初一上几何平面图形
七年级上册数学第四章几何图形初步知识框架
七年级上册数学第四章几何图形初步知识框架、知识点及中考真题一、知识框架二、具体知识点(一)、几何图形1.平面图形:三角形、四边形、圆等.立体图形,棱柱、棱锥、圆柱、圆锥、球等.2. 立体图形的平面展开图:三视图3. 点、线、面、体:点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面. 体:几何体也简称体. 点动成线,线动成面,面动成体.(二)、直线、射线、线段1、三者的基本区别直线:无端点,表示为直线a或者直线AB 等,不能延长;射线:一个端点,表示为射线AB,能反向延长AB;线段:两个端点,表示为线段AB,能延长线段AB或反向延长线段BA. 2、直线的性质:经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点,叫做线段的中点.6、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做两点的距离.8、点与直线的位置关系:(1)点在直线上 (2)点在直线外.(三)角1、角的定义:由公共端点的两条射线所组成的图形叫做角.2、角的度量单位及换算:度、分、秒.'601=o "'601=3、角的表示法:常表示成',,,1AOB ∠∠∠∠βα等.4、角的分类锐角、直角、钝角、平角、周角5、角的比较方法: (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值.7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:等角的补(余)角相等.10、方向角(1)正方向 (2)北(南)偏东(西)方向 (3)东(西)北(南)方向三、中考真题(2017广东)已知o A 70=∠,则A ∠的补角为( )A .o 110 B. o 70 C. o 30 D. o 20。
人教版数学七年级上册第四章 几何图形初步
第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形1.通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2.知道什么是立体图形和平面图形,能够认识立体图形和平面图形.阅读教材P114~116,思考下列问题.1.几何图形包括平面图形和立体图形.2.立体图形可以分成哪几类?知识探究1.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,这样的几何图形叫做平面图形.2.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,这样的几何图形叫做立体图形.自学反馈完成教材P115~116的两个思考题.活动1小组讨论例1生活中还有哪些物体的形状类似于这些立体图形呢?小组讨论后回答.例2常见立体图形的归类,小组讨论归纳.活动2跟踪训练1.教材P121习题4.1第1、2、3题.2.教材P122习题4.1第8题.3.(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词.活动3课堂小结1.常见的立体图形有哪些?常见的平面图形有哪些?2.生活中很多图案都由简单的几何图形构成,我们也有能力设计美观、有意义的图案.第2课时展开、折叠与从不同方向观察立体图形1.能够识别常见立体图形从不同方向看到的图形并能够正确的画出它们.2.能够识别常见立体图形的平面展开图.阅读教材P117~118,思考下列问题.1.从三个方向看立体图形包括哪三种?2.什么是立体图形的展开图?知识探究1.从三个方向看立体图形:从正面看,从左面看,从上面看.2.将立体图形的表面适当剪开,展开成平面图形,这样的平面图形为立体图形的展开图.自学反馈教材P118练习第1、2题.活动1小组讨论例1教材P117图4.1-7,从正面、左面、上面观察得到的平面图形你能画出来吗?适当变动正方体的摆放位置,你还能解决吗?小组合作学习,你摆我动手,画一画,并进行展示.例2教材P118探究,小组合作学习.活动2跟踪训练教材P121~122习题4.1第4、6、7题.活动3课堂小结1.立体图形从三个方向看到的图形.2.学会了简单几何体(如棱柱、正方体等)的平面展开图,知道按不同的方式展开会得到不同的展开图.3.学会了动手实践,与同学合作.4.不是所有立体图形都有平面展开图.。
图形与几何初中知识点总结
图形与几何初中知识点总结图形与几何是数学中的一个重要分支,主要研究形状、大小以及它们之间的关系。
在初中阶段,学生将会接触到一系列的图形和几何知识。
本文将对这些初中图形与几何的知识点进行总结。
一、平面图形1. 三角形:三边的关系、内角和、直角三角形、等腰三角形等。
