高中物理奥赛综合训练题(参考解答或答案)
2024全国高中物理竞赛试题
选择题:关于物体的运动,下列说法正确的是:A. 物体速度变化量大,其加速度一定大B. 物体有加速度,其速度一定增加C. 物体的速度为零时,其加速度可能不为零(正确答案)D. 物体加速度的方向一定与速度方向相同下列关于力的说法中,正确的是:A. 力的产生离不开施力物体,但可以没有受力物体B. 物体受到力的作用,其运动状态一定改变C. 只有直接接触的物体间才有力的作用D. 力是改变物体运动状态的原因(正确答案)关于牛顿运动定律,下列说法正确的是:A. 牛顿第一定律是牛顿第二定律在物体不受外力时的特例B. 物体所受合外力方向与速度方向相同时,物体一定做加速直线运动(正确答案)C. 牛顿第三定律表明作用力和反作用力大小相等,因此它们产生的效果一定相互抵消D. 惯性是物体的固有属性,速度大的物体惯性一定大关于曲线运动,下列说法正确的是:A. 曲线运动一定是变速运动(正确答案)B. 曲线运动的速度方向可能不变C. 曲线运动的速度大小一定变化D. 曲线运动的加速度一定变化关于万有引力定律,下列说法正确的是:A. 万有引力定律只适用于天体间的相互作用B. 物体间的万有引力与它们的质量成正比,与它们之间的距离成反比(正确答案)C. 万有引力定律是由开普勒发现的D. 万有引力定律适用于一切物体间的相互作用(正确答案)关于电场和磁场,下列说法正确的是:A. 电场线和磁感线都是闭合曲线B. 电场线和磁感线都可能相交C. 电场线和磁感线都是用来形象描述场的假想线,实际并不存在(正确答案)D. 电场线和磁感线都可能不存在关于电磁感应,下列说法正确的是:A. 只要导体在磁场中运动,就一定会产生感应电流B. 感应电流的磁场总是阻碍原磁场的变化(正确答案)C. 感应电流的磁场总是与原磁场方向相反D. 感应电流的磁场总是与原磁场方向相同关于光的本性,下列说法正确的是:A. 光具有波动性,又具有粒子性(正确答案)B. 光在传播时往往表现出波动性,而在与物质相互作用时往往表现出粒子性(正确答案)C. 频率越大的光,其粒子性越显著D. 频率越大的光,其波动性越显著关于原子和原子核,下列说法正确的是:A. 原子核能发生β衰变说明原子核内存在电子B. 放射性元素的半衰期随温度的升高而变短(正确答案)C. 氢原子从n=3的能级向低能级跃迁时只会辐射出两种不同频率的光D. 原子核的结合能等于使其完全分解成自由核子所需的最小能量(正确答案)。
物理高中竞赛试题及答案
物理高中竞赛试题及答案一、选择题(每题4分,共40分)1. 一个物体以初速度v0从斜面顶端开始下滑,斜面与水平面的夹角为θ,假设物体与斜面间的摩擦系数为μ,不考虑空气阻力,物体下滑的加速度大小为:A. gsinθB. gcosθC. g(sinθ - μcosθ)D. g(sinθ + μcosθ)2. 一个点电荷Q在电场中受到的电场力为F,若将电荷量增加到2Q,电场力变为:A. 2FB. 4FC. F/2D. F3. 一个质量为m的物体以速度v在水平面上做匀速直线运动,若施加一个与运动方向相反的力F,使其减速至静止,若物体与地面间的摩擦系数为μ,则减速过程中的加速度大小为:A. F/mB. μgC. (F + μmg)/mD. (F - μmg)/m4. 一个单摆的摆长为L,摆球质量为m,单摆做简谐运动时,其周期T与摆长L的关系为:A. T = 2π√(L/g)B. T = 2π√(g/L)C. T = 2π√(L^2/g)D. T = 2πL/g5. 一个平行板电容器,板间距离为d,板面积为S,两板间电势差为U,若保持电势差不变,将板间距离增加到2d,则电容器的电容C变化为:A. 变为原来的1/2B. 变为原来的2倍C. 保持不变D. 变为原来的4倍6. 一个质量为m的物体从高度h处自由落体,忽略空气阻力,落地时的速度v与高度h的关系为:A. v = √(2gh)B. v = √(gh)C. v = 2ghD. v = gh7. 一个理想气体在等压过程中,温度从T1升高到T2,气体体积变化量△V与温度变化量△T的关系为:A. △V与△T成正比B. △V与△T成反比C. △V与△T无关D. △V与△T的平方成正比8. 一个光波的波长为λ,频率为f,光速为c,则光波的能量E 与波长λ的关系为:A. E与λ成正比B. E与λ成反比C. E与λ无关D. E与λ的平方成正比9. 一个均匀带电球体的半径为R,球心处的电场强度为:A. 0B. kQ/R^2C. kQ/RD. kQ/R^310. 一个物体在磁场中受到的磁力大小为F,若将物体的速度增加到原来的2倍,而磁场强度保持不变,则磁力大小变为:A. 2FB. 4FC. F/2D. F二、填空题(每题4分,共20分)11. 根据牛顿第二定律,物体的加速度a与作用力F和物体质量m的关系为:_________。
