全国中考数学一元二次方程的综合中考真题汇总

合集下载

中考数学专题题库∶一元二次方程的综合题含答案解析

中考数学专题题库∶一元二次方程的综合题含答案解析

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x ,根据题意得:10(1+x )2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y 万辆,根据题意得:2009年底汽车数量为14.4×90%+y ,2010年底汽车数量为(14.4×90%+y )×90%+y ,∴(14.4×90%+y )×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题2.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点.己知函数222(3)y x mx m =--+(m m 为常数). (1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0和(2)见解析,2【解析】 【分析】 (1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根. 即无论m 取何值,该函数总有两个零点.(3)依题意有, 由解得.∴函数的解析式为. 令y=0,解得∴A(),B(4,0) 作点B 关于直线10y x =-的对称点B’,连结AB’,则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10).连结CB’,则∠BCD=45°∴BC=CB’=6,∠B’CD=∠BCD=45°∴∠BCB’=90°即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-,2即AM的解析式为112y x=--.3.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F 作FH ⊥AC 于点H ,设AD=x ,由②知DH=3,FH=,则HC=.在Rt △CFH 中,根据勾股定理,得. ∵以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形,且FC 为斜边, ∴,即,解得.④设AD=x ,易知,即. 而, 当时,;当时,. ∴△FCD 的面积s 的取值范围是. 考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.4.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m 时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.5.已知两条线段长分别是一元二次方程28120x x -+=的两根,(1)解方程求两条线段的长。

全国中考数学一元二次方程的综合中考真题汇总及详细答案

全国中考数学一元二次方程的综合中考真题汇总及详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.【答案】(1)123,4x x =-=(2)54a ≤(3)-4【解析】分析:(1)根据一元二次方程的解法即可求出答案;(2)根据判别式即可求出a 的范围;(3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.2.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭. 【答案】x=15或x=1 【解析】【分析】 设321x y x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】 解:设321x y x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3,∴3121x x =--或3321x x =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.3.从图象来看,该函数是一个分段函数,当0≤x≤m 时,是正比例函数,当x >m 时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.4.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.5.关于x 的方程()2204k kx k x +++=有两个不相等的实数根.()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】【分析】()1由于方程有两个不相等的实数根,所以它的判别式0>,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围. ()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404k k k =+-⋅>, 1k ∴>-,又0k ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204k kx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x k x x +⎧+=-⎪⎪⎨⎪=⎪⎩, 又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-, 由()1知,1k >-,且0k ≠,43k ∴=-不符合题意, 因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。

全国中考数学一元二次方程组的综合中考真题汇总及答案解析

全国中考数学一元二次方程组的综合中考真题汇总及答案解析

全国中考数学一元二次方程组的综合中考真题汇总及答案解析一、一元二次方程1.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上. ①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c ba++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得21(舍去)或x=21-,∴点P (21-,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P(32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.2.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0. (1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长. 【答案】(1)k >34;(215 【解析】 【分析】(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n ,利用根与系数的关系得出m+n=5,mn=522m n +,利用完全平方公式进行变形即可求得答案. 【详解】(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根, ∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0, ∴k >34; (2)当k =2时,原方程为x 2-5x +5=0, 设方程的两个根为m ,n ,∴m+n=5,mn=5,∴矩形的对角线长为:()222215m n m n mn+=+-=.【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.3.已知x1、x2是关于x的﹣元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求a的取值范围;(2)若(x1+1)(x2+1)是负整数,求实数a的整数值.【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x1+x2=﹣26aa+,x1x2=6aa+,由(x1+1)(x2+1)=x1x2+x1+x2+1=﹣66a-是是负整数,即可得66a-是正整数.根据a是整数,即可求得a的值2.【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=﹣,x1x2=,∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.∵(x1+1)(x2+1)是负整数,∴﹣是负整数,即是正整数.∵a是整数,∴a﹣6的值为1、2、3或6,∴a的值为7、8、9或12.【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.4.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21xx-÷(1+211x-)=22211 11 x xx x-+÷--=()() 2211 1x xxx x+-⋅-=x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.5.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨52m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了920m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了152m%,求出m的值.【答案】(1)120;(2)20.【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+52m%),在“美团”网上的购买实际消费总额:a[120(1﹣25%)﹣920m](1+15m%);根据“在两个网站的实际消费总额比原计划的预算总额增加了152m%”列方程解出即可.试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120(元).答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:120×0.8a(1﹣25%)(1+52m%)+a[120×0.8(1﹣25%)﹣920m](1+15m%)=120×0.8a(1﹣25%)×2(1+ 152m%),即72a(1+52m%)+a(72﹣920m)(1+15m%)=144a(1+ 152m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20.答:m的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.6.已知:关于的方程有两个不相等实数根.(1)用含的式子表示方程的两实数根;(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.∴由求根公式,得.∴或(II),∴.而,∴,.由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k (k-3)=9>0,再利用求根公式即可求出方程的两根即可; (2)有(1)可知方程的两根,再有条件x 1>x 2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系. 请你解答下列问题:7.将m 看作已知量,分别写出当0<x<m 和x>m 时,与之间的函数关系式;8.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】 由韦达定理,有,.于是,对正整数,有原式=9.关于x 的一元二次方程()22210x k x k +-+=有两个不等实根1x ,2x .(1)求实数k 的取值范围;(2)若方程两实根1x ,2x 满足121210x x x x ++-=,求k 的值. 【答案】(1) k <14;(2) k=0.【解析】【分析】(1)根据一元二次方程的根的判别式得出△>0,求出不等式的解集即可;(2)根据根与系数的关系得出x1+x2=-(2k-1)=1-2k,x1•x2=k2,代入x1+x2+x1x2-1=0,即可求出k值.【详解】解:(1)∵关于x的一元二次方程x2+(2k-1)x+k2=0有两个不等实根x1,x2,∴△=(2k-1)2-4×1×k2=-4k+1>0,解得:k<14,即实数k的取值范围是k<14;(2)由根与系数的关系得:x1+x2=-(2k-1)=1-2k,x1•x2=k2,∵x1+x2+x1x2-1=0,∴1-2k+k2-1=0,∴k2-2k=0∴k=0或2,∵由(1)知当k=2方程没有实数根,∴k=2不合题意,舍去,∴k=0.【点睛】本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.10.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元;()2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游?【答案】(1)2280;(2)15【解析】【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x列出方程:(10+x)(200-5x)=2625,求出x,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值. 【详解】 (1)2280()2因为1020020002625⨯=<.因此参加人比10人多, 设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=. 解得 15x = 225x =, ∵2005150x -≥, ∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游. 【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.11.已知:关于x 的一元二次方程221(1)204x m x m +++-=.(1)若此方程有两个实数根,求没m 的最小整数值; (2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m 的值. 【答案】(1)-4;(2)m=3 【解析】 【分析】(1)利用根的判别式的意义得到△≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到12(1)x x m +=-+,212124x x m =-,然后解关于m 的一元二次方程,即可确定m 的值. 【详解】解:(1)∵221(1)204x m x m +++-=有两个实数根,∴221(1)41(2)04m m ∆=+-⨯⨯-≥, ∴290m +≥, ∴92m ≥-;∴m 的最小整数值为:4m =-;(2)由根与系数的关系得:12(1)x x m +=-+,212124x x m =-, 由22212121184x x x x m ++=-得: ()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭∴22150m m +-=, 解得:3m =或5m =-; ∵92m ≥-, ∴3m =. 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则12bx x a +=-,12c x x a=.也考查了根的判别式.解题的关键是熟练掌握根与系数的关系和根的判别式.12.关于x 的一元二次方程x 2﹣(m ﹣3)x ﹣m 2=0. (1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x 1,x 2,且|x 1|=|x 2|﹣2,求m 的值及方程的根.【答案】(1)证明见解析;(2)x 1=﹣,x 2=﹣1或 【解析】试题分析:(1)根据一元二次方程的判别式△=b 2﹣4ac 的结果判断即可,当△>0时,有两个不相等的实数根,当△=0时,有两个相等的实数根,当△<0时,方程没有实数根;(2)根据一元二次方程根与系数的关系x 1+x 2=-b a ,x 1•x 2=ca,表示出两根的关系,得到x 1,x 2异号,然后根据绝对值的性质和两根的关系分类讨论即可求解. 试题解析:(1)一元二次方程x 2﹣(m ﹣3)x ﹣m 2=0, ∵a=1,b=﹣(m ﹣3)=3﹣m ,c=﹣m 2,∴△=b 2﹣4ac=(3﹣m )2﹣4×1×(﹣m 2)=5m 2﹣6m+9=5(m ﹣35)2+365, ∴△>0,则方程有两个不相等的实数根;(2)∵x 1•x 2=ca=﹣m 2≤0,x 1+x 2=m ﹣3, ∴x 1,x 2异号,又|x 1|=|x 2|﹣2,即|x 1|﹣|x 2|=﹣2,若x 1>0,x 2<0,上式化简得:x 1+x 2=﹣2,∴m﹣3=﹣2,即m=1,方程化为x2+2x﹣1=0,解得:x1=﹣1+2,x2=﹣1﹣2,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1﹣26,x2=1+26.13.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a>0,b>0时:∵(a b-)2=a﹣2ab+b≥0∴a+b≥2ab,当且仅当a=b时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x>0时,x+1x的最小值为.当x<0时,x+1x的最大值为;(2)若y=27101x xx+++,(x>﹣1),求y的最小值;(3)如图,四边形ABCD的对角线AC、BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.【答案】(1)2;﹣2.(2)y的最小值为9;(3)四边形ABCD面积的最小值为25.【解析】【分析】(1)当x>0时,按照公式a+b ab a=b时取等号)来计算即可;当x<0时,﹣x>0,1x->0,则也可以按公式a+b ab a=b时取等号)来计算;(2)将y27101x xx++=+的分子变形,分别除以分母,展开,将含x的项用题中所给公式求得最小值,再加上常数即可;(3)设S△BOC=x,已知S△AOB=4,S△COD=9,由三角形面积公式可知:S△BOC:S△COD=S△AOB:S△AOD,用含x的式子表示出S△AOD,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.【详解】(1)当x >0时,x 1x +≥=2; 当x <0时,﹣x >0,1x ->0.∵﹣x 1x -≥=2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +的最大值为﹣2. 故答案为:2,﹣2.(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141x x x ++++=+=(x +1)41x +++5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =,∴四边形ABCD 面积=4+9+x 36x +≥=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.14.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。

2024年全国各省市数学中考真题汇编 专题6一元二次方程及其应用(11题)含详解

2024年全国各省市数学中考真题汇编 专题6一元二次方程及其应用(11题)含详解

专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .98k <B .98k ≤C .98k ≥D .98k <-3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .14.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=09.(2024·安徽·中考真题)解方程:223x x -=10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量y (件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根【答案】A【分析】本题考查的是一元二次方程根的判别式,熟知一元二次方程20(0)ax bx c a ++=≠中,当0∆>时,方程有两个不相等的实数根是解题的关键.根据一元二次方程根的判别式解答即可.【详解】解: △()2241280k k =-⨯⨯-=+>,∴方程有两个不相等的实数根.故选:A .2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .9k <B .98k ≤C .98k ≥D .98k <-【答案】B【分析】本题考查了判别式与一元二次方程根的情况,熟知一元二次方程有实数根的条件是解题的关键.根据一元二次方程有实数根的条件是0∆≥,据此列不等式求解即可.【详解】解:∵关于x 的一元二次方程2230x x k -+=有实数根,∴()2Δ3420k =--⨯≥,解得98k ≤.故选B .3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .1【答案】D【分析】此题考查了根的判别式,根据根的情况确定参数k 的取值,解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当方程有两个不相等的实数根时,0∆>;当方程有两个相等的实数根时,Δ0=;当方程没有实数根时,Δ0<.【详解】解:∵关于x 的一元二次方程2960x x c -+=有两个相等的实数根,∴()2Δ64936360c c =--⨯⨯=-=,解得:1c =,故选:D .4.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13【答案】C【分析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得13x =,27x =,根据三角形的三边关系可得等腰三角形的底边长为3,腰长为7,进而即可求出三角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.【详解】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.【答案】1【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.【答案】-1【分析】根据关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根可知△=0,求出m 的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=0【答案】x 1=2,x 2=3【分析】利用因式分解的方法解出方程即可.【详解】利用因式分解法求解可得.解:∵x 2﹣5x +6=0,∴(x ﹣2)(x ﹣3)=0,则x ﹣2=0或x ﹣3=0,解得x 1=2,x 2=3.【点睛】本题考查解一元二次方程因式分解法,关键在于熟练掌握因式分解的方法步骤.9.(2024·安徽·中考真题)解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量(件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.【答案】(1)100=-+y x ;(2)该商品日销售额不能达到2600元,理由见解析。

中考数学压轴题专题一元二次方程的经典综合题附答案

中考数学压轴题专题一元二次方程的经典综合题附答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.【答案】(1)123,4x x =-=(2)54a ≤(3)-4【解析】分析:(1)根据一元二次方程的解法即可求出答案;(2)根据判别式即可求出a 的范围;(3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.2.从图象来看,该函数是一个分段函数,当0≤x≤m 时,是正比例函数,当x >m 时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.3.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.4.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n .【解析】【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n.【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.5.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.5,2y =2.5,∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.6.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.7.解方程:(x 2+x )2+(x 2+x )=6.【答案】x 1=﹣2,x 2=1【解析】【分析】设x 2+x =y ,将原方程变形整理为y 2+y ﹣6=0,求得y 的值,然后再解一元二次方程即可.【详解】解:设x 2+x =y ,则原方程变形为y 2+y ﹣6=0,解得y 1=﹣3,y 2=2.①当y =2时,x 2+x =2,即x 2+x ﹣2=0,解得x 1=﹣2,x 2=1;②当y =﹣3时,x 2+x =﹣3,即x 2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x 1=﹣2,x 2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.8.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现: 当a >0,b >0时:∵)2=a ﹣b ≥0∴a +ba =b 时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x >0时,x +1x 的最小值为 .当x <0时,x +1x 的最大值为 ; (2)若y =27101x x x +++,(x >﹣1),求y 的最小值; (3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2;﹣2.(2)y 的最小值为9;(3)四边形ABCD 面积的最小值为25.【解析】【分析】(1)当x >0时,按照公式a +b ab a =b 时取等号)来计算即可;当x <0时,﹣x >0,1x->0,则也可以按公式a +b ab a =b 时取等号)来计算; (2)将y 27101x x x ++=+的分子变形,分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,由三角形面积公式可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.【详解】(1)当x >0时,x 1x +≥1x x⋅=2; 当x <0时,﹣x >0,1x ->0.∵﹣x 1x -≥1x x ⎛⎫-⋅-= ⎪⎝⎭2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +的最大值为﹣2. 故答案为:2,﹣2.(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141x x x ++++=+=(x +1)41x +++()411x x +⋅+5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =,∴四边形ABCD 面积=4+9+x 36x +≥36x x⋅=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.9.解方程:x 2-2x =2x +1.【答案】x 1=2,x 2=2【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式x =求解即可. 试题解析:方程化为x 2-4x -1=0.∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x =42±=, ∴x1=2,x 2=210.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.。

全国中考数学一元二次方程的综合中考真题汇总附详细答案

全国中考数学一元二次方程的综合中考真题汇总附详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.解方程:(2x+1)2=2x+1.【答案】x=0或x=12-. 【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x (2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣12.2.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣13.将m 看作已知量,分别写出当0<x<m 和x>m 时,与之间的函数关系式;4.解下列方程:(1)2x 2-4x -1=0(配方法);(2)(x +1)2=6x +6.【答案】(1)x 1=1+2x 2=1-21=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可. 试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32. ∴(x -1)2=32.∴x -1=.∴x 1=1x 2=1 (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0.∴x +1=0或x +1-6=0.∴x 1=-1,x 2=5.5.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w 元,根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000.∵a =﹣10<0,∴当x =50时,w 取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.5,2y =2.5,∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.7.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.8.将进货单价为40元的商品按50元售出,能售出500件,如果该商品涨价1元,其销售量就要减少10件,为了赚取8000元的利润,售价应定为多少元?这时应进货多少件?【答案】要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件.【解析】【分析】设每件商品涨价x 元,能赚得8000元的利润;销售单价为(50)x +元,销售量为(50010)x -件;每件的利润为根据为(50+x-40)元,根据总利润=销售量×每个利润,可列方程求解【详解】解:设每件商品涨价x 元,则销售单价为(50)x +元,销售量为(50010)x -件. 根据题意,得(50010)[(50)40]8000x x -+-=.解得110x =,230x =.经检验,110x =,230x =都符合题意.当10x =时,5060x +=,50010400x -=;当30x =时,5080x +=,50010200x -=.所以,要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件.【点睛】本题考查一元二次方程的应用,关键看到售价和销售量的关系,然后以利润做为等量关系列方程求解9.解方程:x 2-2x =2x +1.【答案】x 1=2-5 ,x 2=2+5.【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式24b b ac x -±-=求解即可. 试题解析:方程化为x 2-4x -1=0.∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x =420±=2±5 , ∴x 1=2-5 ,x 2=2+5.10. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的),五月份用水量超过m 吨(或水费是按来计算的) 则有151=1.7×80+(80-m )×即m 2-80m+1500=0解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去.∴m=50【解析】。

中考数学一元二次方程专题(附答案)

中考数学一元二次方程专题(附答案)

