初中几何定理大全

合集下载

初中数学竞赛几何中常用的24个必备定理

初中数学竞赛几何中常用的24个必备定理

初中数学竞赛几何中常用的24个必备定理1. 同位角定理:同位角互相相等或互补。

2. 对顶角定理:对顶角相等。

3. 同旁内角定理:同旁内角互补。

4. 外角定理:与一个多边形任意一内角相对的外角相等。

5. 内角和定理:n边形的内角和为180度×(n-2)。

6. 相关角定理:相邻角互补,对顶角互相相等。

7. 垂直直角定理:垂线与直线相交,形成直角。

8. 垂线定理:直线上任意一点向另一直线作垂线,垂线所在直线与原直线垂直。

9. 三角形内角和定理:三角形内角和为180度。

10. 等腰三角形定理:等腰三角形的底角相等。

11. 等边三角形定理:等边三角形的三个内角均为60度。

12. 直角三角形性质:直角三角形斜边平方等于其他两条边平方和。

13. 等角定理:两角相等的两个三角形全等。

14. 外接圆定理:三角形三个顶点到外接圆圆心的距离相等。

15. 中线定理:连接三角形两边的中线相等。

16. 中位线定理:连接三角形两边中点的线段平分第三边。

17. 高线定理:连接三角形顶点与对边垂直的线段相交于三角形内心。

18. 海伦公式:用三角形三条边的长度求其面积:S=sqrt[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2。

19. 正多边形内角定理:正n边形的内角和为(180度×(n-2))/n。

20. 球面三角形定理:球面三角形三个顶点到球心的距离相等。

三条边为大圆弧。

21. 圆周角定理:圆周角等于对应的弧所夹的圆心角。

22. 切线定理:切线相切于圆,与该切点相切的直线垂直于切线。

23. 弦长定理:在同一圆上,两条弦所夹的圆心角相等,则它们的弦长相等。

24. 弧长定理:同一圆上,两个相等的圆心角所对应的弧长相等。

(完整版)初中几何几个著名定理及证明

(完整版)初中几何几个著名定理及证明

① AC(BP+DP)=AD ・ BC+AB ・ DC ・ 即 AC ・ BD=AB ・ CD+AD ・ BC.2.托勒密定理的逆定理若一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这 个凸四边形內接于一圆。

己知:在凸四边形ABCD 中,AB • CD+AD • BC 二 BD • AC 。

求证:A 、B 、C 、D 四点共圆。

证明:分别以E 、A 为顶点,在 四边形ABCD初屮见何甩个著名炙龌及证明 识玻堵泗阳展療口屮曇蒐疋屮 一.托勒密定理 1.托勒密定理 圆內接四边形中,两条对角线的乘积等于两组对边乘积之和。

己知:圆內接四边形AECD,求证:AC ・BD 二AB • CD+AD ・BC 。

证明:如图所示,过C 作CP 交BD 于P, 使Z1=Z2,又Z3=Z4, AACD^ABCP. 冴 BP BC EP • AC 二 AD • BC 又 ZACB=ZDCP, Z5= Z6,,即 •:A ACB S A DCP . 得需=舘,即DP ・AC =AB ・DC内,作ZABF= ZDBC> ZBAF=ZBDC,—=—=> AB CD^BD-AF则厶ABF^ADBC 〜Ar CDAH _Bn亦—斎又•,• ZABD = Z ABF +ZEBF= ZEBF + ZDBC = ZFBC•'•△ABD S A FB C =x> —=—=>JD-/R-=Hzrc/--HC CF•••AB ・ CD+AD ・ BC=BD* (AF+CF)又VAB・CD+AD ・BC=BD・AC (己知〉,•••AC=AF + CF;「.A、F、C三点共线;ZBAC=ZBAF = ZBDC;:4、B、C、D 四点共圆。

