电力电子技术基础课

合集下载

《电力电子技术基础》课程复习(打印版)_图文

《电力电子技术基础》课程复习(打印版)_图文

第7章 PWM控制技术 PWM控制技术河南科大自动化系多媒体教案(WSBU2.0 版)河南科大自动化系多媒体教案(WSBU2.0版)第7章 PWM控制技术 PWM控制技术河南科大自动化系多媒体教案(WSBU2.0 版)河南科大自动化系多媒体教案(WSBU2.0版) 7.3 PWM跟踪控制技术滞环比较方式跟踪控制方法: 跟踪控制方法: 不是用信号波对载波进行调制,而是把希望输出的波形作为指令信号,把实际波形作为反馈信号,通过“ 两者的瞬时值比较”来决定逆变电路开关器件的通断,使实际的输出跟踪指令信号变化。

滞环环宽电抗器L的作用图7-22 采用滞环比较方式电流跟踪控制图7-23 滞环比较方式的指令电流和输出电流常用的(跟踪)比较方式:滞环比较方式、三角波比较方式。

1基本原理 2参数影响①L的影响: L大时,i的变化率小,跟踪慢; L小时,i的变化率大,开关频率过高; ②环宽的影响环宽过宽时:开关频率低,跟踪误差大;环宽过窄时:跟踪误差小,但开关频率过高(损耗大电流跟踪控制应用最多。

第7章 PWM控制技术 PWM控制技术河南科大自动化系多媒体教案(WSBU2.0 版)河南科大自动化系多媒体教案(WSBU2.0版)第7章 PWM控制技术 PWM 控制技术河南科大自动化系多媒体教案(WSBU2.0 版)河南科大自动化系多媒体教案(WSBU2.0版)三角波比较方式基本原理• 先把i*U、i*V和i*W和实际电流iU、iV、iW进行比较,求出偏差, 通过放大器A放大后, 再去和三角波进行比较,产生PWM波形。

第9章电力电子器件应用的共性问题驱动电路的基本任务:——将控制信号转换为电力电子器件的“开通”或“关断”信号。

• 对半控型器件: 只需提供开通控制信号。

• 对全控型器件: 既要提供开通控制信号, 又要关断控制信号。

驱动电路(的作用)?①主电路与控制电路之间的接口。

是电力电子装置的重要环节,对整个装置的性能有很大的影响。

《电力电子技术基础》课程复习(打印版)

《电力电子技术基础》课程复习(打印版)

1) 电流驱动型 2) 电压驱动型
通过从控制端注入或抽出电流,来实现开通、 关断控制。GTR、GTO
仅通过在控制端和公共端之间施加一定的电 压信号,就可实现导通或者关断的控制, IGBT,MOSFET。
3、按器件内部参与导电的载流子情况
1) 单极型器件 2) 双极型器件 3) 复合型器件
由一种载流子参与导电的器件,如MOSFET 由电子和空穴两种载流子参与导电,如:GTR 由单极型器件和双极型器件集成混合成,IGBT
尾部
时间
时间
O
¾ 关断过程(与晶闸管不同) ①储存时间ts: 抽取饱和导通时储
存的大量载流子,退出饱和。
②下降时间tf: 双晶体管已退至放
大区,阳极电流逐渐减小。
③尾部时间tt: 残存载流子复合。
t
iA
IA 90% IA
td tr
储存 时间
ts tf
tt
10% IA
0t t
t
0
1
2
t t tt
3
4
5
电压和电 流决定的。
4
《电力电子技术基础》课程复习
河南科技大学《电力电子技术》课件
第1章 绪论
1.1 什么是电力电子技术
一、电力电子技术的定义
信息电子技术
用于信息处理; 器件一般工作于放大状态,也可开关状态。
电力电子技术
主要用于电力(电能)变换; 器件处于开关状态。
• 电力电子技术: 使用电力电子器件 对电能进行变换 和控制的技术。即应用于电力领域的电子技术。
5
《电力电子技术基础》课程复习
河南科技大学《电力电子技术》课件
第2章 电力电子器件
2.1 电力电子器件概述

电力电子技术基础课件:逆变电路

电力电子技术基础课件:逆变电路

V2
VD1 VD2 VD1 VD2
逆变电路
4.2.1 单相电压型逆变电路
1)半桥逆变电路
t3-t4:t3时刻电流过零边负,V2导通,负载电 流反向增加,输出电压uo =-Ud/2;
t4-t5:t4时刻V2关断,给V1驱动信号,由于 阻感负载电流不能突变,此时电流通过VD1续流, 电流逐渐减小,输出电压uo =Ud/2;
通而变为零,则称为熄灭。
电力电子技术
第四章 逆变电路
4.2 单相逆变电路工作原理
4.2.1 单相电压型逆变电路 4.2.2 单相电流型逆变电路
逆变电路
电压型逆变电路的特点
1、直流侧为电压源或并联大电容,直流
侧电压基本无脉动。
+
2、由于直流电压源的钳位作用,输出电
压为矩形波,输出电流因负载阻抗不同而不 Ud
单相电流型逆变电路
iT
i VT1,4
i VT2,3
Id 0

uo/io
t
0
t1
Id t2 t3 t4
t5

t6 t7
t
tδ tβ
电流型逆变电路波形图
逆变电路
单相电流型逆变电路
t2-t4阶段:t2时刻四个晶闸管全部导通,负 载电容电压经两个回路LT1、VT1 、VT3 、LT3 和 LT2、VT2 、VT4 、LT4 放电;t4时刻VT1、VT4的 电流减小到零关断,直流侧电流Id全部转移到 VT2和VT3支路,换流结束。 。
VD3 VD4
u G1
0
t
u G2
0
t
u G3
q
0
t
u G4
0
t
uo io

