微波技术与天线习题

合集下载

微波技术与天线课后习题答案(西电版)

微波技术与天线课后习题答案(西电版)

★了解同轴线的特性阻抗及分类。

1.4习题及参考解答[I. 1]设一特性阻抗为50 Q的均匀传输线终端接负4k/<=100 Q.求负我反对系数巧・在离负裁0.2入・0.25入及0.5入处的输入阳抗及反对系数分别为多少?解终端反射系数为=& - Z。

= 100 — 50 =丄11 _ K _ 100 + 50 _ T根拥传输线上任怠一恵的反肘糸数和输入阳抗的公贰r(z)= r lC ^和= z。

;兰::二在离负载0.2入.0. 25A> 0.5入反射系数和输入阻抗分别为r(0.2A)= Y“初忌• r(0.25A)MZ.(0.2入)=29.43Z -23.79° Q・ Z in(0.25A) = 25 Q> Z lft(0.5A) = 100 Q[1.2]求内外导体直径分别为0.25 cm和0.75 cm的空气同轴线的持性阻抗。

若在两导体何塡充介电常数匕= 2.25的介质.求其特性阻抗及300 MHz时的波长。

解空气同轴线的持性阻抗为乙=60 In — = 65. 9 Qa塡充相对介电常数为€,=2.25的介质后.英持件阳抗为/=300 MHz时的波长为[1.3]设特性阻抗为乙的无耗传输线的址波比为"滾一个电爪波"•点离负我的距离为人讪.试证明此时终端负我应为r(0.5A) = Y证明根据输入阳抗公式Z: + jZ, tan" 乂Z o + jZ| tan/3 z在距负栈第一个波节点处的阻抗Z /(/“)=—P y Zl— j 乙I "1,3】Z.P将匕式整理即得17I318[I. 4] 何 持性阻抗为Z =50 Q 的无耗均匀传输线•导体间的媒质参敌为 £.=2.25 ・“, = 】,终瑞接仃&=】Q 的负我"/- 100 MHz 时•兀线长度为A/40试求: ①传输线实际长度'②负载终瑞反射系敌;③ 输入端反射系数'④ 输入瑞阻抗.解传输线上的波长= 2 m因而.传输线的实际长度/ = * = 0. 5 m4终瑞反射系数为…R]—Z 。

题库-微波技术与天线

题库-微波技术与天线

微波技术与天线题库一、填空题1. 驻波比的取值范围为;当传输线上全反射时,反射系数为,此时驻波比ρ等于。

2. γ=α+jβ称为,其中α称为,它表示传输线上的波,β称为,它表示传输线上的波。

3. 特性阻抗50欧的均匀传输线终端接负载Z1为20j欧、50欧和20欧时,传输线上分别形10cm,如图所示:Z in=;Z in=;在z=5cm处的输入阻抗Z in=;2.5cm<z<5cm处,Z in呈性。

ρ=。

5. 无耗传输线的终端短路和开路时,阻抗分布曲线的主要区别是终端开路时在终端处等效为谐振电路,终端短路时在终端处等效为谐振电路。

6. 一段长度为l(0<l<λ/4)短路线和开路线的输入阻抗分别呈纯和纯。

7. 阻抗匹配分为阻抗匹配、阻抗匹配和阻抗匹配,它们反映Z0,根据各点在下图所示的阻抗圆( );( );⑤R<Z0,X=0 ( ); ⑥R=Z0,X=0 ( );⑦Г=0 ( ); ⑧SWR=1 ( );⑨=1Γ( ); ⑩ SWR=∞( ).9. 在导行波中, 截止波长λc最长的电磁波模称为该导波系统的主模。