3.托勒密不等式在任意凸四边形中,两组对边乘积的和不小于其两条对角线的乘积。

〈托勒密定理可视作托勒密不等式的特殊情况。

)即在任意凸四边形ABCD中,必有AC ・BDWAB • CD+AD * BC,当且仅当A、B、C、D四点共圆(托勒密定理)或共线(欧扌立几何定理)时取等号。

(完整版)初中数学几何公式大全

(完整版)初中数学几何公式大全

(完整版)初中数学几何公式大全直线和角度1. 同位角相等定理:若两条直线被一条横切,同位角相等。

同位角相等定理:若两条直线被一条横切,同位角相等。

2. 内错角相等定理:若两条直线被一条横切,内错角相等。

内错角相等定理:若两条直线被一条横切,内错角相等。

3. 同位角内错角互补定理:若两条直线被一条横切,同位角和内错角互为补角(和为180度)。

同位角内错角互补定理:若两条直线被一条横切,同位角和内错角互为补角(和为180度)。

4. 平行线定理:若一条直线与另外两条直线分别平行,则这两条直线也平行。

平行线定理:若一条直线与另外两条直线分别平行,则这两条直线也平行。

5. 直角定理:若两条直线相交且所成的角为直角,则这两条直线相互垂直。

直角定理:若两条直线相交且所成的角为直角,则这两条直线相互垂直。

线段1. 线段中点定理:若一条线段的中点同时是另一条线段的中点,则这两条线段等长。

线段中点定理:若一条线段的中点同时是另一条线段的中点,则这两条线段等长。

2. 线段延长定理:若一条线段的延长线上有一个点,与线段的两个端点分别构成等长线段,则这两个线段等长。

线段延长定理:若一条线段的延长线上有一个点,与线段的两个端点分别构成等长线段,则这两个线段等长。

三角形1. 三角形内角和定理:一个三角形的内角和为180度。

三角形内角和定理:一个三角形的内角和为180度。

2. 等腰三角形定理:若一条三角形的两条边等长,则这两条边所对的两个角也相等。

等腰三角形定理:若一条三角形的两条边等长,则这两条边所对的两个角也相等。

3. 全等三角形定理:若两个三角形的对应边和对应角分别相等,则这两个三角形全等。

全等三角形定理:若两个三角形的对应边和对应角分别相等,则这两个三角形全等。

4. 直角三角形定理:若一个三角形有一个直角,则它的斜边的平方等于两个直角边的平方和。

直角三角形定理:若一个三角形有一个直角,则它的斜边的平方等于两个直角边的平方和。

初中数学几何公式定理超全汇总

初中数学几何公式定理超全汇总

初中数学几何公式定理超全汇总140条01线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1 关于某条直线对称的两个图形是全等形13、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称02角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1 在角的平分线上的点到这个角的两边的距离相等23、定理2 到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合03三角形25、定理三角形两边的和大于第三边26、推论三角形两边的差小于第三边27、三角形内角和定理三角形三个内角的和等于180°28、推论1 直角三角形的两个锐角互余29、推论2 三角形的一个外角等于和它不相邻的两个内角的和30、推论3 三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形04等腰、直角三角形33、等腰三角形的性质定理等腰三角形的两个底角相等34、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3 等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1 三个角都相等的三角形是等边三角形39、推论 2 有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半05相似、全等三角形42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3 三边对应成比例,两三角形相似(SSS)47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2 相似三角形周长的比等于相似比50、性质定理3 相似三角形面积的比等于相似比的平方51、边角边公理有两边和它们的夹角对应相等的两个三角形全等52、角边角公理有两角和它们的夹边对应相等的两个三角形全等53、推论有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理有三边对应相等的两个三角形全等55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等06四边形57、定理四边形的内角和等于360°58、四边形的外角和等于360°59、多边形内角和定理n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1 平行四边形的对角相等62、平行四边形性质定理2 平行四边形的对边相等63、推论夹在两条平行线间的平行线段相等64、平行四边形性质定理3 平行四边形的对角线互相平分65、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3 对角线互相平分的四边形是平行四边形68、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1 矩形的四个角都是直角70、矩形性质定理2 矩形的对角线相等71、矩形判定定理1 有三个角是直角的四边形是矩形72、矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1 菱形的四条边都相等74、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1 四边都相等的四边形是菱形77、菱形判定定理2 对角线互相垂直的平行四边形是菱形07正方形78、正方形性质定理1 正方形的四个角都是直角,四条边都相等79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1 关于中心对称的两个图形是全等的81、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称08等腰梯形83、等腰梯形性质定理等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形09等分87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h92 、(1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d93、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d94、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值10圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论 1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r ②直线L和⊙O相切d=r ③直线L和⊙O相离d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长142、正三角形面积√3a/4 a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144、弧长计算公式:L=nπR/180145、扇形面积公式:S扇形=nπR/360=LR/2146、内公切线长= d-(R-r) 外公切线长= d-(R+r)。