高中物理奥赛班试题-,经典试题,通用
一、解答题1.如下图为火车站装载货物的原理示意图,设AB 段是距水平传送带装置高为H = 5m ,夹角为30°的光滑斜面,水平段BC 使用水平传送带装置,BC 长L = 8m ,与货物包的摩擦系数为μ= 0.6 ,皮带轮的半径为R = 0.2m ,上部距车厢底水平面的高度h = 0.45m。
设货物由静止开头从A 点下滑,经过B 点的拐角处无机械能损失〔即经过B 点速度大小不变〕。
通过调整皮带轮〔不打滑〕的转动角速度ω可使货物经C 点抛出后落在车厢上的不同位置,取g = 10m / s2,求:(1)当皮带轮静止时,货物包在车厢内的落地点到C 点的水平距离;(2)当皮带轮以角速度ω= 20rad / s 顺时方针方向匀速转动时,包在车厢内的落地点到C 点的水平距离;(3)试写出货物包在车厢内的落地点到C 点的水平距离s 随皮带轮角速度ω变化关系,并画出s -ω〔ω取值范围为-20~80rad s-1〕图象。
〔设皮带轮顺时方针方向转动时,角速度ω取正值,水平距离向右取正值〕。
= 16N / C ,2.如图,在直角坐标系xoy 的第一象限中,存在竖直向上的匀强电场,场强E1虚线是电场的抱负边界限,虚线右端与x 轴的交点为A(4,0) ,虚线与x 轴所围成的空间内没有电场;在其次象限存在水平向左的匀强电场,场强E = 4N / C 。
有一粒子发2生器能在M(-4,4)和N (-4,0) 两点连线上的任意位置产生初速度为零的负粒子,粒子质量均为m = 4 ⨯10-23 kg 、电荷量q =-6.4 ⨯10-19 C ,不计粒子重力和相互间的作用力,且整个装置处于真空中。
从MN 上静止释放的全部粒子,最终都能到达A 点:(1)假设粒子从M 点由静止开头运动,进入第一象限后始终在电场中运动并恰好到达A 点,求到达A 点的速度大小;(2)假设粒子从MN 上的中点由静止开头运动,求该粒子从释放点运动到A 点的时间;3 (3) 求第一象限的电场边界限〔图中虚线〕方程。
物理高一奥赛试题及答案
物理高一奥赛试题及答案一、选择题(每题4分,共40分)1. 以下哪个选项是正确的?A. 光速在任何参考系中都是不变的。
B. 光速在真空中是最大的速度。
C. 光速在不同介质中是相同的。
D. 光速在任何情况下都可以被超过。
答案:A2. 一个物体从静止开始做匀加速直线运动,第1秒内、第2秒内、第3秒内位移之比为:A. 1:3:5B. 1:2:3C. 1:4:9D. 1:3:6答案:B3. 一个物体做匀速圆周运动,下列哪个物理量是不变的?A. 线速度B. 角速度C. 向心加速度D. 向心力答案:B4. 两个完全相同的金属球A和B,带有异种电荷,用绝缘细线悬挂在天花板上,由于带电而互相排斥,如果用一个带正电的金属小球C接触A后立即拿走,则A、B、C三球的带电情况是:A. A带正电,B带负电,C带负电B. A带负电,B带负电,C带正电C. A带正电,B带负电,C带正电D. A带负电,B带负电,C带负电答案:C5. 一个物体从斜面顶端由静止开始滑下,不计摩擦,下列哪个说法是正确的?A. 物体下滑过程中机械能守恒B. 物体下滑过程中动能和势能之和不变C. 物体下滑过程中势能全部转化为动能D. 物体下滑过程中重力势能全部转化为动能答案:A6. 一个物体做简谐运动,下列哪个说法是正确的?A. 物体在平衡位置时速度最大B. 物体在最大位移处加速度最大C. 物体在平衡位置时加速度最大D. 物体在最大位移处速度为零7. 一个物体在水平面上做匀速圆周运动,下列哪个说法是正确的?A. 物体受到的向心力始终指向圆心B. 物体受到的向心力始终垂直于速度方向C. 物体受到的向心力始终做功D. 