矩形波导的主模为模, 因为该模式具有场结构简单、稳定、频带宽和损耗小等特点, 所以实用时几乎毫无例外地工作在该模式。

10. 与矩形波导一样,圆波导中也只能传输TE波和TM波;模是圆波导的主模,模是圆波导第一个高次模,而模的损耗最低,这三种模式是常用的模式。

11. 在直角坐标系中,TEM波的分量E z和H z为零;TE波的分量为零;TM波的分量为零。

12. 低频电路是参数电路,采用分析方法,微波电路是参数电路,采用分析方法。

13. 简并模式的特点就是具有相同的和不同的。

14. 微带线的弯区段、宽度上的阶变或接头的不连续性可能会导致电路性能的恶化,主要是因为这种不连续性会引入。

15. 写出下列微波元件的名称。

(a) (b) (c) (d)16. 下图(a)为微带威尔金森功分器,特性阻抗等于,其电长度L等于。

中山大学微波技术与天线考试题目

中山大学微波技术与天线考试题目

1.微波波长范围1米~0.1毫米2.无耗传输线特性阻抗sqrt(L/C)3.矩形波导和圆波导的基模分别是TE10,TE114.微带线主要传输的波型为A)TE模B)TEM模C)准TEM模18.带状线主要传输的波形是A)TE模B)TEM模C)准TEM模5.有测量意义的矩阵散射矩阵[S]6.电基本振子近区场与r的关系∝1/r^38.电基本振子远区场与r的关系∝1/r7.下面哪个天线方向性最好A) 八目天线B)平面等角天线C)缝隙天线8.下面哪个天线属于窄带天线A)对数周期天线B)行波天线C)微带天线10.下面哪个天线属于宽带天线A)对数周期天线B)缝隙天线C)微带天线9.标准的矩形微带贴片天线,其贴片尺寸大约为A)0.5B)0.25 C)1.010.弹簧样天线垂直地面方向放置,其辐射波的极化类型为A)垂直极化B)线性极化C)圆极化14.用于雷达收发开关的元器件是A)魔T B)波导分支器C)双分支定向耦合器20. RCS指的是雷达散射截面, 隐形飞机要达到“隐形”的目的,应该A)增大RCS B)RCS减小C)使RCS保持不变11.GPS卫星上使用的对地天线是A)缝隙天线B)螺旋天线C)喇叭天线15. GPS卫星上使用的对地天线是A)智能天线B)轴向螺旋天线C) 法向螺旋天线16. 我们使用的“羊城通”工作频率是13.56MHZ18. 能够被电离层反射的波是A)短波B长波C)超短波19. GNSS(全球导航卫星系统)的波是A)短波B)超短波C)微波12.移动通信的电波传输两路模型中,地面的存在导致接收信号变化的情况是A)快衰减B)慢衰减C)没有影响13.无方向辐射天线发射频率10MHz,传输距离100km,传输损耗大约为:A)50dB B)70dB C)90dB14.RFID工作在13.56M和2.4G的不同频率下,耦合方式分别是怎样的A)磁耦合,电磁耦合B)电磁耦合,电磁耦合C)磁耦合,磁耦合15.在雷达系统中,测量速度的原理是:多普勒效应16.矩形空腔的基本模是TE10117.能实现宽阻抗匹配的是A)λ/4阻抗变化器B)单支节调配器C)多支节调配器(其中k=2π/λ)(其中Z0=50欧姆,β=2π/λ)4 矩形空腔a=5cm, b=4cm, l=6cm,求振荡主模式和振荡频率f0(注:谐振频率f0=c*sqrt(a2+l2)/2al 谐振波长λ0=2al/sqrt(a2+l2)对于矩形波导其震荡主模式就为TE101)解:震荡主模式为:TE101f0=c*sqrt(a2+l2)/2al=3.91*1097.输入功率6W,工作波长3cm,距离30km,发射、接收天线增益均为30dB求:(1)离天线r处最大辐射方向上的场强(2)接收天线功率解:/E0/=(sqrt60P I G i)/r=0.02v/m 3.8*10—8W6.输入功率6W,工作频率10GHz,距离30km,发射天线增益为10dBi、接收天线增益为20dBi 求:(1)离天线r处最大辐射方向上的场强(2)接收天线功率解:2*10-3 3.8*10-11(注:辐射功率为PΣ,输入功率P i,实际发射天线增益系数G i,对于此题10lgG i=30dB,即G i=103 则在离实际天线r处的最大辐射方向上的场强为/E0/=(sqrt60P I G i)/r 接收天线增益系数G R, 有效接收面积A e,则在距离发射天线r处的接收天线所接收的功率为P R=S0*A e=P I G i/4πr2* λ2G R/4π计算G i,单位是dBd时,需+2.56再换算自由空间基本传输损耗L bf=P I/P R,用分贝表示为L bf=10lg P I/P R=32.45+20lgf(MHZ)+20lgr(km)-G i(dB)- G R(dB))。

微波技术与天线习题汇总

微波技术与天线习题汇总
(5)由,则上式变为 (6)令2端口匹配,此时求出和。 (7)令1端口匹配,此时求出和。
解:(1)设1端口和2端口的归一化等效电压和归一化等效电流分别 为、、、;
设1端口的归一化入射波电压、反射波电压、入射波电流、反 射波电流分别为、、、;
设2端口的归一化入射波电压、反射波电压、入射波电流、反射波电 流分别为、、、;
(2)列出基尔霍夫方程
(3)有如下等式 带入上式
(4)则基尔霍夫方程可表示为
解:在接入面有
8、特性阻抗为的均匀无耗传输线,终端接有负载,终端为复阻抗,可 以用以下方法实现阻抗变换器匹配,即在阻抗变换器前并接一段终端短
路线,如下图所示。试求阻抗变换器的特性阻抗及短路线长度。
解:在并联支节的接入面上 带入实际参数,可得: 等式成立,则左侧实数部分等于1/50,虚数部分等于0.
设2端口的归一化入射波电压、反射波电压、入射波电流、反 射波电流分别为、、、;
(2)列出基尔霍夫方程
(3)有如下等式 带入上式
(4)则基尔霍夫方程可表示为
(5)由,则上式变为 (6)令2端口匹配,此时求出和。 (7)令1端口匹配,此时求出和。
13、二端口微波网络图如下图所示,请求出该网络的散射矩阵[S]。
1、证明的周期为。 解: 由 得证
2、证明的周期为。 解: 由 得证
3、设一特性阻抗为50欧姆的均匀传输线终端接负载,求终端反射系数。 在离负载、、处的输入阻抗和反射系数分别为多少? 解: 由公式 将已知条件带入 当 当 当
4、设特性阻抗为的无耗传输线的驻波比为,第一个电压节点离负载的 距离为,试证明此事终端负载应为。 证:波节点处入射波和反射波的相位差为,则
又 有得证
5、试证明无耗传输线上任意相距的两点处的阻抗乘积等于传输线特性 阻抗的平方。 证:

微波技术与天线例题

微波技术与天线例题
如果两个端口所接的特性阻抗均为Z0,则归一化[A]矩阵为
a11 a12 1 Z / Z 0 1 Z a 0 a21 a22 1 0 1
例12:求长度为的均匀传输线段的[S]矩阵。
解:T1和T2面上的归一化反射波电压 和归一化入射波电压有关系 Ze
0.6
解:
导纳圆图yin电长度0.107
逆时针转0.6到0.207
y1 =1.9-j2.08
Z0
Yin 向负载
Y1
Y1= y1/Z0 = (1.9-j2.08)/400=(0.00475-j0.0052)S
6、阻抗匹配 例8(例1-8):设负载阻抗为Z1=100+j50欧接入特性阻抗为Z0=50欧的传输线 上,要用支节调配法实现负载与传输线匹配,求离负载的距离l1及支节的长 O 度l2 。 l1
ZB
I2 + U2 -
U1 Z11 |I 2 0 Z A ZC I1
Z12
U1 |I1 0 Z C Z 21 I2
1
U2 Z 22 |I1 0 Z B Z C I2 Zc Z A Z c Z Zc Z B Zc
1 [Y ] [ Z ] Z AZ B (Z A Z B )ZC
Z inb
Z0 2 Z 01 2 Z0 ZL Z0 4
2
Z0 2Z 0 4 2Z Zb Z0 9 0 2Z 0 4 Z 02 Z 02 9 Z in Z0 Zb 2 Z 2 0 9
9 Z Z0 Z in Z 0 2 0 7 (2) a Z in Z 0 9 Z Z 11 0 0 2 2 Z Z0 Zb Z0 9 0 7 b 2 Zb Z0 11 Z0 Z0 9 2 j2 7 7 or b a e j 2 z a e 4 e j 11 11 Z Z0 0 Z L Z 01 2 1 c Z L Z 01 Z Z 0 3 0 2

