实验九-(2-1-5)卷积码编码译码技术

合集下载

卷积码的编码及解码Viterbi解码Word版

卷积码的编码及解码Viterbi解码Word版

卷积码的编码及解码(Viterbi 解码)一、实验目的1、了解卷积码的基本原理;2、掌握卷积码编码的电路设计方法;2、掌握卷积码 Viterbi 译码的基本方法和电路设计方法。

二、实验仪器1、移动通信实验箱一台;2、台式计算机一台;三、实验原理1.卷积码编码原理卷积码是一个有限记忆系统,它也将信息序列切割成长度 k的一个个分组,与分组码不同的是在某一分组编码时,不仅参看本时刻的分组而且参看本时刻以前的 L 个分组。

我们把 L+1 称为约束长度。

2.卷积码的译码算法(硬判决 Viterbi 译码)Viterbi译码算法是一种最大似然算法,它不是在网络图上依次比较所有可能的路径,而是接收一段,计算,比较一段,保留最有可能的路径,从而达到整个码序列是一个最大似然序列。

Viterbi解码算法的基本步骤如下:1、从某一时间单位j=m开始,对进入每一状态的所有长为j段分支的部分路径,计算部分路径度量。

对每一状态,挑选并存储一条有最大度量的部分路径及其部分度量,称此部分路径为留选(幸存)路径。

2、j增加1,把此时刻进入每一状态的所有分支度量,和同这些分支相连的前一时刻的留选路径的度量相加,得到了此时刻进入每一状态的留选路径,加以存储并删去其他所有的路径。

因此留选路径延长了一个分支。

3、若j<L+m,则重复以上步骤,否则停止,译码器得到了有最大路径度量的路径。

上面的过程可以简单的总结为“加、比、选”(也称ACS)。

四、实验步骤1、将实验箱和计算机通过串行口连接好,为实验箱上电。

2、将与实验箱相连的电脑上的学生平台程序打开。

在“实验选择”栏中选择“卷积码”实验,点击确认键。

从而进入此实验界面。

3、在实验界面上点“生成数据”,让系统生成待编码的随机比特。

也可在界面上直接双击所显示的 bit,修改其值。

4、在界面上点击下发“原始数据”,该数据将被送入单片机(或 CPLD)进行卷积编码然后经过编码的数据被送回学生平台并显示在“编码数据”栏。

【报告】卷积码实验报告

【报告】卷积码实验报告

【报告】卷积码实验报告一、实验目的本次卷积码实验的主要目的是深入理解卷积码的编码与译码原理,掌握其在数字通信系统中的应用,并通过实际实验操作和结果分析,评估卷积码的纠错性能和对通信质量的改善效果。

二、实验原理(一)卷积码的基本概念卷积码是一种有记忆的非分组码,它将输入的信息序列经过特定的编码器生成输出的码序列。

卷积码的编码过程不仅取决于当前输入的信息位,还与之前的若干个信息位有关。

(二)编码原理卷积码的编码器通常由若干个移位寄存器和模 2 加法器组成。

输入的信息位在时钟的控制下依次进入移位寄存器,同时与寄存器中的内容进行模 2 加法运算,生成输出的编码位。

(三)译码原理卷积码的译码方法有多种,常见的有维特比译码算法。

维特比译码算法基于最大似然准则,通过在码的网格图上寻找最有可能的路径来实现译码。

三、实验环境与设备本次实验在计算机上进行,使用了以下软件和工具:1、 MATLAB 编程环境,用于实现卷积码的编码、传输和译码过程,并进行性能分析。

2、通信系统仿真工具,用于构建通信系统模型,模拟信号的传输和接收。

四、实验步骤(一)编码实现1、在 MATLAB 中定义卷积码的编码器结构,包括移位寄存器的数量和连接方式,以及模 2 加法器的位置。

2、编写编码函数,输入信息序列,按照编码器的工作原理生成编码后的序列。

(二)信道传输1、模拟加性高斯白噪声信道,设置不同的信噪比条件。

2、将编码后的序列通过信道传输,引入噪声干扰。

(三)译码实现1、使用维特比译码算法对接收序列进行译码。

2、编写译码函数,输入接收序列和信道参数,输出译码后的信息序列。

(四)性能评估1、计算误码率,即错误译码的比特数与总传输比特数的比值。

2、绘制误码率曲线,分析卷积码在不同信噪比条件下的纠错性能。

五、实验结果与分析(一)不同卷积码参数对性能的影响1、改变卷积码的约束长度,观察其对纠错性能的影响。

结果表明,约束长度越长,卷积码的纠错能力越强,但编码效率会有所降低。

卷积码编译码原理ppt

卷积码编译码原理ppt

11/1 11/0
01/0
100
10/0
00/0
101
11/1
01/0
110 01/1
图3 (2,1,4)码状态转移图
111
11/1
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
12
(2)编程实现
维特比译码可分为 网格图建立,寻找最优 路径,译码这三部分。
译码程序流程如图4所 示:
开始 建立网格图 判断最优路径
j增加1。计算进入每一个状态所有路径得汉明距离。这个 汉明距离就是进入该状态得分支度量加上在与该分支相连
得前一步得幸存路径得度量值。对于每个状态,共有2k 个
这样得度量值,从中选出并存储最优路径(汉明距离最小得 路径)并保存最小汉明距离。 如果j<L+m、重复步骤2,知道结束。在整个过程中,这样就 可以得到一条汉明距离最小得最优路径。
V1 (D0 D2 )%2
(3)
V 2 (D0 D1 D2 D3)%2(4)
编码程序流程图
程序开始
定义变量 初始化四 个寄存器
输入1比特信息存放在 寄存器0中,代入3,4
两式,得到V1,V2
将D0,D1,D2中的值依次 向后传递一位,
输出V1,V2,并返回, 进行下一次运算
图2 卷积码编码程序流程图
000
000
000
000
000
000
000
000
000
000
001
001
001
001
001
001
001
001
001
001
010
010
010
010