物体受到的向心力始终不做功答案:D8. 一个物体从斜面顶端由静止开始滑下,不计摩擦,下列哪个说法是正确的?A. 物体下滑过程中机械能守恒B. 物体下滑过程中动能和势能之和不变C. 物体下滑过程中势能全部转化为动能D. 物体下滑过程中重力势能全部转化为动能9. 一个物体做简谐运动,下列哪个说法是正确的?A. 物体在平衡位置时速度最大B. 物体在最大位移处加速度最大C. 物体在平衡位置时加速度最大D. 物体在最大位移处速度为零答案:A10. 一个物体在水平面上做匀速圆周运动,下列哪个说法是正确的?A. 物体受到的向心力始终指向圆心B. 物体受到的向心力始终垂直于速度方向C. 物体受到的向心力始终做功D. 物体受到的向心力始终不做功答案:D二、填空题(每题4分,共20分)11. 根据牛顿第二定律,物体所受合力等于物体质量与加速度的乘积,即F=ma。
高中物理奥赛试题及答案
高中物理奥赛试题及答案一、选择题(每题3分,共30分)1. 一个物体在水平面上受到一个与水平方向成30°角的斜向上的拉力F作用,物体与水平面之间的动摩擦因数为0.5,若物体恰好做匀速直线运动,则拉力F的大小为:A. 10NB. 20NC. 30ND. 40N答案:C2. 一个质量为m的物体从高度为h的斜面顶端由静止开始下滑,斜面倾角为θ,动摩擦因数为μ,求物体到达斜面底端时的速度大小。
A. √(2gh(1-μsinθ))B. √(2gh(1+μsinθ))C. √(2gh(1-μcosθ))D. √(2gh(1+μcosθ))答案:A3. 一个半径为R的均匀带电球体,其电荷总量为Q,求球体内部距离球心r处的电场强度。
A. 0B. kQ/r^2C. kQ/R^2D. kQ(3R^2-r^2)/R^3答案:A4. 一个点电荷q在电场中受到的电场力为F,若将该电荷移动到距离原位置2倍远的地方,求此时该电荷受到的电场力大小。
A. F/4B. F/2C. 2FD. 4F答案:B5. 一个质量为m的物体从高度为h的斜面顶端由静止开始下滑,若斜面倾角为θ,求物体到达斜面底端时的动能。
A. mgh(1-μsinθ)B. mgh(1+μsinθ)C. mgh(1-μcosθ)D. mgh(1+μcosθ)答案:A6. 一个质量为m的物体在水平面上受到一个大小为F的水平拉力作用,物体与水平面之间的动摩擦因数为μ,求物体的加速度大小。
A. (F-μmg)/mB. (F+μmg)/mC. (F-μmg)/2mD. (F+μmg)/2m答案:A7. 一个质量为m的物体从高度为h的斜面顶端由静止开始下滑,斜面倾角为θ,动摩擦因数为μ,求物体到达斜面底端时的位移。
A. h/sinθB. h/cosθC. h/tanθD. h/√(1+tan^2θ)答案:D8. 一个半径为R的均匀带电球体,其电荷总量为Q,求球体外部距离球心r处的电场强度。
高中的物理竞赛试题及答案
高中的物理竞赛试题及答案高中物理竞赛试题一、选择题(每题3分,共30分)1. 一个物体从静止开始做匀加速直线运动,经过4秒后速度达到4m/s。
求物体的加速度。
A. 0.5 m/s²B. 1 m/s²C. 2 m/s²D. 4 m/s²2. 两个质量分别为m1和m2的物体,通过一根轻绳连接并悬挂在无摩擦的定滑轮上。
如果m1 > m2,系统将如何运动?A. 系统静止不动B. 系统加速下降C. 系统加速上升D. 系统减速上升3. 一个电子在电场中受到的电场力大小为F,如果电场强度增加到原来的两倍,电子受到的电场力将如何变化?A. 保持不变B. 增加到原来的两倍C. 增加到原来的四倍D. 增加到原来的八倍4. 一个物体在水平面上以初速度v0开始滑行,摩擦系数为μ。
求物体停止滑行所需的时间。
A. 无法确定B. \( \frac{v_0}{\mu g} \)C. \( \frac{v_0}{\sqrt{\mu g}} \)D. \( \sqrt{\frac{v_0}{\mu g}} \)5. 一个弹簧振子的振动周期为T,当振幅减半时,振动周期将如何变化?A. 保持不变B. 减半C. 增加到原来的两倍D. 增加到原来的四倍6. 一个点电荷Q产生电场的强度在距离r处为E,当距离增加到2r时,电场强度将如何变化?A. 保持不变B. 减半C. 增加到原来的两倍D. 增加到原来的四倍7. 一个物体在竖直方向上做自由落体运动,忽略空气阻力。