《微波技术与天线》习题答案

《微波技术与天线》习题答案

第一章1-1解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> , 此传输线为长线。

1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<< ,此传输线为短线。

1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。

用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。

1-4 解: 特性阻抗050Z ====Ωf=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r Uz U e U e ββ''-'=+()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入33223420220218j j z U eej j j Vππλ-'==+=-+=-()3412020.11200z I j j j A λ'==--=- ()()()34,18cos 2j te z uz t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j te z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L=Z 0∴()()220j z i r U z U e U β''==()()()212321100j j z z Uz e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解: 210.20.2130j L e ccmfπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1inin Z z z ''=∞Γ=(b) ()()0100,0in in Z z Z z ''==ΩΓ=(c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3inin Z z Z z ''==ΩΓ=1-9 解: 1 1.21.510.8ρ+Γ===-Γmax 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-=min1120.2,0.514L z ρππβρλ-'Γ===⨯=+ min1min120.2j z z L e β'-'Γ=-=Γ∴ 2420.20.2j jLeeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=-a) 00252063inZ jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23inZ jZ ctgj π=-=-Ωd) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013oj L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-41-17 解: 1350.7j Le Γ=1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求 min1min100min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5LZ j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =-最短分支线长度为 l=0.174λ()0.516B =-1-19 解: 302.6 1.4,0.3,0.30.16100LL lZ j Y j λ=-===+由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω1.01 1.31in Y j =- ()0.020.026in Y j S =-1-20 解: 12LY j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.311.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577inZ j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5LZ '= 500/2.5200LZ '==Ω(纯电阻)变换段特性阻抗 0316Z '==Ω 1-22 解: 1/0.851.34308.66o o Larctg ϕ=-=-= 由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12Lz ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1inZ j '+= 得 1inZ j '=-向负载方向等效(沿等Γ图)0.25电长度得 1inin Z Z ''='则 ininY Z '''=由inin in Y Y j Z ''''''=+= 得 12in inY Z j j ''''=-=-由负载方向等效0.125电长度(沿等Γ图)得12LY j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。

《微波技术与天线》题集

《微波技术与天线》题集

《微波技术与天线》题集一、选择题(每题2分,共20分)1.微波的频率范围是:A. 300 MHz - 300 GHzB. 300 kHz - 300 MHzC. 300 GHz - 300 THzD. 300 Hz - 300 kHz2.微波在自由空间传播时,其衰减的主要原因是:A. 散射B. 反射C. 绕射D. 折射3.下列哪种天线常用于微波通信?A. 偶极子天线B. 螺旋天线C. 抛物面天线D. 环形天线4.微波传输线中,最常用的传输线是:A. 同轴线B. 双绞线C. 平行线D. 光纤5.微波器件中,用于反射微波的器件是:A. 微波晶体管B. 微波二极管C. 微波反射器D. 微波振荡器6.在微波电路中,常用的介质材料是:A. 导体B. 绝缘体C. 半导体D. 超导体7.微波集成电路(MIC)的主要优点是:A. 高集成度B. 低功耗C. 低成本D. 大尺寸8.微波通信中,用于调制微波信号的常用方法是:A. 调幅B. 调频C. 调相D. 脉冲编码调制9.下列哪种效应是微波加热的主要机制?A. 热辐射效应B. 电磁感应效应C. 介电加热效应D. 光电效应10.在雷达系统中,发射天线的主要作用是:A. 接收目标反射的微波信号B. 发射微波信号照射目标C. 处理接收到的微波信号D. 放大微波信号二、填空题(每空2分,共20分)1.微波的波长范围是_____至_____毫米。

2.微波在自由空间传播时,其传播速度接近光速,约为_____米/秒。

3.抛物面天线的主要优点是具有较高的_____和_____。

4.微波传输线中,同轴线的内导体通常采用_____材料制成。

5.微波器件中,用于产生微波振荡的器件是_____。

6.微波加热中,被加热物体必须是_____材料。

7.微波集成电路(MIC)是在_____基片上制作的微波电路。

8.雷达系统中,接收天线的主要作用是_____。

9.微波通信中,为了减小传输损耗,通常采用_____方式进行传输。

微波技术与天线试卷和答案B

微波技术与天线试卷和答案B

微波技术与天线试卷B一、填空题(每空2分,共40分)1.长线和短线的区别在于:前者为 参数电路,后者为 参数电路。

2.均匀无耗传输线工作状态分三种:(1) (2) (3) 。

3.当传输线的负载为纯电阻R L >Z 0时,第一个电压波腹点在 ;当负载为感性阻抗时,第一个电压波腹点距终端的距离在 范围内。

4. 微波传输系统的阻抗匹配分为两种: 和 。

阻抗匹配的方法中最基本的是采用和 作为匹配网络。

5. 表征微波网络的参量有: ; ; ; ; 。

6. 微波谐振器有别于传统谐振器在于它的 特性。

频率大于300MHz 一般就需要使用微波谐振器,这是由于 使得 等原因。

微波谐振器常见有 和 等类型。

1.分布、集中。

2.行波状态、驻波状态、行驻波状态。

3. 终端、0/4z λ<<4.共扼匹配、无反射匹配、/4λ阻抗匹配器、枝节匹配器 5.阻抗参量;导纳参数、转移参数、散射参数、传输参数。

6.高频率时Q 值高的;高于300MHz 时,传统LC 回路欧姆损耗、介质损耗、辐射损耗增大; Q 值降低; 传输线型;金属波导型二、(20分)长度为3λ/4,特性阻抗为600Ω的双导线,端接负载阻抗300Ω;其输入端电压为600V 。