卷积码的译码方法分析_邢庆君

卷积码的译码方法分析_邢庆君
3 卷积码的概率译码
卷积码的概率译码不仅基于代数结构基础上 (象代数译码那样), 而且还利用了 信道的统计特 性 , 因而能充分发挥卷积码的特点 , 使译码错误概 率很小 。 概率译码主要有维特比译码和序列译码 , 它们都是建立在最大似然准则基础上的 。 维特比 译码具有最佳性能 , 在码元约束度较小时 , 译码速 度较序列译码的速度快 , 硬件实现也相对简单 ;而 在约束度较大时 , 维特比译码复杂度按指数增长 , 而序列译码受编码约束度影响不大 , 此时序列译码 具有很好的性能 。 3 .1 维特比译码
图 2 (4, 3 , 2)卷积码的部分网格图
该算法在维特比算法思想的基础上 , 主要改善 了量度值的计算 , 通过分析编码器得到硬判决时相 应量度值(等效量度为汉明距离)之间的相互关系 , 从而只需知道网格图间两节点的一条路径的量度
值得到其它所有路径的量度值 , 有效地提高了译码 速度 。由维特比译码知道 , 实际上由于输入码元的 半无限性译码时一般多采用截段来处理 , 用多段来 逼近最大似然译码 。我们知道在判决中 , 码元的距 离(即量度值)是最大似然译码的决定因素 , 因此在 分段处理数据时 , 码元的量度值可以不回归为零 , 但为了防止量度值溢出 , 可对量度方法做一定的处 理 , 最简单 有效的方法是只保 留在小范围的 波动 性 , 远离量度值设定为波动的限值 , 在分段处理时 量度值保留一定的有效性 , 使最大似然判决在整个 码元上有一定的连续性 。 3 .2 序列译码
Analysis on Decoding Methods of Convolutional Codes
XING Qing-jun , WANG Yun-he , LIU Yu-jun
(Institute of Information Engineering , Information Engineering University , Zhengzhou 450002 , China)

卷积码实验报告

卷积码实验报告

卷积码实验报告篇一:卷积码实验报告实验五信道编解码()本章目标掌握数字频带传输系统调制解调的仿真过程掌握数字频带传输系统误码率仿真分析方法 5.1实验目的1. 使用MATLAB进行卷积码编/译码器的仿真。

2. 熟练掌握MATLAB软件、语句。

3. 了解卷积码编/译码器的原理、知识。

5.2实验要求1. 编写源程序、准备测试数据。

2. 在 MATLAB环境下完成程序的编辑、编译、运行,获得程序结果。

如果结果有误,应找出原因,并设法更正之。

5.3 实验原理(一)卷积码编码器 1. 连接表示卷积码由3个整数n,k,N描述。

k/n也表示编码效率(每编码比特所含的信N称为约束长度,息量);但n与线性分组码中的含义不同,不再表示分组或码子长度;表示在编码移位寄存器中k元组的级数。

卷积码不同于分组码的一个重要特征就是编码器的记忆性,即卷积码编码过程中产生的n元组,不仅是当前输入k元组的函数,而且还是前面N?1个输入k元组的函数。

实际情况下,n和k经常取较小的值,而通过N的变化来控制编码的能力和复杂性。

下面以图1中的卷积码编码器为例介绍卷积码编码器。

该图表示一个约束长度K?3的(2,1)卷积译码器,模2加法器的数目为n?2,因此,编码效率k/n?1/2。

在每个输入比特时间上,1位信息比特移入寄存器最左端的一级,同时将寄存器中原有比特均右移一级,接着便交替采样两个模2加法器,得到的码元就是与该输入比特相对应的分支字。

对每一个输入信号比特都重复上述采样过程。

图1卷积码编码器(编码效率1/2,K?3)用于描述反馈移位寄存器实现循环码时所使用的生成多项式也可用户描述卷积码编码器的连接。

应用n个生成多项式描述编码的移位寄存器与模2加法器的连接方式,n个生成多项式分别对应n个模2加法器,每个生成多项式不超过K?1阶。

仍以图1中的编码器为例,用生成多项式g1(X)代表上方连接,g2(X)代表下方连接,则有:g1(X)?1?X?X2g2(X)?1?X2多项式中的最低阶项对应于寄存器的输入级。

卷积编译码

卷积编译码

实验四:卷积编/译码一.实验目的1.学习卷积编码的方法与码字测量。

2.学习维特比译码方法及译码的测量。

3.观察卷积码的纠错能力。

二.实验仪器1.RZ8621D实验箱一台2.20MHZ双踪示波器一台三.实验电路连接及测量点说明图7-1 用单片机AT89C2051进行卷积编码电路图图7-2 用单片机AT89C2051进行维特比译码电路图差错控制编码的方法很多,卷积码是一种既能纠随机错,又能纠实发错的编码,在同样的传输速率和设备复杂的条件下,性能较优良的一种编码。

卷积码常采用维特比软判决译码,具有较好的纠错功能。

本实验为卷积码的编译码,它是由一片AT80C2051芯片用软件编程方法实现。

其编译码电路框图如下:图中各主要测量点说明如下:TP401—源码序列TP402—卷积码序列TP403—加错或不加错卷积码序列(模拟信道的传输)TP405—卷积码译码输出序列四.实验步骤及内容(一)卷积码编码1.拨线开关介绍。