经过时间t后,物体的速度和位移分别是多少?A. 速度v=gt,位移s=1/2gt²B. 速度v=2gt,位移s=gt²C. 速度v=gt,位移s=gt²D. 速度v=2gt,位移s=2gt8. 一个物体从高度h自由落下,不计空气阻力。
求物体落地时的速度。
A. \( \sqrt{2gh} \)B. \( \sqrt{gh} \)C. \( 2\sqrt{gh} \)D. \( \sqrt{h/g} \)9. 一个物体在水平面上以初速度v0开始滑行,经过时间t后,其速度变为v。
高中物理奥林匹克竞赛专题重点习题(有答案)
8-6 长=15.0cm 的直导线AB 上均匀地分布着线密度=5.0x10-9C ·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距=5.0cm 处点的场强;(2)在导线的垂直平分线上与导线中点相距=5.0cm 处点的场强.解: 如题8-6图所示(1)在带电直线上取线元,其上电量在点产生场强为用,, 代入得 方向水平向右(2)同理方向如题8-6图所示由于对称性,即只有分量,以, ,代入得,方向沿轴正向8-7 一个半径为的均匀带电半圆环,电荷线密度为,求环心处点的场强.解: 如8-7图在圆上取题8-7图,它在点产生场强大小为方向沿半径向外则积分∴,方向沿轴正向.8-9 (1)点电荷位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷的电场中取半径为R 的圆平面.在该平面轴线上的点处,求:通过圆平面的电通量.() l λ1a P 2d Q x d q d P 15=l cm 9100.5-⨯=λ1m C -⋅5.12=a cm 21074.6⨯=P E 1C N -⋅2220d d π41d +=x x E Q λε⎰=lQx E 0d QE ϖy 9100.5-⨯=λ1cm C -⋅15=l cm 5d 2=cm 21096.14⨯==Qy Q E E 1C N -⋅y R λO ϕRd dl =ϕλλd d d R l q ==O 20π4d d R R E εϕλ=ϕϕελϕd sin π4sin d d 0RE E x ==RR E x 000π2d sin π4ελϕϕελπ==⎰R E E x 0π2ελ==x q q q A x Rarctan=α解: (1)由高斯定理立方体六个面,当在立方体中心时,每个面上电通量相等∴ 各面电通量.(2)电荷在顶点时,将立方体延伸为边长的立方体,使处于边长的立方体中心,则边长的正方形上电通量对于边长的正方形,如果它不包含所在的顶点,则,如果它包含所在顶点则.如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图 (3)∵通过半径为的圆平面的电通量等于通过半径为的球冠面的电通量,球冠面积**关于球冠面积的计算:见题8-9(c)图8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×C ·m -3求距球心5cm ,8cm ,12cm各点的场强.解: 高斯定理,当时,,时, ∴, 方向沿半径向外. cm 时,∴ 沿半径向外.8-11 半径为和(>)的两无限长同轴圆柱面,单位长度上分别带有电量和-,试求:(1)<;(2) <<;(3) >处各点的场强. 解: 高斯定理取同轴圆柱形高斯面,侧面积d εq S E s⎰=⋅ϖϖq 06εq e =Φa 2q a 2a 206εq e =Φa q 024εqe =Φq0=Φe R 22x R +510-0d ε∑⎰=⋅q S E sϖϖ02π4ε∑=qr E 5=r cm 0=∑q 0=E ϖ8=r cm ∑q 3π4p =3(r )3内r -()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅12=r 3π4∑=ρq -3(外r )内3r ()420331010.4π43π4⨯≈-=r r r E ερ内外1C N -⋅1R 2R 2R 1R λλr1R 1R r 2R r 2R 0d ε∑⎰=⋅q S E s ϖϖrl S π2=则对(1)(2)∴沿径向向外(3)8-16 如题8-16图所示,在,两点处放有电量分别为+,-的点电荷,间距离为2,现将另一正试验点电荷从点经过半圆弧移到点,求移动过程中电场力作的功.