试画出沿线电压、电流和阻抗的振幅分布图,并求其最大值和最小值。

解答:L Z Z Z Z L L +-=Γ =-1/3=1/3exp(j π) (2分)V V V e e V V e e V d V L L j j L d j L d j L L 450600)3/4()311()4/3()||1()()3(2/3)2(-==-=+=∴Γ+=++-+-Φ+πππββλ (4分)|)(/)(||)(|)]/2cos(3/29/10[450)]2cos(||2||1[|||)(|)]/2cos(3/29/10[450)]2cos(||2||1[|||)(|2/12/122/12/12d I d V d Z d d V d I d d V d V in L L L L L L L L =+=-ΦΓ-Γ+=-=-ΦΓ+Γ+=++λπβλπβ (2分)振幅|V(d)|、|I(d)|、|Zin(d)|随d 的变化图 (4分)(2分) (2分) (2分)(2分)三、计算题(要求写清必要步骤)(共20分,每小题10分)1. 一无耗传输线特性阻抗Ω=500Z ,长度为cm 10,MHz f 800=,假如输入阻抗Ω=60j Z in (1)求出负载阻抗L Z ;(2)为了替代L Z 需用多长的终端短路传输线?(1) 解:2.15060~j j Z in == (2分)cm 5.371080010368=⨯⨯=λ 267.05.3710==λl (2分) 所以,在阻抗圆图中以2.1j 点向负载方向沿等反射系数圆旋转267.0波长数到l Z ~点,Ω==Ω===Γ-==Γ-==Γ+==Γ+=++++300|)(|/|)(||)(|1200|)(|/|)(||)(|5.0|]|1[|||)(|300|]|1[|||)(|1|]|1[|||)(|600|]|1[|||)(|max min min min max max 0min min 0max max d I d V d Z d I d V d Z AZ V d I V V d V AZ V d I VV d V in in L L L L L L L L得到07.1~j Z l -=,故Ω5.535007.1j j Z l -=⨯-=。

微波技术与天线考试试卷

微波技术与天线考试试卷

微波技术与天线考试试卷1.充有$\epsilon_r=2.25$介质的无耗同轴传输线,其内、外导体直径分别为$2a=2$mm,$2b=7$mm,传输线上的特性阻抗$Z=$Z=\frac{60}{\sqrt{\epsilon_r}}\ln\frac{b}{a}=\frac{60}{\sqr t{2.25}}\ln\frac{7}{1}=75\,\Omega$$2.匹配负载中的吸收片平行地放置在波导中电场最大处,在电场作用下吸收片强烈吸收微波能量,使其反射变小。

3.平行$z$轴放置的电基本振子远场区只有$E$和$H$两个分量,它们在空间上垂直,在时间上同相。

4.已知某天线在$E$平面上的方向函数为$F(\theta)=\sin\left(\frac{\pi}{4}\sin\theta-\frac{\pi}{4}\right)$,其半功率波瓣宽度为$2\theta_{0.5}=30^\circ$。

5.旋转抛物面天线由两部分组成,馈源把高频导波能量转变成电磁波能量并投向抛物反射面,而抛物反射面将其投过来的球面波沿抛物面的焦线向反射出去,从而获得很强的定向性。

判断题:1.传输线可分为长线和短线,传输线长度为3cm,当信号频率为20GHz时,该传输线为短线。

(错)2.无耗传输线只有终端开路和终端短路两种情况下才能形成纯驻波状态。

(错)3.由于沿Smith圆图转一圈对应$\lambda/2$,$\lambda$变换等效于在图上旋转180°,它也等效于通过圆图的中心求给定阻抗(或导纳)点的镜像,从而得出对应的导纳(或阻抗)。

(对)4.当终端负载阻抗与所接传输线特性阻抗匹配时,则负载能得到信源的最大功率。

(错)5.微带线在任何频率下都传输准TEM波。

(错)6.导行波截止波数的平方即$k_c^2$一定大于或等于零。

(错)7.互易的微波网络必具有网络对称性。

(错)8.谐振频率$f$、品质因数$Q$和等效电导$G$是微波谐振器的三个基本参量。

微波技术与天线总复习题及其答案

微波技术与天线总复习题及其答案

微波技术与天线基础总复习题一、填空题1、微波是一般指频率从 至 范围内的电磁波,其相应的波长从 至 。

并划为 四个波段;从电子学和物理学的观点看,微波有 、 、 、 、 等重要特点。

2、无耗传输线上的三种工作状态分别为: 、 、 。

3、传输线几个重要的参数:(1) 波阻抗: ;介质的固有波阻抗为 。

(2) 特性阻抗: ,或 ,Z 0=++I U 其表达式为Z 0= ,是一个复数; 其倒数为传输线的 .(3) 输入阻抗(分布参数阻抗): ,即Z in (d)= 。

传输线输入阻抗的特点是: a) b) c) d)(4) 传播常数:(5) 反射系数:(6) 驻波系数:(7) 无耗线在行波状态的条件是: ;工作在驻波状态的条件是: ;工作在行驻波状态的条件是: 。

4、负载获得最大输出功率时,负载Z 0与源阻抗Z g 间关系: 。

5、负载获得最大输出功率时,负载与源阻抗间关系: 。

6、史密斯圆图是求街均匀传输线有关 和 问题的一类曲线坐标图,图上有两组坐标线,即归一化阻抗或导纳的 的等值线簇与反射系数的 等值线簇,所有这些等值线都是圆或圆弧,故也称阻抗圆图或导纳圆图。

阻抗圆图上的等值线分别标有 ,而 和 ,并没有在圆图上表示出来。

导纳圆图可以通过对 旋转180°得到。

阻抗圆图的实轴左半部和右半部的刻度分别表示 或 和 或 。

圆图上的电刻度表示 ,图上0~180°是表示 。

7、阻抗匹配是使微波电路或系统无反射运载行波或尽量接近行波的技术措施,阻抗匹配主要包括三个方面的问题,它们是:(1);(2);(3)。

8、矩形波导的的主模是模,导模传输条件是,其中截止频率为,TE10模矩形波导的等效阻抗为,矩形波导保证只传输主模的条件是。

9、矩形波导的管壁电流的特点是:(1)、(2)、(3)。

10、模式简并现象是指,主模也称基模,其定义是。

单模波导是指;多模传输是。

11、圆波导中的主模为,轴对称模为,低损耗模为。

《微波技术与天线》习题集规范标准答案

《微波技术与天线》习题集规范标准答案

《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少?解:1)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。