中考数学一元二次方程专题(附答案)一、单选题(共12题;共24分)1.下列一元二次方程有两个相等实数根的是()A. x2﹣2x+1=0B. 2x2﹣x+1=0C. 4x2﹣2x﹣3=0D. x2﹣6x=02.方程=0有两个相等的实数根,且满足=,则的值是()A. -2或3B. 3C. -2D. -3或23.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是()A. ﹣1B. 0C. 1D. 24.若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:A. B. C. D.5.下列一元二次方程中,有两个相等实数根的是()A. x2﹣8=0B. 2x2﹣4x+3=0C. 9x2﹣6x+1=0D. 5x+2=3x26.已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于的一元二次方程的两个根,则k的值等于A. 7B. 7或6C. 6或D. 67.方程(x-1)•(x2+17x-3)=0的三根分别为x1,x2,x3 .则x1x2+x2x3+x1x3 =()A. 14B. 13C. -14D. -208.一元二次方程x2﹣4x+3=0的两个根分别是⊙O1和⊙O2的半径长,圆心距O1O2=4,则⊙O1和⊙O2的位置关系()A. 外离B. 外切C. 相交D. 内切9.已知关于的方程有两个实数根,则的取值范围是( )A. B. C. 且 D. 且10.设a、b、c和S分别为三角形的三边长和面积,关于x的方程b2x2+(b2+c2-a2)x+c2=0的判别式为Δ.则Δ与S的大小关系为( ).A. Δ=16S2B. Δ=-16S2C. Δ=16SD. Δ=-16S11.下列方程中,有两个不相等实数根的是().A. x2-4x+4=0B. x2+3x-1=0C. x2+x+1=0D. x2-2x+3=012.已知二次函数y=ax2+2ax+3a-2(a是常数,且a≠0)的图象过点M(x1,-1),N(x2,-1),若MN的长不小于2,则a的取值范围是()A. a≥B. 0<a≤C. - ≤a<0D. a≤-二、填空题(共6题;共12分)13.等腰三角形的腰和底边的长是方程x2-20x+91=0的两个根,则此三角形的周长为________.14.已知x=-1是方程x2+ax+4=0的一个根,则方程的另一个根为________ 。

2024年中考数学《一元二次方程及其应用》真题含解析

2024年中考数学《一元二次方程及其应用》真题含解析

专题09 一元二次方程及其应用(33题)一、单选题1.(2024·吉林·中考真题)下列方程中,有两个相等实数根的是( )A .()221x −=− B .()220x −= C .()221x −= D .()222x −=【答案】B【分析】本题考查了一元二次方程的根,解一元二次方程,熟练掌握开平方法解方程是解题的关键. 分别对每一个选项运用直接开平方法进行解方程即可判断.【详解】解:A 、()2210x −=−<,故该方程无实数解,故本选项不符合题意; B 、()220x −=,解得:122x x ==,故本选项符合题意; C 、()221x −=,21x −=±,解得123,1x x ==,故本选项不符合题意;D 、()222x −=,2x −,解得1222x x 故选:B .2.(2024·黑龙江绥化·中考真题)小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是2−和5−.则原来的方程是( ) A .2650x x ++= B .27100x x −+= C .2520x x −+= D .26100x x −−=【答案】B【分析】本题考查了一元二次方程根与系数的关系,根据题意得出原方程中127x x +=,1210x x =,逐项分析判断,即可求解.【详解】解:∵小影在化简过程中写错了常数项,得到方程的两个根是6和1; ∴12617x x +=+=,又∵小冬写错了一次项的系数,因而得到方程的两个根是2−和5−. ∴1210x x =A. 2650x x ++=中,126x x +=−,125x x =,故该选项不符合题意;B. 27100x x −+=中,127x x +=,1210x x =,故该选项符合题意;C. 2520x x −+=中,125x x +=,122x x =,故该选项不符合题意;D. 26100x x −−=中,126x x +=,1210x x =−,故该选项不符合题意; 故选:B .3.(2024·河北·中考真题)淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A .1B 1−C 1+D .11【答案】C【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键. 由题意得方程221a a +=,利用公式法求解即可. 【详解】解:由题意得:221a a +=,解得:1a =1a = 故选:C .4.(2024·黑龙江大兴安岭地·中考真题)关于x 的一元二次方程()22420m x x −++=有两个实数根,则m 的取值范围是( ) A .4m ≤ B .4m ≥ C .4m ≥−且2m ≠ D .4m ≤且2m ≠【答案】D【分析】本题考查了一元二次方程根的判别式.根据一元二次方程20(0)ax bx c a ++=≠的根的判别式24b ac ∆=−的意义得到20m −≠且0∆≥,即244(2)20m −×−×≥,然后解不等式组即可得到m 的取值范围.【详解】解: 关于x 的一元二次方程()22420m x x −++=有实数根, 20m ∴−≠且0∆≥,即244(2)20m −×−×≥, 解得:4m ≤,m ∴的取值范围是4m ≤且2m ≠. 故选:D .5.(2024·黑龙江牡丹江·中考真题)一种药品原价每盒48元,经过两次降价后每盒27元,两次降价的百分率相同,则每次降价的百分率为( ) A .20%B .22%C .25%D .28%【分析】本题考查一元二次方程的实际应用,设每次降价的百分率为x ,根据原价每盒48元,经过两次降价后每盒27元,列出方程进行求解即可.【详解】解:设每次降价的百分率为x ,由题意,得:()248127x −=, 解得:121725%,44x x ===(舍去); 故选C .6.(2024·四川凉山·中考真题)若关于x 的一元二次方程()22240a x x a +++−=的一个根是0x =,则a 的值为( ) A .2 B .2− C .2或2−D .12【答案】A【分析】本题考查一元二次方程的定义和一元二次方程的解,二次项系数不为0.由一元二次方程的定义,可知20a +≠;一根是0,代入()22240a x x a +++−=可得240a −=,即可求答案.【详解】解:()22240a x x a +++−=是关于x 的一元二次方程, 20a ∴+≠,即2a ≠−①由一个根0x =,代入()22240a x x a +++−=, 可得240a −=,解之得2a =±;② 由①②得2a =; 故选A7.(2024·四川眉山·中考真题)眉山市东坡区永丰村是“天府粮仓”示范区,该村的“智慧春耕”让生产更高效,提升了水稻亩产量,水稻亩产量从2021年的670千克增长到了2023年的780千克,该村水稻亩产量年平均增长率为x ,则可列方程为( ) A .()67012780x ×+=B .()26701780x ×+= C .()26701780x ×+=D .()6701780x ×+=【答案】B【分析】本题主要考查一元二次方程的应用,正确理解题意、列出方程是解题的关键. 设该村水稻亩产量年平均增长率为x ,根据题意列出方程即可.【详解】解:根据题意得:()26701780x ×+=.8.(2024·北京·中考真题)若关于x 的一元二次方程240x x c −+=有两个相等的实数根,则实数c 的值为( ) A .16− B .4− C .4 D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =−=−−××=即可.本题考查了一元二次方程的根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c −+=有两个相等的实数根,1,4,a b c c ==−=, ∴()22Δ44410b ac c =−=−−××=, ∴416c =, 解得4c =. 故选C .9.(2024·上海·中考真题)以下一元二次方程有两个相等实数根的是( ) A .260x x −= B .290x -= C .2660x x −+= D .2690x x −+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=−>时,方程有两个不相等实数根;当240b ac ∆=−=时,方程的两个相等的实数根;当24<0b ac ∆=−时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=−−××=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=−××−=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=−−××=> ,该方程有两个不相等实数根,故C 选项不符合题意; D .()2Δ64190=−−××= ,该方程有两个相等实数根,故D 选项不符合题意; 故选:D .10.(2024·四川广安·中考真题)若关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根,则m 的取值范围是( )A .0m <且1m ≠−B .0m ≥C .0m ≤且1m ≠−D .0m <【答案】A【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx ca ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.由关于x 的一元二次方程2(1)210m x x +−+=两个不相等的实数根,可得0∆>且10m +≠,解此不等式组即可求得答案.【详解】解: 关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根, ∴()()22410m ∆=−−+>, 解得:0m <,10m +≠ , 1m ∴≠−,m ∴的取值范围是:0m <且1m ≠−. 故选:A .11.(2024·四川内江·中考真题)某市2021年底森林覆盖率为64%,为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力发展植树造林活动,2023年底森林覆盖率已达到69%.如果这两年森林覆盖率的年平均增长率为x ,则符合题意得方程是( )A .()0.6410.69x +=B .()20.6410.69x += C .()0.64120.69x +=D .()20.64120.69x +=【答案】B【分析】本题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件.设年平均增长率为x ,根据2023年底森林覆盖率=2021年底森林覆盖率()21x ×+,据此即可列方程求解.【详解】解:根据题意,得()264%169%x += 即()20.6410.69x +=, 故选:B .12.(2024·贵州·中考真题)一元二次方程220x x −=的解是( )A .13x =,21x =B .12x =,20x =C .13x =,22x =−D .12x =−,21x =−【答案】B【分析】本题考查了解一元二次方程,利用因式分解法求解即可. 【详解】解∶ 220x x −=,∴()20x x −=,∴0x =或20x −=, ∴12x =,20x =, 故选∶B .13.(2024·四川乐山·中考真题)若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为( )A .23−B .23C .6−D .6【答案】A【分析】本题考查了一元二次方程20(0)ax bx c a ++=≠根与系数的关系:若方程的两实数根为12,x x ,则1212,b x x x x a+=−⋅ca =.根据一元二次方程20(0)ax bx c a ++=≠根与系数的关系得到121222,1x x x x p +=−=−⋅=,然后通分,11x +1221212x x x x x p+−==,从而得到关于p 的方程,解方程即可. 【详解】解:121222,1x x x x p +=−=−⋅= , 121212112x x x x x x p+−∴+==, 而12113x x +=, 23p−∴=, 23p ∴=−,故选:A .14.(2024·云南·中考真题)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是( )A .()280160x −=B .()280160x −=C .()80160x −=D .()801260x −=【答案】B【分析】本题考查了一元二次方程的应用,根据甲种药品成本的年平均下降率为x ,利用现在生产1千克甲种药品的成本=两年前生产1千克甲种药品的成本年×(1−平均下降率)2,即可得出关于的一元二次方程.【详解】解: 甲种药品成本的年平均下降率为x ,根据题意可得()280160x −=, 故选:B .二、填空题15.(2024·山东·中考真题)若关于x 的方程2420x x m −+=有两个相等的实数根,则m 的值为 . 【答案】14/0.25【分析】本题考查了根的判别式,牢记“当Δ0=时,方程有两个相等的实数根”是解题的关键. 根据方程的系数结合根的判别式,即可得出2242440b ac m ∆=−=−××=,解之即可得出结论. 【详解】解:∵关于x 的方程2420x x m −+=有两个相等的实数根, ∴2242444160b ac m m ∆=−=−××=−=, 解得:14m =. 故答案为:14.16.(2024·广东深圳·中考真题)已知一元二次方程230x x m −+=的一个根为1,则m = . 【答案】2【分析】本题考查了一元二次方程解的定义,根据一元二次方程的解的定义,将1x =代入原方程,列出关于m 的方程,然后解方程即可.【详解】解: 关于x 的一元二次方程230x x m −+=的一个根为1,1x ∴=满足一元二次方程230x x m −+=, 130m ∴−+=,解得,2m =. 故答案为:2.17.(2024·江苏连云港·中考真题)关于x 的一元二次方程20x x c −+=有两个相等的实数根,则c 的值为 . 【答案】14/0.25【分析】本题考查了一元二次方程根的个数与根的判别式的关系.根据题意得2Δ14c 0=−=,进行计算即可得.【详解】解:若关于x 的一元二次方程20x x c −+=有两个相等的实数根,2140c ∆=−=,14c ∴=,故答案为:14.18.(2024·四川凉山·中考真题)已知2220330y x x y x −=−+−=,,则x 的值为 . 【答案】3【分析】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键. 将2y x =代入22330x y x −+−=,转化为解一元二次方程,20y x =≥,要进行舍解. 【详解】解:∵20y x −=, ∴2y x =,将2y x =代入22330x y x −+−=得,2330x x x −+−=, 即:2230x x −−=,()()310x x −+=, ∴3x =或=1x −, ∵20y x =≥, ∴=1x −舍, ∴3x =, 故答案为:3.19.(2024·湖南·中考真题)若关于x 的一元二次方程2420x x k −+=有两个相等的实数根,则k 的值为 . 【答案】2【分析】本题考查根据一元二次方程根的情况求参数.一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根,则240b ac ∆=−>;有两个相等的实数根,则240b ac ∆=−=;没有实数根,则24<0b ac ∆=−.据此即可求解.【详解】解:由题意得:()22444120b ac k ∆=−=−−××=, 解得:2k = 故答案为:220.(2024·河南·中考真题)若关于x 的方程2102x x c −+=有两个相等的实数根,则c 的值为 . 【答案】12/0.5【分析】本题考查一元二次方程根与判别式的关系.掌握一元二次方程()200ax bx ca ++=≠的根的判别式为24b ac ∆=−,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根是解题关键.根据一元二次方程根与其判别式的关系可得:()21Δ1402c =−−×=,再求解即可.【详解】解∶∵方程2102x x c −+=有两个相等的实数根, ∴()21Δ1402c =−−×=,∴12c =, 故答案为:12.21.(2024·重庆·中考真题)随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是 . 【答案】10%【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解. 【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =−(不符合题意,舍去); 故答案为:10%.22.(2024·四川南充·中考真题)已知m 是方程2410x x −=+的一个根,则(5)(1)m m +−的值为 . 【答案】4−【分析】本题主要考查了二元一次方程的解,以及已知式子的值求代数式的值,根据m 是方程2410x x −=+的一个根,可得出241m m +=,再化简代数式,整体代入即可求解. 【详解】解:∵m 是方程2410x x −=+的一个根, ∴241m m +=(5)(1)m m +−255m m m −+− 245m m =+−15=−4=−,故答案为:4−.23.(2024·广东广州·中考真题)定义新运算:()()200a b a a b a b a −≤ ⊗= −+> 例如:224(2)40−⊗=−−=,23231⊗=−+=.若314x ⊗=−,则x 的值为 . 【答案】12−或74【分析】本题考查了一元二次方程的应用,一元一次方程的应用,解题的关键是明确新运算的定义.根据新定义运算法则列出方程求解即可.【详解】解:∵()()200a b a a b a b a −≤ ⊗=−+>, 而314x ⊗=−, ∴①当0x ≤时,则有2314x −=−, 解得,12x =−;②当0x >时,314x −+=−, 解得,74x =综上所述,x 的值是12−或74,故答案为:12−或74.24.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x −+=的两个实数根,则()22m n +−的值为 . 【答案】7【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n −+=,5b m n a+=−=,从而得到252n n =−,再将原式利用完全平方公式展开,利用252n n =−替换2n 项,整理后得到m n 2++,再将5m n +=代入即可. 【详解】解:∵m ,n 是一元二次方程2520x x −+=的两个实数根, ∴2520n n −+=,5bm n a+=−=, 则252n n =−∴()22m n +− 244m n n =+−+5244m n n =+−−+ 2m n =++ 52=+7=故答案为:725.(2024·山东烟台·中考真题)若一元二次方程22410x x −−=的两根为m ,n ,则2234m m n −+的值为 . 【答案】6【分析】本题考查了根与系数的关系及利用完全平方公式求解,若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,bc x x x x a a+=−=,熟练掌握一元二次方程根与系数的关系是解题关键.根据根与系数的关系得122m n mn +==−,,2241m m −=,再把2234m m n −+变形为22224m m m n −++,然后利用整体代入的方法计算,再利用完全平方公式求解即可. 【详解】解:∵一元二次方程22410x x −−=的两个根为m ,n ,∴122m n mn +==−,,2241m m −=∴2234m m n −+22224m m m n −++= 221m n =++2()21m n mn =+−+2122()12=−×−+6=故答案为:6.26.(2024·四川眉山·中考真题)已知方程220x x +−=的两根分别为1x ,2x ,则1211+x x 的值为 . 【答案】12/0.5【分析】本题考查一元二次方程的根与系数的关系,若一元二次方程()200ax bx ca ++=≠的两根分别为1x ,2x ,则12bx x a +=−,12c x x a=,掌握一元二次方程根与系数的关系是解题的关键.先根据根与系数的关系得到121x x +=−,122x x =−,然后把1211+x x 化简为1212x x x x +然后整体代入即可. 【详解】解: 方程220x x +−=的两根分别为1x ,2x , 121x x ∴+=−,122x x =−,121212111122x x x x x x +−∴+===−. 故答案为:12.27.(2024·四川泸州·中考真题)已知1x ,2x 是一元二次方程2350x x −−=的两个实数根,则()212123x x x x −+的值是 . 【答案】14【分析】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形求值.对于一元二次方程,若该方程的两个实数根为1x ,2x ,则12b x x a +=−,12cx x a=.先根据根与系数的关系得到123x x +=,125x x =−,再根据完全平方公式的变形()22212112229x x x x x x +=++=,求出()21229x x −=,由此即可得到答案. 【详解】解: 1x ,2x 是一元二次方程2350x x −−=的两个实数根,123x x ∴+=,125x x =−,()22212112229x x x x x x ∴+=++=,∴()2221211221229492029x x x x x x x x −=−+=−=+=, ∴()()212123293514x x x x −+=+×−=.故答案为:14.三、解答题28.(2024·上海·中考真题)解方程组:2234026x xy y x y −−= += ①②.【答案】4x =,1y =或者6x =−,6y =.【分析】本题考查了二元二次方程,求解一元二次方程,解题的关键是利用代入法进行求解.【详解】解:2234026x xy y x y −−= += ①②,由②得:62x y =−代入①中得:()()226236240y y y y −−−−=,()2223624418640y y y yy −+−+−=,2642360y y −+=,()26760y y −+=,()()6610y y −−=解得:1y =或6y =, 当1y =时,6214x =−×=, 当6y =时,6266x =−×=−, ∴方程组的解为4,1x y ==或者6,6x y =−=. 29.(2024·四川凉山·中考真题)阅读下面材料,并解决相关问题:下图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n 行有n 个点……容易发现,三角点阵中前4行的点数之和为10.(1)探索:三角点阵中前8行的点数之和为_____,前15行的点数之和为______,那么,前n 行的点数之和为______(2)体验:三角点阵中前n 行的点数之和______(填“能”或“不能”)为500.(3)运用:某广场要摆放若干种造型的盆景,其中一种造型要用420盆同样规格的花,按照第一排2盆,第二排4盆,第三排6盆……第n 排2n 盆的规律摆放而成,则一共能摆放多少排? 【答案】(1)36;120;()112n n +(2)不能(3)一共能摆放20排.【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. (1)根据图形,总结规律,列式计算即可求解;(2)根据前n 行的点数和是500,即可得出关于n 的一元二次方程,解之即可判断;(2)先得到前n 行的点数和是()1n n +,再根据题意得出关于n 的一元二次方程,解之即可得出n 的值. 【详解】(1)解:三角点阵中前8行的点数之和为()112345678188362+++++++=+×=, 前15行的点数之和为()11231415115151202+++++=+×= , 那么,前n 行的点数之和为()()111231122nn nn n ++++=+×=+ ; 故答案为:36;120;()112n n +;(2)解:不能, 理由如下:由题意得()115002n n +=, 得210000n n +−=,()21410004001∆=−×−=,∴此方程无正整数解,所以三角点阵中前n 行的点数和不能是500; 故答案为:不能;(3)解:同理,前n 行的点数之和为()()124622112n n n n n ++++=×+×=+ , 由题意得()1420n n +=, 得24200n n +−=,即()()21200n n +−=, 解得20n =或21n =−(舍去), ∴一共能摆放20排.30.(2024·四川内江·中考真题)已知关于x 的一元二次方程210x px −+=(p 为常数)有两个不相等的实数根1x 和2x .(1)填空:12x x +=________,12x x =________; (2)求1211+x x ,111x x +;(3)已知221221x x p +=+,求p 的值. 【答案】(1)p ,1; (2)1211p x x +=,111x p x +=; (3)3p =.【分析】本题考查了一元二次方程根和系数的关系,根的判别式,掌握一元二次方程根和系数的关系是解题的关键.(1)利用根和系数的关系即可求解;(2)1211+x x 变形为()21212122x x x x x x +−,再把根和系数的关系代入计算即可求解,由一元二次方程根的定义可得21110x px −+=,即得1110x p x −+=,进而可得111x p x +=; (3)把方程变形为()21212221x x x x p +−=+,再把根和系数的关系代入得2221p p −=+,可得1p =−或3p =,再根据根的判别式进行判断即可求解.【详解】(1)解:由根与系数的关系得,12x x p +=,121=x x , 故答案为:p ,1;(2)解:∵12x x p +=,121=x x , ∴12121211x x p x x x x ++==, ∵关于x 的一元二次方程210x px −+=(p 为常数)有两个不相等的实数根1x 和2x , ∴21110x px −+=, ∴1110x p x −+=, ∴111x p x +=; (3)解:由根与系数的关系得,12x x p +=,121=x x ,∵221221x x p +=+,∴()21212221x x x x p +−=+, ∴2221P p −=+, ∴2230P p −−=, 解得1p =−或3p =,∴一元二次方程210x px −+=为210x x ++=或2310x x −+=, 当1p =−时,2141130∆=−××=−<,不合题意,舍去; 当3p =时,()2Δ341150=−−××=>,符合题意; ∴3p =.31.(2024·广东广州·中考真题)关于x 的方程2240x x m −+−=有两个不等的实数根. (1)求m 的取值范围;(2)化简:2113|3|21m m m m m −−−÷⋅−+. 【答案】(1)3m > (2)2−【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键;(1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可. 【详解】(1)解:∵关于x 的方程2240x x m −+−=有两个不等的实数根. ∴()()224140m ∆=−−××−>, 解得:3m >; (2)解:∵3m >, ∴2113|3|21m m m m m −−−÷⋅−+ ()()1123311m m m m m m −+−−⋅⋅−−+ 2=−;32.(2024·四川南充·中考真题)已知1x ,2x 是关于x 的方程22210x kx k k −+−+=的两个不相等的实数根. (1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值. 【答案】(1)1k > (2)2【分析】本题主要考查了根据一元二次方程根的情况求参数范围、解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.(1)根据“1x ,2x 是关于x 的方程22210x kx k k −+−+=的两个不相等的实数根”,则0∆>,得出关于k 的不等式求解即可;(2)根据5k <,结合(1)所求k 的取值范围,得出整数k 的值有2,3,4,分别计算讨论整数k 的不同取值时,方程22210x kx k k −+−+=的两个实数根1x ,2x 是否符合都是整数,选择符合情况的整数k 的值即可.【详解】(1)解:∵1x ,2x 是关于x 的方程22210x kx k k −+−+=的两个不相等的实数根, ∴0∆>,∴()()2222Δ24114444440k k k k k k k =−−××−+=−+−=−>,解得:1k >;(2)解:∵5k <,由(1)得1k >, ∴15k <<,∴整数k 的值有2,3,4,当2k =时,方程为2430x x −+=,解得:11x =,23x =(都是整数,此情况符合题意); 当3k =时,方程为2670x x −+=,解得:3x =±(不是整数,此情况不符合题意); 当4x =时,方程为28130x x −+=,解得:4x =(不是整数,此情况不符合题意); 综上所述,k 的值为2.33.(2024·四川遂宁·中考真题)已知关于x 的一元二次方程()2210x m x m −++−=. (1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +−=,求m 的值. 【答案】(1)证明见解析; (2)11m =或22m =−.【分析】本题主要考查了一元二次方程根的判别式,根与系数的关系,解一元二次方程,掌握一元二次方程根的判别式是解题的关键.(1)根据根的判别式证明0∆>恒成立即可;(2)由题意可得,122x x m +=+,121⋅=−x x m ,进行变形后代入即可求解. 【详解】(1)证明:()()22Δ24118m m m =−+−××−=+ , ∵无论m 取何值,280m +>,恒成立,∴无论m 取何值,方程都有两个不相等的实数根.(2)解:∵12,x x 是方程()2210x m x m −++−=的两个实数根, ∴122x x m +=+,121⋅=−x x m ,∴()()()22221212121232319x x x x x x x x m m +−=+−=+−−=,解得:11m =或22m =−.。

