静力学习题答案.

合集下载

《理论力学》静力学典型习题+答案

《理论力学》静力学典型习题+答案

1-3 试画出图示各构造中构件AB的受力争1-4 试画出两构造中构件ABCD的受力争1-5 试画出图 a 和 b 所示刚系统整体各个构件的受力争1-5a1-5b1- 8 在四连杆机构的ABCD的铰链 B 和 C上分别作用有力F1和 F2,机构在图示位置均衡。

试求二力F1和 F2之间的关系。

解:杆 AB,BC, CD为二力杆,受力方向分别沿着各杆端点连线的方向。

解法 1( 分析法 )假定各杆受压,分别选用销钉 B 和 C 为研究对象,受力以下图:yyFBCC xB Fo45BCx30o o F60F2CDF AB F1由共点力系均衡方程,对 B 点有:F x0F2F BC cos4500对 C点有:F x0FBC F1 cos3000解以上二个方程可得:F12 6F2 1.63F23解法 2( 几何法 )分别选用销钉 B 和 C 为研究对象,依据汇交力系均衡条件,作用在 B 和C 点上的力构成关闭的力多边形,以下图。

F F2BCF AB o30o45CD60oFF BC F1对 B 点由几何关系可知:F2F BC cos450对 C 点由几何关系可知:F BC F1 cos300解以上两式可得:F1 1.63F22-3 在图示构造中,二曲杆重不计,曲杆AB 上作用有主动力偶 M。

试求 A 和 C 点处的拘束力。

解: BC为二力杆 ( 受力以下图 ) ,故曲杆 AB 在 B 点处遇到拘束力的方向沿BC 两点连线的方向。

曲杆AB遇到主动力偶M的作用, A 点和 B 点处的拘束力一定构成一个力偶才能使曲杆AB保持均衡。

AB受力以下图,由力偶系作用下刚体的均衡方程有(设力偶逆时针为正):M0 F A10a sin(450 )M 0F A0.354Ma此中:tan 1。

对 BC杆有:F C FB F A0.354M 3aA,C两点拘束力的方向以下图。

2-4解:机构中 AB杆为二力杆,点A,B 出的拘束力方向即可确立。

静力学习题课答案

静力学习题课答案

【1】 梁AB 一端为固定端支座,另一端无约束,这样的梁称为悬臂梁。

它承受均布荷载q 和一集中力P 的作用,如图4-9(a )所示。

已知P =10kN , q =2kN/m ,l =4m ,︒=45α,梁的自重不计,求支座A 的反力。

【解】:取梁AB 为研究对象,其受力图如图4-9(b )所示。

支座反力的指向是假定的,梁上所受的荷载和支座反力组成平面一般力系。

在计算中可将线荷载q 用作用其中心的集中力2qlQ =来代替。

选取坐标系,列平衡方程。

)(kN 07.7707.010cos 0cos - 0A A →=⨯====∑ααP X P X X)(kN 07.11707.010242sin 2 0sin 2 0A A ↑=⨯+⨯=+==--=∑ααP ql Y P qlY Y )( m kN 28.404707.0108423sin 83 0sin 422ql 022A A ⋅=⨯⨯+⨯⨯=⋅+==⋅-⎪⎭⎫⎝⎛+-=∑l P ql m l P l l m M A αα力系既然平衡,则力系中各力在任一轴上的投影代数和必然等于零,力系中各力对任一点之矩的代数和也必然为零。

因此,我们可以列出其它的平衡方程,用来校核计算有无错误。

校核028.40407.114424242A A B =+⨯-⨯⨯=+⋅-⨯=∑m l Y l ql M 可见,Y A 和m A 计算无误。

【2】 钢筋混凝土刚架,所受荷载及支承情况如图4-12(a )所示。

已知kN 20 m,kN 2 kN,10 kN/m,4=⋅===Q m P q ,试求支座处的反力。

【解】:取刚架为研究对象,画其受力图如图4-12(b )所示,图中各支座反力指向都是假设的。

本题有一个力偶荷载,由于力偶在任一轴上投影为零,故写投影方程时不必考虑力偶,由于力偶对平面内任一点的矩都等于力偶矩,故写力矩方程时,可直接将力偶矩m 列入。

设坐标系如图4-12(b )所示,列三个平衡方程)(kN 3446106 06 0A A ←-=⨯--=--==++=∑q P X q P X X)(kN 296418220310461834 036346 0B B A ↑=⨯++⨯+⨯=+++==⨯--⨯-⨯-⨯=∑q m Q P Y q m Q P Y M)(kN 92920 00B A B A ↓-=-=-==-+=∑Y Q Y Q Y Y Y校核3462203102)9(6)34(6363266 C=⨯⨯+-⨯+⨯+-⨯--⨯=⨯+-++-=∑qmQPYXMAA说明计算无误。

工程力学(静力学答案)

工程力学(静力学答案)