用拨动开关SW401设置输入信息。

开关拨动至上面为1,下面为0。

拨动开关共9位,左起1-8位为信息位,第九位为状态位。

第九位为“1”表示无错误,第九位为“0”表示有错误。

2.信息码设置。

如上所述,信息码设置共8位,由SW401开关位置决定,例如设置信息为DCH则八位码为1101 1100。

3.信息码观察。

为了示波器上能看到周期性的信息码和编出的卷积码,本机规定在信息位第一位前加一个“1”,在末位加两个“0”。

因此信息码序列变成1 1101 110000,我们称它们为源码序列。

将示波器1通道探头接于TP401(DTAT3),便可看到该序列波形。

4.卷积编码序列手工编码。

根据源码序列和(2.1.3)卷积码编码规秩,写出卷积码编码序列。

上述源码序列的卷积码为1101 1001 0001 1001 110000。

5.无错卷积码编码序列观察。

将拨动开关第九位(状态位)置于“1”表示无错码。

示波器1通道探头接至TP402(DATA1),2通道探头接至TP403(DATA2),观察示波器上显示的波形,看看它是否与上述卷积编码的码型一致。

实验二--卷积码编码及译码实验

实验二--卷积码编码及译码实验

实验二--卷积码编码及译码实验实验二卷积码编码及译码实验一、实验目的通过本实验掌握卷积编码的特性、产生原理及方法,卷积码的译码方法,尤其是维特比译码的原理、过程、特性及其实现方法。

二、实验内容1、观察NRZ基带信号及其卷积编码信号。

2、观察帧同步信号的生成及巴克码的特性。

3、观察卷积编码信号打孔及码速率匹配方法。

4、观察接收端帧同步过程及帧同步信号。

5、观察译码结果并深入理解维特比译码的过程。

6、观察随机差错及突发差错对卷积译码的影响。

三、基本原理1、卷积码编码卷积码是一种纠错编码,它将输入的k个信息比特编成n个比特输出,特别适合以串行形式进行传输,时延小。

卷积码编码器的形式如图17-1所示,它包括:一个由N段组成的输入移位寄存器,每段有k 段,共Nk 个寄存器;一组n 个模2和相加器;一个由n 级组成的输出移位寄存器,对应于每段k 个比特的输入序列,输出n 个比特。

12…k 12…k …12…k12…n 卷积码输出序列信息比特一次移入k 个Nk 级移位寄存器…图17-1 卷积编码器的一般形式由图17-1可以看到,n 个输出比特不仅与当前的k 个输入信息有关,还与前(N -1)k 个信息有关。

通常将N 称为约束长度(有的书中也把约束长度定为nN 或N -1)。

常把卷积码记为:(n 、k 、N ),当k =1时,N -1就是寄存器的个数。

编码效率定义为:/c R k n (17-1)卷积码的表示方法有图解表示法和解析表示法两种:解析法,它可以用数学公式直接表达,包括离散卷积法、生成矩阵法、码生成多项式法;图解表示法,包括树状图、网络图和状态图(最的图形表达形式)三种。

一般情况下,解析表示法比较适合于描述编码过程,而图形法比较适合于描述译码。

(1)图解表示法(2)解析法下面以(2,1,3)卷积编码器为例详细讲述卷积码的产生原理和表示方法。

(2,1,3)卷积码的约束长度为3,编码速率为1/2,编码器的结构如图17-2所示。

卷积码的编码和译码

卷积码的编码和译码

卷积码是一种纠错编码技术,通常用于无线通信和数字通信系统中,以提高数据传输的可靠性。

卷积码的编码和译码是两个关键步骤,下面分别介绍这两个步骤:**编码:**1. **选择卷积码的参数:** 在编码之前,您需要确定卷积码的参数,包括约束长度(constraint length)、生成多项式(generator polynomial)和码率(code rate)。

这些参数将决定编码器的结构和性能。

2. **构建编码器:** 卷积码编码器通常是一个有限状态自动机(Finite State Machine,FSM)。

根据所选的生成多项式,配置编码器的状态转移图。

编码器的输入是要编码的数据位,输出是编码后的码字。

3. **编码操作:** 对每个输入位进行编码操作。

编码器的状态会根据输入位的不同而变化,从而生成不同的编码输出。

通常,每个输入位都会产生多个输出位,这是卷积码的特点之一。

4. **输出码字:** 编码器将生成的码字传送出来,以便传输或存储。

**译码:**1. **构建译码器:** 卷积码的译码器通常是使用一种称为Viterbi算法的最大似然译码方法来实现的。

译码器需要与编码器具有相同的约束长度和生成多项式。

2. **接收和测量:** 译码器接收传输的码字,并测量接收到的码字与每个可能的发送码字之间的距离或差异。

这些度量值用于决定哪个发送码字最有可能是原始数据。

3. **路径追踪:** Viterbi算法使用路径追踪技术来跟踪可能的状态序列,并根据度量值来选择最有可能的路径。

这个过程可以看作是在状态图上搜索最佳路径的过程。

4. **译码操作:** 根据最佳路径上的状态序列,译码器重建原始数据位。

这些数据位就是译码器的输出。

卷积码的译码是一种计算密集型的过程,通常需要高效的硬件支持,特别是在高速通信系统中。

Viterbi算法是一种复杂的算法,但它在纠错性能方面非常出色,可以大大提高数据传输的可靠性。

卷积码编码与译码

卷积码编码与译码

例: (n, k, N) = (3, 1, 3)卷积码编码器方框图设输入信息比特序列是bi-2 bi-1 bi bi+1,则当输入bi时,此编码器输出3比特ci di ei,输入和输出的关系如下:
实际应用时常用的卷积码是(2,1,7)卷积码例如:IEEE 802.11a、DVB-T的内码;(2,1,7)卷积码的编码器,如图:
(3, 1, 3)卷积码 设现在的发送信息位为1101,为了使图中移存器的信息位全部移出,在信息位后面加入3个“0”,故编码后的发送序列为111 110 010 100 001 011 000。并且假设接收序列为111 010 010 110 001 011 000,其中第4和第11个码元为错码。 由于这是一个(n, k, N) = (3, 1, 3)卷积码,发送序列的约束度N = 3,所以首先需考察nN = 9比特。第1步考察接收序列前9位“111 010 010”。由此码的网格图可见,沿路径每一级有4种状态a, b, c和d。每种状态只有两条路径可以到达。故4种状态共有8条到达路径。 现在比较网格图中的这8条路径和接收序列之间的汉明距离。
4