初中几何证明的所有公理和定理

初中几何证明的所有公理和定理

初中几何证明的所有公理和定理几何学是数学的一个分支,研究平面和空间中的图形、形状、大小以及它们之间的关系。

在几何学中,有一些基本的公理和定理被广泛应用于证明其他几何结论。

以下是初中几何中常用的公理和定理。

一、公理1.尺规公理:任意两点可以用直尺连接,任意一点可以用剪刀间距来复原。

2.同位角公理:同位角互等。

3.平行公理:通过点外一条直线的直线,与这条直线平行的直线只有唯一一条。

4.直线偏转公理:过直线和不在直线上的一点,有且只有一条直线与该直线相交。

二、定理1.垂直平分线定理:平分一条线段的直线必垂直于该线段。

2.三角形内角和定理:三角形内角的和为180°。

3.直角三角形定理:在直角三角形中,两个直角三角形的边长和斜边相等。

4.点到直线的距离定理:点到直线的距离等于点到该直线上垂线的距离。

5.等腰三角形定理:等腰三角形的底边中点到顶点的距离等于底边的一半。

6.等边三角形定理:等边三角形的三条边相等。

7.三角形外角定理:三角形外角等于其对应内角的和。

8.直角三角形的勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。

9.海伦公式:已知三角形的三边长,可以通过海伦公式求解其面积。

10.等周定理:等周的两角相等,反之亦成立。

11.三角形中位线定理:三角形两边中点连线中位线,且平分第三边。

12.周长定理:四边形周长等于各边长的和。

13.三角形周长定理:三角形的周长等于三边长的和。

14.三角形中线定理:三角形中线等分中位线,且平分第三边。

15.三角形终边定理:一个角的终边上的点,到另一个角所在的直线的距离永远相等。

16.五边形内角和定理:五边形的内角和是540°。

17.钝角三角形的边长关系:钝角三角形两边长的平方和小于斜边长的平方。

18.三角形的相似性定理:对应角等价、对应边成比例的两个三角形为相似三角形。

19.平行线的性质定理:平行条边分别过枚角且长度成正比,则连线为平行线。

20.重叠三角形定理:如果两个角和一个边分别相等,则两个三角形相等。

初中几何定理归纳整理

初中几何定理归纳整理

初中几何定理归纳整理初中几何定理的归纳整理一、角的性质1. 同位角的性质:同位角是同旁内角,它们的度数相等。

2. 对顶角的性质:对顶角是同旁外角,它们的度数相等。

3. 平行线与横切线的性质:当一组平行线被一条横切线交叉时,同位角相等,内错角和外错角互补。

4. 垂直角的性质:垂直角是两条相交直线所夹的角,它们的度数相等。

二、三角形的性质1. 三角形内角和定理:三角形内角和等于180°。

2. 等腰三角形的性质:等腰三角形的底角相等,等腰三角形的两边相等。

3. 直角三角形的性质:直角三角形的两个锐角互余,勾股定理成立。

4. 等边三角形的性质:等边三角形的三条边相等,三个内角均为60°。

5. 三角形的外角与内角的关系:三角形的一个内角与与之相对的外角互补,三角形的三个外角之和等于360°。

三、四边形的性质1. 平行四边形的性质:平行四边形的对边相等,对角线互相平分。

2. 矩形的性质:矩形的四个角均为直角。

3. 正方形的性质:正方形是矩形的一种特殊情况,它的四个边和四个角都相等。

4. 菱形的性质:菱形的四个边相等,对角线互相垂直且互相平分。

5. 梯形的性质:梯形的两边平行,底角和顶角相等,对角线互相平分。

四、圆的性质1. 圆的定义:圆是平面上到一个定点距离相等的所有点的集合。

2. 圆的半径和直径:圆的半径是从圆心到圆上任意一点的距离,圆的直径是通过圆心的两个点之间的距离,直径是半径的两倍。

3. 圆的弧:圆上两点之间的弧是连接这两点的圆上的一段曲线。

4. 圆心角和弧度:圆心角是以圆心为顶点的角,它所对应的弧长与半径的比值为弧度。

五、空间几何定理1. 空间直角坐标系:空间直角坐标系是由三个相互垂直的坐标轴组成的坐标系。

2. 空间平面和直线的相交关系:空间平面和直线的相交关系有三种情况:相交于一点、相交于一条直线、不相交。

3. 空间四面体的性质:空间四面体的底面是一个三角形,它的四个侧面都是三角形。

初中几何定理大全

初中几何定理大全

初中几何定理1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc。

初中数学几何公式定理梳理大全老师都收藏了

初中数学几何公式定理梳理大全老师都收藏了

初中数学几何公式定理梳理大全老师都收藏了一、基本概念和公式1.点:空间中没有大小和形状的事物就是点,用大写字母表示,如A、B、C等。

2.直线:两个不同点之间的路径称为直线,用小写字母表示,如a、b、c等。

3.线段:直线上的两个点及其之间的部分称为线段,用大写字母表示,两点间的距离表示为AB。

4.射线:一条有一个端点和一个方向的直线叫做射线,用大写字母表示,如AB。

5.平面:有无限个点的集合,用大写字母表示,如α、β、γ等。

6.角:由两条射线共享一个端点而形成的,位于同一平面上的两个非共线线段称为角,用大写字母表示,如∠ABC。

7.直角:两条互相垂直的线段所对应的角度称为直角,用⊥表示。

8.同位角:相对于同一条直线,在相交射线的两侧所形成的角称为同位角。

二、三角形1.相等的三角形定理:-边-角-边相等定理(已知两边和夹角相等,可得到相等的三角形)。

-角-边-角相等定理(已知两角和一边相等,可得到相等的三角形)。

-边-边-边相等定理(已知三边相等,可得到相等的三角形)。

2.相似的三角形定理:-边比相似定理(两个三角形对应边的比例相等,则称它们相似)。

-角比相似定理(两个三角形对应角的度数相等,则称它们相似)。

3.直角三角形定理:-勾股定理(直角三角形的两直角边的平方和等于斜边的平方)。

-正弦定理(在任意三角形中,三边的比与对应的正弦的比相等)。

-余弦定理(在任意三角形中,三边的比与对应的余弦的比相等)。

4.中线定理:三角形内的三条中线所交于一个点且相交点距离顶点的距离等于两条中线的长度之和的一半。

三、四边形1.矩形:-对角线相等定理:矩形的两条对角线相等。

-相邻角互补定理:矩形的任意两个相邻角互补。

2.平行四边形:-对边平行定理:一个四边形的两对对边分别平行,则该四边形是平行四边形。

3.正方形:-对角线互相垂直定理:正方形的对角线相互垂直。

-对角线相等定理:正方形的对角线相等。

四、圆1.圆:-圆周长公式:C=2πr,其中r为半径,π≈3.14-圆面积公式:S=πr²,其中r为半径,π≈3.142.弧:-弦切定理:相等弧所对的弦相等,圆心角相等的弧所对的弦相等。

初中几何常用定理(竞赛)

初中几何常用定理(竞赛)

1已知:AD为BC边上的中线结论:(2)垂线定理已知:AD为BC边上的高结论:(3)梅涅劳斯定理已知:一条直线与△ABC三边或其延长线交于R、Q、P(4)塞瓦定理已知:三角形内部一点O,延长AO、BO、CO交三边于X、Y、Z(5)角平分线定理已知:AD为∠BAC平分线(6)斯特瓦尔特定理已知:D为BC边上一点结论:7结论:(8)外森皮克不等式已知:三角形的面积为S结论:(9)西姆松定理已知:过△ABC外接圆上一点P作三边或其延长线的垂线结论:三个垂足M、N、Q共线(10)海伦公式已知:△ABC三边分别为a、b、c其中(11)燕尾定理已知:△ABC中,AD、BE、CF相交于OAA12已知:△ABC外接圆半径为R,三顶点A、B、C所对的边为a、b、c结论:(13)余弦定理已知:△ABC三顶点A、B、C所对的边为a、b、c结论:(14)张角定理已知:D是△ABC中BC上一点(15)托勒密定理已知:四边形ABCD为圆内接四边形结论:(任意凸四边形ABCD,必有,当且仅当ABCD四点共圆时取等)(16)九点圆定义:三角形三边的中点MHG,三条高的垂足DEF和各顶点与垂心连线的中点PNQ,九点共圆。

结论:①九点圆的半径是三角形外接圆半径的一半;②九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;③九点圆与三角形的内切圆,三个旁切圆均相切(费尔巴哈定理)DFB CCAAB17已知:M是弦AB中点,任意两条弦CD、EF过点M,DE、CF交AB于P、Q(18)欧拉线定义:三角形的外心O、重心G、九点圆圆心V和重心H,依次位于同一直线上,这条直线即欧拉线(19)弦切角定理已知:PA切圆于点A(20)圆幂定理已知:弦AB与弦CD交于点P结论:已知:PQ切圆于Q,割线PB、PD交圆于A、CDAB CPDPB21结论:已知:P是矩形内任意一点结论:(22)维维亚尼定理已知:P是等边△ABC内任意一点,P到三边的距离分别是,h1、h2、h3,等边△ABC的高为H(23)莫利定理已知:△ABC各内角的三等分线交点为D、E、F结论:△DEF为等边三角形(24)笛沙格定理已知:△ABC和△A1B1C1中,AA1、BB1、CC1交于一点P结论:AB与A1B1交点D,BC与B1C1交点E,AC与A1C1交点F,三点共线B DABBCB CB25定义:三角形内到三个顶点距离之和最短的点结论:①若三角形有一个内角≥120°,则此内角的顶点为费马点;②若三角形三各内角均小于120°,以三角形三边向外作等边△ABE、等边△BCF、等边△ACG,AF、BG、CE交于一点P,点P为费马点,此时(26)婆罗摩笈多定理已知:圆内接四边形的对角线互相垂直相交结论:从交点向某一边所引垂线的反向延长线必经过这条边对边的中点(G为AD中点)E。