第一章习题下列习题中,凡未标出自重的物体,质量不计。

接触处都不计摩擦。

1-1试分别画出下列各物体的受力图。

1-2试分别画出下列各物体系统中的每个物体的受力图。

1-3试分别画出整个系统以及杆BD ,AD ,AB (带滑轮C ,重物E 和一段绳索)的受力图。

1-4构架如图所示,试分别画出杆HED ,杆BDC 及杆AEC 的受力图。

1-5构架如图所示,试分别画出杆BDH ,杆AB ,销钉A 及整个系统的受力图。

1-6构架如图所示,试分别画出杆AEB ,销钉A 及整个系统的受力图。

1-7构架如图所示,试分别画出杆AEB ,销钉C ,销钉A 及整个系统的受力图。

1-8结构如图所示,力P 作用在销钉C 上,试分别画出AC ,BCE 及DEH 部分的受力图。

参考答案1-1解:1-2解:1-3解:1-4解:1-5解:1-6解:1-7解:1-8解:第二章习题参考答案2-1解:由解析法,23cos 80RX F X P P N θ==+=∑ 故:22161.2R RX RY F F F N =+=2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有故:223R RX RY F F F KN =+=方向沿OB 。

2-3解:所有杆件均为二力杆件,受力沿直杆轴线。

(a )由平衡方程有:联立上二式,解得:0.577AB F W=(拉力) 1.155AC F W =(压力)(b )由平衡方程有:联立上二式,解得:1.064AB F W=(拉力) 0.364AC F W =(压力)(c )由平衡方程有:联立上二式,解得:0.5AB F W =(拉力)0.866AC F W =(压力)(d )由平衡方程有:联立上二式,解得:0.577AB F W =(拉力)0.577AC F W =(拉力)2-4解:(a )受力分析如图所示:由0x =∑224cos 45042RA F P ⋅-=+由0Y =∑222sin 45042RA RB F F P ⋅+-=+(b)解:受力分析如图所示:由联立上二式,得:2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN =(压力)5RB F KN =(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G =,2AC F G =由0x =∑cos 0AC r F F α-=由0Y =∑sin 0AC N F F W α+-=2-7解:受力分析如图所示,取左半部分为研究对象由0x =∑cos 45cos 450RA CB P F F --=联立后,解得:0.707RA F P =由二力平衡定理0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由0x =∑cos 60cos300AC AB F F W ⋅--=联立上二式,解得:7.32AB F KN =-(受压)27.3AC F KN =(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由0x =∑sin cos 0DB T W αα-=(2)取B 点列平衡方程由0Y =∑sin cos 0BD T T αα'-=2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=取C 为研究对象: 由0x =∑cos sin sin 0BC DC CE F F F ααα'--=由0Y =∑sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BC BC F F '=解得:取E 为研究对象: 由0Y =∑cos 0NH CE F F α'-=CE CE F F '=故有:2-11解:取A 点平衡: 联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:由对称性及AD AD F F '=2-12解:整体受力交于O 点,列O 点平衡由0x =∑cos cos300RA DC F F P α+-=联立上二式得:2.92RA F KN = 1.33DC F KN =(压力)列C 点平衡联立上二式得:1.67AC F KN =(拉力) 1.0BC F KN =-(压力)2-13解:(1)取DEH 部分,对H 点列平衡 联立方程后解得:5RD F Q =(2)取ABCE 部分,对C 点列平衡且RE RE F F '= 联立上面各式得:22RA F Q =(3)取BCE 部分。

静力学习题及答案

静力学习题及答案

04
平面任意力系
平面任意力系简化及结果分析
主矢和主矩的概念及计算 简化结果的判断方法
简化中心的选取原则
举例分析平面任意力系的 简化过程
平面任意力系平衡条件及方程
平面任意力系平衡的必要与 充分条件
平衡方程的应用举例
平衡方程的建立及求解方法
特殊情况下平衡方程的应用
平面任意力系平衡问题解法举例
01
力偶性质
力偶没有合力,所以力偶不能用一个力来代替,也不能与一个力来平衡;力偶对其作用面内任一点之矩恒等于力 偶矩,且与矩心位置无关;在同一平面内的两个力偶,如果它们的力偶矩大小相等,转向相同,则这两个力偶等 效。
平面力偶系合成与平衡条件
平面力偶系合成
若干个在同一平面内的力偶组成平面力偶系,可依次用矢量合成的方法求出各力偶的合力偶矩,再求 出这些合力偶矩的矢量和。
80%
解法一
几何法。通过作力多边形或力三 角形,利用几何关系求解未知力 。
100%
解法二
解析法。根据平衡方程列出方程 组,通过求解方程组得到未知量 。
80%
解法三
图解法。在图上按比例作出各力 的图示,利用平行四边形法则或 三角形法则求解未知力。
03
平面力偶系
力偶及其性质
力偶定义
由两个大小相等、方向相反且不共线的平行力组成的力系。
力的单位
在国际单位制中,力的单位是牛顿(N)。
静力学公理及其推论
01
02
静力学公理:作用于刚体 的两个力,使刚体保持平 衡的必要和充分条件是: 这两个力大小相等、方向 相反,且作用在同一直线 上。
静力学公理的推论
03
04
05
二力平衡条件:作用在刚 体上的两个力平衡的必要 和充分条件是:这两个力 的大小相等、方向相反, 且作用在同一直线上。

《理论力学》静力学典型习题+答案00

《理论力学》静力学典型习题+答案00

1-3 试画出图示各结构中构件AB的受力图1-4 试画出两结构中构件ABCD的受力图1-5 试画出图a和b所示刚体系整体各个构件的受力图1-5a1-5b1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。

试求二力F 1和F 2之间的关系。

解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。

解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示:由共点力系平衡方程,对B 点有:∑=0x F 045cos 02=-BC F F对C 点有:∑=0x F 030cos 01=-F F BC解以上二个方程可得:22163.1362F F F ==解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。