解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(Θ1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。

微波技术与天线习题包括答案.docx

微波技术与天线习题包括答案.docx

《微波技术与天线》习题答案章节微波传输线理路1.1设一特性阻抗为 50 的均匀传输线终端接负载 R 1100 ,求负载反射系数1 ,在离负载 0.2 , 0.25 及 0.5处的输入阻抗及反射系数分别为多少解: 1 ( Z 1Z 0 ) (Z 1 Z 0 ) 1 3(0.2) 1e j 2 z1 e j 0 .813(0.5)(二分之一波长重复性)3 (0.25 )13Z in (0.2 )Z 1jZ 0 tan l 29.4323.79Z 0jZ 1 tan lZ 0Z in (0.25 ) 502 /100 25(四分之一波长阻抗变换性)Z in (0.5) 100(二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗; 若在两导体间填充介电常数 r 2.25的介质,求其特性阻抗及 f300MHz 时的波长。

解:同轴线的特性阻抗 Z 060blnra则空气同轴线 Z 060 lnb65.9a当 r 2.25 时, Z 0 60b 43.9lnra当 f 300MHz 时的波长:cp0.67mfr题设特性阻抗为Z 0 的无耗传输线的驻波比,第一个电压波节点离负载的距离为l m in1,试证明此时的终端负载应为Z1 Z01j tan lmin 1j tan lmin 1证明:对于无耗传输线而言:Zin (l min 1)Z1Z 0 j tanlmin 1 Z 0Z1 j tanlmin 1 Z 0Zin (l min 1 )Z0/由两式相等推导出:Z1Z 0 1 j tan lmin 1j tan lmin 1传输线上的波长为:cfg2mr因而,传输线的实际长度为:gl0.5m4终端反射系数为:R1Z0490.9611Z 051R1输入反射系数为:in1e j 2 l490.96151根据传输线的 4 的阻抗变换性,输入端的阻抗为:2Z0Z in2500R1试证明无耗传输线上任意相距λ/4 的两点处的阻抗的乘积等于传输线特性阻抗的平方。

微波技术与天线习题答案

微波技术与天线习题答案

《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性) Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。

解:同轴线的特性阻抗abZ r ln 600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1min l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。

《微波技术与天线》习题答案

《微波技术与天线》习题答案

ln b 43.9 a
当 f 300MHz 时的波长:
p
f
c r
0.67m
1.3 题
设特性阻抗为 Z0 的无耗传输线的驻波比 ,第一个电压波节点离负载的距离为
.
.
lmin1 ,试证明此时的终端负载应为
Z1
Z0
1 j j
t anlmin1 t anlmin1
证明:
对于无耗传输线而言:
Z in(lmin 1)
1.11
设特性阻抗为 Z0 50 的均匀无耗传输线,终端接有负载阻抗 Z1 100 j75 为复
阻抗时,可用以下方法实现λ/4 阻抗变换器匹配:即在终端或在λ/4 阻抗变换器前并接一段
终端短路线, 如题 1.11 图所示, 试分别求这两种情况下λ/4 阻抗变换器的特性阻抗 Z01 及短
路线长度 l。 (最简便的方式是:归一化后采用 Smith 圆图计算)
1 e j0.8 3
(0.5) 1 (二分之一波长重复性) 3
(0.25) 1 3
Zin (0.2 )
Z0
Z1 Z0
jZ0 jZ1
t an l t an l
29.43
2 3.7 9
Zin(0.25) 502 /100 25 (四分之一波长阻抗变换性)
Zin(0.5) 100
(二分之一波长重复性)
令并联短路线和负载并联后的输入阻抗为 Z 2 .
Z 2 =1/ Re[Y1] 156 则 Z 01 Z0Z2 =88.38
(2)
令 4
特性阻抗为 Z 01 ,并联短路线长为 l
Z in2 Z01
Z1 Z01 j t an Z01 Z1 j t an
4