2023年中考数学真题汇编:一元二次方程(含答案)

2023年中考数学真题汇编:一元二次方程(含答案)

2023年中考数学真题汇编——一元二次方程一、选择题1. (2023·吉林省)一元二次方程x2―5x+2=0根的判别式的值是( )A. 33B. 23C. 17D. 172. (2023·天津市)若x1,x2是方程x2―6x―7=0的两个根,则( )A. x1+x2=6B. x1+x2=―6C. x1x2=76D. x1x2=73. (2023·甘肃省兰州市)关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2―2(1+2c)=( )A. ―2B. 2C. ―4D. 44. (2023·江苏省无锡市)2020年―2022年无锡居民人均可支配收入由5.76万元增长至6.58万元,设人均可支配收入的平均增长率为x,下列方程正确的是( )A. 5.76(1+x)2=6.58B. 5.76(1+x2)=6.58C. 5.76(1+2x)=6.58D. 5.76x2=6.585. (2023·内蒙古自治区赤峰市)用配方法解方程x2―4x―1=0时,配方后正确的是( )A. (x+2)2=3B. (x+2)2=17C. (x―2)2=5D. (x―2)2=176. (2023·山东省菏泽市)一元二次方程x2+3x―1=0的两根为x1,x2,则1x1+1x2的值为( )A. 32B. ―3 C. 3 D. ―327. (2023·河南省)关于x的一元二次方程x2+mx―8=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根8. (2023·全国)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为( )A. 3.2(1―x)2=3.7B. 3.2(1+x)2=3.7C. 3.7(1―x)2=3.2D. 3.7(1+x)2=3.29. (2023·福建省)根据福建省统计局数据,福建省2020年的地区生产总值为43903.89亿元,2022年的地区生产总值为53109.85亿元.设这两年福建省地区生产总值的年平均增长率为x,根据题意可列方程( )A. 43903.89(1+x)=53109.85B. 43903.89(1+x)2=53109.85C. 43903.89x2=53109.85D. 43903.89(1+x2)=53109.8510. (2023·山东省聊城市)若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是( )A. m≥―1B. m≤1C. m≥―1且m≠0D. m≤1且m≠011. (2023·四川省广元市)关于x的一元二次方程2x2―3x+3=0根的情况,下列说法中正确2的是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定12. (2023·山东省滨州市)一元二次方程x2+3x―2=0根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 不能判定13. (2023·四川省乐山市)若关于x的一元二次方程x2―8x+m=0两根为x1、x2,且x1=3x2,则m的值为( )A. 4B. 8C. 12D. 1614. (2023·湖南省永州市)某2020年人均可支收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x,则下面所列方程正确的是( )A. 2.7(1+x)2=2.36B. 2.36(1+x)2=2.7C. 2.7(1―x)2=2.36D. 2.36(1―x)2=2.715. (2023·湖南省怀化市)下列说法错误的是( )A. 成语“水中捞月”表示的事件是不可能事件B. 一元二次方程x2+x+3=0有两个相等的实数根C. 任意多边形的外角和等于360°D. 三角形三条中线的交点叫作三角形的重心16. (2023·四川省广安市)已知a、b、c为常数,点P(a,c)在第四象限,则关于x的方程ax2+bx+c=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断17. (2023·四川省眉山市)关于x的一元二次方程x2―2x+m―2=0有两个不相等的实数根,则m的取值范围是( )A. m<32B. m>3C. m≤3D. m<318. (2023·四川省泸州市)若一个菱形的两条对角线长分别是关于x的一元二次方程x2―10x+m=0的两个实数根,且其面积为11,则该菱形的边长为( )A. 3B. 23C. 14D. 21419. (2023·四川省泸州市)关于x的一元二次方程x2+2ax+a2―1=0的根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 实数根的个数与实数a的取值有关二、填空题20. (2023·江苏省泰州市)关于x的一元二次方程x2+2x―1=0的两根之和为______ .21. (2023·辽宁省)若关于x的一元二次方程x2―6x+k=0有两个不相等的实数根,则k的取值范围是______ .22. (2023·四川省雅安市)已知关于x的方程x2+mx―4=0的一个根为1,则该方程的另一个根为______ .23. (2023·全国)方程x2―4x―m=0有两个相等的实数根,则m的值为______ .24. (2023·山东省泰安市)已知关于x的一元二次方程x2―4x―a=0有两个不相等的实数根,则a的取值范围是______ .25. (2023·辽宁省营口市)若关于x的方程x2+mx―12=0的一个根是3,则此方程的另一个根是______ .26. (2023·黑龙江省牡丹江市)张师傅去年开了一家超市,今年2月份开始盈利,3月份盈利5000元,5月份盈利达到7200元,从3月到5月,每月盈利的平均增长率都相同,则每月盈利的平均增长率是______ .27. (2023·湖北省鄂州市)若实数a、b分别满足a2―3a+2=0,b2―3b+2=0,且a≠b,则1a +1b=______ .28. (2023·贵州省)若一元二次方程kx2―3x+1=0有两个相等的实数根,则k的值是______ .29. (2023·江苏省徐州市)若关于x的方程x2―4x+m=0有两个相等的实数根,则实数m的值为______ .30. (2023·湖南省常德市)若关于x的一元二次方程x2―2x+a=0有两个不相等的实数根,则实数a的取值范围是______ .31. (2023·辽宁省)若关于x的一元二次方程x2―x+k+1=0有两个实数根,则k的取值范围是______ .32. (2023·湖南省张家界市)已知关于x的一元二次方程x2―2x―a=0有两个不相等的实数根,则a的取值范围是______ .33. (2023·黑龙江省绥化市)已知一元二次方程x2+x=5x+6的两根为x1与x2,则1x1+1x2的值为______ .34. (2023·湖南省岳阳市)已知关于x的方程x2+mx―20=0的一个根是―4,则它的另一个根是______ .35. (2023·湖南省岳阳市)已知关于x的一元二次方程x2+2mx+m2―m+2=0有两个不相等的实数根,且x1+x2+x1⋅x2=2,则实数m=______ .36. (2023·湖北省随州市)已知关于x的一元二次方程x2―3x+1=0的两个实数根分别为x1和x2,则x1+x2―x1x2的值为______ .37. (2023·湖南省邵阳市)某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程想想,设这两年绿化面积的年平均增长率为x,则依题意列方程为______ .38. (2023·四川省达州市)已知x1,x2是方程2x2+kx―2=0的两个实数根,且(x1―2)(x2―2)=10,则k的值______ .39. (2023·重庆市)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程______ .40. (2023·重庆市)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为______ .41. (2023·上海市)如果关于x的方程x2―4x+2c=0有实数根,那么实数c的取值范围是______ .三、解答题42. (2023·上海市)解方程:(x―2)2―4(x―2)=12.43. (2023·江苏省泰州市)某公司的化工产品成本为30元/千克.销售部门规定:一次性销售1000千克以内时,以50元/千克的价格销售;一次性销售不低于1000千克时,每增加1千克降价0.01元.考虑到降价对利润的影响,一次性销售不低于1750千克时,均以某一固定价格销售.一次性销售利润y(元)与一次性销售量x(千克)的函数关系如图所示.(1)当一次性销售800千克时利润为多少元?(2)求一次性销售量在1000~1750kg之间时的最大利润;(3)当一次性销售多少千克时利润为22100元?44. (2023·辽宁省)电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中100≤x≤160,且x为整数),当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.(1)求y与x之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?45. (2023·江苏省无锡市)(1)解方程:2x2+x―2=0;(2)解不等式组:x+3>―2x2x―5<1.46. (2023·内蒙古自治区通辽市)阅读材料:材料1:关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根x1x2和系数a,b,c,有如下关系:x1+x2=―ba ,x1x2=ca.材料2:已知一元二次方程x2―x―1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵m,n是一元二次方程x2―x―1=0的两个实数根,∴m+n=1,mn=―1.则m2n+mn2=mn(m+n)=―1×1=―1.根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程2x2+3x―1=0的两个实数根为x1,x2,则x1+x2=______ ,x1x2 =______ .(2)类比:已知一元二次方程2x2+3x―1=0的两个实数根为m,n,求m2+n2的值;(3)提升:已知实数s,t满足2s2+3s―1=0,2t2+3t―1=0且s≠t,求1s ―1t的值.47. (2023·山东省东营市)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.48. (2023·浙江省杭州市)设一元二次方程x2+bx+c=0.在下面的四组条件中选择其中一组b,c的值,使这个方程有两个不相等的实数根,并解这个方程.①b=2,c=1;②b=3,c=1;③b=3,c=―1;④b=2,c=2.注:如果选择多组条件分别作答,按第一个解答计分.49. (2023·湖南省郴州市)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.(1)求这两个月中该景区游客人数的月平均增长率;(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?参考答案1.C2.A3.A4.A5.C6.C7.A8.B9.B10.D11.C12.A13.C14.B15.B16.A17.D18.C19.C20.―221.k<922.―423.―424.a>―425.―426.20%27.3228.9429.430.a<131.k≤―3432.a>―133.―2334.535.336.237.1000(1+x)2=144038.739.301(1+x)2=50040.1501(1+x)2=181541.c≤242.解:(x―2)2―4(x―2)=12,(x―2)2―4(x―2)―12=0,(x―2―6)(x―2+2)=0,x(x―8)=0,x=0或x―8=0,∴x1=0,x2=8.43.解:(1)根据题意,当x=800时,y=800×(50―30)=800×20=16000,∴当一次性销售800千克时利润为16000元;(2)设一次性销售量在1000~1750kg之间时,销售价格为50―30―0.01(x―1000)=―0.01x+30,∴y=x(―0.01x+30)=―0.01x2+30x=―0.01(x2―3000)=―0.01(x―1500)2+22500,∵―0.01<0,1000≤x≤1750,∴当x=1500时,y有最大值,最大值为22500,∴一次性销售量在1000~1750kg之间时的最大利润为22500元;(3)由(2)知,当x=1750时,y=―0.01(1750―1500)2+22500=16250<22100,∴当一次性销售量在1000~1750kg之间时,利润为22100元,∴―0.01(x ―1500)2+22500=22100,解得x 1=1700,x 2=1300,∴当一次性销售为1300或1700千克时利润为22100元.44.解:(1)设y 与x 之间的函数关系式为y =kx +b ,∵当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件,∴120k +b =80140k +b =40,解得k =―2b =320,即y 与x 之间的函数关系式为y =―2x +320;(2)设利润为w 元,由题意可得:w =(x ―100)(―2x +320)=―2(x ―130)2+1800,∴当x =130时,w 取得最大值,此时w =1800,答:当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.45.解:(1)2x 2+x ―2=0,∵a =2,b =1,c =―2,∴b 2―4ac =12+4×2×(―2)=17,∴x =―b ±b 2―4ac 2a =―1±174,∴x 1=―1+ 174,x 2=―1― 174;(2)x +3>―2x①2x ―5<1②,解不等式①得x >―1,解不等式②得:x <3,∴不等式组的解集为:―1<x <3.46.―32 ―1247.解:(1)设矩形ABCD 的边AB =xm ,则边BC =70―2x +2=(72―2x)m .根据题意,得x(72―2x)=640,化简,得x 2―36x +320=0解得x 1=16x 2=20,当x =16时,72―2x =72―32=40;当x=20时,72―2x=72―40=32.答:当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为644m2的羊圈;(2)答:不能,理由:由题意,得x(72―2x)=650,化简,得x4―366+322=0,Δ=(―36)2―4×335=―4<0,∴一元二次方程没有实数根.∴羊圈的面积不能达到650m2.48.解:∵使这个方程有两个不相等的实数根,∴b2―4ac>0,即b2>4c,∴①②③均可,选①解方程,则这个方程为:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=―1.49.解:(1)设这两个月中该景区游客人数的月平均增长率为x,由题意可得:1.6(1+x)2=2.5,(不合题意舍去),解得:x=25%,x=―94答:这两个月中该景区游客人数的月平均增长率为25%;(2)设5月份后10天日均接待游客人数是a万人,由题意可得:2.125+10a≤2.5(1+25%),解得:a≤0.1,答:5月份后10天日均接待游客人数最多是0.1万人.。