对B 点由几何关系可知:0245cos BC F F =对C 点由几何关系可知:0130cos F F BC =解以上两式可得:2163.1F F =2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。

试求A 和C 点处的约束力。

解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。

曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。

AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):0=∑M 0)45sin(100=-+⋅⋅M a F A θ aM F A 354.0=其中:31tan =θ。

对BC 杆有:aM F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。

2-4FF解:机构中AB杆为二力杆,点A,B出的约束力方向即可确定。

由力偶系作用下刚体的平衡条件,点O,C处的约束力方向也可确定,各杆的受力如图所示。

静力学练习题及参考答案

静力学练习题及参考答案

静力学练习题及参考答案1. 问题描述:一根长度为L的均质杆以一端固定在墙上,另一端悬挂一重物。

重物造成的杆的弯曲应力最大为σ。

杆的质量可以忽略不计。

计算重物的质量m。

解答:根据静力学原理,杆的弯曲应力可以用公式计算:σ = M / S,其中M是杆的弯矩,S是杆的截面横截面积。

因为杆是均质杆,所以它的截面横截面积在整个杆上都是相等的。

设杆的截面横截面积为A。

杆的弯矩M可以通过杆的长度L和重物的力矩T计算得到:M = T * (L/2)。

代入上面的公式,我们可以得到:σ = (T * (L/2)) / A。

根据题目的描述,我们可以得到如下等式:σ = (m * g * (L/2)) / A,其中g是重力加速度。

我们可以将这个等式转换成求解未知质量m的方程。

将等式两边的A乘以m,并将等式两边的m乘以g,我们可以得到如下方程:m^2 = (2 * σ * A) / (g * L)解这个方程,我们可以求得未知质量m。

2. 问题描述:一根均质杆的长度为L,质量为M。

杆的一端固定在墙上,另一端悬挂一重物。

杆与地面的夹角为θ。

重物造成的杆的弯曲应力最大为σ。

求重物的质量m。

解答:在这个问题中,除了重物的力矩,还需要考虑到重力对杆的力矩。

由于杆是均质杆,其质量可以均匀分布在整个杆上。

假设杆上的每个微小质量元都受到与其距离一致的力矩。

重物造成的力矩可以用公式计算:M1 = m * g * (L/2) * sinθ,其中g 是重力加速度。

由于杆是均质杆,它的质心位于杆的中点。

因此重力对杆的力矩可以用公式计算:M2 = M * g * (L/2) * cosθ。

根据静力学的原理,杆的弯曲应力可以用公式计算:σ = M / S,其中M是杆的弯矩,S是杆的截面横截面积。

在这个问题中,我们可以将弯曲应力的计算公式推广到杆的中点(也就是质心):σ = (M1 + M2) / S代入上面的公式,我们可以得到:σ = ((m * g * (L/2) * sinθ) + (M *g * (L/2) * cosθ)) / S根据题目的描述,我们可以得到如下等式:σ = ((m * g * (L/2) * sinθ) + (M * g * (L/2) * cosθ)) / (A / 2),其中A是杆的横截面积。

静力学习题带详解答案

静力学习题带详解答案

2012-2013学年度???学校7月月考卷1.如图所示,轻绳AB 能承受的最大拉力为100N ,在它下面悬挂一重为50N 的重物,分两种情况缓慢地拉起重物。

第一次,施加一水平方向的力F 作用于轻绳AB 的O 点;第二次用拴有光滑小环的绳子,且绳子所能承受的最大拉力也为50N 。

绳子刚好断裂时,绳AB 上部分与竖直方向的夹角分别为1θ和2θ,关于两者大小关系的说法中正确的是( )A .21θθ>B . 21θθ=C .21θθ<D .无法确定 【答案】B 【解析】 试题分析:在缓慢向右拉动的过程中,OB 段绳承受的拉力等于物重G =50N ,不会断裂;当OA 段绳与竖直方向的夹角增大到θ时,承受的拉力达到最大F m =100N 时断裂。

断裂前有F 与F m 的合力大小等于G ,如右图。

则F m cos θ=G解得:cos θ=0.5,θ=60°,当用拴有光滑小环的绳子,两端绳子拉力总是相等,所以OA 和OB 不会断裂,拉力大小总等于50N ,但当OA 段与竖直方向夹角为60°时,水平向右的绳子拉力增大到50N ,开始断裂,所以B 选项正确考点:考查力的合成与分解点评:难度较大,本题的关键是要明确绳子的连接方式的不同,引起绳子拉力的不同,分为系死扣和用环连接两种情况 2.一个截面是直角三角形的木块放在水平地面上,在斜面上放一个光滑球,球的一侧靠在竖直墙上,木块处于静止,如图所示, 若在光滑球的最高点再施加一个竖直向下的力,木块仍处于静止,则木块对地面的压力F N 和摩擦力F f 的变化情况是 ()A F N 增大,F f 增大B F N 增大,F f 不变C F N 不变,F f 增大D F N 不变,F f 不变 【答案】A 【解析】试题分析:受力分析须严密,外部作用看整体,互相作用要隔离.找施力物体防“添力”,顺序分析防“漏力”;分力和合力避免重复,性质力、效果力避免重复。

《理论力学》静力学典型习题+答案

《理论力学》静力学典型习题+答案

1-3 试画出图示各结构中构件AB的受力图1-4 试画出两结构中构件ABCD的受力图1-5 试画出图a和b所示刚体系整体各个构件的受力图1-5a1-5b1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。