现在将到达每个状态的两条路径的汉明距离作比较,将距离小的一条路径保留,称为幸存路径。若两条路径的汉明距离相同,则可以任意保存一条。这样就剩下4条路径了,即表中第2, 4, 6和8条路径。
第2步继续考察接收序列的后继3个比特“110”。计算4条幸存路径上增加1级后的8条可能路径的汉明距离。结果如下表。 表中最小的总距离等于2,其路径是abdc+b,相应序列为111 110 010 100。它和发送序列相同,故对应发送信息位1101。 按照表中的幸存路径画出的网格图示于下图中。
序号
路径
对应序列

卷积码编译码原理课件

卷积码编译码原理课件
性能优势
Viterbi算法具有较低的复杂度,适用于高速实时解码,且在信噪比较低的情况 下仍能保持较好的解码性能。
状态估计和路径选择
1 2 3
状态估计 在解码过程中,需要对每个状态进行估计,以确 定每个状态的转移概率和输出码字。
路径选择 在搜索所有可能的路径时,需要选择最可能的路 径作为解码结果,这涉及到路径选择和剪枝策略。
提高信号的纠错能力,保证数据的完整接收。
低误码率要求
02
在深空探测任务中,对数据的准确性和可靠性要求极高,卷积
码能够提供低误码率的保证。
自适应性能
03
卷积码可以根据信道状态自适应地调整编码参数,以适应不同
的传输环境。
在其他领域的应用
01
02
03
广播和多播通信
卷积码可以用于广播和多 播通信中,提高信号的覆 盖范围和接收质量。
04
仿真结果和分析
01
通过仿真实验,可以模拟卷积码 在实际通信系统中的性能表现。
03
仿真结果可以为实际应用提供参 考和指导,帮助选择合适的卷积
码参数和配置。
02
通过对比不同参数和配置下的仿 真结果,可以深入分析卷积码的
性能特点。
04
仿真结果还可以用于评估不同编 译码算法的性能优劣,为算法优
化提供依据。
性能优化 为了提高解码性能,可以采用一些优化措施,如 分支定界、路径剪枝和记忆算法等。
04 卷积码性能分析
误码率性能
误码率性能是衡量卷积码性能 的重要指标之一,它表示在传
输过程中发生错误的概率。
卷积码通过增加冗余位来纠正 错误,从而提高传输的可靠性。
随着信噪比的提高,卷积码的 误码率性能逐渐改善。

卷积码编码与译码

卷积码编码与译码

• 例: (n, k, N) = (3, 1, 3)卷积码编码器
– 方框图 输入bi
M1
M2
M3
bi
bi-1
bi-2
ei
di
编码输出
ci
– 设输入信息比特序列是bi-2 bi-1 bi bi+1,则当输入bi时,此编 码器输出3比特ci di ei,输入和输出的关系如下:
ci bi di bi bi2 ei bi bi`1 bi2
由于这是一个(n, k, N) = (3, 1, 3)卷积码,发送序列的 约束度N = 3,所以首先需考察nN = 9比特。第1步 考察接收序列前9位“111 010 010”。由此码的网格 图可见,沿路径每一级有4种状态a, b, c和d。每种状 态只有两条路径可以到达。故4种状态共有8条到达 路径。
维特比译码算法使用最广泛,也是这次课程讨论的重点
输入bi
M1
M2
M3
bi
bi-1
bi-2
以前面介绍的(3,1,3)卷积码为例
移存器前一状态
M3 M2 a (00)
b (01)
c (10)
d (11)
当前输入信息位
bi 0 1
0 1
0 1
0 1
输出码元
cidiei 000 111
001 110
011 100
a 111
b
c 110
d
100 010
a
b 001
c
d
在上图中给出了输入信息位为11010时,在网格图中的编码路径。 图中示出这时的输出编码序列是:111 110 010 100 011…。由上述 可见,用网格图表示编码过程和输入输出关系比码树图更为简练。

卷积码编译码实验报告

卷积码编译码实验报告

厦门理工学院实验报告书课程名称:信息论与编码实验实验名称:卷积码编译码m•个有效的寄存器单元,而输出移位寄存器仅中输入移位寄存器最多只有k起一个并串转换作用。

因此称参量m为卷积吗的记忆长度(段)2、维比特译码原理它的基本思想是把接收到的矢量,和网格图上诸种可能的路径比较,删去距离大的路径,保留距离小的路径,以距离最小路径作为发码的估值五、实验内容在MATLAB环境下卷积码编/解码器的实现。