2020-2021全国中考数学一元二次方程组的综合中考真题分类汇总含详细答案

2020-2021全国中考数学一元二次方程组的综合中考真题分类汇总含详细答案

2020-2021全国中考数学一元二次方程组的综合中考真题分类汇总含详细答案一、一元二次方程1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,∴k 1=1,k 2=-3.∵k ≤12,∴k =-3.2.解方程:(2x+1)2=2x+1.【答案】x=0或x=12-. 【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x (2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣12.3.解方程:x 2-2x =2x +1.【答案】x 1=2,x 2=2【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式x =求解即可. 试题解析:方程化为x 2-4x -1=0.∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x=,∴x 1=2-5 ,x 2=2+5.4.已知关于x 的一元二次方程(x ﹣3)(x ﹣4)﹣m 2=0.(1)求证:对任意实数m ,方程总有2个不相等的实数根;(2)若方程的一个根是2,求m 的值及方程的另一个根.【答案】(1)证明见解析;(2)m 的值为±2,方程的另一个根是5.【解析】【分析】(1)先把方程化为一般式,利用根的判别式△=b 2-4ac 证明判断即可;(2)根据方程的根,利用代入法即可求解m 的值,然后还原方程求出另一个解即可.【详解】(1)证明:∵(x ﹣3)(x ﹣4)﹣m 2=0,∴x 2﹣7x+12﹣m 2=0,∴△=(﹣7)2﹣4(12﹣m 2)=1+4m 2,∵m 2≥0,∴△>0,∴对任意实数m ,方程总有2个不相等的实数根;(2)解:∵方程的一个根是2,∴4﹣14+12﹣m 2=0,解得m=±, ∴原方程为x 2﹣7x+10=0,解得x=2或x=5, 即m 的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b 2-4ac >0时,方程有两个不相等的实数根;当△=b 2-4ac=0时,方程有两个相等的实数根;当△=b 2-4ac <0时,方程没有实数根.5.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根. ()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】【分析】 ()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥V ,解之可得.()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍.【详解】解:()1Q 关于x 的一元二次方程()222130x k x k --+-=有两个实数根, 0∴≥V ,即()()22[21]4134130k k k ---⨯⨯-=-+≥, 解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+,221223x x +=Q , 224723k k ∴-+=,解得4k =,或2k =-,134k ≤Q , 4k ∴=舍去,2k ∴=-.【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0V >,方程有两个不相等的实数根;当0=V ,方程有两个相等的实数根;当0<V ,方程没有实数根.以及根与系数的关系.6.计算题(1)先化简,再求值:21x x -÷(1+211x -),其中x=2017. (2)已知方程x 2﹣2x+m ﹣3=0有两个相等的实数根,求m 的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21x x -÷(1+211x -) =2221111x x x x -+÷-- =()()22111x x x x x+-⋅- =x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.7.由图看出,用水量在m吨之内,水费按每吨1.7元收取,超过m吨,需要加收.8.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2, ∴当k=2时,S 的值为2∴S 的值能为2,此时k 的值为2.考点:一元二次方程根的判别式;根与系数的关系.9.已知两条线段长分别是一元二次方程28120x x -+=的两根,(1)解方程求两条线段的长。

中考数学专题题库∶一元二次方程组的综合题附详细答案

中考数学专题题库∶一元二次方程组的综合题附详细答案

中考数学专题题库∶一元二次方程组的综合题附详细答案一、一元二次方程 1.解下列方程:(1)x 2﹣3x=1. (2)12(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-==;(2)12223,223y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可; (2)利用直接开方法解即可;试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0, ∵b 2﹣4ac=13>0 ∴.∴12313313,22x x +-==.(2)(y+2)2=12, ∴或,∴12223,223y y =-+=--2.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥V ,解之可得. ()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】解:()1Q 关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥V ,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=Q ,224723k k ∴-+=,解得4k =,或2k =-,134k ≤Q , 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0V >,方程有两个不相等的实数根;当0=V ,方程有两个相等的实数根;当0<V ,方程没有实数根.以及根与系数的关系.3.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭.【答案】x=15或x=1 【解析】 【分析】设321xy x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】解:设321xy x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3,∴3121x x =--或3321xx =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.4.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.5.由图看出,用水量在m吨之内,水费按每吨1.7元收取,超过m吨,需要加收.6.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】由韦达定理,有,.于是,对正整数,有原式=7.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n . 【解析】 【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解. 【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n. 【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.8.已知关于x 的一元二次方程()2204mmx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根;(2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)1354x +=,2354x =. 【解析】 【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可. 【详解】(1)由题意得:24b ac ∆=- =()22404mm m +->g g,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得1x =,2x =. 【点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.9.已知关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最小整数时,求此时方程的解. 【答案】(1)k >﹣12;(2)x 1=0,x 2=﹣1. 【解析】 【分析】(1)由题意得△=(k +1)2﹣4×14k 2>0,解不等式即可求得答案; (2)根据k 取最小整数,得到k =0,列方程即可得到结论. 【详解】(1)∵关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根, ∴△=(k +1)2﹣4×14k 2>0, ∴k >﹣12; (2)∵k 取最小整数, ∴k =0,∴原方程可化为x 2+x =0, ∴x 1=0,x 2=﹣1. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.校园空地上有一面墙,长度为20m ,用长为32m 的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.11.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.12.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.13.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】共有35名同学参加了研学游活动.【解析】试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设九(1)班共有x人去旅游,则人均费用为[100﹣2(x﹣30)]元,由题意得:x[100﹣2(x﹣30)]=3150,整理得x2﹣80x+1575=0,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去. 答:该班共有35名同学参加了研学旅游活动. 考点:一元二次方程的应用.14.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游? 【答案】(1)2280;(2)15 【解析】 【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值. 【详解】 (1)2280()2因为1020020002625⨯=<.因此参加人比10人多, 设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=. 解得 15x = 225x =, ∵2005150x -≥, ∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游. 【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.15.利民商店经销甲、乙两种商品.现有如下信息 信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.。