初中几何定理大全初中数学几何121个定理总结

初中几何定理大全初中数学几何121个定理总结

初中几何定理大全初中数学几何121个定理总结
一、三角形定理:
1、直角三角形三边定理:在直角三角形中,两个直角对边的平方和等于斜边的平方。

2、勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方。

3、余弦定理:在任意三角形中,每条边的平方等于其他两条边平方之和减去两倍乘积的余弦值。

4、正弦定理:在任意三角形中,每条边的平方等于其他两条边平方之和加上两倍乘积的正弦值。

5、比例定理:在任意三角形中,斜边的平方等于两条边的乘积除以其外角的余弦值的平方。

6、外接圆定理:任意三角形的外接圆半径等于其三边长的和除以4
7、外切圆定理:任意三角形的外切圆半径等于其两边长的乘积除以4倍其近角的正弦值。

8、锐角三角形边长定理:在锐角三角形中,一条边大于另外两条边的和,小于他们的差。

9、内切圆定理:任意三角形的内切圆半径等于其两边长的乘积除以4倍其外角的正弦值。

10、锐角三角形的内接圆定理:任意锐角三角形内接圆半径等于其三边长乘积除以4其外角的余弦值。

二、平行线定理:
1、平行线定理:平行线与平行线之间分别成等腰角和相邻角成等式。

2、垂线定理:垂线与平行线之间相邻角成等式。

初中阶段几何公式定理汇总

初中阶段几何公式定理汇总

初中阶段几何公式定理汇总几何学是研究空间形状、大小、相对位置以及其性质的数学分支。

初中阶段学习几何学是培养学生观察、分析问题和推理能力的重要环节。

掌握几何公式和定理是学习几何学的基础,下面我们来汇总一些初中阶段常见的几何公式和定理。

1.平行线与横线的夹角为直角,相邻角互补,对顶角相等。

2.直角三角形的斜边上的正弦、余弦和正切:在一个直角三角形ABC 中,设∠C=90°,AB=c,AC=b,BC=a,则有:sin∠A = b/ccos∠A = a/ctan∠A = b/a3.余弦定理:对于任意一个三角形ABC,有:c² = a² + b² - 2ab cos∠Cb² = a² + c² - 2ac cos∠Ba² = b² + c² -2bc cos∠A4.正弦定理:对于任意一个三角形ABC,有:a/sin∠A = b/sin∠B = c/sin∠C = 2R其中,R为三角形外接圆的半径。

5.周长定理:对于任意一个三角形ABC,设AB=c,AC=b,BC=a,则有:周长P=a+b+c6.海伦公式:对于任意一个三角形ABC,设AB=c,AC=b,BC=a,P为周长的一半,则有:面积S=√[P(P-a)(P-b)(P-c)]7.直角三角形的勾股定理:对于一个直角三角形ABC,设∠C=90°,且AB=c,AC=b,BC=a,则有:a²=b²+c²b²=a²+c²c²=a²+b²8.等腰三角形的性质:等腰三角形指两边相等的三角形,它有以下性质:(1)等腰三角形的底角相等。

(2)等腰三角形的顶角相等。

(3)等腰三角形的两底边中线相等。

(4)等腰三角形的高等于下底边与对应高之差的一半。

9.全等三角形的判定:两个三角形全等的条件有以下几种:(1)SSS判定法:如果一个三角形的三边长度完全相等,则两个三角形全等。

初中数学所有几何证明定理精编版

初中数学所有几何证明定理精编版

初中数学所有几何证明定理精编版一、直线垂直定理定理:如果两条直线互相垂直,那么它们的斜率乘积为-1证明:设直线L1的斜率为k1,直线L2的斜率为k2、由于两条直线互相垂直,则L1与L2的斜率乘积为-1,即k1×k2=-1二、垂直平分线定理定理:如果一条直线垂直平分一条线段,那么它必过这条线段的中点。

证明:设直线L垂直平分线段AB,即将线段AB分成等长的线段AC和CB。

假设直线L不过线段AB的中点D,那么必然存在一点E在线段AB的另一侧,使得直线LE与线段AB垂直,这与直线L垂直平分线段AB的前提相矛盾,所以直线L必过线段AB的中点D。

三、三角形角平分线定理定理:三角形中,角的平分线上的点到边的距离成比例。

证明:设三角形ABC的角A的平分线交边BC于点D,AD是直线BC的角A平分线。

利用三角形相似性可以得到以下等式:AD/BD=AC/BCAD/CD=AB/BC将两个等式相加得到(AD/BD)+(AD/CD)=(AC/BC)+(AB/BC),化简后可得到AD/BD+CD=AC/BC+AB/BC,再进一步整理得到AD/(BD+CD)=AC/BC,即AD和BC上的点到边的距离成比例。