(2024年)电力电子技术完整版全套PPT电子课件

(2024年)电力电子技术完整版全套PPT电子课件

实验报告撰写与答辩
讲解实验报告的撰写要求和答辩技巧 ,提高学生的综合素质和能力。
36
08
电力电子技术应用案例
2024/3/26
37
新能源发电系统中电力电子技术应用
光伏发电系统
最大功率点跟踪(MPPT )技术、逆变器并网技术 、孤岛检测与保护技术等 。
2024/3/26
风力发电系统
变桨距控制技术、变速恒 频技术、直驱式永磁风力 发电技术等。
2024/3/26
13
可控整流电路分析与应用
可控整流电路原理
可控整流电路通过控制触发角α的大小,实现对输出电压的调 节。
2024/3/26
可控整流电路应用
可控整流电路广泛应用于直流调速、电力拖动、电解、电镀 等领域。
14
滤波电路原理与设计方法
滤波电路原理
滤波电路是利用电容、电感等元件对交流电的频率特性进行滤波,从而得到平 滑的直流电的电路。
高性能器件选择
选用高性能的功率器件和驱动电路,提高电路的工作频率和可靠性。例如,选用低导通电阻和低栅极电荷的 MOSFET可以降低电路的导通损耗和开关损耗;选用高耐压和高电流的IGBT可以提高电路的带负载能力等 。
系统优化与热设计
对系统进行全面的优化和热设计,确保电路在高负载、高温等恶劣环境下仍能稳定可靠地工作。例如,采用 合理的散热结构和风扇控制策略可以降低电路的工作温度;采用模块化设计可以提高电路的维修性和可扩展 性等。
2024/3/26
功率场效应晶体管(Power MOSFE…
阐述Power MOSFET和IGBT的结构、特点以及在电力电子电路中的 广泛应用。
11
03
整流与滤波技术
2024/3/26

电力电子技术基础 第1章 绪论

电力电子技术基础 第1章 绪论
、电力变换的基本原理
4)AC/AC变换
下图也是用两个开关组成的简单变流电路,输入端接的是交流电us。
每个开关与一个二极管串联表示流过开关的电流方向 是单向的。这是因为在实际电路中这两个开关采用晶闸管, 晶闸管是单向导电的。
如果开关K1和K2都采取通断控制,则可以将 交流电变为交流电,即AC/AC变换。
控制理论广泛用于电力电子技术,使电力电子装置的性能满足各种需求; 电力电子技术可以看成弱电控制强电的接口,控制理论是实现该接口的
强有力纽带。
第1章 绪论
1.1电力电子技术的定义
电力电子技术是应用于电力领域的电子技术, 是使用器件对电力进行变换和控制的技术。 这个器件指的是功率半导体器件,也称为电力电子器件。
用倒三角描述,如图所示。
电子学
电路、器 件
电力 电子技术
连续、离散
控制 理论
静止器、旋转电机
电力学
3
第1章 绪论 1.1电力电子技术的定义
电子技术
• 所用器件: 晶体管、场效应管、 集成电路、微处理器 、电感、电容。
• 完成功能: 信号产生、变换、存 储、发送、接收。
• 基础理论: 电路、磁路、电磁场
这四类变换器将在后继章节中详细论述,下面简单介绍电力变换的基本原理8 。
第1章 绪论 1.2电力变换的基本原理
上述的电力变换中使用的电力电子器件都是工作在开关状态。 电力电子器件为什么工作在开关状态? 为了使器件的功率损耗(P=UI)最小: 器件开通时,通过的电流i很大,但器件上的电压u≈0 器件断开时,承受的电压u很高,但流过的电流i≈0
4
第1章 绪论
1.1电力电子技术的定义
电子学
电力学
电路、器 件

电力电子技术基础 第6章 AC-AC变换-交流调压和交交变频器

电力电子技术基础 第6章 AC-AC变换-交流调压和交交变频器

图6-1 单相交流调压电路(电阻式负载)
第6章 AC/AC变换——交流调压和交交变频器
u1
2、单相交流调压电路 (阻感式负载)
0j a
p
2p
wt
波形与工作原理
VT1
i0
VT2
R i2
~u1
u0
L
uG uG1
uG2
0
wt
u0
0j a
p
p+ a
wt
i00wtqFra bibliotekuVT
0
wt
图6-2 阻感负载电路波形
第6章 AC/AC变换——交流调压和交交变频器
电力电子技术课程讲座
第6章 AC/AC变换——交交变流电路 6.1 概述
交流-交流变流电路(AC/AC Converter)即把一种形式的交流变成另一种形式 交流的电路。在进行AC-AC变流时,可改变相应的电压(电流)、频率和相数等。
交流-交流变换电路可以分为直接方式(即无中间直流环节)和间接方式(有中 间直流环节)两种。
+
p
a p
第6章 AC/AC变换——交流调压和交交变频器
2、单相交流调压电路 (电阻式负载)
1.0
功率因数 λ
0.8
P U0I0 U0 sin 2a + p a
S U1I0 US
2p
p
✓ α越大,输出电压越低,功率因数也越低。 ✓ 移相范围: ✓ 图中输出电压虽是交流,但不是正弦波,没有偶次谐
O