1、主函数main.mclear;clc;msg = randint(1,20,[0,1])word = encode_conv213(msg)word(1) =~word(1); %信道中存在污染,人为的模拟传输过word(10) =~word(10); %程中的出错码字word(15) =~word(15);word1=wordmsg_1 = decode_conv213(word1)msg-msg_12 、状态积state_machine.mfunction [output,nextState] = state_machine(input,current_state)output(1) = mod(current_state(1)+current_state(3),2);output(2) = mod(input+current_state(2)+current_state(1),2);nextState(1) = current_state(2);nextState(2) = current_state(3);nextState(3) = input;3、汉明距离hamming_distance.mfunction distance = hamming_distance(a,b)temp = a+b;temp = mod(temp,2);distance = sum(temp);4 、213编码程序encode_conv213.mfunction word = encode_conv213(msg)word = zeros(1,length(msg)*2);current = [0 0 0];for i = 1:length(msg)[out,next] = state_machine(msg(i),current);current = next;word(2*i-1) = out(1);word(2*i) = out(2);End5、213维比特译码decode_conv213.mfunction msg = decode_conv213(word)chip = 10; %初始状态选十个信息for i = 1:2^chipM(i,:) = de2bi(i-1,chip); %把所有可能性按二进制输出W(i,:) = encode_conv213(M(i,:));%得到相应的二进制编译后的码字D(i) = hamming_distance(W(i,:),word(1:chip*2));%与出错码字对比得到汉明距end[val,index] = sort(D);%val中存汉明距从小到大排列,index中存对应val数据所在位置ret_msg = zeros(1,length(word)/2); %开辟译出码字的存放空间for i = 1:6%1024种选择6种最小距离,并输出在ret_msg中,最小汉明距存于ret_dis ret_msg(i,1:chip) = M(index(i),:);ret_dis(i) = D(index(i));enditer = (length(word)-chip*2)/2; %剩余要译出的码字个数for i=1:iter %迭代过程for j=1:6msg_temp1 = [ret_msg(j,1:chip+i-1) 0]; %下一状态出“0”msg_temp2 = [ret_msg(j,1:chip+i-1) 1]; %下一状态出“1”word_temp1 = encode_conv213(msg_temp1);%下一状态为“0”时的编码word_temp2 = encode_conv213(msg_temp2);%下一状态为“1”时的编码dis_temp1 = hamming_distance(word_temp1,word(1:chip*2+2*i));dis_temp2 = hamming_distance(word_temp2,word(1:chip*2+2*i)); %算两种汉明距if (dis_temp1<dis_temp2)ret_msg(j,1:chip+i) = msg_temp1;ret_dis(j) = dis_temp1;elseret_msg(j,1:chip+i) = msg_temp2;ret_dis(j) = dis_temp2;%选择较小汉明距的状态储存并输出在ret_msg中,最小汉明距存于ret_disendendend[val,index] = sort(ret_dis); %把最终选择的6种最小汉明距按从小到大排列msg =ret_msg(index(1),:); %选出维特比译码最小的距离所译出的信息六、实验数据记录及分析(包括源程序清单及运行结果):。

卷积编译码实验

卷积编译码实验

卷积编译码实验
卷积编码是一种在通信系统中广泛应用的误码控制编码方式,通常用于提高数字信号的抗噪性能。

卷积编码可以降低误码率,保证数据的传输质量。

需要进行卷积编译码实验的话,可以按照以下步骤进行:
1. 选择一个适合的卷积码:可以从已经定义好的标准卷积码中进行选择,也可以根据应用需要自行设计卷积码。

常用的卷积码如(3,1,2),(4,1,3)、(4,2,3)等。

2. 编写卷积编码器程序:利用 MATLAB 或者 Python 等编程语言编写程序实现卷积编码,对输入的二进制数据进行编码处理,并输出编码后的信号。

3. 模拟信道传输:利用模拟信道对编码后的信号进行传输模拟,模拟信道可以包括加性高斯噪声信道、多径衰落信道等,可以根据实际需求进行设置。

4. 编写卷积解码器程序:利用 MATLAB 或者 Python 等编程语言编写卷积解码器程序,对模拟信道传输后的信号进行卷积解码处理,输出解码后的二进制数据流。

5. 分析误码率:对比编码前后的误码率,分析卷积编译码在特定的信道条件下的性能表现及其变化规律,可以进行多次实验,比较不同卷积码的误码率性能。

需要注意的是,在进行实验的过程中,需要注意数据随机性,以及卷积码的参数选择等方面的合理性。

卷积码实验报告

卷积码实验报告

现代编码理论基于MATLAB的卷积码编码及译码仿真姓姓名名:闫嘉川学学号号:1433170所在院系:电子与信息工程学院实验名称:基于MAATLAB的卷积码编码及译码仿真实验目的:卷积码是一种性能优越的信道编码。

它的编码器和译码器都比较容易实现,同时它具有较强的纠错能力。

随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。

本实验简明地介绍了卷积码的编码原理和Viterbi译码原理。

并在SIMULINK模块设计中,完成了对卷积码的编码和译码以及误比特统计整个过程的模块仿真。

最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。

经过仿真和实测,并对测试结果作了分析。

实验原理:1、卷积码编码原理卷积码是一种性能优越的信道编码,它的编码器和解码器都比较易于实现,同时还具有较强的纠错能力,这使得它的使用越来越广泛。

卷积码一般表示为(n,k,K)的形式,即将 k个信息比特编码为 n 个比特的码组,K 为编码约束长度,说明编码过程中相互约束的码段个数。

卷积码编码后的 n 各码元不经与当前组的 k 个信息比特有关,还与前 K-1 个输入组的信息比特有关。

编码过程中相互关联的码元有 K*n 个。

R=k/n 是编码效率。

编码效率和约束长度是衡量卷积码的两个重要参数。

典型的卷积码一般选 n,k 较小,K 值可取较大(>10),但以获得简单而高性能的卷积码。

卷积码的编码描述方式有很多种:冲激响应描述法、生成矩阵描述法、多项式乘积描述法、状态图描述,树图描述,网格图描述等。

2、卷积码Viterbi译码原理卷积码概率译码的基本思路是:以接收码流为基础,逐个计算它与其他所有可能出现的、连续的网格图路径的距离,选出其中可能性最大的一条作为译码估值输出。

概率最大在大多数场合可解释为距离最小,这种最小距离译码体现的正是最大似然的准则。

卷积码的最大似然译码与分组码的最大似然译码在原理上是一样的,但实现方法上略有不同。

卷积码编译实验报告

卷积码编译实验报告

【实验名称】卷积码的编码与译码【实验内容】写一份程序实现卷积码的编码和译码。

【实验原理】卷积码的编码方法是对输入的数据流每次1比特或K比特进行编码,输出N 个编码符号。

但输出的码字的每个码元不仅和当前时刻输入的K个信息有关,也和之前的M个连续输入的信息元有关,因此卷积编码是有记忆的。

而译码则是通过一串码字通过状态流程图或网格图找出唯一的最佳路径进行逆推而得到码元信息。

(这里不再赘述,下面有例子说明)。

【实验流程】(举例说明如下)1、编码过程:本次设计以(2,1,2)卷积码为例。

图1为这种卷积编码器的结构,它的编码方法是:序列依此移入一个两级移位寄存器,编码器每次输入一位信息b,输出端的开关就在c1和c2之间来回切换一次,输出为c1c2,其中c1=b1+b2+b3c2=b1+b3图1(2,1,2)卷积编码器假设寄存器m1、m2的起始状态为全零,则编码器的输入输出时序关系图可用图2来表示。