四、三角形相似条件定理定理:如果两个三角形的对应角相等,则这两个三角形相似。

证明:设△ABC和△DEF是两个具有对应相等角A,B,C和D,E,F的三角形。

根据角度相等和三角形内角和为180°的性质,可知∠A+∠B+∠C=∠D+∠E+∠F=180°。

再根据第三个内角为180°的三角形内角和为180°的性质,得知∠C=∠F。

因此,这两个三角形具有两对相等角,所以根据三角形相似的定义,△ABC和△DEF相似。

五、等腰三角形性质定理定理:等腰三角形的两个底角相等。

证明:设△ABC是一个等腰三角形,AB=AC。

假设∠A≠∠B,那么根据三角形内角和为180°的性质,必存在一个角∠C使得∠A+∠B+∠C=180°。

初中几何公式定理大全146条

初中几何公式定理大全146条

一、直线和角度1. 直线的性质2. 同位角、内错角、同旁内角、同旁外角、相交线性质3. 平行线性质4. 角的度量5. 角的性质6. 垂直角与互补角7. 角平分线的性质8. 三角形内角和为180°9. 三角形外角和等于对应的内角和二、平行四边形10. 平行四边形的性质11. 平行四边形对角线的性质12. 平行四边形的判定定理13. 等腰平行四边形性质三、三角形14. 三角形的定义15. 三角形的分类16. 三角形的内角和17. 三角形的外角和18. 等腰三角形的性质19. 等边三角形的性质20. 直角三角形的性质21. 斜角三角形的性质22. 三角形内心、外心、重心、垂心23. 三角形中位线定理24. 三角形的中线定理25. 三角形的高定理26. 三角形的中线定理27. 三角形的角平分线定理28. 三角形的正弦定理29. 三角形的余弦定理30. 三角形的海伦公式四、全等三角形31. 全等三角形的性质32. 三角形全等条件33. 全等三角形的判定定理五、相似三角形34. 相似三角形的性质35. 相似三角形的判定定理36. 相似三角形的应用六、勾股定理和勾股数37. 勾股定理的条件38. 勾股定理的应用39. 勾股数的构造和性质40. 勾股数的判定定理七、平面图形41. 正方形的性质42. 长方形的性质43. 菱形的性质44. 梯形的性质45. 正多边形的性质46. 圆的性质47. 圆的切线定理48. 圆的切割定理49. 圆的弦理论50. 圆的扇形面积八、平行线与比例51. 平行线分线段52. 线段比例定理53. 平行线的中位线定理54. 平行线的高度定理九、数学建模55. 数学建模的概念56. 数学建模的解题步骤57. 数学建模的应用实例十、平面几何命题证明58. 角平分线的性质证明59. 平行线性质证明60. 直角三角形的性质证明61. 狄尼茨定理证明62. 三等分角定理证明63. 正多边形内角和公式证明十一、解决几何问题64. 几何问题的解决方法65. 几何问题的三步走解题法66. 几何问题的类比辅助法67. 几何问题的逆向方法十二、空间图形68. 空间图形的概念69. 空间图形的分类70. 空间图形的性质71. 空间图形的体积公式十三、平面与立体坐标系72. 平面直角坐标系73. 立体坐标系74. 坐标变换定理十四、等差数列和等比数列75. 等差数列的性质76. 等差数列的应用77. 等比数列的性质78. 等比数列的应用十五、向量79. 向量的概念80. 向量的性质81. 向量的加法和减法82. 向量的数量积83. 向量的叉积84. 向量的应用十六、向量的平面几何应用85. 向量的平移86. 向量的夹角87. 向量的垂直和平行88. 向量作为平行四边形的对角线十七、圆锥曲线的方程89. 圆的方程90. 椭圆的方程91. 双曲线的方程92. 抛物线的方程十八、解析几何命题证明93. 直线的方程证明94. 圆的方程证明95. 椭圆的方程证明96. 双曲线的方程证明97. 抛物线的方程证明十九、三角函数98. 三角函数的概念99. 三角函数的正弦、余弦、正切、余切100. 三角函数的性质101. 三角函数的定义域和值域102. 三角函数图像二十、三角函数的一般式103. 三角函数的和差化积104. 三角函数的倍角公式105. 三角函数的半角公式106. 三角函数的和角公式107. 三角函数的差角公式108. 三角函数的积化和差二十一、三角函数的应用109. 三角函数的变量代换110. 三角函数的方程解法111. 三角函数的不等式解法112. 三角函数的应用实例二十二、立体几何113. 立体几何的基本概念114. 立体几何的三视图115. 立体几何的截面图116. 立体几何的投影图二十三、立体几何命题证明117. 立体几何的平行轴定理证明118. 立体几何的旋转定理证明119. 立体几何的平移定理证明120. 立体几何的镜像对称定理证明二十四、空间向量121. 空间向量的概念122. 空间向量的性质123. 空间向量的共线124. 空间向量的垂直125. 空间向量的平行二十五、空间向量运算126. 空间向量的和127. 空间向量的差128. 空间向量的数量积129. 空间向量的叉积二十六、立体几何和向量130. 空间平面的方程131. 空间直线的方程132. 空间平面和直线的位置关系133. 空间立体几何和向量的应用二十七、立体图形的几何性质134. 立体图形的视图和截面135. 立体图形的平面和直线位置关系136. 立体图形的边和面的关系137. 立体图形的三视图和投影图二十八、三视图的绘制138. 正交三视图的绘制139. 斜投影三视图的绘制140. 立体图形的三视图应用二十九、空间几何建模141. 空间几何建模的概念142. 空间几何建模的三步走解题法143. 空间几何建模的应用实例三十、空间曲面的方程144. 圆锥曲线的方程证明145. 曲面的方程证明146. 空间曲面的方程应用在初中阶段,学习几何公式定理是非常重要的,因为它为理解和解决各种几何问题打下了坚实的基础。

初中几何定理大全

初中几何定理大全

初中几何公理定理大全线:1过两点有且只有一条直线 2 两点之间线段最短补角、余角 3 同角或等角的补角相等 4 同角或等角的余角相等垂线:5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短平行公理7 经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行证明9 同位角相等,两直线平行平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行已知12两直线平行,同位角相等平行13 两直线平行,内错角相等14 两直线平行,同旁内角互补三角形性质:15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理:三角形三个内角的和等于180°18 推论2 三角形的一个外角等于和它不相邻的两个内角的和19 推论3 三角形的一个外角大于任何一个和它不相邻的内角直角三角形:20 推论1 直角三角形的两个锐角互余21 直角三角形30°角所对的边是斜边的一半22.直角三角形斜边上的中线是斜边的一半23勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c24勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形已知全等三角形,得性质:23 两个全等三角形之间:三个的对应边、对应角相等证明全等三角形22边角边SAS公理:有两边和它们的夹角对应相等的两个三角形全等23 角边角ASA公理:有两角和它们的夹边对应相等的两个三角形全等24 推论:有两角和其中一角的对边对应相等的两个三角形全等25 边边边SSS公理:有三边对应相等的两个三角形全等26 斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等角平分线:27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合等腰三角形30 等腰三角形的性质定理:等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形垂直平分线39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称四边形:48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°已知平行四边形,得性质52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54夹在两条平行线间的平行线段相等证明四边形是平行四边形55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形证明四边形是矩形以及矩形性质60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形证明四边形是菱形以及矩形性质64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形证明四边形是正方形以及正方形性质69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角四边形式等腰梯形74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形中心对称图形71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称**线段等分成比例78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似证明两个三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似已知两个三角形相似,得性质96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方三角函数99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值圆101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n∏R/180145扇形面积公式:S扇形=n∏R/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r。