2. 四边形:平行四边形、矩形、正方形、菱形等。
3. 多边形:五边形、六边形、正多边形等。
4. 圆:圆的半径、直径、弧长、面积等。
二、空间图形1. 立体图形:长方体、正方体、圆柱体、圆锥体、正棱柱等。
2. 进一步了解这些立体图形的表面积、体积和侧面积的计算方法。
三、相似与全等1. 相似:两个图形形状相同,但大小可能不同。
学生需要了解相似三角形的判定条件,以及相似图形的比例关系。
2. 全等:两个图形既形状相同,又大小相同。
学生需要了解全等图形的性质和判定条件,以及如何做全等图形的对应构造。
四、坐标系与平面直角坐标系1. 坐标系的概念:了解平面上的点如何用坐标来表示。
2. 平面直角坐标系:了解直角坐标系的构建方法,以及如何通过坐标计算两点之间的距离和斜率。
五、角与角的计算1. 角的概念:了解角的定义,以及如何用角度和弧度来表示角。
2. 角的运算:了解角的加法、减法、相等和互补关系等。
六、直线与曲线1. 平行线和垂直线的概念:了解直线之间的平行和垂直关系。
2. 直线与曲线的交点:了解直线和圆的交点性质,以及如何通过已知条件求解交点问题。
七、投影与旋转1. 投影的概念:了解正交投影和斜投影的概念,以及投影的性质和相关计算方法。
2. 旋转的概念:了解平面上图形的旋转概念,以及旋转的性质和相关计算方法。
八、对称与镜像1. 对称的概念:了解平面上的图形对称性,以及对称图形的性质和判断方法。
2. 镜像的概念:了解平面上的图形镜像关系,以及镜像图形的构造方法。
九、尺规作图1. 基本作图:了解使用尺规作图工具(直尺和圆规)进行基本图形的作图。
2. 组合作图:了解使用尺规作图工具进行更复杂图形的作图,如平分角、作已知角的整倍角等。
初中几何图形知识点整理
初中几何图形知识点整理几何学是数学的一个重要分支,主要研究平面和立体图形的形状、大小、位置等性质。
初中几何图形是初中数学的一个重要组成部分,包括平面图形和立体图形,学习初中几何图形是建立数学思维能力并掌握数学基础知识的必要环节。
本文将从初中几何图形知识点的整理入手,着重讲解平面图形和立体图形的相关知识,以帮助学生加深对初中几何图形的理解和掌握。
一、平面图形1、点、线、面、角的基本概念(1)点:指的是没有长度、面积和体积的基本图形,是几何图形的最基本单位。
(2)线:是由无数个点在同一直线上连接而成的图形,具有长度但没有宽度和厚度。
(3)面:指的是由多个线段连接起来形成的平面图形,具有长度和宽度但没有厚度。
(4)角:是由两条射线在同一平面内公共端点所形成的图形,通常用角度来衡量,度数为0°-360°。
2、几何中心的基本概念(1)重心:是平面图形的重心,表示平面图形所有点的质量中心或物理中心,在任一方向上都可看作是平衡点。
(2)外心:是平面图形的外接圆心,指的是可以包含几何图形任意一点的圆心。
(3)内心:是平面图形的内切圆心,指的是几何图形内部可以切割几何图形的圆心。
(4)垂心:是平面图形上某一点到直线的垂线的交点,称为垂足。
3、平面图形的性质:(1)正方形的性质:正方形的各个边长相等,对角线相等,四个角为直角,对角线互相平分。
(2)三角形的性质:三角形的内角和为180°,等边三角形的三边相等,等腰三角形的两边相等,直角三角形的两直角边的平方和等于斜边的平方。
(3)矩形的性质:矩形的对边相等,对角线相等,四个角均为直角。
(4)菱形的性质:菱形的对角线互相垂直,对角线相等,对边平行且相等,具有轴对称性。
(5)梯形的性质:梯形的上下底的长度不同,但平行。
对角线互相垂直,斜边中点连线与上下底中点连线相等。
二、立体图形1、长方体的性质(1)长方体是由六个矩形构成的立体图形,其面积为底面积×高。
人教版七年级数学上册第四章《几何图形初步》知识点汇总
⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看;2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB作直线a 作射线AB作线段a作线段AB、连接AB延长叙述不能延长反向延长射线AB延长线段AB反向延长线段BA 2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=AB ,AB=2AM=2BM.126、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; ; ; .α∠β∠ABC ∠3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。
七年级数学上册几何图形初步 . 几何图形立体图形与平面图形三内文
2. 如图4-1-31,第二行的图形绕虚线旋转一周,便能形成 第一行的某个几何体,请把相对应的图形和几何体用线连 起来.