图2 (2,1,2)卷积编码器输入输出时序如果输入的数据流是101011,则根据上面编码器我们可以得到输出的编码数据流为11 10 00 10 00 01。

.2、解码过程解码是编码的逆过程,了解了编码过程后,理解解码过程的操作就相对容易了。

首先我们根据卷积码的特点,我们采用了两种图解对卷积码进行研究,一种是状态转移图,另一种是网格图。

其状态转移图如图3所示,椭圆里面的数据代表当前状态,箭头方向代表转移的方向,0/11代表输入的码元为0,输出11。

.图3 (2,1,2)卷积编码器状态转移图另一种更为常用的是网格图,横坐标表示时间轴,每一次状态转移利用连接相邻的时间点上的两个状态的有向线段来表示。

图4便是对应的网格图。

图4 (2,1,2)卷积编码器网格图我们解码的思路是由于信息序列和编码序列有着一一对应的关系,而这种关系又唯一对应网格图的一条路径,因此译码就是根据接收序列在网格图上的路径逆推出源码码元信息序列。

但是这样的最大似然译码在现实编码难以实现,因为找出最佳路径用的是逐步比较,把接收序列的第j个分支码字和网格图上相应的两个时刻t1和t2之间进行比较,计算和记录他们的汉明距离等,这样比较分支较多不易实现。

(2,1,2)卷积码的译码设计

(2,1,2)卷积码的译码设计

(2,1,2)卷积码的译码设计前⾔卷积码是由伊莱亚斯(Elias)于1954 年⾸先提出来的。

它充分利⽤了各组之间的相关性,本组的信息元不但决定本组的监督元,⽽且也参与决定以后若⼲组的监督元。

同时在译码过程中,不但从该时刻所收到的码组中提取译码信息,⽽且还利⽤以后若⼲时刻内所收到的码组来提取有关信息。

⽆论从理论上还是实际上均已证明其性能优于线性分组码。

近年来众多有关卷积码研究结果表明,卷积码最有希望实现⾹农信道编码定理。

但卷积码在译码理论及实际应⽤较为复杂,这些缺点限制了其进⼀步发展和应⽤。

维特⽐译码算法由维特⽐(Viterbi)1964年提出,算法实质是最⼤似然译码,但它利⽤了编码⽹格图的特殊结构,在⽹格图中选择⼀条路径,使相应的译码序列与接收到的序列之间的汉明距(即量度)最⼩的⼀种最⼤似然译码⽅法,从⽽⼤⼤降低了计算的复杂性。

⽬前,第三代移动通信系统(3G) 在我国已经开始紧锣密⿎地实施,它带来的⾼速度、⾼品质的⽆线通信服务,将使我们领略到信息技术的⽆穷魅⼒。

信道纠错编码技术作为保证信息可靠传输的技术,在3G各系统中⼴泛采⽤,并且我们现在所使⽤的第⼆代移动通信系统,如GSM、 CDMA 通信系统,还有卫星与空间通信系统⼴泛采⽤了卷积码信道编、译码技术。

本次设计将以(2,1,2)卷积码为例,通过单⽚机,实现卷积码的译码,借助RS232完成单⽚机与单⽚机、单⽚机与计算机的串⼝通信,借助7279完成键盘扫描和数码管显⽰。

第⼀章系统组成及⼯作原理本次设计的(2,1,2)卷积码的译码由89C52单⽚机为⼯具,接收来⾃另⼀单⽚机或计算机的编码信息,通过7279的键盘扫描和数码管显⽰功能可以⽅便地观察到单⽚机接收的信息和译码结果。

其系统框图如下图1-1所⽰。

MAX232芯⽚能实现EIA-RS-232C的正负电压与TTL的⾼低电平之间的转换,通过它能够⽅便实现单⽚机与单⽚机、单⽚机与计算机间的串⼝通信。

HD7279是⼀⽚具有串⾏接⼝的, 可同时驱动8位共阴极数码管的智能显⽰驱动芯⽚, 该芯⽚同时还可连接多达64键的键盘矩阵,单⽚即可独⽴完成显⽰、键盘接⼝的全部功能。

卷积码的译码

卷积码的译码
卷积码的网格图描述:将状态转移图按 时间展开,用于描述从第k时刻的编码器 状态到第k+1时刻的编码状态的转移情况, 以及在转移过程中的输出情况。
有限状态编码的最大似然译码
当编码器的状态数有限时,不同编码路 径必然会有会合的情况。例:一个信息 长度为L的编码,所有可能路径数为2L个, 而对于一个4状态码而言,任一时刻路径 只能经过4个状态,因此大量的路径(当 用状态转移来描述时)是有重合的。 由于码的马氏特性,从某一时刻开始的 后续编码只与该时刻的状态有关,而与 之前如何到达该状态无关。
分段译码与残留路径
一个长度为L的码,在时刻k分为两段,之 前的称为A,之后的称为B。最大似然序列 必存在于从k时刻的M个状态出发(或在时 刻k经过M个状态的)的M*2L-k条路径之中。 而第k时刻到达每个状态都有2k/M条A路径, 显然,从第k时刻状态S出发的最佳路径的 前半段必然是到达该状态的2k/M条A路径中 的最佳A路径。称此最佳A路径为第k时刻 状态S的残留路径。
第八讲
卷积码的译码
回顾
卷积码是对信息流进行编码的一种有记 忆分组的编码方法 记忆有很多种,典型的为线性有限记忆 和线性无限记忆 当记忆为线性时,等效于输入信息流与 冲激响应之间的卷积 可分别用FIR和IIR滤波器来描述 矩阵描述、树图描述和网格图表示
卷积码的概率译码
概率译码:结合信道符号统计特性的译 码方法 一种简单的译码方法:逐分支译码 在码树图中每向前走一步,在决定走哪 一个分支时根据该分支子码与该时刻接 收子码之间的相似程度来判断
堆栈算法的本质
存贮一组可能路径 每次只有最可能的(度量最大的)路径 可以繁衍,同时删去父路径 繁衍出的子路径与其它未繁衍的路径一 起排序 堆栈满时最坏路径被丢弃
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验九 (2,1,5)卷积码编码译码技术一、实验目的1、掌握(2,1,5)卷积码编码译码技术2、了解纠错编码原理。