初中全部几何定理

初中全部几何定理

常考定理1.经过两点有一条直线,并且只有一条直线.(两点确定一条直线。

)2.内错角相等,两直线平行3.两直线平行,内错角相等4.三边对应相等的两个三角形全等。

(“边边边”或“SSS”)5.角的平分线的性质:角的平分线上的点到角的两边的距离相等.6.逆定理:角的内部到角的两边距离相等的点在角的平分线上。

7.平行四边形的判定:1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.对角线互相平分的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形;5.两组对角分别相等的四边形是平行四边形.8.矩形的判定:1.有一个角是直角的平行四边形是矩形;2.对角线相等的平行四边形是矩形;3.有三个角是直角的四边形是矩形。

9.菱形的判定:1.有一组邻边相等的平行四边形是菱形;2.对角线互相垂直的平行四边形是菱形;3.四边相等的四边形是菱形10.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

11.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

12.不在同一直线上的三个点确定一个圆。

13.圆的切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

14.圆的切线的性质定理:圆的切线垂直于过切点的半径。

15.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆的连线平分两条切线的夹角。

16.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等。

17.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。

18.线段垂直平分线性质定理的逆定理:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

19.等腰三角形的性质:1.等腰三角形的两个底角相等。

(等边对等角).2.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

(三线合一).1.第四章图形的认识初步●经过两点有一条直线,并且只有一条直线.(两点确定一条直线。

初中数学常用定理和公式

初中数学常用定理和公式

初中数学常用定理和公式一、几何定理和公式1.直角三角形定理:直角三角形的斜边的平方等于两个直角边的平方和。

2.勾股定理:直角三角形中,直角边平方和等于斜边平方。

3.边角和定理:三角形的三个内角和等于180度。

4.同位角定理:同位角相等。

5.内切圆定理:三角形的内切圆的半径等于三角形的面积除以半周长。

6.外接圆定理:三角形的外接圆的直径等于三角形的斜边。

7.直线的平行与垂直定理:两条直线互相平行,则其斜率相等;两条直线互相垂直,则其斜率的乘积为-18.余弦定理:在任意三角形中,任意一边的平方等于另外两边的平方之和减去这两边的乘积与该角的二倍积的余弦之积。

9.正弦定理:在任意三角形中,任意一边的长度与该边对应的角的正弦之比等于另外两边与其对应角的正弦之比。

10.钝角三角形中位线定理:对于任意一个钝角三角形,连接其钝角的两边中点所得线段是该钝角三角形的长边所对应的中线。

11.相似三角形定理:两个三角形对应角相等,则这两个三角形相似;两个三角形两对应边成比例,则这两个三角形相似。

二、代数定理和公式1. 分配律:对于任意实数a、b、c,有a(b+c)=ab+ac。

2.公因式提取法则:a×b+a×c=a×(b+c)。

3.差平方公式:(a+b)×(a-b)=a²-b²。

4. 二次根式性质:(a√b)²=ab。

5. 斜截式方程:y = kx+b。

6. 一次函数:y = kx + b。

7. 平方根性质:√a × √b = √(ab)。

8. 一元一次方程:ax + b = 0。

9. 一元二次方程:ax² + bx + c = 0。

10.因式分解法则:将一个多项式表示成几个因式的乘积。

11.高次方程根与系数的关系:对于一个n次方程,有n个复数根。

三、概率与统计定理和公式1.相对频率:其中一事件出现的次数与总次数的比值。

2.排列公式:n个元素中选取r个元素进行排列的方法数为nPr=n!/(n-r)。

初中数学几何定理大全

初中数学几何定理大全

bac c b a初中数学几何定理大全1.基本事实:过两点有且只有一条直线。

(简单说成:两点确定一条直线)2.基本事实:两点之间的所有连线中,线段最短。

(简单说成:两点之间,线段最短)3.补角性质:同角或等角的补角相等。

几何语言:∵∠A+∠B=180°,∠A+∠C =180°∴∠B=∠C(同角的补角相等)∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C ∴∠B=∠D(等角的补角相等)4.余角性质:同角或等角的余角相等。

几何语言:∵∠A+∠B=90°,∠A+∠C =90°∴∠B=∠C(同角的余角相等)∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C ∴∠B=∠D(等角的余角相等)5.对顶角性质:对顶角相等。

6.基本事实:在同一平面内,过一点有且只有一条直线与已知直线垂直。

7.直线外一点与直线上各点连接的所有线段中,垂线段最短。

(简单说成:垂线段最短)8.(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

9.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

几何语言:∵a∥b,a∥c ∴b∥c推论:在同一平面内,垂直于同一条直线的两条直线平行。

几何语言:∵a⊥c,b⊥c ∴a∥b推论:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么这条直线垂直与另一条。