时刻,开通VT2,此时i2流过负载,u0 = u1;
✓在
期间,无VT通,由相应的VT承担u0电压,u0 = 0。
p+a

电力电子技术基础-绪论

电力电子技术基础-绪论
➢ 世界发电总量20~23%以直流电形式消费。
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
程控交换机 电子装置 微型计算机
2、电力传动
工艺调速传动:轧钢、榨糖、造纸、化工、炼油; 节能调速传动:风机、水泵、压缩机; 牵引调速传动:轨道牵引、城市交通、电梯、矿井
❖ 现有MATLAB 、PSpice 、Saber( 国外)和PECS( 国 内)等仿真软件可对电力电子电路进行仿真。
❖ 电力电子电路的仿真技术十分重要,但已超出本课程讲课 的范围,故课内不涉及。
六、学习方法与学习目标
1、课程学法指导
一.要着重物理概念与基本分析方法的学习,理论要结合实际,尽量做到器件、电路、 系统(包括控制技术)应用三者结合。
《电力电子技术基础》
——
第一章 绪论
一、电力电子技术的基本概念
1、什么是电力电子技术?
信息பைடு நூலகம்理
电子技术 信息电子技术 电力电子技术
模拟电子技术 数字电子技术
电力变换
❖ 电力电子技术:使用电力电子器件对电能进行变换和控制 的技术,即应用于电力领域的电子技术。
所处理电力的单位大到数百MW甚至GW,小到数W甚至
卷扬机等; 精密调速和特种调速:数控机床主轴和伺服控制、
雷达与火炮跟踪控制、离心机控制等。
3、电力系统
发电环节:发电机励磁调节控制; 输电网中:电能质量控制器、直流输电、无功
补偿器、有源滤波器、固态开关; 配电网中:配电用无功补偿器、有源滤波器; 储能系统:抽水蓄能电站变频调速、超导磁铁
电力变换的种类
输入 输出
交流(AC)
直流(DC)
整流
交流(AC) 交流电力控制变频、变相

电力电子技术基础课程设计

电力电子技术基础课程设计

电力电子技术基础课程设计一、设计背景电力电子技术是现代电力系统运行、传输、转换、控制等方面的重要技术,是推进电力系统安全、稳定、节能、环保等方面的关键技术之一。

本课程设计旨在通过基础电力电子器件的设计和仿真,使学生深入了解电子元器件特性与运行原理,提高学生的电力电子技术理论和实践能力,为其今后进一步从事该领域的研究和应用提供必要的基础。

二、课程设计内容1. 设计任务设计一个电源电路,要求输入交流电压230V,输出稳定的直流电压5V、1A。

设计过程中需要包括选型、分析、仿真等环节,最终完成基于电阻、电容等电力电子器件的电源电路。

2. 设计流程2.1 电路选型通过分析电源电路需要的功能和特性,确定需要使用的元器件类型。

根据输入输出电压、电流等参数,选择合适的器件型号。

2.2 电路原理图设计根据电路选型,使用电路设计软件(如Multisim等)进行原理图设计,将所需元器件拖入工作区域并进行连线、参数设置等操作。

2.3 电路仿真在Multisim等软件上进行电路仿真,并通过仿真结果调整电路中各元器件的参数。

2.4 PCB版图设计在电路仿真和参数调整完毕后,根据电路原理图进行PCB版图设计,并导入PCB设计软件进行布局和布线等操作。

2.5 PCB板上电路的组装与测试完成PCB版图设计后,将电路中的器件安装到PCB板上,进行电路测试并调查是否达到预期目标。

3. 作品展示最终成品应能够将输入的交流电压转换成稳定的5V直流电压,并能够提供至少1A的电流输出。

学生可在作品展示环节进行电路说明和参数分析,以展现其深入学习电力电子技术的优秀成果。

三、思考题1.在设计电源电路时,需要考虑哪些因素?2.在Multisim软件进行仿真电路时,应该如何对仿真结果进行分析和评估?3.在硬件实际搭建电路时,应注意哪些事项?如何快速排错?四、总结本课程设计要求学生深入学习电力电子技术的理论与实践,并且应用软件进行电路仿真与测试。

其设计思路清晰,流程简洁清晰,体现出了电子电路设计的全流程与实践过程,为学生今后进一步从事该领域的研究和应用提供必要的基础。

《电力电子技术基础》教学大纲

《电力电子技术基础》教学大纲

《电⼒电⼦技术基础》教学⼤纲《电⼒电⼦技术基础》教学⼤纲(学分3,学时48)⼀、课程基本信息编码:Code:课程名称:电⼒电⼦技术基础Course Title: Basics of Power Electronics课程类别:学类核⼼Course category:Professional Education学分:3Credit(s): 3学时: 48 School hours:48开课学期: 秋季Semester: Autumn先修课程: ⾼等数学,⼤学物理,积分变换Prerequisites: Advanced Mathematics,General Physics,Integral Transformations 开课单位:电⽓与信息⼯程学院Offering College/School: College of Electrical and Information Engineering⼆、课程描述中⽂: 电⼒电⼦技术是利⽤有关器件对电能进⾏控制和转化的技术,是应⽤于电⼒领域的电⼦技术。

它包括电⼒电⼦器件、变流电路和控制电路三个部分,是电⼒技术、电⼦技术和现代控制技术三者交叉形成的学科。

“电⼒电⼦技术基础”课程是电⽓⼯程及其⾃动化专业、⾃动化专业本科⽣必修的学科基础课程,本课程的⽬的和任务是使学⽣熟悉各种电⼒电⼦器件的特性和使⽤⽅法;掌握各种电⼒电⼦电路的结构、⼯作原理、控制⽅法、设计计算⽅法及实验技能;熟悉各种电⼒电⼦装置的应⽤范围及技术经济指标。