试求二力F 1和F 2之间的关系。

解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。

解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示:由共点力系平衡方程,对B 点有:∑=0x F 045cos 02=-BC F F对C 点有:∑=0x F 030cos 01=-F F BC解以上二个方程可得:22163.1362F F F==解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。

对B 点由几何关系可知:0245cos BC F F =对C 点由几何关系可知: 0130cos F F BC =解以上两式可得:2163.1F F =2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。

试求A 和C 点处的约束力。

解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。

曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。

AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):0=∑M 0)45sin(100=-+⋅⋅M a F A θ aM F A 354.0=其中:31tan=θ。

对BC 杆有:aM F F F A B C 354.0===A ,C 两点约束力的方向如图所示。

2-4FF解:机构中AB杆为二力杆,点A,B出的约束力方向即可确定。

由力偶系作用下刚体的平衡条件,点O,C处的约束力方向也可确定,各杆的受力如图所示。

静力学习题及答案

静力学习题及答案

静力学习题及答案静力学习题及答案静力学是力学的一个重要分支,研究物体在静止状态下的平衡条件和力的作用。

在学习静力学的过程中,我们常常会遇到一些练习题,通过解答这些问题可以帮助我们更好地理解和掌握静力学的基本原理和方法。

本文将给出一些常见的静力学学习题及其答案,希望对大家的学习有所帮助。

1. 简支梁上的均匀物体问题:一根质量为m、长度为L的均匀杆,两端分别简支在两个支点上,杆的中点处有一个质量为M的物体悬挂在上面。

求支点对杆的反力。

解答:首先我们可以根据杆的对称性得出,两个支点对杆的反力大小相等,记为R。

然后我们可以根据力的平衡条件得出以下方程:在x方向上:0 = R + R在y方向上:0 = Mg + 2R解方程得到:R = Mg/2所以支点对杆的反力大小为Mg/2。

2. 斜面上的物体问题:一个质量为m的物体静止放置在一个倾斜角为θ的光滑斜面上,斜面的倾角方向与水平方向的夹角为α。

求物体受到的斜面支持力和重力的合力大小。

解答:首先我们可以将物体的重力分解为斜面方向和垂直斜面方向的分力。

重力沿斜面方向的分力为mg*sin(α),垂直斜面方向的分力为mg*cos(α)。

根据力的平衡条件,物体在斜面上的合力应该为零。

所以斜面支持力的大小等于物体在斜面方向上的重力分力大小,即斜面支持力的大小为mg*sin(α)。

3. 悬挂物体的倾斜角问题:一个质量为m的物体悬挂在两个长度分别为L1和L2的绳子上,绳子的另一端分别固定在两个点上,两个点之间的距离为L。

求物体的倾斜角θ。

解答:首先我们可以根据力的平衡条件得出以下方程:在x方向上:0 = T1*sin(θ) - T2*sin(θ)在y方向上:0 = T1*cos(θ) +T2*cos(θ) - mg其中T1和T2分别为两条绳子的张力。

解方程得到:T1 = T2 = mg/(2*cos(θ))根据三角函数的定义,我们可以得到:L1/L = sin(θ) 和L2/L = cos(θ)将上面的方程代入,解方程得到:θ = arctan(L1/L2)通过解答这些静力学学习题,我们可以更好地理解和应用静力学的基本原理和方法。

工程力学课后习题答案(静力学和材料力学)

工程力学课后习题答案(静力学和材料力学)

1 一 3 试画出图示各构件的受力图。
F
D
习题 1-3 图
C
F
D
C
A
B
FA
FB
习题 1-3a 解 1 图
F Ax
A
B
FAy
FB
习题 1-3a 解 2 图
C
BF
B
D
FB
FD
C
A
FA 习题 1-3b 解 2 图
W
FAx
FAy
习题 1-3c 解图
F
A
A
F
α
B C
FA
D
FAFD 习题 1-3d 解 2 图
FB2 x
B
FDy
C FB2 y
F Dx D
W
习题 1-4b 解 2 图
F'B1
B
F'B2x
F'B2 y F1
A B
F'B2x
习题 1-4c 解 1 图
F1 F'B2 y
FDx D FDy
F'B2x B
C
F'B2 y
W
F'B2 B
习题 1-4c 解 2 图
习题 1-4b 解 3 图
FA
A
B
F B1
习题 1-4d 解 1 图
可推出图(b)中 FAB = 10FDB = 100F = 80 kN。
FED αD
FDB FD′ B
FCB
α
B
F 习题 1-12 解 1 图
F AB 习题 1-12 解 2 图
1—13 杆 AB 及其两端滚子的整体重心在 G 点,滚子搁置在倾斜的光滑刚性平面上,如