12/11/2021
第八页,共二十二页。
课堂 讲练 (kètáng)
D
12/11/2021
第九页,共二十二页。
课堂 讲练 (kètáng)
12/11/2021
第十页,共二十二页。
B. 线动成面
C. 面动成体
D. 以上答案都不对
2. 下列图形旋转形成的几何体是圆锥的是(
A. 直角三角形
B. 正方形
)
A
C. 长方形
12/11/2021
D. 梯形
第十二页,共二十二页。
分层训练(xùnliàn)
3. 将下列图形绕直线l旋转一周,可以(kěyǐ)得到如图4-1-32 所示的立体图形的是( B )
②绕宽所在的直线旋转一周得到圆柱体积为
π×62×4=144π(cm3). 答:它们的体积分别是96π cm3和144π cm3.
12/11/2021
第十一页,共二十二页。
分层训练(xùnliàn)
【A组】
1. 生活中我们(wǒ men)见到的自行车的辐条运动形成的几
何图形可解释为B( )
A. 点动成线
12/11/2021
第二十页,共二十二页。
分层训练(xùnliàn)
解:一张边长为5 cm的正方形硬纸片旋转一周得到 (dé dào)的圆柱体积为π×52×5=125π(cm3); 一张长6 cm、宽4 cm的长方形硬纸片旋转一周得 到的圆柱体积为π×62×4=144π(cm3).
因为144π>125π,
面动成体(chénɡ tǐ)
7. 将半圆绕它的直径旋转一周形成的几何体是____球_.体
七年级上册数学《几何图形初步》知识点整理
七年级上册数学《几何图形初步》知识点
整理
本节研究指导
本节知识点比较简单,都是基础,只要认真阅读教材,就能理解。
二、知识要点
1、几何图形
几何图形是从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形,例如正方体、长方体、圆柱等。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形,例如三角形、长方形、圆等。
2、点、线、面、体
几何图形由点、线、面、体组成。
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
3、生活中的立体图形
在生活中,我们经常接触到各种立体图形,例如盒子、球、圆锥等。
4、棱柱及其有关概念
在棱柱中,任何相邻两个面的交线,都叫做棱。
相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。
棱柱的侧面有可能是长方形,也有可能是平行四边形。
5、正方体的平面展开图
正方体有11种不同的平面展开图。
6、截一个正方体
用一个平面去截一个正方体,截出的面可能是三角形、四边形、五边形、六边形等不同的图形。
7、三视图
三视图是指通过正交投影,将一个物体的正视图、左视图和俯视图绘制出来,以便更好地了解物体的形状和尺寸。
初一数学第17讲:几何图形(教师版
第十七讲几何图形(相关知识点精讲,标题加粗,正文宋体5号,单倍行距,首行缩进2字符)一、平面图形1、概念:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。
2、常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
(2)圆:一条线段绕它的端点旋转一周而形成的图形。
(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
二、立体图形1、概念:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
2、常见的立体图形(1)柱体:A棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。
B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。
(2)椎体:A棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
B圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。
(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。
(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。
三、从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。
四、展开图1、立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。
2、根据展开图判断立体图形的规律:A展开图全是长方形或正方形时------正方体或长方体;B展开图中含有三角形时-----棱锥或棱柱;若展开图中含有2个三角形3个长方形---- 三棱柱;若展开图中全是三角形(4个)-----三棱锥。
C展开图中含有圆和长方形-----圆柱;D展开图中含有扇形------圆锥。
第一学期七年级数学知识点必备:几何图形分类
第一学期七年级数学知识点必备:几何图形
分类
(1)立体几何图形可以分为以下几类:
第一类:柱体;
包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;
棱柱体积统一等于底面面积乘以高,即V=SH,
第二类:锥体;
包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥;
棱锥体积统一为V=SH/3,
第三类:球体;
此分类只包含球一种几何体,
体积公式V=4pi;R3/3,
其他不常用分类:圆台、棱台、球冠等很少接触到。
大多几何体都由这些几何体组成。
(2)平面几何图形如何分类
a.圆形
b.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,体形,
平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六,
注:正方形既是矩形也是菱形
欢迎大家去阅读由小编为大家提供的第一学期七年级数学知识点,大家好好去品味了吗?希望能够帮助到大家,加油哦!