几何语言:∵a∥b,m⊥a ∴m⊥b10.两条直线平行的判定方法:几何语言:如图所示(1)同位角相等,两直线平行。

∵∠1=∠2 ∴a∥b(2)内错角相等,两直线平行。

∵∠3=∠4 ∴a∥b(3)同旁内角互补,两直线平行。

∵∠5+∠6=180°∴a∥bba11.平行线性质:几何语言:如图所示(1)两直线平行,同位角相等。

∵a∥b ∴∠1=∠2(2)两直线平行,内错角相等。

∵a∥b ∴∠3=∠4(3)两直线平行,同旁内角互补。

(完整word版)初中几何定理大全(重点),文档

(完整word版)初中几何定理大全(重点),文档

几何性质和定理1.过两点有且只有一条直线。

〔 4〕垂心:高的交点。

2.两点之间线段最短。

性质:锐角三角形垂心在其内部;直角三角3.同角或等角的补角相等。

形垂心在直角极点处;钝角三角形垂心在其外面。

4.同角或等角的余角相等。

16. 三角形内角和定理:三角形三个内角的和等于5.过一点有且只有一条直线和直线垂直。

180 °。

6.直线外一点与直线上各点连接的所有线段中,垂推论 1 :直角三角形的两个锐角互余。

线段最短。

推论 2 :三角形的一个外角等于和它不相邻的7.平行公义:经过直线外一点,有且只有一条直线两个内角的和。

与这条直线平行。

推论 3 :三角形的一个外角大于任何一个和它8.〔平行线传达性〕若是两条直线都和第三条直线不相邻的内角。

平行,这两条直线也互相平行。

17. 全等三角形的对应边、对应角相等。

9.平行线的判判定理:18. 全等三角形判判定理:〔1 〕同位角相等,两直线平行。

〔 1〕边角边公义 (SAS) :有两边和它们的夹角对应〔2 〕内错角相等,两直线平行。

相等的两个三角形全等。

〔3 〕同旁内角互补,两直线平行。

〔 2〕角边角公义 (ASA) :有两角和它们的夹边对应12. 平行线的性质定理:相等的两个三角形全等。

〔1 〕两直线平行,同位角相等。

〔 3〕推论 (AAS) :有两角和其中一角的对边对应相〔2 〕两直线平行,内错角相等。

等的两个三角形全等。

〔3 〕两直线平行,同旁内角互补。

〔 4〕边边边公义 (SSS):有三边对应相等的两个三〔4 〕到两条平行线距离相等的点的轨迹,是与这角形全等。

两条平行线平行且距离相等的一条直线。

〔 5〕斜边、直角边公义 (HL) :有斜边和一条直角13. 定理:三角形两边的和大于第三边。

边对应相等的两个直角三角形全等。

14. 推论:三角形两边的差小于第三边。

19. 关于角的均分线:15. 三角形的心:定理 1 :在角的均分线上的点到这个角的两边〔1 〕内心:角均分线的交点〔内切圆的圆心〕。

初中数学几何公式定理大全

初中数学几何公式定理大全

初中数学几何公式定理大全一、分类讨论:1.根据边与角的关系可以将三角形分为等边三角形、等腰三角形和普通三角形。

2.根据角的大小可以将三角形分为锐角三角形、直角三角形和钝角三角形。

二、公式和定理:1.三角形的等边定理:等边三角形的三边相等。

2.三角形的等腰定理:等腰三角形的两底边相等。

3.三角形的等角定理:等角三角形的三个内角相等。

4.直角三角形的勾股定理:直角三角形中,两直角边的平方和等于斜边的平方。

设直角三角形的直角边分别为a,b,斜边为c,则a^2+b^2=c^25.直角三角形的斜边中线定理:直角三角形的斜边上到顶点的距离等于斜边的一半。

6.直角三角形的两个锐角余弦定理:直角三角形中,两个锐角的余弦之和等于1设直角三角形中一个锐角为θ,则另一个锐角为90°-θ,有cosθ + cos(90°-θ) = 17.等腰三角形的高定理:等腰三角形中,高等于底边的一半。

8.锐角三角形的正弦定理:锐角三角形中,任意两边的比例等于任意两边对应角的正弦值的比例。

设角A,对边为a,角B,对边为b,角C,对边为c,则有a/sinA = b/sinB = c/sinC。

9.锐角三角形的余弦定理:锐角三角形中,两个边的平方和减去两倍边之积的余弦等于第三边的平方。

设三角形的三边分别为a,b,c,对应的角分别为A,B,C,则有c^2 = a^2 + b^2 - 2abcosC。

10.钝角三角形的余弦定理:钝角三角形中,最长边的平方等于另外两边的平方和减去两倍边之积的余弦。

设三角形的三边分别为a,b,c,对应的角分别为A,B,C,则有c^2 = a^2 + b^2 + 2abcosC。

11.任意三角形的正弦定理:任意三角形中,边与对边正弦的比例是常数。

设三角形的三边分别为a,b,c,对应的角分别为A,B,C,则有a/sinA = b/sinB = c/sinC。

12.三角形中位线定理:三角形中三条中位线相交于一点,且交点到三个顶点的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何定理大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初中几何概念、定理平面几何1.两点之间的所有连线中,线段最短。