理论力学 静力学 习题答案

理论力学 静力学 习题答案

习题:1-1(b)、(c)、(d),1-2(a)、(l)1-1 画出下列各图中物体A,ABC 或构件AB,AC 的受力图。

未画重力的各物体的自重不计,所有接触处均为光滑接触。

1-2 画出下列每个标注字符的物体的受力图。

题图中未画重力的各物体的自重不计,所有接触处均为光滑接触。

习题:2-3,2-5,2-6,2-8,2-12,2-14,2-18,2-10,2-402-3 如图示刚架的点B 作用一水平力F,刚架重量略去不计。

求支座A,D 的约束力F A和F D。

解:一、取刚架为研究对象,画受力图,如图(b)。

二、列平衡方程,求支座 A,D 的约束力 F A 和F D。

由三力平衡汇交定理,支座A 的约束力F A 必通过点C,方向如图(b)所示。

取坐标系Cxy ,由平衡理论得式(1)、(2)联立,解得2-5 图所示为一拨桩装置。

在木桩的点 A上系一绳,将绳的另一端固定在点C,在绳的点B 系另一绳BE,将它的另一端固定在点 E。

然后在绳的点 D 用力向下拉,使绳的 BD 段水平,AB 段铅直,DE 段与水平线、CB 段与铅直线间成等角θ= 0.1 rad(当 θ很小时,tanθ≈θ)。

如向下的拉力 F =800 N,求绳 AB 作用于桩上的拉力。

解:一、研究节点D,坐标及受力如图(b)二、列平衡方程,求 F DB解得讨论:也可以向垂直于F DE 方向投影,直接得三、研究节点 B ,坐标及受力如图(c) 四、列平衡方程,求 F AB0xF =∑,'sin 0BC DB F F θ-=0yF=∑,cos 0BC AB F F θ-=解得 80kN AB F =2-6 在图示结构中,各构件的自重略去不计,在构件BC 上作用一力偶矩为M 的力偶,各尺寸如图。

求支座A 的约束力。

解:一、研究对象:BC ,受力如图(b ) 二、列平衡方程,求F B 、F C 为构成约束力偶,有三、研究对象:ADC ,受力如图(c ) 四、列平衡方程,求 F A(方向如图)2-8 已知梁AB 上作用一力偶,力偶矩为M,梁长为l ,梁重不计。

工程力学--静力学第4版 第五章习题答案

工程力学--静力学第4版 第五章习题答案

第五章习题5-1 重为W=100N,与水平面间的摩擦因数f=0.3,(a)问当水平力P=10N时,物体受多大的摩擦力,(b)当P=30N时,物体受多大的摩擦力?(c)当P=50N时,物体受多大的摩擦力?5-2 判断下列图中两物体能否平衡?并问这两个物体所受的摩擦力的大小和方向。

已知:(a)物体重W=1000N,拉力P=200N,f=0.3;(b)物体重W=200N,拉力P=500N,f=0.3。

5-3 重为W的物体放在倾角为α的斜面上,物体与斜面间的摩擦角为ρ,且α>ρ。

如在物体上作用一力Q,此力与斜面平行。

试求能使物体保持平衡的力Qde 最大值和最小值。

5-4 在轴上作用一力偶,其力偶矩为m=-1000N.m,有一半径为r=25cm的制动轮装在轴上,制动轮与制动块间的摩擦因数f=0.25。

试问制动时,制动块对制动轮的压力N至少应为多大?5-5 两物块A和B重叠放在粗糙的水平面上,在上面的物块A的顶上作用一斜向的力P。

已知:A重1000N,B重2000N,A与B之间的摩擦因数f1=0.5,B与地面之间的摩擦因数f2=0.2。

问当P=600N时,是物块A相对物块B运动呢?还是A、B物块一起相对地面C运动?5-6 一夹板锤重500N,靠两滚轮与锤杆间的摩擦力提起。

已知摩擦因数f=0.4,试问当锤匀速上升时,每边应加正应力(或法向反力)为若干?5-7 尖劈顶重装置如图所示,重块与尖劈间的摩擦因数f(其他有滚珠处表示光滑)。

求:(1)顶住重物所需Q之值(P、α已知);(2)使重物不向上滑动所需Q。

注:在地质上按板块理论,太平洋板块向亚洲大陆斜插下去,在计算太平洋板块所需的力时,可取图示模型。

解:取整体∑Fy =0 FNA-P=0∴FNA=P当F<Q1时锲块A向右运动,图(b)力三角形如图(d)当F>Q2时锲块A向左运动,图(c)力三角形如图(e)5-8 图示为轧机的两个压辊,其直径均为d=50cm,两棍间的间隙a=0.5cm,两轧辊转动方向相反,如图上箭头所示。

静力学习题及答案

静力学习题及答案
∑MD=0, ∑Y=0, 得 NC×2-
1 2 q 2 =0
2
D
C
D ND1 NC ND1′
NC-ND1-q×2=0
ND1=-2kN, NC=2kN
M
A B
ND2′
2、取D点为研究对象 ∑Y=0, ND2′+ND1′-P=0 ND2′=7kN 3、取AD杆为研究对象 ∑MA=0, ∑Y=0,
D
YA
XB B YA M A XA YB
对BD杆,有 ∑M B= 0 , P· cos45°-ND· cos45°+F· sin45°= 0 L/2· L· L· ∑Y = 0, P /2-ND+F = 0 ND -P-Y B′= 0 Fmax =μs· D N 所以 (1) (2) (3)
P F YB′ B XB′
取abbd杆为研究对象对ab杆有ma0mybl0ybml2002100kn对bd杆对bd杆有m有pdbybxbndfb0pl2cos45ndlcos45flsin450p2ndf01y0ndpyb02fmaxsnd3所以p2pybspyb0p0410001400knp400kn四图示结构由丁字梁abc直梁ce与支杆dh组成cd点为铰接均不计自重
MA M q XC q M E 45° D SD YC SD C P 30 ° B A C XA
E
45° D
解: 1、取CE杆为研究对象 ∑MC=0, SD=(M+ M+
1 2 q2 1 2
2
q2
2
-SDsin45°×2=0
50 200 2 2 sin 45
)÷sin45°×2=
=225
一、在图示平面力系中,已知:F1 = 10N,F2 =40N,F3 = 40N,M = 30N· m。 试求其合力,并画在图上(图中长度单位为米) 解:将力系向O点简化 主矢: R x = F2-F1 = 40-10 = 30N R y = -F3 = -40N 2 R ′= R x 2 R y=50N 主矩: MO =(F1 +F2 +F3)×3+M = (10+40+40)×3+30 = 300N· m 合力的作用线至O点的距离 d = MO / R′=6m=OO′ 合力的方向: cos(R,i )= R x / R =0.6 ∠(R,i )=53.13°=β cos(R,j )= R y / R =-0.8 ∠(R,j)=143.13=γ