一元二次方程及其应用(解析版)--2023年中考数学真题分项汇编

一元二次方程及其应用(解析版)--2023年中考数学真题分项汇编

一元二次方程及其应用一、单选题1(2023·四川泸州·统考中考真题)关于x的一元二次方程x2+2ax+a2-1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.实数根的个数与实数a的取值有关【答案】C【分析】根据一元二次方程根的判别式求出Δ=2a2-4a2-1=4a2-4a2+4=4>0,即可得出答案.【详解】解:∵Δ=2a2-4a2-1=4a2-4a2+4=4>0,∴关于x的一元二次方程x2+2ax+a2-1=0有两个不相等的实数根,故C正确.故选:C.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0a≠0的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.2(2023·天津·统考中考真题)若x1,x2是方程x2-6x-7=0的两个根,则()A.x1+x2=6B.x1+x2=-6C.x1·x2=76D.x1·x2=7【答案】A【分析】根据一元二次方程的根与系数的关系即可得.【详解】解:方程x2-6x-7=0中的a=1,b=-6,c=-7,∵x1,x2是方程x2-6x-7=0的两个根,∴x1+x2=-ba =6,x1·x2=ca=-7,故选:A.【点睛】本题考查了一元二次方程的根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.3(2023·广西·统考中考真题)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为()A.3.2(1-x)2=3.7B.3.2(1+x)2=3.7C.3.7(1-x)2=3.2D.3.7(1+x)2=3.2【答案】B【分析】设2020年至2022年全国居民人均可支配收入的年平均增长率为x,根据题意列出一元二次方程即可.【详解】设2020年至2022年全国居民人均可支配收入的年平均增长率为x,根据题意得,3.2(1+x)2=3.7.故选:B.【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.4(2023·黑龙江·统考中考真题)如图,在长为100m,宽为50m的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是3600m2,则小路的宽是()A.5mB.70mC.5m或70mD.10m【答案】A【分析】设小路宽为xm,则种植花草部分的面积等于长为100-2xm的矩形的面m,宽为50-2x积,根据花草的种植面积为3600m2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:设小路宽为xm,则种植花草部分的面积等于长为100-2xm,宽为50-2xm的矩形的面积,依题意得:100-2x=360050-2x解得:x1=5,x2=70(不合题意,舍去),∴小路宽为5m.故选:A.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.5(2023·河南·统考中考真题)关于x的一元二次方程x2+mx-8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A【分析】对于ax2+bx+c=0(a≠0),当Δ>0, 方程有两个不相等的实根,当Δ=0, 方程有两个相等的实根,Δ<0, 方程没有实根,根据原理作答即可.【详解】解:∵x2+mx-8=0,∴Δ=m2-4×-8=m2+32>0,所以原方程有两个不相等的实数根,故选:A.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.6(2023·四川眉山·统考中考真题)关于x的一元二次方程x2-2x+m-2=0有两个不相等的实数根,则m的取值范围是()B.m>3C.m≤3D.m<3A.m<32【答案】D【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x的一元二次方程x2-2x+m-2=0有两个不相等的实数根,∴Δ=-22-4m-2>0,∴m<3,故选:D.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程ax2+bx+c=0a≠0,若Δ= b2-4ac>0,则方程有两个不相等的实数根,若Δ=b2-4ac=0,则方程有两个相等的实数根,若Δ= b2-4ac<0,则方程没有实数根.7(2023·新疆·统考中考真题)用配方法解一元二次方程x2-6x+8=0,配方后得到的方程是() A.x+62=28 B.x-62=28 C.x+32=1 D.x-32=1【答案】D【分析】方程两边同时加上一次项系数一半的平方即-622计算即可.【详解】∵x2-6x+8=0,∴x2-6x+8+-622=-62 2,∴x2-6x+-32=9-8,∴x-32=1,故选:D.【点睛】本题考查了配方法,熟练掌握配方法的基本步骤是解题的关键.8(2023·四川乐山·统考中考真题)若关于x的一元二次方程x2-8x+m=0两根为x1、x2,且x1=3x2,则m的值为()A.4B.8C.12D.16【答案】C【分析】根据一元二次方程根与系数的关系得出x1+x2=8,然后即可确定两个根,再由根与系数的关系求解即可.【详解】解:∵关于x的一元二次方程x2-8x+m=0两根为x1、x2,∴x1+x2=8,∵x1=3x2,∴x2=2,x1=6,∴m=x1x2=12,故选:C.【点睛】题目主要考查一元二次方程根与系数的关系,熟练掌握此关系是解题关键.9(2023·山东滨州·统考中考真题)一元二次方程x2+3x-2=0根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能判定【答案】A【分析】根据题意,求得Δ=b2-4ac=9+8=17>0,根据一元二次方程根的判别式的意义,即可求解.【详解】解:∵一元二次方程x2+3x-2=0中,a-1,b=3,c=-2,∴Δ=b2-4ac=9+8=17>0,∴一元二次方程x2+3x-2=0有两个不相等的实数根,故选:A.【点睛】本题考查了一元二次方程的根的判别式的意义,熟练掌握一元二次方程根的判别式的意义是解题的关键.10(2023·全国·统考中考真题)一元二次方程x2-5x+2=0根的判别式的值是() A.33 B.23 C.17 D.17【答案】C【分析】直接利用一元二次方程根的判别式△=b2-4ac求出答案.【详解】解:∵a=1,b=-5,c=2,∴△=b2-4ac=-52-4×1×2=17.故选:C.【点睛】此题主要考查了一元二次方程的根的判别式,正确记忆公式是解题关键.11(2023·四川·统考中考真题)关于x的一元二次方程2x2-3x+32=0根的情况,下列说法中正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【答案】C【分析】直接利用一元二次方程根的判别式即可得.【详解】解:2x2-3x+32=0,其中a=2,b=-3,c=3 2,∴Δ=-32-4×2×32=-3<0,∴方程没有实数根.故选:C.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程ax2+bx+c=0a≠0,若Δ= b2-4ac>0,则方程有两个不相等的实数根,若Δ=b2-4ac=0,则方程有两个相等的实数根,若Δ= b2-4ac<0,则方程没有实数根.12(2023·山东聊城·统考中考真题)若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是()A.m≥-1B.m≤1C.m≥-1且m≠0D.m≤1且m≠0【答案】D【分析】由于关于x的一元二次方程mx2+2x+1=0有实数根,根据一元二次方程根与系数的关系可知Δ≥0,且m≠0,据此列不等式求解即可.【详解】解:由题意得,4-4m≥0,且m≠0,解得,m≤1,且m≠0.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0a≠0的根的判别式Δ=b2-4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当Δ>0时,一元二次方程有两个不相等的实数根;当Δ=0时,一元二次方程有两个相等的实数根;当Δ<0时,一元二次方程没有实数根.13(2023·山东·统考中考真题)一元二次方程x2+3x-1=0的两根为x1,x2,则1x1+1x2的值为()A.32B.-3 C.3 D.-32【答案】C【分析】先求得x1+x2=-3,x1⋅x2=-1,再将1x1+1x2变形,代入x1+x2与x1⋅x2的值求解即可.【详解】解:∵一元二次方程x2+3x-1=0的两根为x1、x2,∴x1+x2=-3,x1⋅x2=-1∴1 x1+1 x2=x1+x2 x1x2=-3-1=3.故选:C.【点睛】本题主要考查了一元二次方程根与系数的关系,牢记x1+x2=-ba,x1⋅x2=ca是解决本题的关键.14(2023·内蒙古赤峰·统考中考真题)用配方法解方程x2-4x-1=0时,配方后正确的是()A.(x+2)2=3B.(x+2)2=17C.(x-2)2=5D.(x-2)2=17【答案】C【分析】根据配方法,先将常数项移到右边,然后两边同时加上4,即可求解.【详解】解:x2-4x-1=0移项得,x2-4x=1两边同时加上4,即x2-4x+4=5∴(x-2)2=5,故选:C.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法是解题的关键.二、填空题15(2023·湖南常德·统考中考真题)若关于x的一元二次方程x2-2x+k=0有两个不相等的实数根,则k的取值范围是.【答案】k<1【分析】若一元二次方程有两个不相等的实数根,则根的判别式Δ=b2-4ac>0,建立关于k的不等式,解不等式即可得出答案.【详解】解:∵关于x的方程x2-2x+k=0有两个不相等的实数根,∴Δ=b2-4ac=-22-4k>0,解得k<1.故答案为:k<1.【点睛】此题考查了根的判别式.一元二次方程ax 2+bx +c =0a ≠0 的根与Δ=b 2-4ac 有如下关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.16(2023·湖北宜昌·统考中考真题)已知x 1、x 2是方程2x 2-3x +1=0的两根,则代数式x 1+x 21+x 1x 2的值为.【答案】1【分析】根据x 1、x 2是一元二次方程ax 2+bx +c =0的两个根,则有x 1+x 2=-bax 1·x 2=c a,求解即可.【详解】解:由题意得x 1+x 2=32x 1·x 2=12,原式=321+12=1.故答案:1.【点睛】本题考查了韦达定理,掌握定理是解题的关键.17(2022秋·河南新乡·九年级统考期中)关于x 的一元二次方程x 2-2x -m =0有两个不相等的实数根,则m 的取值范围是.【答案】m >-1【分析】根据有两个不相等的实数根得到Δ=-2 2-4×1×-m >0,解不等式即可.【详解】解:根据题意,得Δ=-2 2-4×1×-m >0,解得m >-1;故答案为m >-1.【点睛】本题考查一元二次方程的判别式,解决问题的关键是掌握判别式和方程根之间的关系:当Δ>0时,原方程有两个不相等的实数根,当Δ=0时,原方程有两个相等的实数根,当Δ<0时,原方程无实数根.18(2023·四川宜宾·统考中考真题)若关于x 的方程x 2-2m +1 x +m +4=0两根的倒数和为1,则m 的值为.【答案】2【分析】根据根与系数的关系即可求出答案.【详解】解:设方程的两个根分别为a ,b ,由题意得:a +b =2m +1 ,ab =m +4,∴1a +1b =a +bab =2m +1 m +4,∴2m +1 m +4=1,解得:m =2,经检验:m =2是分式方程的解,检验:Δ=-2m +1 2-4m +4 =4×2+1 2-4×2+4 =12>0,∴m =2符合题意,∴m=2.故答案为:2.【点睛】本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.19(2023·黑龙江绥化·统考中考真题)已知一元二次方程x2+x=5x+6的两根为x1与x2,则1x1 +1x2的值为.【答案】-2 3【分析】根据一元二次方程根与系数的关系得出x1+x2=4,x1x2=-6,将分式通分,代入即可求解.【详解】解:∵一元二次方程x2+x=5x+6,即x2-4x-6=0,的两根为x1与x2,∴x1+x2=4,x1x2=-6,∴1 x1+1x2=x1+x2x1x2=4-6=-23,故答案为:-2 3.【点睛】本题考查了分式的化简求值,一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.20(2023·重庆·统考中考真题)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为.【答案】15011+x2=1815【分析】设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意列出一元二次方程,即可求解.【详解】解:设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意得,15011+x2=1815,故答案为:15011+x2=1815.【点睛】本题考查了一元二次方程的应用,增长率问题,根据题意列出方程是解题的关键.21(2023·四川达州·统考中考真题)已知x1,x2是方程2x2+kx-2=0的两个实数根,且x1-2x2-2=10,则k的值为.【答案】7【分析】根据根与系数的关系求出x1+x2与x1x2的值,然后整体代入求值即可.【详解】∵x1,x2是方程2x2+kx-2=0的两个实数根,∴x1+x2=-ba =-k2,x1x2=ca=-22=-1,∵x1-2x2-2=10,∴x1x2-2x1-2x2+4=10,x1x2-2(x1+x2)-6=0,-1-2×-k2-6=0,∴解得k=7.故答案为:7.【点睛】本题考查一元二次方程根与系数的关系,代数式求值.熟记一元二次方程根与系数的关系:x 1+x 2=-b a 和x 1⋅x 2=ca是解题关键.22(2023·四川遂宁·统考中考真题)若a 、b 是一元二次方程x 2-3x +1=0的两个实数根,则代数式a +b -ab 的值为.【答案】2【分析】根据根与系数的关系得到a +b =3,ab =1,由此即可得到答案.【详解】解:∵a 、b 是一元二次方程x 2-3x +1=0的两个实数根,∴a +b =3,ab =1,∴a +b -ab =3-1=3-1=2,故答案为:2.【点睛】本题主要考查了一元二次方程根与系数的关系,对于一元二次方程ax 2+bx +c =0a ≠0 ,若x 1,x 2是该方程的两个实数根,则x 1+x 2=-b a ,x 1x 2=ca.23(2023·四川眉山·统考中考真题)已知方程x 2-3x -4=0的根为x 1,x 2,则x 1+2 ⋅x 2+2 的值为.【答案】6【分析】解方程,将解得的x 1,x 2代入x 1+2 ⋅x 2+2 即可解答.【详解】解:x 2-3x -4=0,对左边式子因式分解,可得x -4 x +1 =0解得x 1=4,x 2=-1,将x 1=4,x 2=-1代入x 1+2 ⋅x 2+2 ,可得原式=4+2 ×-1+2 =6,故答案为:6.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握计算方法是解题的关键.24(2023·湖南怀化·统考中考真题)已知关于x 的一元二次方程x 2+mx -2=0的一个根为-1,则m 的值为,另一个根为.【答案】-1;2【分析】将x =-1代入原方程,解得m ,根据一元二次方程根与系数的关系,得出x 1×x 2=-2,即可求解.【详解】解:∵关于x 的一元二次方程x 2+mx -2=0的一个根为-1,∴1-m -2=0解得:m =-1,设原方程的另一个根为x 2,则x 1·x 2=-2,∵x 1=-1∴x 2=2故答案为:-1,2.【点睛】本题考查了一元二次方程根的定义,一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.25(2023·甘肃武威·统考中考真题)关于x的一元二次方程x2+2x+4c=0有两个不相等的实数根,则c=(写出一个满足条件的值).【答案】-2(答案不唯一,合理即可)【分析】先根据关于x的一元二次方程x2+2x+4c=0有两个不相等的实数根得到Δ=4-16c>0,解得c<14,根据c的取值范围,选取合适的值即可.【详解】解:∵关于x的一元二次方程x2+2x+4c=0有两个不相等的实数根,∴Δ=22-4×1×4c=4-16c>0,解得c<1 4,当c=-2时,满足题意,故答案为:-2(答案不唯一,合理即可).【点睛】此题考查了一元二次方程根的判别式,熟练掌握当Δ=b2-4ac>0时,一元二次方程ax2+bx +c=0a≠0有两个不相等的实数根是解题的关键.26(2023·上海·统考中考真题)已知关于x的一元二次方程ax2+6x+1=0没有实数根,那么a的取值范围是.【答案】a>9【分析】根据一元二次方程根的判别式可进行求解.【详解】解:∵关于x的一元二次方程ax2+6x+1=0没有实数根,∴Δ=b2-4ac=36-4a<0,解得:a>9;故答案为:a>9.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.27(2023·湖南·统考中考真题)已知关于x的方程x2+mx-20=0的一个根是-4,则它的另一个根是.【答案】5【分析】根据一元二次方程根与系数的关系可得x1⋅x2=ca=-20,根据该方程一个根为-4,即可求出另一个根.【详解】解:根据题意可得:a=1,b=m,c=-20,∴x1⋅x2=ca=-20,∵该方程一个根为-4,令x1=-4,∴-4x2=-20,解得:x2=5.故答案为:5.【点睛】本题主要考查了一元二次方程根与系数的关系,解题的关键是掌握一元二次方程ax2+bx+c=0a≠0有两根为x1,x2,则x1⋅x2=ca,x1+x2=-ba.28(2023·山东枣庄·统考中考真题)若x=3是关x的方程ax2-bx=6的解,则2023-6a+2b的值为.【答案】2019【分析】将x=3代入方程,得到3a-b=2,利用整体思想代入求值即可.【详解】解:∵x =3是关x 的方程ax 2-bx =6的解,∴a ⋅32-3b =6,即:3a -b =2,∴2023-6a +2b =2023-23a -b =2023-2×2=2023-4=2019;故答案为:2019.【点睛】本题考查方程的解,代数式求值.熟练掌握方程的解是使等式成立的未知数的值,是解题的关键.29(2022春·江苏泰州·九年级校考阶段练习)已知一元二次方程x 2-3x +1=0有两个实数根x 1,x 2,则x 1+x 2-x 1x 2的值等于.【答案】2【分析】先根据根与系数的关系得x 1+x 2=3,x 1x 2=1,然后利用整体代入的方法计算.【详解】解:根据根与系数的关系得:x 1+x 2=3,x 1x 2=1,∴x 1+x 2-x 1x 2=3-1=2.故答案为:2.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=-b a ,x 1x 2=ca.熟练掌握根与系数的关系是解决本题的关键.30(2023·四川内江·统考中考真题)已知a 、b 是方程x 2+3x -4=0的两根,则a 2+4a +b -3=.【答案】-2【分析】利用一元二次方程的解的定义和根与系数的关系,可得a +b =-3,a 2+3a -4=0,从而得到a 2+3a =4,然后代入,即可求解.【详解】解:∵a ,b 是方程x 2+3x -4=0的两根,∴a +b =-3,a 2+3a -4=0,∴a 2+3a =4,∴a 2+4a +b -3=a 2+3a +a +b -3=4+-3 -3=-2.故答案为:-2.【点睛】本题主要考查了一元二次方程的解的定义和根与系数的关系,熟练掌握一元二次方程的解的定义和根与系数的关系是解题的关键.31(2023·湖北黄冈·统考中考真题)已知一元二次方程x 2-3x +k =0的两个实数根为x 1,x 2,若x 1x 2+2x 1+2x 2=1,则实数k =.【答案】-5【分析】根据一元二次方程的根与系数的关系,得出x 1+x 2=3,x 1x 2=k ,代入已知等式,即可求解.【详解】解:∵一元二次方程x2-3x+k=0的两个实数根为x1,x2,∴x1+x2=3,x1x2=k∵x1x2+2x1+2x2=1,∴k+6=1,解得:k=-5,故答案为:-5.【点睛】本题考查了一元二次方程的根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.32(2023·湖南·统考中考真题)某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程想想,设这两年绿化面积的年平均增长率为x,则依题意列方程为.【答案】10001+x2=1440【分析】设这两年绿化面积的年平均增长率为x,依题意列出一元二次方程即可求解.【详解】解:设这两年绿化面积的年平均增长率为x,则依题意列方程为10001+x2=1440,故答案为:10001+x2=1440.【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.33(2022秋·北京东城·九年级景山学校校考阶段练习)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是.【答案】k<1.【分析】由方程有两个不等实数根可得出关于k的一元一次不等式,解不等式即可得出结论.【详解】∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,∴△=22-4×1×k>0,解得:k<1,故答案为:k<1.【点睛】本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k的一元一次不等式.熟知“在一元二次方程ax2+bx+c=0a≠0中,若方程有两个不相等的实数根,则△=b2-4ac >0”是解答本题的关键.34(2023·湖南岳阳·统考中考真题)已知关于x的一元二次方程x2+2mx+m2-m+2=0有两个不相等的实数根,且x1+x2+x1⋅x2=2,则实数m=.【答案】3【分析】利用一元二次方程x2+2mx+m2-m+2=0有两个不相等的实数根求出m的取值范围,由根与系数关系得到x1+x2=-2m,x1x2=m2-m+2,代入x1+x2+x1⋅x2=2,解得m的值,根据求得的m的取值范围,确定m的值即可.【详解】解:∵关于x的一元二次方程x2+2mx+m2-m+2=0有两个不相等的实数根,∴Δ=2m=4m-8>0,2-4m2-m+2解得m>2,∵x1+x2=-2m,x1x2=m2-m+2,x1+x2+x1⋅x2=2,∴-2m+m2-m+2=2,解得m1=3,m2=0(不合题意,舍去),∴m =3故答案为:3.【点睛】此题考查一元二次方程根的判别式和一元二次方程根与系数关系,熟练掌握根的判别式和根与系数关系的内容是解题的关键.三、解答题35(2023秋·辽宁沈阳·九年级统考期末)解方程:x 2-3x +2=0.【答案】x 1=1,x 2=2【分析】首先将方程进行因式分解,然后根据因式分解的结果求出方程的解.【详解】解:x 2-3x +2=0(x -1)(x -2)=0∴x -1=0或x -2=0∴x 1=1,x 2=2.【点睛】本题考查了解一元二次方程,解题的关键是掌握因式分解法求解方程.36(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求2020-2022年买书资金的平均增长率.【答案】20%【分析】设2020-2022年买书资金的平均增长率为x ,根据2022年买书资金=2020年买书资金×1+x 2建立方程,解方程即可得.【详解】解:设2020-2022年买书资金的平均增长率为x ,由题意得:50001+x 2=7200,解得x =0.2=20%或x =-2.2<0(不符合题意,舍去),答:2020-2022年买书资金的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.37(2023·湖北·统考中考真题)已知关于x 的一元二次方程x 2-2m +1 x +m 2+m =0.(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b ,若2a +b a +2b =20,求m 的值.【答案】(1)见解析;(2)m 的值为1或-2【分析】(1)根据一元二次方程根的判别式可进行求解;(2)根据一元二次方程根与系数的关系可进行求解.【详解】(1)证明:∵Δ=-2m +1 2-4×m 2+m =1>0,∴无论m 取何值,方程都有两个不相等的实数根.(2)解:∵x 2-2m +1 x +m 2+m =0的两个实数根为a ,b ,∴a +b =2m +1,ab =m 2+m .∵2a +b a +2b =20,∴2a 2+4ab +2b 2+ab =20,2(a +b )2+ab =20.∴2(2m +1)2+m 2+m =20.即m 2+m -2=0.解得m =1或m =-2.∴m 的值为1或-2.【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.38(2023·四川南充·统考中考真题)已知关于x 的一元二次方程x 2-(2m -1)x -3m 2+m =0(1)求证:无论m 为何值,方程总有实数根;(2)若x 1,x 2是方程的两个实数根,且x 2x 1+x 1x 2=-52,求m 的值.【答案】(1)见解析;(2)25或1【分析】(1)根据一元二次方程根的情况与判别式的关系,只要判定Δ≥0即可得到答案;(2)根据一元二次方程根与系数的关系得到x 1+x 2=2m -1,x 1x 2=-3m 2+m ,整体代入得到m 2+2m -3=0求解即可得到答案.【详解】(1)证明:∵关于x 的一元二次方程x 2-(2m -1)x -3m 2+m =0,∴a =1,b =-2m -1 ,c =-3m 2+m ,∴Δ=b 2-4ac =-2m -1 2-4×1×-3m 2+m =4m -1 2,∵4m -1 2≥0,即Δ≥0,∴不论m 为何值,方程总有实数根;(2)解:∵x 1,x 2是关于x 的一元二次方程x 2-(2m -1)x -3m 2+m =0的两个实数根,∴x 1+x 2=2m -1,x 1x 2=-3m 2+m ,∵x 2x 1+x 1x 2=x 12+x 22x 1x 2=x 1+x 2 2-2x 1x 2x 1x 2=-52,∴x 1+x 2 2x 1x 2=-12,∴(2m -1)2-3m 2+m =-12,整理,得5m 2-7m +2=0,解得m 1=25,m 2=1,∴m 的值为25或1.【点睛】本题考查一元二次方程根的情况与判别式关系,一元二次方程根与系数的关系,熟记一元二次方程判别式与方程根的情况联系、一元二次方程根与系数的关系是解决问题的关键.39(2023·浙江杭州·统考中考真题)设一元二次方程x 2+bx +c =0.在下面的四组条件中选择其中一组b ,c 的值,使这个方程有两个不相等的实数根,并解这个方程.①b =2,c =1;②b =3,c =1;③b =3,c =-1;④b =2,c =2.注:如果选择多组条件分别作答,按第一个解答计分.【答案】选②,x 1=-3+52,x 2=-3-52;选③,x 1=-3+132,x 2=-3-132【分析】先根据判别式判断一元二次方程根的情况,再利用公式法解一元二次方程即可.【详解】解:x 2+bx +c =0中a =1,①b =2,c =1时,Δ=b 2-4ac =22-4×1×1=0,方程有两个相等的实数根;②b =3,c =1时,Δ=b 2-4ac =32-4×1×1=5>0,方程有两个不相等的实数根;③b =3,c =-1时,Δ=b 2-4ac =32-4×1×-1 =13>0,方程有两个不相等的实数根;④b =2,c =2时,Δ=b 2-4ac =22-4×1×2=-4<0,方程没有实数根;因此可选择②或③.选择②b =3,c =1时,x 2+3x +1=0,Δ=b 2-4ac =32-4×1×1=5>0,x =-b ±b 2-4ac 2a =-3±52,x 1=-3+52,x 2=-3-52;选择③b =3,c =-1时,x 2+3x -1=0,Δ=b 2-4ac =32-4×1×-1 =13>0,x =-b ±b 2-4ac 2a =-3±132,x 1=-3+132,x 2=-3-132.【点睛】本题考查根据判别式判断一元二次方程根的情况,解一元二次方程,解题的关键是掌握:对于一元二次方程ax 2+bx +c =0,当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个不相等的实数根;当Δ<0时,方程没有实数根.40(2023·湖南郴州·统考中考真题)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.(1)求这两个月中该景区游客人数的月平均增长率;(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?【答案】(1)这两个月中该景区游客人数的月平均增长率为25%;(2)5月份后10天日均接待游客人数最多是1万人【分析】(1)设这两个月中该景区游客人数的月平均增长率为x ,根据题意,列出一元二次方程,进行求解即可;(2)设5月份后10天日均接待游客人数是y 万人,根据题意,列出不等式进行计算即可.【详解】(1)解:设这两个月中该景区游客人数的月平均增长率为x ,由题意,得:1.61+x 2=2.5,解得:x =0.25=25%(负值已舍掉);答:这两个月中该景区游客人数的月平均增长率为25%;(2)设5月份后10天日均接待游客人数是y 万人,由题意,得:2.125+y ≤2.51+25% ,解得:y ≤1;∴5月份后10天日均接待游客人数最多是1万人.【点睛】本题考查一元二次方程和一元一次不等式的实际应用,找准等量关系,正确的列出方程和不等式,是解题的关键.41(2023·湖北荆州·统考中考真题)已知关于x 的一元二次方程kx 2-2k +4 x +k -6=0有两个不相等的实数根.(1)求k 的取值范围;(2)当k =1时,用配方法解方程.【答案】(1)k >-25且k ≠0;(2)x 1=3+14,x 2=3-14【分析】(1)根据题意,可得2k +4 2-4k k -6 >0,注意一元二次方程的系数问题,即可解答,(2)将k =1代入kx 2-2k +4 x +k -6=0,利用配方法解方程即可.【详解】(1)解:依题意得:k ≠0Δ=2k +4 2-4k k -6 =40k +16>0 ,解得k >-25且k ≠0;(2)解:当k =1时,原方程变为:x 2-6x -5=0,则有:x 2-6x +9=5+9,∴x -3 2=14,∴x -3=±14,∴方程的根为x 1=3+14,x 2=3-14.【点睛】本题考查了根据根的情况判断参数,用配方法解一元二次方程,熟练利用配方法解一元二次方程是解题的关键.。

