方程的解.批注;解决此类问题的方法就是要销去一个定义符号,然后用不等式的方法来解答。
小学奥数中的数论问题
小学奥数中的数论问题在奥数竞赛中有一类题目叫做数论题,这一部分的题目具有抽象,思维难度大,综合运用知识点多的特点,基本上出现数论题目的时候大部分同学做得都不好。
一、小学数论究包括的主要内容我们小学所学习到的数论内容主要包含以下几类:整除问题:(1)整除的性质;(2)数的整除特征(小升初常考内容)余数问题:(1)带余除式的运用被除数=除数×商+余数.(余数总比除数小)(2)同余的性质和运用奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算质数合数:重点是质因数的分解(也称唯一分解定理)约数倍数:(1)最大公约最小公倍数两大定理一、两个自然数分别除以它们的最大公约数,所得的商互质。
二、两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
(2)约数个数决定法则(小升初常考内容)整数及分数的分解与分拆:这一部分在难度较高竞赛中常出现,属于较难的题型。
二、数论部分在考试题型中的地位在整个数学领域,数论被当之无愧的誉为“数学皇后”。
翻开任何一本数学辅导书,数论的题型都占据了显著的位置。
在小学各类数学竞赛和小升初考试中,系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。
出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。
三、孩子在学习数论部分常常会遇到的问题数学课本上的数论简单,竞赛和小升初考试的数论不简单。
有些孩子错误地认为数论的题目很简单,因为他们习惯了数学课本上的简单数论题,比如:例1:求36有多少个约数?这道题就经常在孩子们平时的作业里和单元测试里出现。
可是小升初考题里则是:例2:求3600有多少个约数?很多孩子就懵了,因为“平时考试里没有出过这么大的数!”(孩子语)于是乎也硬着头皮用课堂上求约数的方法去求,白白浪费了大把的时间,即使最后求出结果也并不划算。
小学奥数中的数论问题
小学奥数中的数论问题一、分析因数1.如何求一个数的所有因数?把这个数分解质因数,把各个质因数分别写在一起,它们中任意几个的积都是这个数的因数。
例如:求 420 的所有因数420=2×2×3×5×7则 420 的所有因数为:1、2、3、4、5、6、7、10、12、14、15、20、21、28、30、35、42、60、70、84、140、210、4202. 如果知道一个数的几个因数,如何快速求出这个数?举例说明:若某个数是 $4$ 的倍数,$4$ 就是它的因数。
那么这个数可以写成 $4k$ 的形式,其中 $k$ 是一个整数。
同理如果这个数是 $3$ 的倍数,那么这个数可以写成 $3l$ 的形式,其中$l$ 是一个整数。
所以它可以写成 $12m$ 的形式,其中 $m$ 是一个整数。
因此,若某个数是 $3$ 和 $4$ 的倍数,那么它可以写成$12n$ 的形式,则此数即为 $12$ 的倍数。
二、最大公约数和最小公倍数1. 求最大公约数(简称 GCD)辗转相除法:把小的数不断地从大数中减,直到减不下为止。
用小数去减大数,然后用余数去除小的数。
如此反复,直到余数为零。
举例说明:求最大公约数 $84$ 和 $18$。
用 $84-18=66$,$18$ 去除 $66$(注意,是 $18$ 在除),余数为 $12$。
用 $18-12=6$,$12$ 去除 $6$,余数为 $0$。
由于余数为 $0$,所以 $6$ 就是最大公约数。
2. 求最小公倍数(简称 LCM)最小公倍数等于这两个数的乘积除以它们的最大公约数。
举例说明:求最小公倍数 $84$ 和 $18$。
先求出它们的最大公约数 $6$。
再将它们的乘积除以最大公约数,即 $\\frac{84\\times 18}{6}=504$。
所以 $84$ 和 $18$ 的最小公倍数为 $504$。
三、质数和合数1. 质数和合数分别是什么?质数是指在大于 $1$ 的自然数中,除了 $1$ 和本身,没有其他的因数的数,也就是只有 $1$ 和它本身两个约数的数。
小学奥数数的整除数论知识讲解及习题
小学奥数数的整除数论知识讲解及习题1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。
4. 能被3、9整除:各个数位上数字的和能被3、9整除。
5. 能被7整除:①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6. 能被11整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7. 能被13整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