《静力学习题答案》课件

《静力学习题答案》课件
通过力的合成与分解,列出平衡方程,求解未知 量。
04
力的矩和力矩平衡
力矩的概念和性质
总结词 理解力矩的概念和性质是解决静 力学问题的关键。
力矩的简化表达 在静力学中,通常使用标量表达 力矩,即力矩等于力和垂直于作 用线到转动轴距离的乘积。
力矩的定义 力矩是力和力臂的乘积,表示力 对物体转动作用的量。
静力学基本原理
二力平衡原理
三力平衡定理
一个刚体受两个力作用处于平衡状态 时,这两个力必定大小相等、方向相 反且作用在同一直线上。
一个刚体受三个力作用处于平衡状态 时,这三个力必构成一平面三角形, 且其中任意两个力的合力与第三个力 大小相等、方向相反。
力的可传递性原理
对于通过刚体中心的力,加在刚体上 的力可以沿其作用线移至刚体上任一 点,而不改变该力对刚体的作用效应 。
思维拓展
对于进阶习题,答案解析将不仅局限 于题目的解答,还将进行适当的思维 拓展,引导学生思考更多可能性,培 养其创新思维和解决问题的能力。
进阶习题答案解析
解题技巧
针对进阶习题的特点,答案解析将总结和提炼一些实用的 解题技巧和方法,帮助学生更快更准确地解答题目。
进阶习题答案解析
习题答案
进阶习题答案解析同样将提供完整的 习题答案,并附有详细的解题过程和 思路,方便学生参考和学习。
静力学问题分类
平面问题与空间问题
平面问题是指所有外力都作用在物体某一平面内的问题, 空间问题则是指外力作用在物体三维空间内的问题。
静定问题与静不定问题
静定问题是根据给定的静力平衡条件能够完全确定物体所 有未知力的问题;静不定问题则是不能完全确定未知力的 数量或方向的问题。
刚体问题与变形体问题
刚体问题是指研究刚体的平衡问题,变形体问题则是指研 究物体在受力后发生变形的问题。

工程力学(静力学和材料力学)课后习题答案

工程力学(静力学和材料力学)课后习题答案

工程力学(静力学与材料力学)习题详细解答(第1章)(a) (b) 习题1-1图第1章 静力学基础1一1 图a 和b 所示分别为正交坐标系11y Ox 与斜交坐标系22y Ox 。

试将同一个力F 分别在两中坐标系中分解和投影,比较两种情形下所得的分力与投影。

解:图(a ):11 sin cos j i F ααF F +=分力:11 cos i F αF x = , 11 sin j F αF y = 投影:αcos 1F F x = , αsin 1F F y =讨论:ϕ= 90°时,投影与分力的模相等;分力是矢量,投影是代数量。

图(b ): 分力:22)tan sin cos (i F ϕααF F x −= , 22sin sin j F ϕαF y =投影:αcos 2F F x = , )cos(2αϕ−=F F y讨论:ϕ≠90°时,投影与分量的模不等。

1一2 试画出图a 和b 两种情形下各构件的受力图,并加以比较。

比较:解a 图与解b 图,两种情形下受力不同,二者的F R D 值大小也不同。

DR习题1-2b 解图DR习题1-2a 解2图C习题1-2a 解1图(a) (b)习题1-2图1一3 试画出图示各构件的受力图。

习题1-3图B F 习题1-3a 解2图 B习题1-3a 解1图习题1-3b 解1图F Ay Ax 习题1-3c 解图 A习题1-3b 解2图习题1-3d 解1图习题1-3e 解1图习题1-3e 解2图1-4 图a 所示为三角架结构。

荷载F 1作用在B 铰上。

AB 杆不计自重,BD 杆自重为W ,作用在杆的中点。

试画出图b 、c 、d 所示的隔离体的受力图,并加以讨论。

习题1-4图1习题1-3f 解1图F习题1-3e 解3图'A习题1-3f 解2图1O 习题1-3f 解3图F F'F 1习题1-4d 解2图F y B 21习题1-4c 解1图 AA B 1B FDx y2B 习题1-4b 解2图 1习题1-4b 解3图 F y B 2习题1-4c 解2图 F A B1B FAxF'习题1-5b 解3图E D(a-3)E B F习题1-5b 解2图习题1-5b 解1图'AxFF B习题1-5c 解图1一5 试画出图示结构中各杆的受力图。