全国中考数学一元二次方程的综合中考真题分类汇总附答案

全国中考数学一元二次方程的综合中考真题分类汇总附答案

一、一元二次方程真题与模拟题分类汇编(难题易错题)1.解方程:(x+1)(x﹣3)=﹣1.【答案】x1x2=1【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,解得:x1,x2=12.发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.涵涵的作业解:x2﹣7x+10=0a=1 b=﹣7 c=10∵b2﹣4ac=9>0∴732±∴x1=5,x2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.当腰为2,底为5时,等腰三角形的三条边为2,2,5.探究应用:请解答以下问题:已知等腰三角形ABC的两边是关于x的方程x2﹣mx+m2﹣14=0的两个实数根.(1)当m=2时,求△ABC的周长;(2)当△ABC为等边三角形时,求m的值.【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC的周长为72;(2)当△ABC为等边三角形时,m的值为1.【解析】【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5.(1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1,可求得m.【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x2﹣2x+34=0,∴x1=12,x2=32.当12为腰时,12+12<32,∴12、12、32不能构成三角形;当32为腰时,等腰三角形的三边为32、32、12,此时周长为32+32+12=72.答:当m=2时,△ABC的周长为72.(2)若△ABC为等边三角形,则方程有两个相等的实数根,∴△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1=0,∴m1=m2=1.答:当△ABC为等边三角形时,m的值为1.【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.3.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21xx-÷(1+211x-)=22211 11 x xx x-+÷--=()() 2211 1x xxx x+-⋅-=x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x 2﹣2x+m ﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m ﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.4.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.5.已知关于x 的一元二次方程()2204m mx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根; (2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)1x =,234x =. 【解析】【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可.【详解】(1)由题意得:24b ac ∆=- =()22404m m m +->,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根. (2)把4m =带入得24610x x -+=,解得135x +=,235x -=. 【点睛】 本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.6.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析【解析】【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况.【详解】解:∵90B ∠=,10AC =,6BC =,∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm ,则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=,∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm .【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.7.已知1x 、2x 是关于x 的方程222(1)50x m x m -+++=的两个不相等的实数根.(1)求实数m 的取值范围;(2)已知等腰ABC ∆的一边长为7,若1x 、2x 恰好是ABC ∆另外两边长,求这个三角形的周长.【答案】(1)m>2; (2)17【解析】试题分析:(1)由根的判别式即可得;(2)由题意得出方程的另一根为7,将x =7代入求出x 的值,再根据三角形三边之间的关系判断即可得.试题解析:解:(1)由题意得△=4(m +1)2﹣4(m 2+5)=8m -16>0,解得:m >2; (2)由题意,∵x 1≠x 2时,∴只能取x 1=7或x 2=7,即7是方程的一个根,将x =7代入得:49﹣14(m +1)+m 2+5=0,解得:m =4或m =10.当m =4时,方程的另一个根为3,此时三角形三边分别为7、7、3,周长为17; 当m =10时,方程的另一个根为15,此时不能构成三角形;故三角形的周长为17.点睛:本题主要考查判别式、三角形三边之间的关系,熟练掌握韦达定理是解题的关键.8.解方程:(x 2+x )2+(x 2+x )=6.【答案】x 1=﹣2,x 2=1【解析】【分析】设x 2+x =y ,将原方程变形整理为y 2+y ﹣6=0,求得y 的值,然后再解一元二次方程即可.【详解】解:设x 2+x =y ,则原方程变形为y 2+y ﹣6=0,解得y 1=﹣3,y 2=2.①当y =2时,x 2+x =2,即x 2+x ﹣2=0,解得x 1=﹣2,x 2=1;②当y =﹣3时,x 2+x =﹣3,即x 2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x 1=﹣2,x 2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.9.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。

一元二次方程(优选真题60道)中考数学真题(全国通用)(解析版)

一元二次方程(优选真题60道)中考数学真题(全国通用)(解析版)