三、整除的性质:1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
例题:在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?解:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除; 如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。
小学奥数数论专题知识总结
小学奥数数论专题知识总结.docx名师总结精品知识点数论基础知识小学数论问题,起因于除法算式:被除数除数商余数1.能整除:整除,因数与倍数,奇数与偶数,质数与合数,公因数与公倍数,分解质因数等;2.不能整除:余数,余数的性质与计算(余数),同余问题(除数),物不知数问题(被除数)。
一、因数与倍数1、因数与倍数(1)定义:定义1:若整数a能够被b整除,a叫做b的倍数,b就叫做a的因数。
定义2:如果非零自然数a、b、c之间存在abc,或者cab,那么称a、b是c的因数,c是a、b的倍数。
注意:倍数与因数是相互依存关系,缺一不可。
(a、b是因数,c是倍数)一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。
(2)一个数的因数的特点:最小的因数是1,第二小的因数一定是质数;最大的因数是它本身,第二大的因数是:原数第二小的因数(3)完全平方数的因数特征:完全平方数的因数个数是奇数个,有奇数个因数的数是完全平方数。
完全平方数的质因数出现次数都是偶数次;1000以内的完全平方数的个数是31个,20以内的完全平方数的个数是44个,3000以内的完全平方数的个数是22254个。
(31=961,44=1936,54=2916)2、数的整除(数的倍数)(1)定义:定义1:一般地,三个整数a、b、c,且b0,如有abc,则我们就说,a能被b整除,或b能整除a,或a能整除以b。
定义2:如果一个整数a,除以一个整数b(b0),得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
(ab)(2)整除的性质:如果a、b能被c整除,那么(a b)与(a-b)也能被c整除。
如果a能被b整除,c是整数,那么ac也能被b整除。
如果a能被b整除,b又能被c整除,那么a也能被c整除。
如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
(3)一些常见数的整除特征(倍数特征):末位判别法2、5的倍数特征:末位上的数字是2、5的倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数题讲解数论问题
所用知识不超过小学5年级,题目难度5颗星。
a,b,c,d都是个位数,由它们组成的四位数abcd和两位数ab、cd满.足(ab+cd) *(ab+cd)=abcd。
请问满.足条件的四位数abcd共有多少个?
答案: 3个。
辅导办法:将题目写给小朋友,让他自行思考解答,若20分钟还不能解答,由家长进行讲解。
讲解思路:这种类型的题目,关键是要寻找ab和cd的关系,再根据关系寻找满足条件的数。
步骤1:先思考第一个问题,ab+cd的范围是什么?这个问题很简单, 由于ab+cd的平方是四位数,而32*32=1024 ,99*99=9801,
因此ab+cd在32到99之间。
步骤2:再思考第二个问题,db和cd满足什么关系?
由题意,(ab+cd) *(ab+cd) =100*ab+cd,化简有(ab+cd)*(ab+cd-l)=99*ab 因此,(ab+cd) *(ab+cd-1)是99的倍数。
步骤3:再思考第二个问题,ab+cd可能的取值是多少?
由于99=3*3*11,而(ab+cd)和(ab+cd-1)不可能同时是9的倍数,
因此只可能有3种情况,
结合步骤1中ab+cd的范围讨论。
情况一:ab+cd是9的倍数,ab+cd-1是11的倍数,此时只有ab+cd 是45才满足条件;
情况二:ab+cd是11的倍数,ab+cd-1是9的倍数,此时只有ab+cd是55才满足条件;
情况三:ab+cd或ab+cd-1是99的倍数,此时只有xb+cd是99才满足条件。
步骤4:综合上述几个问题,代入验证,
45*45=2025=(20+25)*(20+25)
55*55=3025= (30+25)*(30+25)
99*99=9801= (98+1) *(98+1),都满足条件,
所以满足条件的数是3个。