工程力学第4版(静力学)答案

工程力学第4版(静力学)答案
工程力学(第四版)--静力学 北京科技大学、东北大学
第一章 习题
下列习题中,凡未标出自重的物体,质量不计。接触处都不计摩擦。 1-1 试分别画出下列各物体的受力图。
1-2 试分别画出下列各物体系统中的每个物体的受力图。
工程力学(第四版)--静力学 北京科技大学、东北大学
1-3 试分别画出整个系统以及杆 BD,AD,AB(带滑轮 C,重物 E 和一 段绳索)的受力图。
工程力学(第四版)--静力学 北京科技大学、东北大学
联立上二式,且有 FBC FBC 解得:
FCE

P 2

cos sin2

1 cos

取 E 为研究对象:
由 Y 0 FNH FCE cos 0
FCE FCE 故有:
FNH

P cos 2 sin2
FRC FRE 2 FRB2
2Q2 2Q P2
8Q2 4PQ P2 2-14 解:(1)对 A 球列平衡方程
工程力学(第四版)--静力学 北京科技大学、东北大学
x 0 FAB cos FNA sin 0 (1) Y 0 FNA cos FAB sin 2P 0 (2)
2-9 解:各处全为柔索约束,故反力全为拉力,以 D,B 点分别列平衡方 程
(1)取 D 点,列平衡方程
由 x 0 TDB sin W cos 0
工程力学(第四版)--静力学 北京科技大学、东北大学
TDB Wctg 0
(2)取 B 点列平衡方程
由 Y 0 T sin TBD cos 0
F G , FNA FNB
由M 0
FNA 0.8 G 0.3 0

(完整版)静力学基础习题及答案

(完整版)静力学基础习题及答案

静力学基础一、判断题1.外力偶作用的刚结点处,各杆端弯矩的代数和为零。

(×)2.刚体是指在外力的作用下大小和形状不变的物体。

(√)3.在刚体上加上(或减)一个任意力,对刚体的作用效应不会改变。

(×)4.一对等值、反向,作用线平行且不共线的力组成的力称为力偶。

(√)5.固定端约束的反力为一个力和一个力偶。

(×)6.力的可传性原理和加减平衡力系公理只适用于刚体。

(√)7.在同一平面内作用线汇交于一点的三个力构成的力系必定平衡。

(×)8.力偶只能使刚体转动,而不能使刚体移动。

(√)9.表示物体受力情况全貌的简图叫受力图。

(√)10.图1中F对 O点之矩为m0 (F) = FL 。

(×)图 1二、选择题1. 下列说法正确的是( C )A、工程力学中我们把所有的物体都抽象化为变形体。

B、在工程力学中我们把所有的物体都抽象化为刚体。

C、稳定性是指结构或构件保持原有平衡状态。

D、工程力学是在塑性范围内,大变形情况下研究其承截能力。

2.下列说法不正确的是( A )A、力偶在任何坐标轴上的投形恒为零。

B、力可以平移到刚体内的任意一点。

C、力使物体绕某一点转动的效应取决于力的大小和力作用线到该点的垂直距离。

D、力系的合力在某一轴上的投形等于各分力在同一轴上投形的代数和。

3.依据力的可传性原理,下列说法正确的是( D )A、力可以沿作用线移动到物体内的任意一点。

B、力可以沿作用线移动到任何一点。

C、力不可以沿作用线移动。

D、力可以沿作用线移动到刚体内的任意一点。

4.两直角刚杆AC、CB支承如图,在铰C处受力F作用,则A、B两处约束力与x轴正向所成的夹角α、β分别为:α=___B___,β=___D___。

A、30°;B、45°;C、90°;D、135°。

5.下列正确的说法是。

( D )图 2A、工程力学中,将物体抽象为刚体。

B、工程力学中,将物体抽象为变形体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S2 0 S4 0
F
500mm
D
C
MCC (F) 0 S6 0
MBC (F) 0
A
S4
S5

B

500 S1 500 F 0 S1 F
M AB (F) 0
S6
S1
S2
S3


1000 S5 1000 F 0 S5 F
M AD (F) 0 500 S3 500 S5 0
B CD
列平衡方程
Fx 0 , FBA cos FBC cos 0
Fy 0 , FBA sin FBC sin F 0
y
解方程得杆AB,BC所受的力
F
B
x

FBC
FBA FBC

F 2 sin

2. 选压块C为研究对象,受力分析如图。
列平衡方程
M 0 F 0
M Fmax r 0
Fmax fN
Fmax

M r
N Fmax M
f
fr
其次,以制动杆AB为研究对象, 受力分 析如图
M A F 0
N a Fmax e Pmin l 0
Fmax fN
Pmin

节点C
Fx 0, F4 cos 30o F1cos 30o 0
Fy 0, F3 (F1 F4)sin 30o 0
节点D
Fx 0, F5 F2 0
解上述5个议程得
F1 10 kN, F2 8.66 kN, F3 10 kN F4 10 kN, F5 8.66 kN
Fx 0 , FCx FCB cos 0 Fy 0 , FCB sin FCy 0
y
FCB

C FCx x
解方程得
FCy
F cos F
FCx
2 sin


cot 2
1.07
kN
故压块对工件与地面的压力分别与其大小相等。
习题3-6
补充1 平面桁架的尺寸和支座如图,在节点D处受一集中荷载F = 10 kN的作
用。试求桁架各杆件所受的内力。
解:先以整体为研究对象,受力如图。
Fx 0, FAx 0 M A (F ) 0, 2F 4FBy 0
1 A 30°
2m
C 4
3 B
D F 2m
FBy 5 kN