三年(2021-2023)中考数学真题分项汇编【全国通用】一元二次方程(优选真题60道)一.选择题(共20小题)1.(2023•新疆)用配方法解一元二次方程x2﹣6x+8=0配方后得到的方程是()A.(x+6)2=28B.(x﹣6)2=28C.(x+3)2=1D.(x﹣3)2=1【分析】利用解一元二次方程﹣配方法,进行计算即可解答.【解答】解:x2﹣6x+8=0,x2﹣6x=﹣8,x2﹣6x+9=﹣8+9,(x﹣3)2=1,故选:D.【点评】本题考查了解一元二次方程﹣配方法,熟练掌握解一元二次方程﹣配方法是解题的关键.2.关于x的一元二次方程x2﹣2x+m﹣2=0有两个不相等的实数根,则m的取值范围是()A.m<32B.m>3C.m≤3D.m<3【分析】根据方程的系数结合根的判别式Δ>0,可得出关于m的一元一次不等式,解之即可得出m的取值范围,对照四个选项即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣2x+m﹣2=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4×1×(m﹣2)=12﹣4m>0,解得:m<3.故选:D.【点评】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.3.(2023•滨州)一元二次方程x2+3x﹣2=0根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能判定【分析】利用一元二次方程根的判别式求解即可.【解答】解:由题意得,Δ=32﹣4×1×(﹣2)=17>0,∴方程有两个不相等的实数根.故选:A.【点评】本题主要考查了一元二次方程根的判别式,对于一元二次方程ax2+bx+c=0(a≠0),若Δ=b2﹣4ac>0,则方程有两个不相等的实数根,若Δ=b2﹣4ac=0,则方程有两个相等的实数根,若Δ=b2﹣4ac<0,则方程没有实数根.4.(2023•天津)若x1,x2是方程x2﹣6x﹣7=0的两个根,则()A.x1+x2=6B.x1+x2=﹣6C.x1x2=76D.x1x2=7【分析】根据一元二次方程根与系数的关系进行判断即可.【解答】解:∵x1,x2是方程x2﹣6x﹣7=0的两个根,∴x1+x2=6,x1x2=﹣7,故选:A.【点评】本题考查了一元二次方程根与系数的关系,应掌握:设x1,x2是一元二次方程y=ax2+bx+c(a≠0)的两个实数根,则x1+x2=−ba,x1x2=ca.5.(2023•永州)某市2020年人均可支收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x,则下面所列方程正确的是()A.2.7(1+x)2=2.36B.2.36(1+x)2=2.7C.2.7(1﹣x)2=2.36D.2.36(1﹣x)2=2.7【分析】利用2022年间每年人均可支配收入=2020年间每年人均可支配收入×(1+每年人均可支配收入的增长率)2,即可得出关于x的一元二次方程,此题得解.【解答】解:根据题意得2.36(1+x)2=2.7.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.(2023•乐山)若关于x的一元二次方程x2﹣8x+m=0两根为x1、x2,且x1=3x2,则m的值为()A.4B.8C.12D.16【分析】首先根据根与系数的关系得出x1+x2=8,再根据x1=3x2,求得x1,x2,进一步得出x1x2=m求得答案即可.【解答】解:∵一元二次方程x2﹣8x+m=0的两根为x1,x2,∴x1+x2=8,∵x1=3x2,解得x1=6,x2=2,∴m=x1x2=6×2=12.故选:C.【点评】本题考查了根与系数的关系.二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.7.(2023•内江)对于实数a,b定义运算“⊗”为a⊗b=b2﹣ab,例如:3⊗2=22﹣3×2=﹣2,则关于x 的方程(k﹣3)⊗x=k﹣1的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【分析】根据运算“⊗”的定义将方程(k﹣3)⊗x=k﹣1转化为一般式,由根的判别式Δ=(k﹣1)2+4>0,即可得出该方程有两个不相等的实数根.【解答】解:∵(k﹣3)⊗x=k﹣1,∴x2﹣(k﹣3)x=k﹣1,∴x2﹣(k﹣3)x﹣k+1=0,∴Δ=[﹣(k﹣3)]2﹣4×1×(﹣k+1)=(k﹣1)2+4>0,∴关于x的方程(k﹣3)⊗x=k﹣1有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式和实数的运算,牢记“当Δ>0时,方程有两个不相等的实数根”是解决问题的关键.8.已知a、b、c为常数,点P(a,c)在第四象限,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【分析】先利用第四象限点的坐标特征得到ac<0,则判断Δ>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵点P(a,c)在第四象限,∴a>0,c<0,∴ac<0,∴方程ax2+bx+c=0的判别式Δ=b2﹣4ac>0,∴方程ax 2+bx +c =0有两个不相等的实数根.故选:A .【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.9.关于x 的一元二次方程x 2+2ax +a 2﹣1=0的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .实数根的个数与实数a 的取值有关【分析】先计算一元二次方程根的判别式,根据根的判别式得结论.【解答】解:∵Δ=(2a )2﹣4×1×(a 2﹣1)=4a 2﹣4a 2+4=4>0.∴关于x 的一元二次方程x 2+2ax +a 2﹣1=0有两个不相等的实数根.故选:C .【点评】本题主要考查了一元二次方程根的判别式,掌握“根的判别式与方程的解的关系”是解决本题的关键.10.(2023•泸州)若一个菱形的两条对角线长分别是关于x 的一元二次方程x 2﹣10x +m =0的两个实数根,且其面积为11,则该菱形的边长为( )A .√3B .2√3C .√14D .2√14【分析】先设出菱形两条对角线的长,利用根与系数的关系及对角线与菱形面积的关系得等式,再根据菱形的边长与对角线的关系求出菱形的边长.【解答】解:设菱形的两条对角线长分别为a 、b ,由题意,得{a +b =10ab =22. ∴菱形的边长=√(a 2)2+(b 2)2=12√a 2+b 2=12√(a +b)2−2ab=12√100−44=12√56=√14.故选:C.【点评】本题主要考查了根与系数的关系及菱形的性质,掌握菱形对角线与菱形的面积、边长间的关系,根与系数的关系及等式的变形是解决本题的关键.11.(2023•台湾)利用公式解可得一元二次方程式3x2﹣11x﹣1=0 的两解为a、b,且a>b,求a值为何()A.−11+√1096B.−11+√1336C.11+√1096D.11+√1336【分析】利用公式法即可求解.【解答】解:3x2﹣11x﹣1=0,这里a=3,b=﹣11,c=﹣1,∴Δ=(﹣11)2﹣4×3×(﹣1)=133>0,∴x=11±√1332×3=11±√1336,∵一元二次方程式3x2﹣11x﹣1=0 的两解为a、b,且a>b,∴a的值为11+√1336.故选:D.【点评】本题考查了解一元二次方程﹣公式法,能熟练运用公式法解答方程是解此题的关键.12.(2022•淮安)若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的值可以是()A.﹣2B.﹣1C.0D.1【分析】根据根的判别式列出不等式求出k的范围即可求出答案.【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴Δ=(﹣2)2﹣4×1×(﹣k)=4+4k<0,∴k<﹣1,故选:A.【点评】本题考查了根的判别式,牢记“当Δ<0时,方程无实数根”是解题的关键.13.(2022•攀枝花)若关于x的方程x2﹣x﹣m=0有实数根,则实数m的取值范围是()A.m<14B.m≤14C.m≥−14D.m>−14【分析】根据判别式的意义得到Δ=1+4m≥0,解不等式即可.【解答】解:∵关于x的方程x2﹣x﹣m=0有实数根,∴Δ=(﹣1)2﹣4(﹣m)=1+4m≥0,解得m≥−1 4,故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.14.(2022•内蒙古)对于实数a,b定义运算“⊗”为a⊗b=b2﹣ab,例如3⊗2=22﹣3×2=﹣2,则关于x的方程(k﹣3)⊗x=k﹣1的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】根据运算“⊗”的定义将方程(k﹣3)⊗x=k﹣1转化为一般式,由根的判别式Δ=(k﹣1)2+4>0,即可得出该方程有两个不相等的实数根.【解答】解:∵(k﹣3)⊗x=k﹣1,∴x2﹣(k﹣3)x=k﹣1,∴x2﹣(k﹣3)x﹣k+1=0,∴Δ=[﹣(k﹣3)]2﹣4×1×(﹣k+1)=(k﹣1)2+4>0,∴关于x的方程(k﹣3)⊗x=k﹣1有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式和实数的运算,牢记“当Δ>0时,方程有两个不相等的实数根”是解决问题的关键.15.(2022•巴中)对于实数a,b定义新运算:a※b=ab2﹣b,若关于x的方程1※x=k有两个不相等的实数根,则k的取值范围()A.k>−14B.k<−14C.k>−14且k≠0D.k≥−14且k≠0【分析】根据新定义运算法则列方程,然后根据一元二次方程的概念和一元二次方程的根的判别式列不等式求解即可.【解答】解:根据定义新运算,得x2﹣x=k,即x2﹣x﹣k=0,∵关于x的方程1※x=k有两个不相等的实数根,∴Δ=(﹣1)2﹣4×(﹣k)>0,解得:k>−1 4,故选:A.【点评】本题考查一元二次方程的根的判别式,新定义等,熟练掌握根的判别式Δ=b2﹣4ac与根的情况的关系是解题的关键.16.(2022•安顺)定义新运算a*b:对于任意实数a,b满足a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例如3*2=(3+2)(3﹣2)﹣1=5﹣1=4.若x*k=2x(k为实数)是关于x的方程,则它的根的情况是()A.有一个实数根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【分析】已知等式利用题中的新定义化简,计算出根的判别式的值,判断即可.【解答】解:根据题中的新定义化简得:(x+k)(x﹣k)﹣1=2x,整理得:x2﹣2x﹣1﹣k2=0,∵Δ=4﹣4(﹣1﹣k2)=4k2+8>0,∴方程有两个不相等的实数根.故选:B.【点评】此题考查了根的判别式,方程的定义,以及实数的运算,弄清题中的新定义是解本题的关键.17.(2022•鄂尔多斯)下列说法正确的是()①若二次根式√1−x有意义,则x的取值范围是x≥1.②7<√65<8.③若一个多边形的内角和是540°,则它的边数是5.④√16的平方根是±4.⑤一元二次方程x2﹣x﹣4=0有两个不相等的实数根.A.①③⑤B.③⑤C.③④⑤D.①②④【分析】根据二次根式有意义的条件、估算无理数的大小、算术平方根、平方根和多边形的内角和定理,根的判别式判断即可.【解答】解:①若二次根式√1−x有意义,则1﹣x≥0,解得x≤1.故x的取值范围是x≤1,题干的说法是错误的.②8<√65<9,故题干的说法是错误的.③若一个多边形的内角和是540°,则它的边数是5是正确的.④√16=4的平方根是±2,故题干的说法是错误的.⑤∵Δ=(﹣1)2﹣4×1×(﹣4)=17>0,∴一元二次方程x2﹣x﹣4=0有两个不相等的实数根,故题干的说法是正确的.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了二次根式有意义的条件、估算无理数的大小、算术平方根、平方根和多边形.18.(2022•北京)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为()A.﹣4B.−14C.14D.4【分析】根据根的判别式的意义得到12﹣4m=0,然后解一次方程即可.【解答】解:根据题意得Δ=12﹣4m=0,解得m=1 4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.19.(2022•呼和浩特)已知x1,x2是方程x2﹣x﹣2022=0的两个实数根,则代数式x13﹣2022x1+x22的值是()A.4045B.4044C.2022D.1【分析】把x=x1代入方程表示出x12﹣2022=x1,代入原式利用完全平方公式化简,再根据根与系数的关系求出所求即可.【解答】解:把x=x1代入方程得:x12﹣x1﹣2022=0,即x12﹣2022=x1,∵x1,x2是方程x2﹣x﹣2022=0的两个实数根,∴x1+x2=1,x1x2=﹣2022,则原式=x1(x12﹣2022)+x22=x12+x22=(x1+x2)2﹣2x1x2=1+4044=4045.故选:A.【点评】此题考查了根与系数的关系,熟练掌握一元二次方程根与系数的关系是解本题的关键.20.(2021•遵义)在解一元二次方程x2+px+q=0时,小红看错了常数项q,得到方程的两个根是﹣3,1.小明看错了一次项系数p,得到方程的两个根是5,﹣4,则原来的方程是()A.x2+2x﹣3=0B.x2+2x﹣20=0C.x2﹣2x﹣20=0D.x2﹣2x﹣3=0【分析】先设这个方程的两根是α、β,根据两个根是﹣3,1和两个根是5,﹣4,得出α+β=﹣p=﹣2,αβ=q=﹣20,从而得出符合题意的方程.【解答】解:设此方程的两个根是α、β,根据题意得:α+β=﹣p=﹣2,αβ=q=﹣20,则以α、β为根的一元二次方程是x2+2x﹣20=0.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−b a ,x1•x2=ca.二.填空题(共20小题)21.(2023•随州)已知关于x的一元二次方程x2﹣3x+1=0的两个实数根分别为x1和x2,则x1+x2﹣x1x2的值为.【分析】直接利用根于系数的关系x1+x2=−ba=3,x1x2=ca=1,再代入计算即可求解.【解答】解:∵关于x的一元二次方程x2﹣3x+1=0的两个实数根分别为x1和x2,∴x1+x2=−−31=3,x1x2=11=1,∴x1+x2﹣x1x2=3﹣1=2.故答案为:2.【点评】本题主要考查根与系数的关系,熟记根与系数的关系时解题关键.根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1x2=ca.22.(2023•岳阳)已知关于x的方程x2+mx﹣20=0的一个根是﹣4,则它的另一个根是.【分析】设方程的另一个解为t,则利用根与系数的关系得﹣4t=﹣20,然后解一次方程即可.【解答】解:设方程的另一个解为t,根据根与系数的关系得﹣4t=﹣20,解得t=5,即方程的另一个根为5.故答案为:5.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=−ba,x1x2=ca.23.(2023•内江)已知a、b是方程x2+3x﹣4=0的两根,则a2+4a+b﹣3=.【分析】根据一元二次方程的解的定义得到a2+3a﹣4=0,a2=﹣3a+4,再根据根与系数的关系得到a+b =﹣3,然后把要求的式子进行变形,再代入计算即可.【解答】解:∵a是方程x2+3x﹣4=0的根,∴a2+3a﹣4=0,∴a2=﹣3a+4,∵a,b是方程x2+3x﹣4=0的两根,∴a+b=﹣3,∴a2+4a+b﹣3=﹣3a+4+4a+b﹣3=a+b+1=﹣3+1=﹣2.故答案为:﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=−ba ,x1•x2=ca,也考查了一元二次方程的解.24.(2023•岳阳)已知关于x的一元二次方程x2+2mx+m2﹣m+2=0有两个不相等的实数根x1、x2,且x1+x2+x1•x2=2,则实数m=.【分析】根据方程的系数结合根的判别式Δ>0,可得出关于m的一元一次不等式,解之可得出m的取值范围,由根与系数的关系,可得出x1+x2=﹣2m,x1•x2=m2﹣m+2,结合x1+x2+x1•x2=2,可得出关于m的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:∵原方程有两个不相等的实数根,∴Δ=(2m)2﹣4×1×(m2﹣m+2)>0,∴m>2.∵x1,x2是关于x的一元二次方程x2+2mx+m2﹣m+2=0的两个实数根,∴x1+x2=﹣2m,x1•x2=m2﹣m+2,∵x1+x2+x1•x2=2,∴﹣2m+m2﹣m+2=2,解得:m1=0(不符合题意,舍去),m2=3,∴实数m的值为3.故答案为:3.【点评】本题考查了根的判别式以及根与系数的关系,由根与系数的关系结合x1+x2+x1•x2=2,找出关于m的一元二次方程是解题的关键.25.(2023•上海)已知关于x的一元二次方程ax2+6x+1=0没有实数根,那么a的取值范围是.【分析】由方程根的情况,根据判别式可得到关于a的不等式,则可求得a的取值范围.【解答】解:∵关于x的一元二次方程ax2+6x+1=0没有实数根,∴Δ<0,即62﹣4a<0,解得:a>9,故答案为:a>9.【点评】本题主要考查根的判别式,掌握方程根的情况和根的判别式的关系是解题的关键.26.(2023•上海)已知关于x的方程√x−14=2,则x=.【分析】方程两边平方得出x﹣14=4,求出方程的解,再进行检验即可.【解答】解:√x−14=2,方程两边平方得:x﹣14=4,解得:x=18,经检验x=18是原方程的解.故答案为:18.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键,注意:解无理方程一定要进行检验.27.(2023•枣庄)若x=3是关于x的方程ax2﹣bx=6的解,则2023﹣6a+2b的值为.【分析】把x=3代入方程求出3a﹣b的值,代入原式计算即可求出值.【解答】解:把x=3代入方程得:9a﹣3b=6,即3a﹣b=2,则原式=2023﹣2(3a﹣b)=2023﹣4=2019.故答案为:2019.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.28.(2023•金昌)关于x的一元二次方程x2+2x+4c=0有两个不相等的实数根,则c=(写出一个满足条件的值).【分析】根据方程的系数结合根的判别式,即可得出Δ=4﹣16c>0,解之即可得出c的取值范围,任取其内的一个数即可.【解答】解:∵方程x2+2x+4c=0有两个不相等的实数根,∴Δ=22﹣16c>0,解得:c<1 4.故答案为:0(答案不唯一).【点评】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.29.(2023•怀化)已知关于x的一元二次方程x2+mx﹣2=0的一个根为﹣1,则m的值为,另一个根为.【分析】将x=﹣1代入原方程,可得出关于m的一元一次方程,解之即可得出m的值,再结合两根之积等于﹣2,即可求出方程的另一个根.【解答】解:将x=﹣1代入原方程可得1﹣m﹣2=0,解得:m=﹣1,∵方程的两根之积为ca=−2,∴方程的另一个根为﹣2÷(﹣1)=2.故答案为:﹣1,2.【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于−ba,两根之积等于ca”是解题的关键.30.(2023•连云港)若W=5x2﹣4xy+y2﹣2y+8x+3(x、y为实数),则W的最小值为.【分析】将原式进行配方,然后根据偶次幂的非负性即可求得答案.【解答】解:W=5x2﹣4xy+y2﹣2y+8x+3=x2+4x2﹣4xy+y2﹣2y+8x+3=4x2﹣4xy+y2﹣2y+x2+8x+3=(4x2﹣4xy+y2)﹣2y+x2+8x+3=(2x﹣y)2﹣2y+x2+4x+4x+3=(2x﹣y)2+4x﹣2y+x2+4x+3=(2x﹣y)2+2(2x﹣y)+1﹣1+x2+4x+4﹣4+3=[(2x﹣y)2+2(2x﹣y)+1]+(x2+4x+4)﹣2=(2x﹣y+1)2+(x+2)2﹣2,∵x,y均为实数,∴(2x﹣y+1)2≥0,(x+2)2≥0,∴原式W≥﹣2,即原式的W的最小值为:﹣2,解法二:由题意5x2+(8﹣4y)x+(y2﹣2y+3﹣W)=0,∵x为实数,∴(8﹣4y)2﹣20(y2﹣2y+3﹣W)≥0,即5W≥(y+3)2﹣10≥﹣10,∴W≥﹣2,∴W的最小值为:﹣2,故答案为:﹣2.【点评】本题考查配方法的应用及偶次幂的非负性,利用配方法把原式整理为“平方+常数”的形式是解题的关键.31.已知方程x2﹣3x﹣4=0的根为x1,x2,则(x1+2)•(x2+2)的值为.【分析】直接利用根与系数的关系作答.【解答】解:∵方程x2﹣3x﹣4=0的根为x1,x2,∴x1+x2=3,x1•x2=﹣4,∴(x1+2)•(x2+2)=x1•x2+2x1+2x2+4=﹣4+2×3+4=6.故答案为:6.【点评】本题考查了一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=−ba,x1•x2=ca.32.(2023•重庆)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程.【分析】设该市新建智能充电桩个数的月平均增长率为x,根据第一个月新建了301个充电桩,第三个月新建了500个充电桩,即可得出关于x的一元二次方程.【解答】解:设该市新建智能充电桩个数的月平均增长率为x,依题意得:301(1+x)2=500.故答案为:301(1+x)2=500.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.33.(2023•重庆)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为.【分析】根据今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,列一元二次方程即可.【解答】解:根据题意,得1501(1+x)2=1815,故答案为:1501(1+x)2=1815.【点评】本题考查了一元二次方程的应用,理解题意并根据题意建立等量关系是解题的关键.34.(2023•达州)已知x1,x2是方程2x2+kx﹣2=0的两个实数根,且(x1﹣2)(x2﹣2)=10,则k的值.【分析】先求出(x1+x2),x1x2的值,然后把(x1﹣2)(x2﹣2)=10的左边展开,将其代入该关于k的方程,通过解方程来求k的值.【解答】解:∵x1,x2是方程2x2+kx﹣2=0的两个实数根,∴x1+x2=−k2,x1•x2=﹣1,∴(x1﹣2)(x2﹣2)=x1•x2﹣2(x1+x2)+4=﹣1﹣2×(−k2)+4=10,解得k=7.故答案为:7.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个根为x1,x2,则x1+x2=−ba ,x1x2=ca,也考查了代数式的变形能力.35.(2023•扬州)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则实数k的取值范围为.【分析】根据方程有两个不相等的实数根结合根的判别式即可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:∵方程x2+2x+k=0有两个不相等的实数根,∴Δ=b2﹣4ac=22﹣4k=4﹣4k>0,解得:k<1.故答案为:k<1.【点评】本题考查了根的判别式,根据方程有两个不相等的实数根结合根的判别式得出4﹣4k>0是解题的关键.36.(2023•连云港)关于x的一元二次方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是.【分析】根据根的判别式得到Δ=4﹣4a>0,然后解不等式即可.【解答】解:根据题意得Δ=4﹣4a>0,解得a<1.故答案为a<1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.37.(2022•巴中)α、β是关于x的方程x2﹣x+k﹣1=0的两个实数根,且α2﹣2α﹣β=4,则k的值为.【分析】α2﹣2α﹣β=α2﹣α﹣(α+β)=4,然后根据方程的解的定义以及一元二次方程根与系数的关系,得到关于k的一元一次方程,即可解得答案.【解答】解:∵α、β是方程x2﹣x+k﹣1=0的根,∴α2﹣α+k﹣1=0,α+β=1,∴α2﹣2α﹣β=α2﹣α﹣(α+β)=﹣k+1﹣1=﹣k=4,∴k=﹣4,故答案是:﹣4.【点评】本题考查了一元二次方程的解以及根与系数的关系,掌握根与系数的关系是解题的关键.38.(2022•鄂州)若实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,则1a+1b的值为.【分析】由实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,知a、b可看作方程x2﹣4x+3=0的两个不相等的实数根,据此可得a+b=4,ab=3,将其代入到原式=a+bab即可得出答案.【解答】解:∵实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,∴a、b可看作方程x2﹣4x+3=0的两个不相等的实数根,则a+b=4,ab=3,则原式=a+bab=43,故答案为:4 3.【点评】本题主要考查根与系数的关系,解题的关键是根据方程的特点得出a、b可看作方程x2﹣4x+3=0的两个不相等的实数根及韦达定理.39.(2021•南通)若m,n是一元二次方程x2+3x﹣1=0的两个实数根,则m3+m2n3m−1的值为.【分析】先根据一元二次方程的解的定义得到m2+3m﹣1=0,再根据根与系数的关系得到m+n=﹣3,再将其代入所求式子即可求解.【解答】解:m,n是一元二次方程x2+3x﹣1=0的两个实数根,∴m2+3m﹣1=0,∴3m﹣1=﹣m2,∴m+n=﹣3,∴m3+m2n3m−1=m2(m+n)3m−1=−3m2−m2=3,故答案为3.【点评】本题考查了根与系数的关系,熟练掌握一元二次方程的解与方程的关系得到3m﹣1=﹣m2是解题的关键.40.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为.【分析】根据一元二次方程的定义解决问题即可,注意答案不唯一.【解答】解:∵若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,∴满足条件的方程可以为:x2﹣2=0(答案不唯一),故答案为:x2﹣2=0(答案不唯一).【点评】本题考查一元二次方程的定义,解题的关键是理解题意,灵活运用所学知识解决问题.三.解答题(共20小题)41.(2023•南充)已知关于x 的一元二次方程x 2﹣(2m ﹣1)x ﹣3m 2+m =0.(1)求证:无论m 为何值,方程总有实数根;(2)若x 1,x 2是方程的两个实数根,且x 2x 1+x 1x 2=−52,求m 的值. 【分析】(1)由判别式Δ=(4m ﹣1)2≥0,可得答案;(2)根据根与系数的关系知x 1+x 2=2m ﹣1,x 1x 2=﹣3m 2+m ,由x 2x 1+x 1x 2=−52进行变形直接代入得到5m 2﹣7m +2=0,求解可得.【解答】(1)证明:∵Δ=[﹣(2m ﹣1)]2﹣4×1×(﹣3m 2+m )=4m 2﹣4m +1+12m 2﹣4m=16m 2﹣8m +1=(4m ﹣1)2≥0,∴方程总有实数根;(2)解:由题意知,x 1+x 2=2m ﹣1,x 1x 2=﹣3m 2+m ,∵x 2x 1+x 1x 2=x 12+x 22x 1x 2=(x 1+x 2)2x 1x 2−2=−52, ∴(2m−1)2−3m 2+m −2=−52,整理得5m 2﹣7m +2=0, 解得m =1或m =25.【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a .也考查了根的判别式.42.(2023•遂宁)我们规定:对于任意实数a 、b 、c 、d 有[a ,b ]*[c ,d ]=ac ﹣bd ,其中等式右边是通常的乘法和减法运算,如:[3,2]*[5,1]=3×5﹣2×1=13.(1)求[﹣4,3]*[2,﹣6]的值;(2)已知关于x 的方程[x ,2x ﹣1]*[mx +1,m ]=0有两个实数根,求m 的取值范围.【分析】(1)用新定义运算法则列式计算;(1)先根据新定义得到x (mx +1)﹣m (2x ﹣1)=0,再把方程化为一般式,接着根据题意得到Δ=(1﹣2m )2﹣4m •m ≥0且m ≠0,解不等式即可.【解答】解:(1)[﹣4,3]*[2,﹣6]=﹣4×2﹣3×(﹣6)=10;(2)根据题意得x (mx +1)﹣m (2x ﹣1)=0,整理得mx 2+(1﹣2m )x +m =0,∵关于x 的方程[x ,2x ﹣1]*[mx +1,m ]=0有两个实数根,∴Δ=(1﹣2m )2﹣4m •m ≥0且m ≠0,解得m ≤14且m ≠0.【点评】本题属于新定义题型,考查一元二次方程根的判别式,解一元一次不等式,根据题意得到关于m 的不等式是解题的关键.43.(1)解方程:x 2﹣2x ﹣1=0;(2)解不等式组:{2x −1≥11+x 3<x −1. 【分析】(1)方程移项后,利用完全平方公式配方,开方即可求出解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:(1)方程移项得:x 2﹣2x =1,配方得:x 2﹣2x +1=2,即(x ﹣1)2=2,开方得:x ﹣1=±√2,解得:x 1=1+√2,x 2=1−√2;(2){2x −1≥1①1+x 3<x −1②, 由①得:x ≥1,由②得:x >2,则不等式组的解集为x >2.【点评】此题考查了解一元一次不等式组,以及解一元二次方程﹣配方法,熟练掌握不等式组的解法及方程的解法是解本题的关键.44.如图,某小区矩形绿地的长宽分别为35m ,15m .现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m ,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.【分析】(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据扩充后的矩形绿地面积为800m,即可得出关于x的一元二次方程,解之即可得出x的值,将其正值分别代入(35+x)及(15+x)中,即可得出结论;(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据实地测量发现新的矩形绿地的长宽之比为5:3,即可得出关于y的一元一次方程,解之即可得出y值,再利用矩形的面积计算公式,即可求出新的矩形绿地面积.【解答】解:(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据题意得:(35+x)(15+x)=800,整理得:x2+50x﹣275=0解得:x1=5,x2=﹣55(不符合题意,舍去),∴35+x=35+5=40,15+x=15+5=20.答:新的矩形绿地的长为40m,宽为20m.(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据题意得:(35+y):(15+y)=5:3,即3(35+y)=5(15+y),解得:y=15,∴(35+y)(15+y)=(35+15)×(15+15)=1500.答:新的矩形绿地面积为1500m2.【点评】本题考查了一元二次方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)找准等量关系,正确列出一元一次方程.45.(2022•广州)已知T=(a+3b)2+(2a+3b)(2a﹣3b)+a2.(1)化简T;(2)若关于x的方程x2+2ax﹣ab+1=0有两个相等的实数根,求T的值.【分析】(1)根据完全平方公式和平方差公式化简T;(2)根据根的判别式可求a2+ab,再代入计算可求T的值.【解答】解:(1)T=(a+3b)2+(2a+3b)(2a﹣3b)+a2=a2+6ab+9b2+4a2﹣9b2+a2=6a2+6ab;(2)∵关于x的方程x2+2ax﹣ab+1=0有两个相等的实数根,∴Δ=(2a)2﹣4(﹣ab+1)=0,∴a2+ab=1,∴T=6×1=6.【点评】本题考查了整式的混合运算,根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根.46.(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a b,ab0;(2)在初中阶段我们已经学习了一元二次方程的三种解法;它们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.【分析】(1)先根据数轴确定a、b的正负,再利用乘法法则确定ab;(2)根据方程的系数特点,选择配方法、公式法或因式分解法.【解答】解:(1)由数轴上点的坐标知:a<0<b,∴a<b,ab<0.故答案为:<,<.(2)①利用公式法:x2+2x﹣1=0,Δ=22﹣4×1×(﹣1)=4+4=8,∴x=−2±√b2−4ac2=−2±√82=−2±2√22=﹣1±√2.∴x1=﹣1+√2,x2=﹣1−√2;②利用因式分解法:x2﹣3x=0,∴x(x﹣3)=0.∴x1=0,x2=3;③利用配方法:x2﹣4x=4,两边都加上4,得x2﹣4x+4=8,∴(x﹣2)2=8.∴x﹣2=±2√2.∴x1=2+2√2,x2=2﹣2√2;④利用因式分解法:x2﹣4=0,∴(x+2)(x﹣2)=0.∴x1=﹣2,x2=2.【点评】本题考查了数轴、一元二次方程的解法,掌握数轴的意义、一元二次方程的解法是解决本题的关键.47.(2022•齐齐哈尔)解方程:(2x+3)2=(3x+2)2.【分析】方程开方转化为一元一次方程,求出解即可.【解答】解:方程:(2x+3)2=(3x+2)2,开方得:2x+3=3x+2或2x+3=﹣3x﹣2,解得:x1=1,x2=﹣1.【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握方程的解法是解本题的关键.48.(2022•泰州)如图,在长为50m、宽为38m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m2,道路的宽应为多少?【分析】要求路宽,就要设路宽应为x米,根据题意可知:矩形地面﹣所修路面积=草坪面积,利用平移更简单,依此列出等量关系解方程即可.【解答】解:设路宽应为x米。