《电磁场微波技术与天线》习题参考答案

《电磁场微波技术与天线》习题参考答案

《电磁场微波技术与天线》习题及参考答案一、填空题:1、静止电荷所产生的电场,称之为_静电场_;电场强度的方向与正电荷在电场中受力的方向__相同_。

2、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

3、矢量场基本方程的微分形式是:A V和AJ;说明矢量场的散度和旋度可以描述矢量场在空间中的分布和变化规律。

4、矢量场基本方程的积分形式是:SAdSV V dV和l AdlsJdS;说明矢量场的环量和通量可以描述矢量场在空间中的分布和变化规律。

5、矢量分析中的两个重要定理分别是高斯定理和斯托克斯定理,它们的表达式分别是:v和lAdl s rotAdS。

AdV S AdS6、静电系统在真空中的基本方程的积分形式是:∮Ds·d S=q和E·d=0。

7、静电系统在真空中的基本方程的微分形式是:D V和E0。

8、镜象法的理论依据是静电场的唯一性定理。

基本方法是在所求场域的外部放置镜像电荷以等效的取代边界表面的感应电荷或极化电荷。

9、在两种媒质分界面的两侧,电场E的切向分量E1t-E2t=_0__;而磁场B的法向分量B1n-B2n=__0__。

10、法拉弟电磁感应定律的方程式为En=- ddt,当dφ/dt>0时,其感应电流产生的磁场将阻止原磁场增加。

11、在空间通信中,为了克服信号通过电离层后产生的法拉第旋转效应,其发射和接收天线都采用圆极化天线。

12、长度为2h=λ/2的半波振子发射天线,其电流分布为:I (z)=Im sink(h-|z|)。

13、在介电常数为e的均匀各向同性介质中,电位函数为1122xy5z,则电场强22度E=xeye5e。

xyz14、要提高天线效率,应尽可能提高其辐射电阻,降低损耗电阻。

15、GPS接收机采用圆极化天线,以保证接收效果。

二、选择题:1、电荷只能在分子或原子范围内作微小位移的物质称为(D)。

A.导体B.固体C.液体D.2、相同的场源条件下,真空中的电场强度是电介质中的(D)倍。

微波技术与天线试题1

微波技术与天线试题1

8、相速度可以用来表示波能量的传输速度
(错)
9、多径效应造成了天线系统传输过程中信号的衰落 (对)
10、天线接收的功率可分为三个部分:接收天线的再辐射功率、负载吸
收的ห้องสมุดไป่ตู้率和媒质的损耗功率。
(对)
三、简答题(每题6分,共24分) 1、微波的特点有哪些? 答:(1)似光性 (2)穿透性 (3)款频带特性 (4)热效应特性
(1) 主瓣宽度尽可能窄,以抑制干扰; (2) 旁瓣电平尽可能低; (3) 天线方向图中最好能有一个或多个可控制的零点,以便将
零点对准干扰方向,而且当干扰方向变化时,零点方向也 随之改变; 4、为什么规则金属波导内不能传播TEM波? 答:如果存在TEM波,则要求磁场应完全在波导的横截面内,而且是闭 合曲线,由麦克斯韦第一方程知,闭合曲线上磁场的积分应等于曲线 相交链的电流,由于空心金属波导中不存在传播方向上的传导电流, 故必须要求有传播方向的位移电流。由,知传播方向有电场存在,而 与TEM波的定义相矛盾。 4、 计算题(共36分) 1、一根75均匀无耗传输线,终端接有负载,欲使线上电压 驻波比为,则负载的实部和虚部应满足什么关系?(6分) 解:由驻波比,可得终端反射系数的模值应为
微波技术与天线考试题
一、填空题(每题2分,共20分) 1、 对于低于微波频率的无线电波的分析,常用电路分析法;对于 微波用场分析法来研究系统内部结构。
2、 微波传输线大致可分为三种类型:双导体传输线、波导和介质 传输线。
3、 无耗传输线的阻抗具有/2重复性和/4阻抗变换特性两个重要性 质。
4、 共轭匹配的定义为:当时,负载能得到最大功率值。 5、 高波导的宽边尺寸a与窄边尺寸b之间的关系为b>a/2. 6、 微带传输线的基本结构有两种形式:带状线和微带线,其衰减

微波与天线习题与解答

微波与天线习题与解答

第一讲习题:1.微波的频率和波长范围分别是多少?答:频率范围从300 MHz到3000GHz,波长从O.1 mm到1 m。

2.微波与其它电磁波相比,有什么特点?答:主要特点是:波长可同普通电路或元件的尺寸相比拟,即为分米、厘米、毫米量级,其他波段都不具备这个特点。

普通无线电波的波长大于或远大于电路或元件的尺寸,电路或元件内部的波的传播过程(相移过程)射线的波长远小于电路或元件的尺寸,可忽略不计,故可用路的方法进行研究。

光波、X射线、甚至可与分子或原子的尺寸相比拟,难以用电磁的或普通电子学的方法去研究它们。

正是上述特点,使人们对微波产生极大兴趣,并将它从普通无线电波波段划分出来,进行单独研究的原因。

3.微波技术、天线、电波传播三者研究的对象分别是什么?它们有何区别和联系?微波技术:主要研究引导电磁波在微波传输系统中如何进行有效传输,它希望电磁波按一定要求沿传输系统无辐射地传输。

天线:是将微波导行波变成向空间定向辐射的电磁波,或将空间的电磁波变为微波设备中的导行波。

电波传播:研究电波在空间的传播方式和特点。

微波技术、天线与电波传播是无线电技术的一个重要组成部分,它们共同的基础是电磁场理论,但三者研究的对象和目的有所不同。

第二讲习题:作业第2章: 第3题、第4题解:(a )1tan 4in c Z jZ λβ=∞= 2in c Z Z = '12||l in in c Z Z Z Z ==.'200in l c Z Z Z Ω=== 0i n cin in cZ Z Z Z Γ+-==(b) 12cot in c Z jZ λβ=∞=- 2300in l Z Z Ω== '12300||l in in Z Z Z Ω==275c in lZ Z Z Ω== 13in c in in c Z Z Z Z Γ+-==-第三讲习题:A 、下册,第2章: 第10题 (习题2-10)解:①(4030)l Z j =-Ω,传输线上载行驻波 11llρ+Γ=-Γ要使驻波系数最小,即是使终端反射系数最小,此时0lcZ ∂Γ=∂l Γ==求导得50c Z =Ω。

uestc微波技术与天线复习题

uestc微波技术与天线复习题

(1 分)
是二次辐射源。
惠更斯元远区辐射场特点为: 1)远区辐射场为 TEM 波(球面波); 2)为单向辐射,辐射方向图绕法线轴旋转对称; 3)最大辐射方向为其正法线方向;
5、 简述双反射面天线(卡赛格伦天线)结构,并简述其工作原理。 答: 双反射面天线由主反射器(旋转抛物面)、副反射器(双 曲面)和辐射器(馈源)三部分组成。(2 分,图形上标示也可) 主反射面焦点与副反射面一个焦点重合,馈源置于福反 射面另一焦点位置。(1 分) 馈源发射的电磁波经副反射面反射后,所有射线反向延 长线汇聚于 P2,即可等效为馈源位于 F2 点的抛物面天线; 反射波再经主反射面反射,到达口 径面时经过的波程相等,从而获得平面波。(3 分)
Z0
l2
Z0
Z0
l1
ZL = RL + jX L
答:1、将负载阻抗归一化后,在圆图上确定对应点 A(在圆图上方);(1分) 2、以圆图中心 OA 为半径作等反射系数圆,与匹配圆交于 B 点;(1分) 3、l1 段实现负载阻抗变换,使得变换后的阻抗实部等于传输线特性阻抗(归一化阻抗实部等于
1);(1 分) 4、 l2 段抵消变换后的阻抗电抗部分,使总的阻抗等于传输线特性阻抗,实现匹配;(1 分) 3、在图上标出 l1,l2 。(正确在图上标出 l1,l2 各 1 分)
1、均匀无耗传输线上任意位置处的驻波系数都相等。
(√)
2、矩形波导中不能传输 TEM 波。
(√)
3、扼流式法兰盘可以用于宽带应用需求的情况下。
(×)
4、当发射天线为左旋圆极化时,用右旋圆极化天线接收也可以接收到信号。 ( × )
5、将任意两种天线按照一定规律排列起来,并进行馈电,即可形成二元天线阵。( × )