初一数学上册第二单元知识点:整式的加减 2015-2016初一上册数学第二单元知识点:整式。
人教版七年级数学上册 《立体图形和平面图形》PPT教育课件(第1课时几何图形的认识)
思考
几何研究图形的内容?
对于各种各样的物体,数学中只研究它们的形状(如方 的、圆的等),大小(如长度、面积、体积等),位置(如垂直、 相交、平行等),而不管其他的性质(如颜色,重量,材料等).
第四页,共十七页。
思考
由盒子的外形上,可以得到哪些图形?
看上 面
看整
体
外包装箱
看棱
看前 面
从形形色色的物体外形中抽象得出的各种 图形统称为几何图形。
人教版七年级数学上册 《立体图形和平面图形》PPT教育课件(第1课时几 何图形的认识)
科 目:数学
适用版本:人教版
适用范围:【教师教学】
第四章 几何图形初步
4.1.1 立体图形和平面图形
(几何图形的认识)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
看顶 点
看侧 面
第五页,共十七页。
立体图形
观察下面图形,你发现了什么?
有些几何图形的各部分不都在同一平面内,它们是立体图形.
第六页,共十七页。
思考
想一想下面实物形状对应哪些立体图形?
球体
正方体
长方体
第七页,共十七页。
圆锥
圆柱
立体图形的分类柱 圆锥 棱锥
第八页,共十七页。
5.(2019·河北衡水中学初一期中)下列图形属于柱体的有几个( )
A.2个
B.3个
C.4个
D.5个
【详解】 由图象可知,几何体依次是:四棱柱,四棱柱,圆柱,圆锥,球体,三棱柱.
人教版数学七年级上册第四章:4.1.1立体图形与平面图形(人教版七年级上)
金字塔—埃及
长方体
正方形
长方形
·
线段
点
我们把从实物中抽象出的各种图形统称为几何图形.
生活中你会经常见很多实物,由下列实物你能想象
出熟悉的几何体吗?
方体堆砌而成的几何体.那么其三种视图中面积最小的 把你手中的立体图形沿棱展开,看它的平面展开图是什么? 几种常见几何体的特征: 有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形. 下面四幅图中可以折成符合规则的骰子的是( )
从上面看 从正面看
从左面看
从上面看 从正面看
从上面看 从左面看
从正面看
从正面看
从左面看
从上面看
利用骰子,摆成下面的图形,分别从正面、左面、上 面观察这个图形,各能得到什么平面图形?
从正面看
从上面看 从左面看
请你从不同角度观察,下列立体图形各是 什么图形?
把你手中的立体图形沿棱展开,看它的平面展开图是什 么?
生活中你会经常见很多实物,由下列实物你能想象 出熟悉的几何体吗?
长方体
正方体
球 圆柱体
圆锥体
有些几何图形(如长方体、正方体、圆柱、圆锥、球 等)的各部分不都在同一平面内,它们是立体图形.
常见的立体图形
长方体 正方体
圆柱
圆锥 球
下列实物与给出的哪个几何体相似?
图1
图2
图3
棱柱和棱锥
三棱柱
六棱柱
2.2012 年奥运会在伦敦举行,它的标志是五环,这五环
的每一个环的形状与下列哪个图形类似( C ).
(A)三角形
(B)正方形
(C)圆
(D)长方形
3.如图所示,将下列图形与对应的图形名称用线连接起来.