全国中考数学一元二次方程组的综合中考真题分类汇总含详细答案

全国中考数学一元二次方程组的综合中考真题分类汇总含详细答案

全国中考数学一元二次方程组的综合中考真题分类汇总含详细答案一、一元二次方程1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值. 【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.2.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0和 (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.3.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1%2a ,B 种品牌的建材的销售量减少了2%3a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2%23a ,求a 的值.【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30. 【解析】 【分析】(1)设销售A 品牌的建材x 件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;(2)根据题意列出方程求解即可. 【详解】(1)设销售A 品牌的建材x 件.根据题意,得()60009000126966000x x +-≥, 解这个不等式,得56x ≤, 答:至多销售A 品牌的建材56件.(2)在(1)中销售额最低时,B 品牌的建材70件, 根据题意,得()()()12260001%561%90001%701%6000569000701%2323a a a a a ⎛⎫⎛⎫⎛⎫-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令%a y =,整理这个方程,得21030y y -=,解这个方程,得1230,10y y ==, ∴10a =(舍去),230a =, 即a 的值是30. 【点睛】本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.4.解方程:(x+1)(x ﹣3)=﹣1.【答案】x 1x 2=1【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可. 试题解析:整理得:x 2﹣2x=2,配方得:x 2﹣2x+1=3,即(x ﹣1)2=3,解得:x 1,x 2=15.已知:关于x 的方程x 2-4mx +4m 2-1=0. (1)不解方程,判断方程的根的情况;(2)若△ABC 为等腰三角形,BC =5,另外两条边是方程的根,求此三角形的周长.2 【答案】(1) 有两个不相等的实数根(2)周长为13或17 【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;(2)根据等腰三角形的性质及△>0,可得出5是方程x 2﹣4mx +4m 2﹣1=0的根,将x =5代入原方程可求出m 值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.试题解析:解:(1)∵△=(﹣4m )2﹣4(4m 2﹣1)=4>0,∴无论m 为何值,该方程总有两个不相等的实数根.(2)∵△>0,△ABC 为等腰三角形,另外两条边是方程的根,∴5是方程x 2﹣4mx +4m 2﹣1=0的根.将x =5代入原方程,得:25﹣20m +4m 2﹣1=0,解得:m 1=2,m 2=3.当m =2时,原方程为x 2﹣8x +15=0,解得:x 1=3,x 2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;当m =3时,原方程为x 2﹣12x +35=0,解得:x 1=5,x 2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17. 综上所述:此三角形的周长为13或17.点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x =5求出m 值.6.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:;(3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.7.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭.【答案】x=15或x=1 【解析】 【分析】设321xy x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】解:设321xy x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3,∴3121x x =--或3321xx =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.8.关于x 的方程(k -1)x 2+2kx+2=0(1)求证:无论k 为何值,方程总有实数根. (2)设x 1,x 2是方程(k -1)x 2+2kx+2=0的两个根,记S=++ x 1+x 2,S 的值能为2吗?若能,求出此时k 的值.若不能,请说明理由.【答案】(1)详见解析;(2)S 的值能为2,此时k 的值为2. 【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S的值能为2,此时k的值为2.考点:一元二次方程根的判别式;根与系数的关系.9.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了4m%,第二月在第一个月的基础上又增长了2m%,两个月后,街道居民的知晓率达到592%,求m的值.【答案】(1)A 社区居民人口至少有2.5万人;(2)m 的值为50. 【解析】 【分析】(1)设A 社区居民人口有x 万人,根据“B 社区居民人口数量不超过A 社区居民人口数量的2倍”列出不等式求解即可;(2)A 社区的知晓人数+B 社区的知晓人数=7.5×92%,据此列出关于m 的方程并解答. 【详解】解:(1)设A 社区居民人口有x 万人,则B 社区有(7.5-x )万人, 依题意得:7.5-x ≤2x , 解得x ≥2.5.即A 社区居民人口至少有2.5万人; (2)依题意得:1.2(1+m %)2+1.5×(1+45m %)+1.5×(1+45m %)(1+2m %)=7.5×92%, 解得m =50 答:m 的值为50. 【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.10.关于x 的方程()2204kkx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根. 【解析】 【分析】()1由于方程有两个不相等的实数根,所以它的判别式0>,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围.()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404kk k =+-⋅>, 1k ∴>-,又0k ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204kkx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x kx x +⎧+=-⎪⎪⎨⎪=⎪⎩,又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-,由()1知,1k >-,且0k ≠,43k ∴=-不符合题意,因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根. 【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。

2024年中考九年级数学复习练习题:一元二次方程含参考答案

2024年中考九年级数学复习练习题:一元二次方程含参考答案

2024年中考九年级数学复习练习题:一元二次方程一、选择题1.一元二次方程3x 2=12的二次项,一次项和常数项分别为()A.3x 2,无一次项,−12B.3x 2,无一次项,12C.3x 2,0,−12D.3x 2,0,122.用配方法解方程x 2+4x −1=0,下列配方结果正确的是().A.(x +2)2=5B.(x +2)2=1C.(x −2)2=1D.(x −2)2=53.关于x 的一元二次方程x 2−8x +m =0有两个不相等的实数根,则m 的值可能是()A.15B.16C.17D.184.已知直角三角形的两条直角边长恰好是方程x 2−5x +6=0的两个根,则此直角三角形斜边长是()A.13B.5C.5D.135.已知菱形ABCD 的对角线AC,BD 的长度是方程x 2﹣13x+36=0的两个实数根,则此菱形的面积为()A.18B.24C.30D.366.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是()A.(3+x)(4-0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3-0.5x)=15D.(x+1)(4-0.5x)=157.若α、β是方程x 2+2x −2005=0的两个实数根,则α2+3α+β的值为()A.2005B.2003C.-2005D.40108.为增强同学们的体质,丰富校园文化体育生活,某校八年级举行了篮球比赛,比赛以循环赛的形式进行,即每个班级之间都要比赛一场,共比赛了45场.该校八年级共有()个班.A.9B.10C.5D.8二、填空题9.一元二次方程x 2=x 的根是.10.若关于x 的一元二次方程x 2+2x +m −1=0有实数根,则m 的取值范围是.11.一个三角形的两边长分别为2和3,第三边的长是方程x 2-10x+21=0的根,则该三角形的第三边的长为.12.已知x 1、x 2是方程x 2﹣2x﹣1=0的两根,则x 12+x 22=.13.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请个队参赛.14.解方程:(1)x 2﹣6x=0;(2)2x 2+5x﹣1=0;(3)2x(x﹣3)=x﹣3.15.已知关于x 的一元二次方程(x −1)(x −2k)+k(k −1)=0.(1)求证:该一元二次方程总有两个不相等的实数根;(2)若该方程的两个根x 1,x 2是一个矩形的一边长和对角线的长,且矩形的另一边长为3,试求k 的值.16.已知关于x 的一元二次方程x 2+(2m﹣1)x+m 2﹣2=0有实数根.(1)求实数m 的取值范围;(2)当m=1时,方程的根为x 1,x 2,求代数式(x 12+2x 1)(x 22+4x 2+2)的值.17.某农场今年第一季度的产值为50万元,第二季度由于改进了生产方法,产值提高了20%;但在今年第三、第四季度时该农场因管理不善.导致其第四季度的产值与第二季度的产值相比下降了11.4万元.(1)求该农场在第二季度的产值;(2)求该农场在第三、第四季度产值的平均下降的百分率.18.某经销商经销的学生用品,他以每件280元的价格购进某种型号的学习机,以每件360元的售价销售时,每月可售出60个,为了扩大销售,该经销商采取降价的方式促销,在销售中发现,如果每个学习机降价10元,那么每月就可以多售出50个.(1)降价前销售这种学习机每月的利润是多少元?(2)经销商销售这种学习机每月的利润要达到7200元,且尽可能让利于顾客,求每个学习机应降价多少元?(3)在(2)销售过程中,销量好,经销商又开始涨价,涨价后每月销售这种学习机的利润能达到10580元吗?若能,请求出涨多少元;若不能,请说明理由.1.C 2.A 3.A 4.D 5.A 6.A 7.B 8.B9.x 1=1,x 2=010.m ≤211.312.613.814.解:(1)x 2﹣6x=0,x(x﹣6)=0,∴x=0或x﹣6=0,解得:x 1=0,x 2=6;(2)2x 2+5x﹣1=0,∵a=2,b=5,c=﹣1,∴Δ=52﹣4×2×(﹣1)=33>0,∴x =∴x 1=2=(3)2x(x﹣3)=x﹣3,2x(x﹣3)﹣(x﹣3)=0,(x﹣3)(2x﹣1)=0,∴x﹣3=0或2x﹣1=0,∴x 1=3,x 2=12.15.(1)证明:(x −1)(x −2k)+k(k −1)=0,整理得:x 2−(2k +1)x +k 2+k =0∵a =1,b =−(2k +1),c =k 2+k ,∴Δ=b 2−4ac =(2k +1)2−4×1×(k 2+k)=1>0,∴该一元二次方程总有两个不相等的实数根;(2)解:x (2k +1)x +k 2+k =0,x ==2k+1±12,∴x 1=k ,x 2=k +1,①当x =k 为对角线时,k 2=(k +1)2+32,解得:k =−5(不符合题意,舍去),②当x =k +1为对角线时,(k +1)2=k 2+32,解得:k =4;综合可得,k 的值为4.16.解:(1)∵关于x 的一元二次方程x 2+(2m﹣1)x+m 2﹣2=0有实数根,∴Δ≥0,即(2m﹣1)2﹣4(m 2﹣2)≥0,整理得:﹣4m+9≥0,解得:m ≤94.故实数m 的取值范围是m ≤94;(2)当m=1时,方程为x 2+x﹣1=0,∵该方程的两个实数根分别为x 1,x 2,∴x 1+x 2=﹣1,x 1x 2=﹣1,x 12+x 1=1,x 22+x 2=1,∴(x 12+2x 1)(x 22+4x 2+2)=(x 1+1)(3x 2+3)=3[x 1x 2+(x 1+x 2)+1]=3×(﹣1﹣1+1)=3×(﹣1)=﹣3.17.(1)解:第二季度的产值为:50(120%)60⨯+=(万元);(2)解:设该农场在第三、第四季度产值的平均下降的百分率为x ,根据题意得:该农场第四季度的产值为6011.448.6-=(万元),列方程,得:260(1)48.6x -=,即2(1)0.81x -=,解得:120.1 1.9x x ==,(不符题意,舍去).答:该农场在第三、第四季度产值的平均下降百分率为10%.18.(1)解:由题意得:60×(360−280)=4800(元),∴降价前商场每月销售学习机的利润是4800元;(2)解:设每个学习机应降价x 元,由题意得:(360−x −280)(50⋅x10+60)=7200,解得:x =8或x =60,由题意尽可能让利于顾客,x =8舍去,即x =60,∴每个学习机应降价60元;(3)解:设应涨y 元每月销售这种学习机的利润能达到10580元,根据题意得:(360−60+y −280)[5(60−y)+60]=10580,方程整理得:y 2−52y +676=0,解得:y 1=y 2=26,∴应涨26元每月销售这种学习机的利润能达到10580元.。

2023中考数学一元二次方程历年真题及答案

2023中考数学一元二次方程历年真题及答案

2023中考数学一元二次方程历年真题及答案一、真题回顾在准备中考数学一元二次方程的学习中,了解历年真题是非常重要的。

下面是2023年中考数学一元二次方程的历年真题及答案,供您参考。

1. 2008年中考真题已知一元二次方程x² - 3x - 18 = 0的两个解分别为m和n,求m² + n²的值。

解析:根据一元二次方程的性质可知,x² - 3x - 18 = 0的两个解之和等于-(-3)/1=3,即m + n = 3。

根据解的性质可知,m² + n² = (m + n)² - 2mn,代入已知条件可得:(m + n)² - 2mn = 3² - 2(-18)=57。

2. 2010年中考真题方程x² - 4x + b = 0有两个相等的实数根,求b的值。

解析:已知方程x² - 4x + b = 0有两个相等的实数根,根据一元二次方程的性质可知,判别式D = (-4)² - 4 * 1 * b = 16 - 4b = 0。

解方程16 - 4b = 0,可得b = 4。

3. 2015年中考真题已知方程x² - mx + n = 0的两个解之和等于3,两列解之积等于-2,求m和n的值。

解析:根据一元二次方程的性质可知,x1 + x2 = m/1 = 3,x1 * x2 = n/1 = -2。

解得m = 3,n = -2。

4. 2019年中考真题已知一元二次方程x² + px + 10 = 0的一个解是-2,求p的值。

解析:已知一元二次方程的一个解是-2,根据解的性质可知,(-2)² + p(-2) + 10 = 0,即4 - 2p + 10 = 0。

解方程-2p + 14 = 0,得p = 7。

二、参考答案1. 2008年中考真题答案:m² + n² = 57;2. 2010年中考真题答案:b = 4;3. 2015年中考真题答案:m = 3,n = -2;4. 2019年中考真题答案:p = 7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)已知一对“x牵手函数”:y=ax+1与y=bx﹣1,其中a,b为一元二次方程x2﹣kx+k﹣4=0的两根,求它们的“x牵手点”.
【答案】(1)(1,0),a=﹣2;(2)“x牵手点”为( ,0)或( ,0).
【解析】
【分析】
(1)根据x轴上点的坐标特征可求一次函数y=x-1与x轴的交点坐标;把一次函数y=x-1与x轴的交点坐标代入一次函数y=ax+2可求a的值;
试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,
x= 有一个解;
②当k-1≠0即k≠1时,方程为一元二次方程,
△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0
方程有两不等根
综合①②得不论k为何值,方程总有实根
(2)∵x ₁+x ₂= ,x ₁ x ₂=
由于一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,
所以0=a+2,
解得a=﹣2;
(2)∵y=ax+1与y=bx﹣1为一对“x牵手函数”
∴ ,
∴a+b=0.
∵a,b为x2﹣kx+k﹣4=0的两根
∴a+b=k=0,
∴x2﹣4=0,
∴x1=2,x2=﹣2.
①若a=2,b=﹣2则y=2x+1与y=﹣2x﹣1的“x牵手点”为 ;
(2)利用根与系数的关系得到 , ,然后解关于m的一元二次方程,即可确定m的值.
【详解】
解:(1)∵ 有两个实数根,
∴ ,
∴ ,
∴ ;
∴m的最小整数值为: ;
(2)由根与系数的关系得: , ,
由 得:
∴ ,
解得: 或 ;
∵ ,
∴ .
【点睛】
本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,则 , .也考查了根的判别式.解题的关键是熟练掌握根与系数的关系和根的判别式.
【详解】
设甲种商品的进货单价是x元 件,乙种商品的进货单价是y元 件,
根据题意得: ,
解得: .
答:甲种商品的进货单价是5元 件,乙种商品的进货单价是6元 件.
当零售单价下降a元 件时,每天可售出 件,
根据题意得: ,
整理得: ,
解得: , .
答:当a定为 或1时,才能使商店每天销售甲种商品获取利润为1500元.
∴S= + + x1+x2
=
=
=
=
=2k-2=2,
解得k=2,
∴当k=2时,S的值为2
∴S的值能为2,此时k的值为2.
考点:一元二次方程根的判别式;根与系数的关系.
5.关于x的一元二次方程x2﹣2x﹣(n﹣1)=0有两个不相等的实数根.
(1)求n的取值范围;
(2)若n为取值范围内的最小整数,求此方程的根.
月份
用水量 (吨)
水费 (元)
四月
35
59.5
五月
80
151
【答案】
3.从图象来看,该函数是一个分段函数,当0≤x≤m时,是正比例函数,当x>m时是一次函数.
【小题1】只需把x代入函数表达式,计算出y的值,若与表格中的水费相等,则知收取方案.
4.关于x的方程(k-1)x2+2kx+2=0
(1)求证:无论k为何值,方程总有实数根.
【答案】(1)n>0;(2)x1=0,x2=2.
【解析】
【分析】
(1)根据方程有两个不相等的实数根可知 ,即可求出 的取值范围;
(2)根据题意得出 的值,将其代入方程,即可求得答案.
【详解】
(1)根据题意知,
解之得: ;
(2)∵ 且 为取值范围内的最小整数,
∴ ,
则方程为 ,
即 ,
解得 .
【点睛】
本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程 的根与 的关系(①当 时,方程有两个不相等的实数根;②当 时方程有两个相等的实数根;③当 时,方程无实数根)是解题关键.
8.利民商店经销甲、乙两种商品 现有如下信息
信息1:甲乙两种商品的进货单价和为11;
信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:
信息3:按零售单价购买甲商品3件和乙商品2件共付37元.
甲、乙两种商品的进货单价各是多少?
据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降 元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a元,在不考虑其他因素的条件下,当a定为多少时,才能使商店每天销售甲种商品获取利润为1500元?
【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2) 的值为2或7.
【解析】
【分析】
(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.
【详解】
(1)解:设甲、乙两种苹果的进价分别为 元/千克, 元/千克.
由题得:
解之得:
答:甲、乙两种苹果的进价分别为10元/千克,8元/千克
(2)根据总利润=每件的利润×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论.
【详解】
(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,
根据题意得:80(1﹣x)2=39.2,
解得:x1=0.3=30%,x2=1.7(不合题意,舍去).
(1)求甲、乙两种苹果的进价分别是每千克多少元?
(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.
②若a=﹣2,b=2则y=﹣2x+1与y=2x﹣1的“x牵手点”为( ,0)
∴综上所述,“x牵手点”为 或( ,0)
【点睛】
本题考查了根与系数的关系、一次函数的性质和一次函数图象上点的坐标特征的运用.
(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S= + + x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.
【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.
【解析】
试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.
∴原方程的解是x= 或x=1.
【点睛】
考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.
2.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出 的值.
【答案】(1)甲种商品的进货单价是5元 件,乙种商品的进货单价是6元 件(2)当a定为 或1时,才能使商店每天销售甲种商品获取利润为1500元
【解析】
【分析】
设甲种商品的进货单价是x元 件,乙种商品的进货单价是y元 件,根据给定的三个信息,可得出关于x,y的二元一次方程组,解之即可得出结论;
当零售单价下降a元 件时,每天可售出 件,根据总利润 单件利润 销售数量,即可得出关于a的一元二次方程,解之即可得出结论.
【答案】(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为100元.
【解析】
【分析】
(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;
【点睛】
本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是: 找准等量关系,正确列出二元一次方程组; 找准等量关系,正确列出一元二次方程.
9.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.
(2)根据“x牵手函数”的定义得到a+b=0,根据根与系数的关系求得k=0,可得方程x2-4=0,解得x1=2,x2=-2,再分两种情况:①若a=2,b=-2,②若a=-2,b=2,进行讨论可求它们的“x牵手点”.
【详解】
解:(1)当y=0时,即x﹣1=0,
所以x=1,即一次函数y=x﹣1与x轴的交点坐标为(1,0),
6.淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A商品的成本为30元/件,网上标价为80元/件.
(1)“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?
(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.
相关文档
最新文档