高三质量检测(数学理)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三质量检测

数学(理科)试题

第I 卷(共60分)

一、选择题(每题5分,共60分)

1.已知全集U R =,集合{0A x =<2x <}1,{3log B x x =>}0,则()U A C B ⋂= A.{x x >}1 B.{x x >}0 C.{0x <x <}1 D.{x x <}0

2.已知2sin 3

α=

,则()cos 32πα-等于

A.3

- B.19

C.19

- 3

3.曲线()ln 2y x =+在点()1,0P -处的切线方程是 A.1y x =+

B.1y x =-+

C.21y x =+

D.21y x =-+

4.设b ,c 表示两条直线,,αβ表示两个平面,则下列命题正确的是 A.若,//,//b c c b αα⊂则 B.若,//,//b b c c αα⊂则 C.若,,c c ααββ⊂⊥⊥则

D.若,,c c αβαβ⊂⊥⊥则

5.函数lg x y x

=的图象大致是

6.已知函数()f x 是定义在R 上的奇函数,当x >0时,()12x

f x -=-,则不等式()

f x <12

-

的解集是

A.(),1-∞-

B.(],1-∞-

C.()1,+∞

D.[)1,+∞

7.已知函数{}n a 满足11,2n n a a a a +==+.定义数列{}n b ,使得1,n n

b n N a *

=∈.若4<a

<6,则数列{}n b 的最大项为 A.2b

B.3b

C.4b

D.5b

8.由直线2,,0sin 3

3

x x y y x π

π=

=

==与所围成的封闭图形的面积为

A.12

B.1

C.

2

9.设变量,x y 满足约束条件220

1220,110

x y y x y x x y --≤⎧+⎪

-+≥⎨+⎪+-≥⎩

则s=的取值范围是

A.31,2

⎡⎤

⎢⎥⎣

B.1,12

⎡⎤

⎢⎥⎣

C.1,22

⎡⎤

⎢⎥⎣

D.[]1,2

10.函数()()s i n f

x x ωϕ=+(ω其中>0,ϕ<

2

π

)的图象如图所示,为了得到

()sin g x x ω=的图象,可以将()f x 的图象

A.向右平移6

π

个单位长度 B.向右平移3

π

个单位长度 C.向左平移

6

π

个单位长度

D.向左平移

3

π

个单位长度

11.函数()3

2

f x x bx cs d =+++的大致图象如图所示,则22

12x x +等于

A.89

B.109

C.

16

9

D.

289

12.已知各项均不为零的数列{}n a ,定义向量()()1,,,1,n n n n c a a b n n n N *

+==+∈.下列命题中真命题是

A.若n N *∀∈总有n n c b ⊥成立,则数列{}n a 是等比数列

B.若n N *∀∈总有//n n c b 成立,则数列{}n a 是等比数列

C.若n N *∀∈总有n n c b ⊥成立,则数列{}n a 是等差数列

D. 若n N *∀∈总有n n c b ⊥成立,则数列{}n a 是等比数列

第II 卷(非选择题 90分)

二、填空题

13.若函数()3

3f x x x a =-+有三个不同的零点,则实

数a 的取值范围是__________.

14.一个几何体的三视图如右图所示,则该几何体的表面积为__________.

15.2009年北京庆阅兵式上举行升旗仪式,如图,在坡

度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后

一排的距离为______米。

16.已知点P 是△ABC 的中位线EF 上任意一点,且EF//BC ,实数x ,y 满足

0.,,,P A x P B y P C A B C P B C P C A

P A B ++

=∆∆

∆ 设的面积分别为S ,S 1,S 2,S 3,记

312123,

,

S S S S

S

S

λλλ===,则23λλ⋅取最大值时,2x+y 的值为________.

三、解答题:(本大题共6小题,共74分) 17.已知全集U=R ,非空集合{23

x A x x -=-<}0,{()()22B x x a x a =---<}0.

(1)当12

a =

时,求()U C B A ⋂;

(2)命题:p x A ∈,命题:q x B ∈,若q 是p 的必要条件,求实数a 的取值范围.

18.(本小题满分12分) 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,m=(sinA,sinB ),n=(cosB,cosA ),m ·n=—sin2C.

(1)求角C 的大小;

(2)若6

c A π

==

,求△ABC 的面积S.

19.(本小题满分12分)

已知{}n a 是公差为2的等差数列,且317111a a a +++是与的等比中项. (1)求数列{}n a 的通项公式; (2)令()12

n n n

a b n N *

-=∈,求数列{}n

b 的前n 项和Tn.

20.(本题满分12分)

如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上D 点在AN 上,且对角线MN 过点C ,已知AB=3米,AD=2米。

(1)要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (2)当DN 的长度为多少时,矩形花坛AMPN 的面积最小?并求出最小值。

21.(本题满分12分)

如图1,平面四边形

ABCD 关于直线AC 对称,

60,90A C ∠=∠=

2.C D =

相关文档
最新文档