同时,为相关的后续专业课程打好基础。

课程理论严密,逻辑性强,在教学内容⽅⾯着重基本知识、基本理论和基本设计⽅法的讲解;在培养实践能⼒⽅⾯,着重提⾼学习解决实际问题的能⼒和基本技的训练与提升。

英⽂:Power electronic is a technology which uses some devices to control and transfer power. It is a branch of electronic technology which is applied in the field of power. It includes the power electronic devices, converter circuit and control circuit. Power electronics is an interdiscipline of electric power technology, electronic technology, and modern control technology. Power electronics is an indispensable and professional core course for students of electrical engineering and its automation. This course aims to enable students to master the operational characteristics and applied methods of various commonly used power electronics device. To master structure, working principle, control method, design and calculation methods and experimental skills of basic power electronic circuit. To understand the application and technical - economic index of power electronic devices, so as to lay a foundation for their further work in power electronic technology. This course mainly covers power-electronic device, AC-DC converter, DC-AC converter, DC-DC converter, AC-AC converter, PWM control, soft switch technology, etc.三、课程的能⼒⽬标1 课程的能⼒⽬标通过本课程的教学,使学⽣具备下列能⼒:课程⽬标1.理解⼆极管、IGBT、SCR、GTO等基本开关器件及⼯作原理,运⽤基本电路理论,能将复杂电路系统的动态⾏为简化为不同的开关⼯作模态,分析不同模态下的⼯作特性,从⽽掌握和具备熟练分析晶闸管整流电路、直流斩波电路等能⼒;(对应毕业要求2.1)课程⽬标2. 能够熟练运⽤微分、积分、线性⽅程组求解、⾏列式计算、微分⽅程求解、复数运算、矩阵相乘等⾼等数学知识,建⽴和分析电⼒电⼦变换电路的不同开关模态及其⼯作特性,并与仿真相结合,分析模型和仿真的差异和局限性,并给出有效结论;(对应毕业要求2.4)课程⽬标3:通过本课程教学、电路设计和⼯程实验,学⽣能够熟练运⽤本专业相关的基础知识和基本理论,考虑电⼒电⼦变换器的结构设计,进⾏成本和体积的优化设计,实现变换器的⾼效经济运⾏,同时能够考虑环境与可持续发展的约束,降低变换器的噪声和电磁⼲扰;(对应毕业要求7.2)课程⽬标4.能够选择和使⽤现代设计⼯具,进⾏电⼒电⼦变换系统的单元和整体设计,以满⾜单元或系统设计要求,并在设计中能体现创新意识,能根据结果对⽅案进⾏分析和调整,完成单元级软硬件开发与调试(对应毕业要求4.1)课程⽬标5. 能够完成电⼒电⼦技术课程的实验项⽬,并对结果进⾏分析,实验过程中遵守实验安全制度(对应毕业要求4.2)课程⽬标6. 能够和团队进⾏问题分解和任务分配,并组织⼯程实践的开展(对应毕业要求9.4)课程⽬标7.能将⾃⼰的设计思路、设计⽅案和实现过程在课堂进⾏宣讲、与公众互动和讨论,有效表述⾃⼰的观点和意见(对应毕业要求10.2)课程⽬标8. 开展电⼒电⼦技术基础的双语教学实践,同时⿎励和督促学⽣追踪和学习国际上电⼒电⼦学动态,包括电⼒电⼦教学、变换拓扑及控制⽅法等,使学⽣具有⼀定的国际视野,能够在跨⽂化背景下进⾏沟通和交流(对应毕业要求10.3)2.课程⽬标和教学环节的对应关系:四、课程内容和课时分配五、教学环节1、理论教学1)采⽤启发式教学,引导学⽣独⽴思考,培养提出问题、分析问题和解决问题的能⼒,促进学⽣的⾃主学习。

电力电子技术基础课件(大学常用)讲解

电力电子技术基础课件(大学常用)讲解
9/21
1.2 电力电子技术的发展史
◆晶闸管时代 ☞晶闸管由于其优越的电气性能和控制性能,使 之很快就取代了水银整流器和旋转变流机组,并且 其应用范围也迅速扩大。电力电子技术的概念和基 础就是由于晶闸管及晶闸管变流技术的发展而确立 的。 ☞晶闸管是通过对门极的控制能够使其导通而不 能使其关断的器件,属于半控型器件。对晶闸管电 路的控制方式主要是相位控制方式,简称相控方式。 晶闸管的关断通常依靠电网电压等外部条件来实 现。这就使得晶闸管的应用受到了很大的局限。
7/21
1.2 电力电子技术的发展史
■电力电子技术的发展史
图1-3 电力电子技术的发展史
◆一般认为,电力电子技术的诞生是以1957年美国通用 电气公司研制出第一个晶闸管为标志的。
8/21
1.2 电力电子技术的发展史
◆晶闸管出现前的时期可称为电力电子技术的史前期或黎 明期。 ☞1904年出现了电子管,它能在真空中对电子流进行控 制,并应用于通信和无线电,从而开启了电子技术用于电 力领域的先河。 ☞20世纪30年代到50年代,水银整流器广泛用于电化学 工业、电气铁道直流变电所以及轧钢用直流电动机的传 动,甚至用于直流输电。这一时期,各种整流电路、逆变 电路、周波变流电路的理论已经发展成熟并广为应用。在 这一时期,也应用直流发电机组来变流。 ☞1947年美国著名的贝尔实验室发明了晶体管,引发了 电子技术的一场革命。
图1-4 AB变频器
14/21
1.3 电力电子技术的应用
◆交通运输 ☞电气化铁道中广泛采用电力电子技术。电气机车中的 直流机车中采用整流装置,交流机车采用变频装置。直流 斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电 力电子技术更是一项关键技术。除牵引电机传动外,车辆 中的各种辅助电源也都离不开电力电子技术。 ☞电动汽车的电机依靠电力电子装置进行电力变换和驱 动控制,其蓄电池的充电也离不开电力电子装置。一台高 级汽车中需要许多控制电机,它们也要靠变频器和斩波器 驱动并控制。 ☞飞机、船舶和电梯都离不开电力电子技术。