《微波技术与天线》傅文斌-习题标准答案-第章

《微波技术与天线》傅文斌-习题标准答案-第章

《微波技术与天线》傅文斌-习题答案-第章————————————————————————————————作者:————————————————————————————————日期:217第2章 微波传输线2.1什么是长线?如何区分长线和短线?举例说明。

答 长线是指几何长度大于或接近于相波长的传输线。

工程上常将1.0>l 的传输线视为长线,将1.0<l 的传输线视为短线。

例如,以几何长度为1m 的平行双线为例,当传输50Hz 的交流电时是短线,当传输300MHz 的微波时是长线。

2.2传输线的分布参数有哪些?分布参数分别与哪些因素有关?当无耗传输线的长度或工作频率改变时分布参数是否变化?答 长线的分布参数一般有四个:分布电阻R 1、分布电感L 1、分布电容C 1、分布电导G 1。

分布电容C 1(F/m )决定于导线截面尺寸,线间距及介质的介电常数。

分布电感L 1(H/m )决定于导线截面尺寸,线间距及介质的磁导率。

分布电阻R 1(Ω/m )决定于导线材料及导线的截面尺寸。

分布电导G 1(S/m ) 决定于导线周围介质材料的损耗。

当无耗传输线(R 1= 0,G 1= 0)的长度或工作频率改变时,分布参数不变。

2.3传输线电路如图所示。

问:图(a )中ab 间的阻抗0=ab Z 对吗?图(b )中问ab 间的阻抗∞=ab Z 对吗?为什么?答 都不对。

因为由于分布参数效应,传输线上的电压、电流随空间位置变化,使图(a )中ab 间的电压不一定为零,故ab 间的阻抗ab Z 不一定为零;使图(b )中a 点、b 点处的电流不一定为零,故ab 间的阻抗ab Z 不一定为无穷大。

2.4平行双线的直径为2mm ,间距为10cm ,周围介质为空气,求它的分布电感和分布电容。

解 由表2-1-1,L 1=1.84×10-6(H/m ),C 1=6.03×10-12(F/m )2.5写出长线方程的的解的几种基本形式。

《微波技术与天线》第二章习题优选全文

《微波技术与天线》第二章习题优选全文

可编辑修改精选全文完整版
《微波技术与天线》习题
第二章矩形波导
2.3矩形波导截面尺寸为a×b=23mm×10mm,波导内充满空气,信号源频率为10 GHz,试求:
①波导中可以传播的模式。

②该模式的截止波长λc,相移常数β,波导波长λg及相速
2.4(张晓龙,冯德顺)
用BJ-100矩形波导以主模传输10 GHz的微波信号,则
①求λc、λg、β和波阻抗Zw 。

②若波导宽边尺寸增加一倍,上述各量如何变化?
③若波导窄边尺寸增大一倍,上述各量如何变化?
④若尺寸不变,工作频率变为15GHz,上述各量如何变化?
2.10已知矩形波导的尺寸为a×b=23mm×10 mm,试求:
①传输模的单模工作频带。

②在a,b不变情况下,如何才能获得更宽的频带?
1/ 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1 简述天线的功能。

天线应有以下功能:
①天线应能将导波能量尽可能多地转变为电磁波能量。

这首先要求天线是一个良好的电磁开放系统, 其次要求天线与发射机或接收机匹配。

②天线应使电磁波尽可能集中于确定的方向上, 或对确定方向的来波最大限度的接受, 即天线具有方向性。

③天线应能发射或接收规定极化的电磁波, 即天线有适当的极化。

④天线应有足够的工作频带。

6.2 天线的电参数有哪些?
方向图参数:主瓣宽度,旁瓣电平,前后比
方向系数
天线效率
增益系数
极化和交叉极化电平
频带宽度
输入阻抗与驻波比
有效长度
6.3 按极化方式划分, 天线有哪几种?
按天线所辐射的电场的极化形式可将天线分为线极化天线、圆极化天线和椭圆极化天线。

6.4 从接收角度讲, 对天线的方向性有哪些要求?
接收天线的方向性有以下要求:
①主瓣宽度尽可能窄, 以抑制干扰。

但如果信号与干扰来自
同一方向, 即使主瓣很窄,也不能抑制干扰; 另一方面, 当来波方向易于变化时, 主瓣太窄则难以保证稳定的接收。

因此, 如何选择主瓣宽度, 应根据具体情况而定。

②旁瓣电平尽可能低。

如果干扰方向恰与旁瓣最大方向相同,
则接收噪声功率就会较高, 也就是干扰较大; 对雷达天线而言, 如果旁瓣较大, 则由主瓣所看到的目标与旁瓣所看到的目标会在显示器上相混淆, 造成目标的失落。