人教版七年级数学上册第四章《几何图形初步》知识点汇总
⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆等.主(正)视图---------从正面看; 2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=12AB ,AB=2AM=2BM. 6、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; α∠ ; β∠ ; ABC ∠.3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。
初一数学常见几何形及其性质总结
初一数学常见几何形及其性质总结几何形是数学中的一个重要内容,它们是我们生活中无处不在的。
在初一的数学学习过程中,学生需要学习并掌握常见的几何形及其性质。
本文将对初一数学中常见的几何形进行总结,包括平面图形和立体图形。
一、平面图形1. 点(Point):点是几何的基本概念,用大写字母表示,如A、B等。
它没有长度、宽度和厚度,只有位置。
2. 直线(Line):直线是由无穷多个点组成的,可以无限延伸的平面图形。
用一对平行线表示,如AB。
3. 射线(Ray):射线是起点不变,但可向一个方向无限延伸的线段。
用起点和一个点表示,如∠ABC。
4. 线段(Line Segment):线段是由两个端点限定的线段。
用起点和一个点表示,如AB。
5. 角(Angle):角是由两条射线共享一个端点而形成的图形。
通过两条射线的夹角大小可分为锐角、直角、钝角等。
6. 三角形(Triangle):三角形是由三条线段组成的,形成了一个封闭的图形。
按照边长可分为等边三角形、等腰三角形和普通三角形等。
7. 四边形(Quadrilateral):四边形是由四个线段组成的封闭图形。
按照边的性质可分为矩形、正方形、平行四边形和菱形等。
8. 多边形(Polygon):多边形是由多个线段组成的封闭图形。
按照边的个数可分为三边形、四边形、五边形等。
二、立体图形1. 圆柱体(Cylinder):圆柱体是以一个圆为底面,由一个平行于底面的圆柱面和两个平行于底面的圆面组成的立体图形。
其性质包括底面积和侧面积等。
2. 球体(Sphere):球体是由所有离一个点的距离相等的点组成,具有球心、半径等性质。
3. 正方体(Cube):正方体是六个正方形组成的立体图形,具有六个面、八个顶点和十二条棱。
4. 圆锥体(Cone):圆锥体是以一个固定的点为顶点,边界为圆锥面的立体图形。
5. 圆环(Torus):圆环是由一个圆绕着与其平面不相交的轴旋转一周形成的立体图形。
七年级数学上册第四章几何图形初步4.1几何图形4.1.2点、线、面、体课件(新版)新人教版
图4-1-2-2
图4-1-2-3 解析 A是由4旋转得到的,B是由2旋转得到的,C是由1旋转得到的,D是 由3旋转得到的. 点拨 利用面动成体这一性质解题.
题型二 探索几何体的顶点、棱、面之间的关系 例2 新年晚会会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立 体图形,多面体是其中的一部分,多面体中围成立体图形的每一个面都 是平的,没有曲的,如棱柱、棱锥等,如图4-1-2-4.
)
答案 B
5.如图,第二行的图形绕虚线旋转一周,便形成第一行的某个图形(几何 体),将对应的两个图末)圆柱是由长方形绕着它的一边所在直线旋 转一周得到的,那么图4-1-2-1是以下四个图形中的哪一个绕着直线旋转 一周得到的 ( )
图4-1-2-1
初中数学(人教版)
七年级 上册
第四章 几何图形初步
知识点 点、线、面、体
重要提示 (1)几何图形都是由点、线、面、体组成的,点是构成图形 的基本元素.点、线、面、体经过运动变化,就能组合成各种各样的几 何图形,形成多姿多彩的图形世界. (2)一般地,有曲面的几何体都可以由某个平面图形旋转得到.将一个平 面图形旋转成立体图形,既与平面图形的形状有关,也与平面图形旋转 时所绕的轴有关,因此在分析平面图形旋转后得到的立体图形时,要综 合分析平面图形的形状和旋转轴两个因素.
解析 分三种情况进行讨论. ①以8 cm长的边所在直线为轴,旋转得到的圆锥的体积V1= ×π×62×8=9 6π(cm3). ②以6 cm长的边所在直线为轴,旋转得到的圆锥的体积V2= ×π×82×6=1
1 3 1 3
28π(cm3).
③以10 cm长的边所在直线为轴,旋转得到的几何体是由两个同底面的 圆锥组成的,设圆锥底面的半径为r cm,则有 ×6×8= ×10×r,解得r=4.8.
初一数学上册知识点总结(7篇)
初一数学上册知识点总结(7篇)初一数学上册知识点总结1第一章:丰富的图形世界1、几何图形从物体中抽象出来的各种图形,包括三维图形和平面图形。
2、点、线、面、体①几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面与面的交线是一条线,可分为直线和曲线。
脸:包围身体的是脸,分为平面和曲面。
体:几何体也简称体。
②点动成线,线动成面,面动成体。
3、生活中的立体图形生活中的立体图形(按名称分)柱:①圆柱②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……锥:①圆锥②棱锥球4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种(经常考:考试形式:展开的图形能否围成正方体;正方体对面图案)6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图:物体的三视图指的是前视图、俯视图和左视图。
前视图:从前面看到的视图称为前视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看的视图称为俯视图。
第二章:有理数及其运算1、有理数的分类①正有理数有理数{ ②零③负有理数有理数{ ①整数②分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和—1。
零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。
若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
两个相反的数的绝对值相等。
6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
2024版人教版数学七年级上册第六章几何图形初步6.1.2 点、线、面、体 教学课件ppt
A.1
B.2
C.3
D.4
当堂训练
3. 请把下图中的平面图形与其绕轴旋转一周后得到的立体图 形连接起来.