电力电子技术1-4.ppt

电力电子技术1-4.ppt

史前期 (黎明期)
晶闸管问 世,(公元
元年)
全控型器件 迅速发展
晶体管诞生
1904
1930
1947 1957 1970 1980 1990 2000 t(年)
电子管 问世
水银(汞 弧)整流 器时代
晶闸管时代
IGBT出现 功率集成器件
电力电子技术的发展史是以电力电子器件的发展史为纲的
电力电子技术的发展史(续)
及其家族器件(FST、RCT、TRIAC、LCT)
❖ 全控型器件: 通过控制极(门极或基极或柵极) 是否施加驱动信号既能控制管子导通又能控制管
子关断,如GTO、GTR、IGBT、 MOSFET及其它新
型场控器件MCT、IGCT、SIT、SITH、IPM等
2020/4/9
1-38
➢ 按器件内部载流子参与导电的种类分类: ❖单极型器件:只有一种载流子参与导电,如 MOSFET、SIT等
2020/4/9
1-37
5、分类
➢ 按其开关控制性能分类:
❖ 不控型器件: 无控制极,器件的导通与关断完 全由其在主电路中承受的电压和电流决定,正偏 置导通、反偏置关断,如电力二极管(D)
❖ 半控型器件: 控制极(门极)只能控制管子导 通而不能控制管子关断,器件的关断完全由其在
主电路中承受的电压和电流决定,如晶闸管(SCR)
1-43
2.2 电力(功率)二极管
一、工作原理(基本与普通二极管相同) ➢PN结:正向导通 反向截止
二、外形
2020/4/9
A
K A
a)
• 现代电力电子技术与传统电力电子技术相比较, 有如下特点:
➢高频化(减小体积、重量、静音) ➢模块化(器件、控制单元、系统) ➢全控型(IGBT为主) ➢控制技术数字化(DSP) ➢绿色化(节能、减少污染)

电力电子技术基础 教学大纲

电力电子技术基础  教学大纲

电力电子技术基础一、课程说明课程编号:110316Z10课程名称:电力电子技术基础/ Fundamentals of Power Electronic Technology 课程类别:专业教育课程学时/学分:40/2.5先修课程:电机与电力拖动、电子技术、电路理论适用专业:电气工程及其自动化、自动化、测控技术与仪器教材、教学参考书:1.王兆安等主编.电力电子技术(第5版).北京:机械工业出版社.2009;2.贺益康等主编.电力电子技术.北京:科学出版社.2010;3.王云亮等主编.电力电子技术.北京:电子工业出版社.2013;4.徐德宏等主编.电力电子技术.北京:科学出版社.2006。

二、课程设置的目的意义本课程是电气工程、自动化、测控专业的专业基础课,它的任务是使学生掌握各类电力电子器件的工作原理,特性和主要参数及各类变流装置发生的电磁过程,基本原理,控制方法,设计计算,实验技能以及它们的技术经济指标。

以便学生毕业后具有进一步掌握各种变流装置的能力,并为后续“自动控制系统”打下基础。

三、课程的基本要求掌握电力电子器件的基本结构、工作原理、主要参数、应用特性,以及驱动、缓冲、保护、串并联等器件应用的共性问题和性能问题;掌握单相、三相整流电路和有源逆电路的基本原理,波形分析和各种负载对电路运行的影响,并能对上述电路进行初步的设计计算;掌握斩波电路、交流调压、变频电路的工作原理及线路结构;掌握脉宽调制(PWM)技术和软开关技术;掌握电力电子装置的设计与调式方法;了解电力电子学科的发展区势。

四、教学内容、重点难点及教学设计五、实践教学内容和基本要求1.要求学生通过实验,掌握电力电子变流电路波形分析方法,培养学生分析问题和解决问题的能力。

2.建议选做:典型触发电路波形分析;三相变流电路(R、L负载)研究;三相变流电路及电势负载机械特性研究;直流斩波电路性能研究;交—直—交变频电路的性能研究。

3.根据实验技术要求,拟定实验步骤,选用仪器及仪表。

电力电子技术教学大纲

电力电子技术教学大纲

电力电子技术教学大纲一、课程基本信息课程名称:电力电子技术课程类别:专业基础课课程学分:X学分课程总学时:X学时授课对象:适用专业二、课程目标通过本课程的学习,使学生掌握电力电子技术的基本理论、基本电路和基本分析方法,具备电力电子电路的设计、分析和调试能力,为后续课程的学习和从事相关工作打下坚实的基础。