二、实验内容1、(2,1,5)卷积码编码。

2、(2,1,5)卷积码译码。

三、预备知识1、纠错编码原理。

2、(2,1,5)卷积码的工作原理。

四、实验原理/卷积码是将发送的信息序列通过一个线性的,有限状态的移位寄存器而产生的编码。

通常卷积码的编码器由K级(每级K比特)的移位寄存器和n个线性代数函数发生器(这里是模2加法器)组成。

若以(n,k,m)来描述卷积码,其中k为每次输入到卷积编码器的bit数,n 为每个k元组码字对应的卷积码输出n元组码字,m为编码存储度,也就是卷积编码器的k元组的级数,称m+1= K为编码约束度m称为约束长度。

卷积码将k 元组输入码元编成n元组输出码元,但k和n通常很小,特别适合以串行形式进行传输,时延小。

与分组码不同,卷积码编码生成的n元组元不仅与当前输入的k元组有关,还与前面m-1个输入的k元组有关,编码过程中互相关联的码元个数为n*m。

卷积码的纠错性能随m的增加而增大,而差错率随N的增加而指数下降。

在编码器复杂性相同的情况下,卷积码的性能优于分组码。

编码器随着信息序列不断输入,编码器就不断从一个状态转移到另一个状态并同时输出相应的码序列,所以图3所示状态图可以简单直观的描述编码器的编码过程。

因此通过状态图很容易给出输入信息序列的编码结果,假定输入序列为110100,首先从零状态开始即图示a状态,由于输入信息为“1”,所以下一状态为b并输出“11”,继续输入信息“1”,由图知下一状态为d、输出“01”……其它输入信息依次类推,按照状态转移路径a->b->d->c->b->c->a输出其对应的编码结果“”。

译码方法⒈代数代数译码是将卷积码的一个编码约束长度的码段看作是[n0(m+1),k0(m+1)]线性分组码,每次根据(m+1)分支长接收数字,对相应的最早的那个分支上的信息数字进行估计,然后向前推进一个分支。

上例中信息序列 =(10111),相应的码序列 c=(1)。

若接收序列R=(1),先根据R的前三个分支(101000)和码树中前三个分支长的所有可能的 8条路径(000000…)、(000011…)、(001110…)、(001101…)、(111011…)、(111000…)、(110101…)和(110110…)进行比较,可知(111001)与接收序列(101000)的距离最小,于是判定第 0分支的信息数字为 0。

然后以R的第 1~3分支数字(100001)按同样方法判决,依此类推下去,最后得到信息序列的估值为=(10111),遂实现了纠错。

这种译码法,译码时采用的接收数字长度或译码约束长度为(m+1)n0,所以只能纠正不多于(dmin-1)/2个错误(n长上的)。

实用中多采用反馈择多逻辑译码法实现。

⒉维特比维特比译码是根据接收序列在码的格图上找出一条与接收序列距离(或其他量度)为最小的一种算法。

它和运筹学中求最短路径的算法相类似。

若接收序列为R=(1),译码器从某个状态,例如从状态ɑ出发,每次向右延伸一个分支(对于l<L,从每个节点出发都有 2=2种可能的延伸,其中L是信息序列段数,对l≥L,只有一种可能),并与接收数字相应分支进行比较,计算它们之间的距离,然后将计算所得距离加到被延伸路径的累积距离值中。