当堂训练
4.小明用如图所示的胶滚沿从左到右的方向将图案 滚涂到墙上,下列给出的4个图案中,符合图示滚涂 出的图案是( A )
A.
B.
C.
D.
当堂训练
5.长为4cm,宽为2cm的长方形,绕其一边进行旋转得到 一个几何体.
(打一物)
谜底——雨—滴———
思考:将雨滴看知
学生活动一 【一起探究】 构成图形的元素 图中有哪些你熟悉的立体图形?
长方体
正方体
球
体
圆
柱
探究新知
以上立体图形都是几何体,简称体.
探究新知
1. 你知道这些几何体是由什么围成的吗? 2. 下图中的图形分别有哪些面?这些面有什么不同吗?
第六章 几何图形初步
6.1 几何图形 6.1.2 点、线、面、体
学习目标
1.了解几何体、平面和曲面的意义,能正确判定 围成几何体的面是平面还是曲面. 2.了解几何图形构成的基本元素是点、线、面、 体及其关系,能正确判定由点、线、面、体经过 运动变化形成的简单的几何图形.
导入新课
猜谜语
千条线,万条线, 落入水中看不见.
围动
成成
体
物体的图形
探究新知
1. 几何体是由面围成的. 2. 面分为平的面和曲的面.
探究新知
实际生活中的平面与曲面
平平面面
曲面
曲面
探究新知
说一说
如下图,围成这些立体图形的各个面中哪 些面是平的?哪些面是曲的?
探究新知
观察长方体、圆柱、棱锥等熟悉的几何体模型,结合下 列问题小组合作探究:
初一(七年级)上册数学几何图形初步知识点总结
1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。
从实物中抽象出的各种图形统称为几何图形。
有些几何图形的各局部不在同一平面内,叫做立体图形。
有些几何图形的各局部都在同一平面内,叫做平面图形。
虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联络的。
2.几何图形的分类:几何图形一般分为立体图形和平面图形。
3.直线:几何学根本概念,是点在空间内沿一样或相反方向运动的轨迹。
从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。
求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。
常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
4.射线:在欧几里德几何学中,直线上的一点和它一旁的局部所组成的图形称为射线或半直线。
5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔〞组成的双点长划线的线段。
线段有如下性质:两点之间线段最短。
6. 两点间的间隔:连接两点间线段的长度叫做这两点间的间隔。
7. 端点:直线上两个点和它们之间的局部叫做线段,这两个点叫做线段的端点。
线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。
其中AB表示直线上的任意两点。
8.直线、射线、线段区别:直线没有间隔。
射线也没有间隔。
因为直线没有端点,射线只有一个端点,可以无限延长。
9.角:具有公共端点的两条不重合的射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。
所旋转射线的端点叫做角的顶点,开场位置的射线叫做角的始边,终止位置的射线叫做角的终边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1图1-3几何图形初步专题1、巧用排除法解立体图形 1-1、一个骰子的每个面上分别标有1~6中某一个数字,请你根据图⑴、⑵、⑶三种状态所显示的数字,推出“?”处的数字是( )。
A 、6B 、3C 、1D 、2 1-2、由四个相同的小正方体搭建了一个积木,它的左视图和主视图均如图1-2所示,则这堆积木不可能是( )1-3、将“创建文明城市”六个字分别写在一个正方形的六个面上,这个正方体 的展开图如图1-3所示,那么这个正方体中,和“创”字相对的字是( )A 、文B 、明C 、城D 、市 1-4、如图1-4,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等,则这六个数的和为 。
专题2、动手操作解决折叠问题的方法2-1、如图2-1,把一个正方形三次对折后沿虚线剪下,则所得的图形是图中的( )2-2、如图2-2,将长方形纸片ABCD 沿对角线BD 折叠,使C 落在C ′处,BC ′交AD 于E ,若∠BDC=55°,则∠ADC ′的度数为。