具体目标如下:1、知识目标掌握电力电子器件的工作原理、特性和参数。

理解各类基本电力电子变换电路的结构、工作原理和控制方法。

熟悉电力电子技术在电力系统、工业控制、新能源等领域的应用。

2、能力目标能够对常见的电力电子电路进行分析和计算。

具备设计简单电力电子电路的能力。

能够使用仿真软件对电力电子电路进行建模和分析。

3、素质目标培养学生的工程思维和创新意识。

提高学生解决实际问题的能力和团队协作精神。

三、课程内容1、电力电子器件电力二极管工作原理特性和参数主要类型和应用晶闸管结构和工作原理特性和参数触发电路电力晶体管工作原理和特性驱动电路电力场效应晶体管工作原理和特性驱动电路绝缘栅双极型晶体管工作原理和特性驱动电路2、整流电路单相可控整流电路电阻性负载电感性负载反电动势负载三相可控整流电路三相半波可控整流电路三相桥式全控整流电路有源逆变电路逆变的概念和条件有源逆变电路的工作原理相控电路的触发电路触发脉冲的要求触发电路的类型和工作原理3、逆变电路逆变电路的基本概念和分类电压型逆变电路单相电压型逆变电路三相电压型逆变电路电流型逆变电路单相电流型逆变电路三相电流型逆变电路4、直流直流变换电路基本斩波电路降压斩波电路升压斩波电路升降压斩波电路Cuk 斩波电路复合斩波电路电流可逆斩波电路桥式可逆斩波电路5、交流交流变换电路交流调压电路单相交流调压电路三相交流调压电路交交变频电路单相交交变频电路三相交交变频电路6、 PWM 控制技术PWM 控制的基本原理单相 PWM 逆变电路三相 PWM 逆变电路 PWM 跟踪控制技术7、软开关技术软开关的基本概念软开关电路的分类和工作原理8、电力电子技术的应用电力电子技术在电力系统中的应用高压直流输电无功补偿电力电子技术在工业控制中的应用直流调速系统交流调速系统电力电子技术在新能源领域的应用太阳能光伏发电风力发电四、课程教学方法1、课堂讲授讲解电力电子技术的基本概念、原理和电路。

2024版电力电子技术完整版全套PPT电子课件

2024版电力电子技术完整版全套PPT电子课件

contents•电力电子技术概述•电力电子器件目录•电力电子电路•电力电子技术的控制策略•电力电子技术的实验与仿真电力电子技术的定义与发展定义发展历程如太阳能、风能等可再生能源的转换与利用。

如电动汽车、电动自行车等电机驱动系统的控制。

如智能电网、分布式发电等电力系统的优化与控制。

如变频器、伺服系统等工业自动化设备的控制。

能源转换电机驱动电力系统工业自动化高效率、高功率密度智能化、数字化绿色化、环保化多学科交叉融合晶闸管(Thyristor 可控的单向导电性,用于可控整流电路Power Diode )具有单向导电性,可用于整流电路010402050306电力晶体管(Giant Transistor,GTR)具有耐压高、电流大、开关特性好等优点通过在门极施加负脉冲使其关断电流控制型器件,通过控制基极电流来控制集电极电流可关断晶闸管(Gate Turn-OffThyristor,GTO)具有可控的开关特性,适用于高电压、大电流场合01电力场效应晶体管(Power MOSFET )02电压控制型器件,通过控制栅源电压来控制漏极电流03具有开关速度快、输入阻抗高、热稳定性好等优点04绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor ,IGBT )05结合了MOSFET 和GTR 的优点,具有电压控制、大电流、低饱和压降等特性06广泛应用于电机控制、电源转换等领域整流电路整流电路的工作原理介绍整流电路的基本工作原理,包括半波整流、全波整流和桥式整流等。

整流电路的类型详细阐述不同类型的整流电路,如单相半波整流电路、单相全波整流电路、三相半波整流电路和三相全波整流电路等。

整流电路的应用列举整流电路在电力电子领域的应用,如电源供应器、电池充电器和电机驱动器等。

逆变电路逆变电路的工作原理01逆变电路的类型02逆变电路的应用031 2 3直流-直流变流电路的工作原理直流-直流变流电路的类型直流-直流变流电路的应用交流-交流变流电路的工作原理01交流-交流变流电路的类型02交流-交流变流电路的应用03电动机控制电热控制照明控制030201一般工业应用交通运输应用电动汽车驱动轨道交通牵引飞机电源系统电力系统应用高压直流输电柔性交流输电分布式发电与微电网新能源应用风能发电太阳能发电风力发电机组中采用电力电子技术实现变速恒频控制,提高风能发电的稳定性和可靠性。

电力电子技术基础教学设计

电力电子技术基础教学设计

电力电子技术基础教学设计一、教学目标本节课的教学目标是帮助学生掌握电力电子的基础原理和掌握电力电子器件的使用方法。

二、教学内容1.电力电子的基础原理2.电力电子器件概述3.半控和全控电路的设计方法4.电力电子控制技术三、教学方法本节课采用理论教学和实践教学相结合的方法,理论部分通过授课和PPT演示,实践部分通过上机操作和课堂讨论,以加深学生对于电力电子技术的理解和掌握。