对到达每个状态的各条路径(有2=2条)的距离累积值进行比较,保留距离值最小的一条路径,称为幸存路径(当有两条以上取最小值时,可任取其中之一),译码过程如图。

图中标出到达各级节点的幸存路径的距离累积值。

对给定 R的估值序列为=(10111)。

这种算法所保留的路径与接收序列之间的似然概率为最大,所以又称为最大似然译码。

这种译码的译码约束长度常为编码约束长度的数倍,因而可以纠正不多于(df/2)个错误。

维特比译码器的复杂性随m呈指数增大。

实用中m不大于10。

它在卫星和深空通信中有广泛的应用。

在解决码间串扰和数据压缩中也可应用。

⒊ 序贯译码序贯译码是根据接收序列和编码规则,在整个码树中搜索(既可以前进,也可以后退)出一条与接收序列距离(或其他量度)最小的一种算法。

由于它的译码器的复杂性随m值增大而线性增长,在实用中可以选用较大的m值(如20~40)以保证更高的可靠性。

许多深空和海事通信系统都采用序贯译码。

五、实验仿真这里我用c语言实现(2,1,5)卷积码编码,viterbi解码。

六、实验仿真程序#include <>#include ""#define N 34》#include ""#include <>#include<>#define randomize() srand((unsigned)time(NULL))int s[16]={0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};encode(unsigned int *symbols, /*编码输出*/unsigned int *data, /*编码输入*/unsigned int nbytes, /*nbytes=n/16,n为实际输入码字的数目 */ unsigned int startstate /*定义初始化状态*/'){int j;unsigned int input,a0=0,a1=0,a2=0,a3=0;for(j=0;j<nbytes;j++){input=*data;data++;*symbols = input^a0^a1;symbols++;*symbols = input^a0^a2^a3;{symbols++;a3=a2;a2=a1;a1=a0;a0=input;}return 0;}int trandistance(int m, int stat1,int stat2) /*符号m与从state1到state2时输出符号的汉明距离,¥如果state1无法到state2则输出度量值为10000*/{int c;int sym,sym1,sym2;sym1=((stat2>>3)&1)^((stat1>>3)&1)^((stat1>>2)&1);sym2=((stat2>>3)&1)^((stat1>>3)&1)^((stat1>>1)&1)^(stat1&1);sym=(sym1<<1) | sym2;if((((stat1>>3)&1)==((stat2>>2)&1))&&(((stat1>>2)&1)==((stat2>>1)&1))&&( ( (st at1>>1)&1)==(stat2&1)))c=((m&1)^(sym&1))+(((m>> 1)&1)^((sym >> 1)&1));elsec=10000;~return(c);}int traninput(int a,int b) /*状态从a到b时输入卷积码的符号*/{int c;if((((a>>3)&1)==((b>>2)&1))&&(((a>>2)&1)==((b>>1)&1))&&(((a>>1)&1)==(b&1))) c=((b>>3)&1);elsec=-1;"return(c);}int tranoutput(int a,int b) /*状态从a到b时卷积码输出的符号*/{int c,s1,s2;s1=((b>>3)&1)^((a>>3)&1)^((a>>2)&1);s2=((b>>3)&1)^((a>>3)&1)^((a>>1)&1)^(a&1);if((((a>>3)&1)==((b>>2)&1))&&(((a>>2)&1)==((b>>1)&1))&&(((a>>1)&1)==(b&1)) )c=(s1<<1)|s2;else,c=-1;return(c);}void viterbi(int initialstate, /*定义解码器初始状态*/int *viterbiinput, /*解码器输入码字序列*/int *viterbioutput) /*解码器输出码字序列*/{struct sta /*定义网格图中每一点为一个结构体,其元素包括*/{int met; /*转移到此状态累计的度量值*/【int value; /*输入符号 */struct sta *last; /*及指向前一个状态的指针*/ };struct sta state[16][N];struct sta *g;int i,j,p,q,t,r,u,l;for(i=0;i<16;i++) /* 初始化每个状态的度量值*/ {for(j=0;j<N;j++)state[i][j].met=0;、}for(int m=0;m<16;m++){state[m][0].met=trandistance(*viterbiinput,initialstate,s[m]);state[m][0].value=traninput(initialstate,s[m]);state[m][0].last=NULL;}for(t=1;t<N;t++){】for(p=0;p<8;p++)for(q=0;q<16;q++){if((trandistance(viterbiinput[t],s[p],s[q])==10000)||(trandistance(viterbi input[t],s[p+8],s[q])==10000)){ast=NULL;0continue;}else{(intmet1=state[p][t-1].met+trandistance(viterbiinput[t],s[p],s[q]);intmet2=state[p+8][t-1].met+trandistance(viterbiinput[t],s[p+8],s[q]);if(met1>met2){state[q][t].met=met2;state[q][t].value=traninput(s[p+8],s[q]);state[q][t].last=&state[p+8][t-1];}else{state[q][t].met=met1;)state[q][t].value=traninput(s[p],s[q]);state[q][t].last=&state[p][t-1];}}}}r=state[0][N-1].met; /*找出n步后度量值最小的状态,准备回溯路由*/g=&state[0][N-1];)for(u=N;u>0;u--) /*向前递归的找出最大似然路径 */{viterbioutput[u-1]=g->value;g=g->last;}/* for(u=0;u<8;u++)*(viterbioutput+u)=state[u][2].met; */ /*此行程序可用于检测第n列的度量值*/}void decode(unsigned int *input, int *output,int n)|{int viterbiinput[100];int j;for(j=0;j<n+4;j++){viterbiinput[j]=(input[j*2]<<1)|input[j*2+1];//printf("%3d",viterbiinput[j]);}viterbi(s[0],viterbiinput,output);}~void main(){int n=30,i,m,j=0,decodeoutput[100],jj=0;unsigned int encodeinput[100],wrong[10]={0},encodeoutput[100];randomize();for(i=0; i<n; i++)encodeinput[i]=rand()%2;encodeinput[n]=0;encodeinput[n+1]=0;encodeinput[n+2]=0;|encodeinput[n+3]=0;encode(encodeoutput,encodeinput,n+4,s[0]);printf("信息序列 :\n");for(i=0;i<n; i++)printf("%2d",encodeinput[i]);printf("\n");printf("对信息序列编码后的输出 :\n");for(i=0;i<(n+4)*2;i++){`printf("%2d",encodeoutput[i]);if(i%20==19)printf("\n");}printf("\n");decode(encodeoutput,decodeoutput,n+4);printf("无错误出现时对编码输出viterbi译码得到的序列:\n");for(int ii=0;ii<n;ii++)printf("%2d",decodeoutput[ii]);:printf("\n");for(i=0;i<n;i++){if(encodeinput[i]!=decodeoutput[i])jj++;}printf("译错的个数:%d\n",jj);printf("请输入出错的个数\n");scanf("%d",&m);printf("请输入每个出错所在的位数\n");:for(i=0;i<m;i++){scanf("%d",&wrong[m]);if(encodeoutput[wrong[m]]==0)encodeoutput[wrong[m]]=1;elseencodeoutput[wrong[m]]=0;}printf("输入viterbi解码器的待解码序列(即有误的序列) :\n");for(i=0;i<(n+4)*2;i++){%printf("%2d",encodeoutput[i]);if(i%20==19)printf("\n");}printf("\n");decode(encodeoutput,decodeoutput,n+4);printf("经viterbi解码后得到的信息序列:\n");for(i=0;i<n;i++)printf("%2d",decodeoutput[i]);printf("\n");for(i=0;i<n;i++){if(encodeinput[i]!=decodeoutput[i])j++;}printf("译错的个数:%d\n",j);system("pause");}。

相关文档
最新文档