0
S4 1 S1 6
S6
3 C'
S5
5
30o S3
S2
4
2
S1

2M 3a
A'
30o
B'
M AC (F ) 0
3 2
a
S2

3 2
a
1 2
S5

0
M AB (F ) 0

3 2
a
S3

3 2
a
1 2
S6

0
S2

2M 3a
S3

2M 3a
5.2 如图所示,重为FW的梯子AB,其一端靠在光滑的墙壁上,另 一端搁在粗糙的水平地面上,静摩擦因数为fs,欲使梯子不
S3 F
4-17 一等边三角形板边长为a , 用六根杆支承成水平位置如图
所示.若在板内作用一力偶其矩为M。求各杆的约束反力。
C
A
1
6
A'
M
B
3 C'
5
30o
4
2
30o
B'
C
解:取等边三角形
板为研究对象画
M
A
B
受力图。
S4 1 S1 6
S6
3 C'
S5
5
30o
S3
4
M BB (F ) 0
Fy 0, FAy FBy F 0 FAy 5 kN
C
FAy 1
4 3
FBy
A 30°
B
FAx 2
D5FBiblioteka 再分别以节点A、C、D为研究对象,受力如图。
节点A
Fx 0, FAx F2 F1 cos 30o 0
Fy 0, FAy F1 sin 30o 0
S2
M
3a 2
3 2
S6

0
2
A'
30o
B'
S6


4M 3a
M CC (F ) 0,
M
3a 2
3 2
S4

0
33 M AA (F ) 0 M 2 a 2 S5 0
S4


4M 3a
S5


4M 3a
C
M BC (F ) 0
A
M
B

3 2
a
S1

3 2
a
1 2
S4
FBC
2.画出受力图。
B
30°
x
3.列出平衡方程:
FAB
30°
F
P
Fx 0, Fy 0,
FBCcos 30 FAB F sin 30 0 FBCcos 60 G Fcos 30 0
b
联立求解得
FAB 5.45 kN FBC 74.5 kN
约束力FAB为负值,说明该力实际指向与图上 假定指向相反。即杆AB实际上受拉力。
2-9 如图所示压榨机中,杆AB和BC的长度相等,自重忽略不 计。A , B,C处为铰链连接。已知铰B上受力F=0.3 kN, α=8°。试求压块C对工件D的压榨力的大小。
A

FAB
F
解:1. 选铰B为研究对象,受力分析如图。
FNA
Fs
联立解之得
1
tan

2fs
或 arc cot(2 fs )
例 下图为小型起重机的制动器.已知制动器摩擦块与滑轮表 面间的摩擦系数为f,作用在滑轮上的力偶其力偶矩为M,A和O 都是铰链.几何尺寸如图所示.求制动滑轮所必须的最小力Pmin.
• 解:当滑轮刚能停止转动时, 力的值最小,制动块与滑轮 的摩擦力达到最大值.以滑 轮为研究对象,分析受力. 画受力图.因为滑轮平衡, 故由平衡方程和滑动摩擦 定律可列出:
其中1,4杆受压。
FAy F1
FAx
A
F2
C
F'1 F3 F4
F'3
F'2
D
F5
F
例15 补充2 图示平面桁架,各杆长度均为1m,在节点E,G,F上
分别作用荷载FE=10 kN, FG=7 kN, FF=5 kN。试求杆1、 2、3的内力。
C1 D
2
A
3
E
FE
解:取整体分析
F FF
C
FAy
BA
G
FAx
FG
C
FAy
A
FAx
F1 D
F2
E F3 FE
为求1、2、3杆的内力,可作一截面m – n将三杆截断,选定桁架左半部分为 研究对象。假定所截断的三根杆都受拉力,受力如图所示,为一平面任意力 系。
ME (F) 0, F1 sin 60o 1 FAy 1 0
Fy 0, FAy F2 sin 60o FE 0
1-2
静力学
习题 2-6
平面汇交力系与平面力偶系
A B
30° 30°
C
P
a
利用铰车绕过定滑轮B 的绳子吊起一货物重P = 20 kN,滑轮由两端铰 接的水平刚杆AB和斜刚 杆BC支持于点B 。不计 铰车的自重,试求杆AB 和BC所受的力。
静力学
平面汇交力系与平面力偶系
解:
y
1.取滑轮 B 轴销作为研究对象。
致滑倒,试求倾角 的范围。

以梯子AB为研究对象,受力分析如图。
y
FNB B
使梯子保持静止,必须满足下列平衡方程:
Fx 0,
FNB Fs 0
Fy 0,
FNA FW 0
C
M A F 0,
FW
l cos
2
FNBl sin
0
FW

补充方程
Ax
Fs fs FNA
N a
l
fe
N N M fr
M a fe
Pmin
frl
所以平衡时力P的平衡范围是:
P M a fe
frl
FG
1D
2 3
E
FE
F FF
FBy
B G
FG
Fx 0, FAx FF 0
MB (F) 0, FE 2 FG 1 FF sin 60o 1 FAy 3 0
解得 FAx 5 kN, FAy 7.557 kN
C1 D 2
F FF
例15
A
3
B
E
G
FE
M D (F ) 0,
FE

1 2

F3

sin
60o
1
FAy
1.5

FAx
sin
60o
1

0
解得 F1 8.726 kN, F2 2.821 kN, F3 12.32 kN
相关文档
最新文档