在课程设计中,应注重培养学生的实践动手能力,采用案例、仿真、实验等多种形式,加强课堂互动和引导学生自主学习。

四、教学重点和难点教学重点:1.电力电子器件的概述和使用方法;2.半控和全控电路的设计方法。

教学难点:1.掌握电力电子的基础原理;2.理解电力电子控制技术。

五、教学流程时间教学环节教学内容8:00-8:05 上课铃响,教师进入教室8:05-8:10 开课介绍对本节课程内容进行简要介绍,激发学生兴趣8:10-8:40 理论讲解和PPT演示介绍电力电子的基础原理和电力电子器件的概述8:40-8:55 课堂讨论和案例分析老师提供相关案例,引导学生讨论半控和全控电路的设计方法8:55-9:25 上机实践给每个学生布置一个电路设计任务,进行上机实验操作9:25-9:40 课堂互动和总结学生展示实验结果,老师进行点评,帮助学生总结课程要点9:40-9:45课堂作业和下课布置相关作业,下课六、教学工具和设备1.电脑2.投影仪3.白板和笔4.实验设备七、教学评估本节课教学评估方法采用课堂小测验和课后作业相结合的方式。

课堂小测验:在上机实践之前进行,测试学生对于电力电子器件使用方法和半控、全控电路设计的掌握情况,测试时间为20分钟。

课后作业:综合本节课程内容给出一道课堂作业,布置时间为1周。

八、教学心得本节课程设计主要围绕电力电子技术基础知识进行,以注重理论与实践相结合,并重视学生实际动手能力的培养为主旨。

针对教学难点和环节,采用案例分析和上机实践的方式,让学生在实践中掌握技能和理解知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
1.3 电力电子技术的应用
◆电力系统
☞据估计,发达国家在用户最终使用的电能中,有60%以上的电能 至少经过一次以上电力电子变流装置的处理。
☞直流输电在长距离、大容量输电时有很大的优势,其送电端的整
流阀和受电端的逆变阀都采用晶闸管变流装置,而轻型直流输电则主 要采用全控型的IGBT器件。近年发展起来的柔性交流输电(FACTS)
1.3 电力电子技术的应用
☞新能源、可再生能源发电比如风 力发电、太阳能发电,需要用电力 电子技术来缓冲能量和改善电能质 量。当需要和电力系统联网 时,更 离不开电力电子技术。 ☞核聚变反应堆在产生强大磁场和 注入能量时,需要大容量的脉冲电 源,这种电源就是电力电子装置。 科学实验或某些特殊场合,常常需 要一些特种电源,这也是电力电子 技术的用武之地。
1.2 电力电子技术的发展史
☞把驱动、控制、保护电路和电力电子器件集成在
一起,构成电力电子集成电路(PIC),这代表了
电力电子技术发展的一个重要方向。电力电子集成 技术包括以PIC为代表的单片集成技术、混合集成 技术以及系统集成技术。
☞随着全控型电力电子器件的不断进步,电力电子
电路的工作频率也不断提高。与此同时,软开关技
(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器
件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控
制既可使其开通又可使其关断。
☞采用全控型器件的电路的主要控制方式为脉冲宽度调制(PWM) 方式。相对于相位控制方式,可称之为斩波控制方式,简称斩控方式。
☞在80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合 12
4
1.1 什么是电力电子技术
■电力电子学
◆美国学者W. Newell认为电力电子学是由电力学、 电子学和控制理论三个学科交叉而形成的。
图1-1 描述电力电子学的倒三角形
5
1.1 什么是电力电子技术
☞电力电子技术和电子学
电力电子器件的制造技术和用于信息变换的电子
器件制造技术的理论基础(都是基于半导体理论) 是一样的,其大多数工艺也是相同的。 电力电子电路和信息电子电路的许多分析方法也 是一致的。 ☞电力电子技术和电力学 电力电子技术广泛用于电气工程中,这是电力电 6
1.2 电力电子技术的发展史
■电力电子技术的发展史
图1-3 电力电子技术的发展史
◆一般认为,电力电子技术的诞生是以1957年美国通用 电气公司研制出第一个晶闸管为标志的。
9
1.2 电力电子技术的发展史
◆晶闸管出现前的时期可称为电力电子技术的史前期或黎
明期。
☞1904年出现了电子管,它能在真空中对电子流进行控 制,并应用于通信和无线电,从而开启了电子技术用于电 力领域的先河。 ☞20世纪30年代到50年代,水银整流器广泛用于电化学
第1章 绪论
1.1 什么是电力电子技术
1.2 电力电子技术的发展史
1.3 电力电子技术的应用 1.4 本教材的内容简介
1.1 什么是电力电子技术
■电力电子技术的概念
◆可以认为,所谓电力电子技术就是应用于电力领 域的电子技术。 ☞电力电子技术中所变换的“电力” 有区别于 “电力系统”所指的“电力” ,后者特指电力网 的“电力” ,前者则更一般些。
图1-4 AB变频器
15
1.3 电力电子技术的应用
◆交通运输
☞电气化铁道中广泛采用电力电子技术。电气机车中的
直流机车中采用整流装置,交流机车采用变频装置。直流
斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电
力电子技术更是一项关键技术。除牵引电机传动外,车辆 中的各种辅助电源也都离不开电力电子技术。 ☞电动汽车的电机依靠电力电子装置进行电力变换和驱 动控制,其蓄电池的充电也离不开电力电子装置。一台高 级汽车中需要许多控制电机,它们也要靠变频器和斩波器
图1-7 风场ຫໍສະໝຸດ 总之,电力电子技术的应用越来越广,其地位也越来越重要。