2.两点之间线段的长度叫做这两点之间的距离。

3.经过两点有一条直线,并且只有一条直线。

4.将一个角分成相等的两部分的射线叫做这个角的角平分线。

5.如果两个角的和是一个直角,这两个角叫做互为余角。

简称互余,其中的一个角叫做另一个角的余角。

6.如果两个角的和是一个平角,这两个角叫做互为补角。

简称互补,其中的一个角叫做另一个角的补角。

7.同角(或等角)的余角相等。

8.同角(或等角)的补角相等。

9.对顶角相等。

10.在同一平面内,不相交的两条直线叫做平行线。

11.经过直线外一点,有且只有一条直线与已知直线平行。

12.如果两条直线都与第三条直线平行,那么这两条直线相互平行。

13.如果两条直线相交成直角,那么这两条直线互相垂直。

互相垂直的两条直线的交点叫做垂足。

14.当两条直线互相处置时,其中一条直线叫做另一条直线的垂线。

15.经过一点有且只有一条直线与已知直线垂直。

16.直线外一点到直线上各点连接的所有线段中,垂线段最短。

17.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

18.同位角相等,两直线平行。

19.内错角相等,两直线平行。

20.同旁内角互补,两直线平行。

21.两直线平行,同位角相等。

22.两直线平行,内错角相等。

23.两直线平行,同旁内角互补。

24.在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移。

平移不改变图形的形状、大小。

25.如果两条直线互相平行,那么其中一条直线上任意两点到另一直线的距离相等,这个距离称为平行线之间的距离。

26.三角形的任意两边之和大于第三边。

27.在三角形中,从一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。

28.在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

29.在三角形中链接一个顶点与它对边中点的线段,叫做三角形的中线。

30.三角形3个内角的和等于180°。

31.直角三角形的两个锐角互余。

32.三角形的一边与另一边的延长线所组成的角,叫做三角形的外角。

33.三角形的一个外角等于与它不相邻的两个内角的和。

34.n边形的内角和等于(n-2)*180°。

35.能完全重合的图形叫作全等图形。

两个图形全等,它们的形状和大小都相同。

36.两个能重合的三角形是全等三角形。

37.全等三角形的对应边相等,对应角相等。

38.两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”。

39.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。

40.两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”。

41.角平分线上的点到角的两边的距离相等。

42.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

43.斜边和一条直角边对应相等的两个直角三角形全等,简写为“斜边、直角边”或“HL”。

44.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

45.把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。

46.垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。

47.成轴对称的两个图形全等。

48.如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

49.线段是轴对称图形,线段的垂直平分线是它的对称轴。

50.线段的垂直平分线上的点到线段两端的距离相等。

51.到线段段两端距离相等的点,在这条线段的垂直平分线上。

52.角是轴对称图形,角平分线所在直线是它的对称轴。

53.角平分线上的点到角的两边距离相等。

54.角的内部到角的两边距离相等的点,在这个角的平分线上。

55.等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴。

56.等腰三角形的两个底角相等。

(简称“等边对等角”)57.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

58.如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(简称“等角对等边”)59.直角三角形斜边上的中线等于斜边的一半。

60.三边相等的三角形叫做等边三角形或正三角形。

61.等边三角形是轴对称图形,并且有3条对称轴,等边三角形的每个角都等于60°。

62.梯形中,平行的一组对边称为底,不平行的一组对边称为腰。

63.两腰相等的梯形叫做等腰梯形。

64.等腰梯形是轴对称图形,过两底中点的直线是它的对称轴。

65.等腰梯形在同一底上的两个角相等。

66.直角三角形两直角边的平方和等于斜边的平方。

67.68.如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形。

69.在平面内,将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转,这个定点成为旋转中心,旋转的角度称为旋转角。

图形的旋转不改变图形的形状、大小。

70.旋转前、后的图形全等,对应点到旋转中心的距离相等,每一对对应点与旋转中心的连线所组成的角彼此相等。

71.把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称。

这个点叫做对称中心。

两个图形中的对应点叫做对称点。

72.成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

73.把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。

这个点就是它的对称中心。

74.两组对边分别平行的四边形叫做平行四边形。

75.平行四边形的对边相等。

76.平行四边形的对角相等。

77.平行四边形的对角线互相平分。

78.一组对边平行并且相等的四边形是平行四边形。

79.两条对角线互相平分的四边形是平行四边形。

80.有一个角是直角的平行四边形叫做矩形。

81.矩形的对角线相等,四个角都是直角。

82.有三个角是直角的四边形是矩形。

83.对角线相等的平行四边形是矩形。

84.有一组邻边相等的四边形叫做菱形。

85.菱形的四条边都相等。

86.菱形的对角线相互垂直,并且每一条对角线平分一组对角。

87.四边都相等的四边形是菱形。

88.对角线互相垂直的平行四边形是菱形。

89.连接三角形两边中点的线段叫做三角形的中位线。

90.三角形的中位线平行于第三条边,并且等于它的一半。

91.连接梯形两腰中点的线段叫做梯形的中位线。

92.梯形的中位线平行于两底,并且等于两底和的一半。

93.如果,那么称线段AC被点B黄金分割,点B为线段AC的黄金分割点。

94.AB与AC(或BC与AB)的比值约为0.618,这个比值称为黄金比。

95.形状相同的图形是相似图形。

96.各角对应相等、各边对应成比例的两个三角形叫做相似三角形。

97.在△ABC和△A’B’C’中,如果∠A=∠A’,∠B=∠B’,∠C=∠C’,98.99.那么△ABC与△A’B’C’相似,记作△ABC∽△A’B’C’。

100.101.其中,k叫做它们的相似比。

102.如果两个边数相同的多边形的各角对应相等,各边对应成比例,那么这两个多边形相似。

多边形的对应边的比叫做相似比。

103.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

104.平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

105.如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。

106.如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

107.相似三角形周长的比等于相似比。

108.相似多边形周长的比等于相似比。

109.相似三角形面积的比等于相似比的平方。

110.相似多边形的面积的比等于相似比的平方。

111.相似三角形对应高的比等于相似比。

112.两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行(或在同一条直线上),像这样的两个图形叫做位似形,这个点叫做位似中心。

113.在平行光线的照射下,物体所产生的影称为平行投影。

114.在平行光线的照射下,不同物体的物高与影长成比例。

115.在点光源的照射下,物体所产生的影称为中心投影。

116.视线盲区视线117.118.点O(眼睛的位置)叫做视点。

119.由视点发出的线叫做视线。

120.眼睛看不见的区域,叫做盲区。

121.把线段OP的一个端点O固定,使线段OP绕着点O在平面内旋转1周,另一个端点P运动所形成的图形叫做圆。

其中,定点O叫做圆心,线段OP叫做半径。

122.连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

123.圆上两点间的部分叫做圆弧,简称弧。

124.顶点在圆心的角叫做圆心角。

125.圆心相同,半径不相等的两个圆叫做同心圆。

126.能够相互重合的两个圆叫做等圆。

127.同圆或等圆的半径相等。

128.同圆或等圆中,能够相互重合的弧叫做等弧。

129.圆是中心对称图形,圆心是它的对称中心。

130.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。

131.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

132.圆心角的度数与他所对的弧的度数相等。

133.圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。

134.垂直于弦的直径平分这条弦,并且平分弦所对的弧。

135.顶点在圆上,并且两边都和圆相交的角叫做圆周角。

136.同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。

137.直径(或半圆)所对的圆周角是直角。

90°的圆周角所对的弦是直径。

138.不在同一直线上的三点确定一个圆。

139.三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆。

外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形。

140.经过半径的外端并且垂直于这条半径的直线是圆的切线。

141.圆的切线垂直于经过切点的半径。

142.与三角形各边都相切的圆的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。

143.从圆外一点引圆的两条切线,他们的切线长相等,这点和圆心的连线平分两条切线的夹角。

144.各边相等、各角也相等的多边形叫做正多边形。

145.正多边形都是轴对称图形。

一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。

一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。

相关文档
最新文档