因此, 在任何情况下, 都希望旁瓣电平尽可能的低。

③天线方向图中最好能有一个或多个可控制的零点, 以便
将零点对准干扰方向,而且当干扰方向变化时, 零点方向也随之改变, 这也称为零点自动形成技术。

6.8 有一长度为d l的电基本振子,载有振幅为I0、沿+y方向的时谐电
流,试求其方向函数, 并画出在xOy面、xOz面、yOz面的方向图。

F(θ) = sinθ,θ指辐射方向与y轴的夹角
xOy面
7.1 什么是衰落?简述引起衰落的原因。

所谓衰落, 一般是指信号电平随时间的随机起伏。

根据引起衰落的原因分类, 大致可分为吸收型衰落和干涉型衰落。

吸收型衰落主要是由于传输媒质电参数的变化, 使得信号在媒质中的衰减发生相应的变化而引起的。

如大气中的氧、水汽以及由后者凝聚而成的云、雾、雨、雪等都对电波有吸收作用。

由这种原因引起的信号电平的变化较慢, 所以称为慢衰落。

干涉型衰落主要是由随机多径干涉现象引起的。

在某些传输方式中, 由于收、发两点间存在若干条传播路径, 典型的如天波传播、不均匀媒质传播等,在这些传播方式中, 传输媒质具有随机性, 因此使到达接收点的各路径的时延随机变化, 致使合成信号幅度和相位都发生随机起伏。

这种起伏的周期很短, 信号电平变化很快, 故称为快衰落,
7.2 什么是传输失真?简述引起失真的原因。

无线电波通过媒质除产生传输损耗外, 还会产生失真——振幅失真和相位失真。

产生失真的原因有两个: 一是媒质的色散效应, 二是随机多径传输效应。

7.3 什么是视距传播?简述视距传播的特点。

电波依靠发射天线与接收天线之间的直视的传播方式称为视距传播。

它可以分为地-地视距传播和地-空视距传播。

视距传播的工作频段为超短波及微波波段。

此种工作方式要求天线具有强方向性并且有足够高的架设高度。

在几千兆赫和更高的频率上,还必须考虑雨和大气成分的衰减及散射作用。

在较高的频率上,山、建筑物和树木等对电磁波的散射和绕射作用变得更加显著。

信号在传播中所受到的主要影响是视距传播中的直射波和地面反射波之间的干涉。

①当工作波长和收、发天线间距不变时, 接收点场强随天线高度h1和h2的变化而在零值与最大值之间波动。

②当工作波长λ和两天线高度h1和h2都不变时, 接收点场强随两天线间距的增大而呈波动变化, 间距减小,波动范围减小。

③当两天线高度h1和h2和间距d不变时, 接收点场强随工作波长λ呈波动变化。

7.8 不均匀媒质传播方式主要有哪些?简述对流层散射传播的原
理。

散射波传播是指电波在低空对流层或高空电离层下缘遇到不均匀的“介质团”时就会发生散射, 散射波的一部分到达接收天线处, 这种传播方式称为不均匀媒质的散射传播。

对流层散射传播的原理:一般情况下, 对流层的温度、压强、湿
度不断变化, 在涡旋气团内部及其周围的介电常数有随机的小尺度起伏, 形成了不均匀的介质团。

当超短波、短波投射到这些不均匀体时, 就在其中产生感应电流, 成为一个二次辐射源, 将入射的电磁能量向四面八方再辐射。

于是电波就到达不均匀介质团所能“看见”但电波发射点却不能“看见”的超视距范围。

电磁波的这种无规则、无方向的辐射, 即为散射, 相应的介质团称为散射体。

对于任一固定的接收点来说, 其接收场强就是收发双方都能“看见”的那部分空间即收、发天线波束相交的公共体积中的所有散射体的总和。

8.1 什么是波长缩短效应?试简要解释其原因。

对称振子导线半径a越大, L1越小, 相移常数和自由空间的波数k=2π/λ相差就越大, 对称振子上的相移常数β大于自由空间的波数k, 亦即对称振子上的波长短于自由空间波长, 这是一种波长缩短现象,令n1=β/k,称n1为波长缩短系数。

波长缩短现象的主要原因有:
①对称振子辐射引起振子电流衰减, 使振子电流相速减小, 相移常数β大于自由空间的波数k, 致使波长缩短;
②由于振子导体有一定半径, 末端分布电容增大(称为末端效应), 末端电流实际不为零, 这等效于振子长度增加, 因而造成波长缩短。

振子导体越粗, 末端效应越显著, 波长缩短越严重。

8.2 什么是方向图乘积定理? 二元等幅阵辐射场的电场强度模值为:12(,)cos 2m E E F r θϕθφ=
式中|F (θ, φ)|称为元因子,cos 2ϕ
称为阵因子。

元因子表示组成天线阵的单个辐射元的方向图函数, 其值仅取决于天线元本身的类型和尺寸。

它体现了天线元的方向性对天线阵方向性的影响。

阵因子表示各向同性元所组成的天线阵的方向性, 其值取决于天线阵的排列方式及其天线元上激励电流的相对振幅和相位, 与天线元本身的类型和尺寸无关。

8.3 什么是边射式天线阵?试从物理概念上解释之。

边射阵指最大辐射方向在垂直于阵轴方向上, 即φm=±π/2,
ζ=0的天线阵。

也就是说, 在垂直于阵轴方向上, 各元到观察点没有波程差, 如果各元电流元也没有相位差, 则构成边射式天线阵。

什么是端射式天线阵? 试从物理概念上解释之。

端射阵指最大辐射方向在阵轴方向上, 即φm =0 或π,ζ=-kd (φm =0)或 ζ=kd (φm =π) 的天线阵。

也就是说, 阵的各元电流沿阵轴方向依次滞后kd 或超前kd, 阵的各元到达最大方向上同一点的空间波程差依次超前kd 或滞后kd ,而总的相位差为零,则构成端射式天线阵。

见草稿
8.5 有两个平行于z轴并沿x轴方向排列的半波振子, 若
①d=λ/4, ζ=π/2 。

②d=3λ/4, ζ=π/2 。

试分别求其E面和H面方向函数, 并画出方向图。

8.8 两等幅馈电的半波振子沿z排列, 若
①d=λ/4, ζ=π/2。

②d=λ/4, ζ=-π/2。

它们的辐射功率都为1W, 计算上述两种情况在xOy平面内φ=30°、r=1 km处的场强值。

8.11 设在相距1.5km的两个站之间进行通信, 每个站均以半波振子为天线, 工作频率为300 MHz。

若一个站发射的功率为100W,则另一个站的匹配负载中能收到多少功率?。

相关文档
最新文档