22
1.4 本教材的内容简介
■本教材的内容
23
☞电力电子照明电源体积小、发光效率高、可节省大量
能源,正在逐步取代传统的白炽灯和日光灯。 ☞空调、电视机、音响设备、家用计算机, 不少洗衣机、 电冰箱、微波炉等电器也应用了电力电子技术。 ◆其它
☞航天飞行器中的各种电子仪器需要电源,载人航天器
也离不开各种电源,这些都必需采用电力电子技术。 ☞抽水储能发电站的大型电动机需要用电力电子技术来 起动和调速。超导储能是未来的一种储能方式,它需要强 21
1.1 什么是电力电子技术
各种电力电子装置广泛 应用于高压直流输电、静止
无功补偿、电力机车牵引、
交直流电力传动、电解、励 磁、电加热、高性能交直流 电源等之中,因此,无论是 国内国外,通常都把电力电
图1-2 电气工程的双三角形描述
子技术归属于电气工程学科。在我国,电力电子与电力传
动是电气工程的一个二级学科。图1-2用两个三角形对电 气工程进行了描述。其中大三角形描述了电气工程一级学 科和其他学科的关系,小三角形则描述了电气工程一级学
输入 输出
交流(AC)
整流
交流电力控制 变频、变相
直流(DC)
直流斩波 逆变
3
直流(DC) 交流(AC)
电能变换的形式
(1) DC-DC变换,将某一数值的直流电压变换为另一数值 的直流电压。
(2) AC-DC变换,将交流电压变换为某一数值的直流电压, 也称为正变换,或整流。 (3) DC-AC变换,将直流电压变换为某种波形、某一频率 和某一电压的交流电, 称为逆变换,通常简称为逆变。 (4) AC-AC变换,将一种波形、频率、电压的交流电变换 为另一种波形、频率、电压的交流电,实现交 - 交变压、 变频(Cyclo-conversion)。AC-AC变换也可以由整流和逆变 电路组成AC- DC-AC变换。
☞ 一些对调速性能要求不高的大型鼓风机等近 14 年来也采用了变频装置,以达到节能的目的。
1.3 电力电子技术的应用
☞有些并不特别要求调速的电机为 了避免起动时的电流冲击而采用了 软起动装置,这种软起动装置也是 电力电子装置。 ☞电化学工业大量使用直流电源, 电解铝、电解食盐水等都需要大容 量整流电源。电镀装置也需要整流 电源。 ☞电力电子技术还大量用于冶金工 业中的高频或中频感应加热电源、 淬火电源及直流电弧炉电源等场合。
源以前用晶闸管整流电源,现在已改为采用全控型
器件的高频开关电源。大型计算机所需的工作电源、
微型计算机内部的电源现在也都采用高频开关电源。
☞在大型计算机等场合,常常需要不间断电源
(Uninterruptible Power Supply__ UPS)供电,不 20
1.3 电力电子技术的应用
◆家用电器
☞晶闸管是通过对门极的控制能够使其导通而不
能使其关断的器件,属于半控型器件。对晶闸管电
路的控制方式主要是相位控制方式,简称相控方式。
晶闸管的关断通常依靠电网电压等外部条件来实
11
1.2 电力电子技术的发展史
◆全控型器件和电力电子集成电路(PIC) ☞70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管
7
1.1 什么是电力电子技术
☞电力电子技术和控制理论
控制理论广泛用于电力电子技术中,它使电力电
子装置和系统的性能不断满足人们日益增长的各种 需求。电力电子技术可以看成是弱电控制强电的技 术,是弱电和强电之间的接口。而控制理论则是实 现这种接口的一条强有力的纽带。 另外,控制理论是自动化技术的理论基础,二 者密不可分,而电力电子装置则是自动化技术的基 8
术的应用在理论上可以使电力电子器件的开关损耗
降为零,从而提高了电力电子装置的功率密度。
13
1.3 电力电子技术的应用
■电力电子技术的应用范围十分广泛。它不仅用于
一般工业,也广泛用于交通运输、电力系统、通信
系统、计算机系统、新能源系统等,在照明、空调 等家用电器及其他领域中也有着广泛的应用。 ◆一般工业 ☞ 工业中大量应用各种交直流电动机,都是用 电力电子装置进行调速的。
工业、电气铁道直流变电所以及轧钢用直流电动机的传
动,甚至用于直流输电。这一时期,各种整流电路、逆变 电路、周波变流电路的理论已经发展成熟并广为应用。在 这一时期,也应用直流发电机组来变流。
10
1.2 电力电子技术的发展史
◆晶闸管时代
☞晶闸管由于其优越的电气性能和控制性能,使
之很快就取代了水银整流器和旋转变流机组,并且 其应用范围也迅速扩大。电力电子技术的概念和基 础就是由于晶闸管及晶闸管变流技术的发展而确立 的。
17
• 工业应用
数控机床
轧钢机
冶金工业
电解铝
1818
1.3 电力电子技术的应用
图1-5 中国南方电网公司安顺换流站
图1-6 静止无功发生器(上)和 晶闸管投切电容器(下)
19
1.3 电力电子技术的应用
◆电子装置用电源
☞各种电子装置一般都需要不同电压等级的直流
电源供电。通信设备中的程控交换机所用的直流电
☞电子技术包括信息电子技术和电力电子技术 两大分支。通常所说的模拟电子技术和数字电子 技术都属于信息电子技术。
2
1.1 什么是电力电子技术
◆具体地说,电力电子技术就是使用电力电子器件
对电能进行变换和控制的技术。
☞电力电子器件的制造技术是电力电子技术的基 础。
☞变流技术则是电力电子技术的核心。
表1-1 电力变换的种类
也是依靠电力电子装置才得以实现的。
☞晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)、静止 无功发生器(SVG)、有源电力滤波器(APF)等电力电子装置大量
用于电力系统的无功补偿或谐波抑制。在配电网系统,电力电子装置
相关文档
最新文档