图1-2ABCD图1-4AB DC 上折右折 右下方折 沿虚线剪下22-3、如图2-3,将书页折叠过去,使顶角A 落在A ′处,BC 为折痕,然后把BE 折过去,使之与边BA ′重合,折痕为BD ,那么两道折痕BC 与BD 之间的夹角为 。
2-4、如图2-4,要用一张长方形折成一个纸袋,两条折痕的夹角为70°(即∠POQ =70°),将折过来的重叠部分需要抹上胶水,即可作成一个纸袋,则粘胶水部所构成的角''OB A ∠=___度。
专题3、关于钟表的时针与分针的夹角问题解题方法时钟认识:如图3,钟表的表面被均分为12大格,60小格,中表面可看成 是以圆心为顶点的周角,则每一大格为30°(含5个小格),每个小格为 6°,即:时针:每小时转过30°,每分钟转过0.5°; 时针转过的角度为:小时数×30°+分钟数×0.5° 分针:每分钟转过6°分针转过的角度为:分钟数×6°时针与分针的初始位置定位12点整,m 时n 分时针与分针的夹角为A ∠(1800≤∠≤A ),则n m n n m A 2113065.030-=-+=∠,(或nm A 21130360--=∠)3-1、求4:36时,钟面上时针与分针的夹角是多少度?3-2、1:48时,钟面上时针与分针的夹角是 度。
专题4、找互余、互补的角的方法A E C ′D BC 图2-2 A B A ′ C E ′DE 图2-3 图2-4A ′ CDP A O B Q B ′图334-1、如图4-1,点A 、O 、B 在同一条直线上,若90=∠=∠DOE AOC ,则图中共有多少对互余的角?请指出来。
4-2、如图4-2,已知AOB 是一条直线,21∠=∠,则图中互为补角 的角共有多少对?4-3、如果α∠和β∠互补,且α∠>β∠,则下列表示β∠的余角的式子中,正确的结论个数 是 个专题5、分类讨论的思想5-1、已知线段AB=10cm ,射线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,求线段AM 的长。
5-2、已知∠AOB=80°,OC 是不同于OA 、OB 的一条射线,且∠AOC=53∠BOC ,求∠AOC 的度数。
(题中提到的角均小于平角)1 2 3 CEBO AD图4-142 1 A O B CDE图4-24专题6、参数法(方程的思想)6-1、如图6-1,在线段AB 上有两动点C 、D ,点M 、点N 分别为AC 、BD 的重点,AB=8cm ,CD=4cm ,当点C ,D 移动时,MN 的长度是否变化?若不变,求MN 的长度;若变化,说明理由。
6-2、如图6-2,O 是直线AB 上的一点,OC 是∠AOD 的平分线, OE 在∠BOD 内,且∠DOE=31∠BOD, ∠COE=72°,求 ∠EOB 的度数.A B C D M N 图6-1 图6-2D CBAO E56-3、如图6-3,已知C 、D 是线段AB 上的两点,AC :CB=3:5,AD :DB=7:3,CD=3.9,求AB 的长。
6-4、如图,已知A 、O 、B 三点在同一直线上,射线OC 为不同于射线OA 、OB 的一条射线,已知OD 平分∠AOC ,∠DOE=90°,试说明OE 是否平分∠BOC 。
6-5、如图, ∠AOB 、∠AOD 分别是∠AOC 的余角和补角,OC 平分∠BOD ,求∠BOD 与∠AOC 的度数。
图6-3 A 6 D B B O A D CEO ABCD66-6、如图,OM 是∠AOB 的平分线,射线OC 在∠BOM 的内部,ON 是∠BOC 的平分线,已知∠AOC=80°,求∠MON 的度数。
6-7、如图,数轴上有A 、B 、C 、D 四个点,分别对应的数为a 、b 、c 、d ,且满足b a ,是方程19=+x 的两根(b a <),20d -2(c-16)与互为相反数,(1)求a 、b 、c 、d 的值;(2)若A 、B 两点以6个单位长度/秒的速度向右匀速运动,同时C 、D 两点以2个单位长度/秒向左匀速运动,并设运动时间为t 秒,问t 为多少时,A 、B 两点都运动在线段CD 上(不与C 、D 两个端点重合)?MC N A O · · ·C· · BA D7(3)在(2)的条件下,A 、B 、C 、D 四个点继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使B 与C 的距离是A 与D 的距离的4倍,若存在,求时间t ;若不存在,请说明理由。
6-8、如图,在长方形ABCD 中,AB=12厘米,BC=6厘米.点P 沿AB 边从点A 开 始向点B 以2厘米/秒的速度移动;点Q 沿DA 边从点D 开始向点A 以1厘 米/秒的速度移动.如果P 、Q 同时出发,用t(秒)表示移动的时间,那么: (1)如图,当t 为何值时,QAP ∆为等腰直角三角形?(2)如图2,当t 为何值时,QAB ∆的面积等长方形ABCD 的面积的41?· O· O(备选图形1)(备选图形2)BP图1A8(3)如图3,P 、Q 到达B 、A 后继续运动,P 点到达DC 的中点后都停止运动。
当t为何值时,线段AQ 的长等于线段CP 的长的2倍。
练习:1、已知线段AB ,以下作图不可能的是 ( )A.在AB 上取一点C ,使AC=BC;B.在AB 的延长线上取一点C ,使BC=ABC.在BA 的延长线上取一点C ,使BC=AB;D.在BA 的延长线上取一点C ,使BC=2AB2、如图点C 、D 是线段AB 上的两点,若AC=4,CD=5,DB=3,则图中所有线段的和是3、如图,OA ⊥OB, ∠BOC=300, OD 平分∠AOC ,则∠BOD=4、如图,C 、D 将线段AB 分成2∶3∶4三部分,E 、F 、G 分别是AC 、CD 、DB 的中点,且EG =12cm ,则AF 的长=5、下列四个图中,能用上∠1、∠AOB 、∠O 三种方法表示同一个的是( ).BP B P Q A 图3 图26、5点整时,时钟上时针与分钟之间的夹角是( ) .A.210°B.30°C.150°D.60°7、在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的( ).A:南偏西50°方向 B:南偏西40°方向C:北偏东50°方向 D:北偏东40°方向8、如左图所示的正方体沿某些棱展开后,能得到的图形是( ).1.9、如果∠α=26°,那么∠α余角的补角等于 ( ).A、20° B、70° C、110° D、116°10、∠1+∠2=180°,∠2+∠3=180°,根据________________________,得∠1=∠3.11、102°43′32″+77°16′28″=________________;98°12′25″÷5=_____________.12.已知线段AB=8cm,延长AB至C,使AC=2AB,D是AB中点,则线段CD=_________.13.表示O点南偏东15°方向和北偏东25°方向的两条射线组成的角等于______________.14.已知线段AB=acm,点A1平分AB,A2平分AA1,A3平分AA2,……,nA平分1nAA, 则nAA=_______________cm. 15.如右图所示,小于平角的角有个.16.如图,OM、ON分别是∠BOC和∠AOC的平分线,∠AOB=84°。
①∠OC在∠AOB内绕点O 转动时,∠MON的值改变。
(填“会”或“不会”)17.如下图,在已知角内画射线,画1条射线,图中共有个角;画2条射线,图中共有个角;画3条射线,图中共有个角;求画n条射线所得的角的个数 .18.如图,若CB = 4 cm,DB = 7 cm,且D是AC的中点,则AC = .919.已知错误!未找到引用源。
,又自错误!未找到引用源。
的顶点错误!未找到引用源。
引射线错误!未找到引用源。
,若错误!未找到引用源。
,那么错误!未找到引用源。
=.20.如图,平面上有四个点A、B、C、D,根据下列语句画图(1)画直线AB;(2)作射线BC;(3)画线段CD;(4)连接AD,并将其反向延长至E,使DE=2AD;(5)找到一点F,使点F到A、B、C、D四点距离和最短.21.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.22.如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?32 1O F CAD EB23.如图,直线AB、CD相交于点O,OM⊥AB,NO⊥CD①若∠1=∠2,求∠AOD的度数。
②若∠1=14∠BOC,求∠AOC和∠MOD。
BA101124.已知:如图,∠AOB 是直角,∠AOC =40°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线.(1)求∠MON 的大小.(2)当锐角∠AOC 的大小发生改变时,∠MON 的大小是否发生改变?为什么?AN CM B D O1 )2 ┐。