解: 如题8-16图示8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为的正电荷,两直导线的长度和半圆环的半径都等于.试求环中心点处的场强和电势.解: (1)由于电荷均匀分布与对称性,和段电荷在点产生的场强互相抵消,取则产生点如图,由于对称性,点场强沿轴负方向题8-17图(2)电荷在点产生电势,以同理产生半圆环产生8-24 半径为的金属球离地面很远,并用导线与地相联,在与球心相距为处有一点电荷+,试求:金属球上的感应电荷的电量. 解: 如题8-24图所示,设金属球感应电荷为,则球接地时电势8-24图由电势叠加原理有:得9-6 已知磁感应强度Wb ·m -2的均匀磁场,方向沿轴正方向,如题9-6图所示.试求:(1)通过图中面的磁通量;(2)通过图中面的磁通量;(3)通过图中面的磁通量.解: 如题9-6图所示题9-6图(1)通过面积的磁通是(2)通过面积的磁通量 (3)通过面积的磁通量(或曰)rlE S E Sπ2d =⋅⎰ϖϖ1R r <0,0==∑E q 21R r R <<λl q =∑rE 0π2ελ=2R r >0=∑q A B q q AB R 0q O C λR O AB CD O θd d R l =θλd d R q =O E ϖd O y AB O 0=∞U CD 2ln π402ελ=U 0034π4πελελ==R R U R R d 3=q q '0=O U -='q 3q0.2=B x abcd befc aefd abcd 1S befc 2S aefd 3S 24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb 24.0-Wb题9-7图9-7 如题9-7图所示,、为长直导线,为圆心在点的一段圆弧形导线,其半径为.若通以电流,求点的磁感应强度.解:如题9-7图所示,点磁场由、、三部分电流产生.其中产生产生,方向垂直向里 段产生 ,方向向里∴,方向向里. 9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的,两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心的磁感应强度. 解: 如题9-9图所示,圆心点磁场由直电流和及两段圆弧上电流与所产生,但和在点产生的磁场为零。
物理高一奥赛试题及答案
物理高一奥赛试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是描述光的粒子性的?A. 光的干涉B. 光的衍射C. 光电效应D. 光的偏振答案:C2. 根据牛顿第二定律,以下哪个说法是正确的?A. 力是改变物体运动状态的原因B. 力是维持物体运动状态的原因C. 力是物体运动状态不变的原因D. 力和物体运动状态无关答案:A3. 一个物体从静止开始做匀加速直线运动,其加速度为2m/s²,那么在第3秒末的速度是:A. 4m/sB. 6m/sC. 8m/sD. 10m/s答案:B4. 根据热力学第一定律,以下哪个说法是正确的?A. 能量可以被创造B. 能量可以被消灭C. 能量既不能被创造也不能被消灭D. 能量的总量是恒定的答案:C5. 一个理想气体在等温过程中,其压强和体积的关系是:A. 压强与体积成正比B. 压强与体积成反比C. 压强与体积无关D. 压强与体积的关系不确定答案:B6. 以下哪个选项是描述电磁波的?A. 波动性B. 粒子性C. 波动性和粒子性D. 既不是波动性也不是粒子性答案:C7. 根据电磁感应定律,以下哪个说法是正确的?A. 感应电动势与磁通量的变化率成正比B. 感应电动势与磁通量成正比C. 感应电动势与磁通量的变化无关D. 感应电动势与磁通量的变化成反比答案:A8. 一个物体在水平面上做匀速直线运动,以下哪个说法是错误的?A. 物体受到的合外力为零B. 物体受到的摩擦力与推动力相等C. 物体的运动状态不变D. 物体的动能不变答案:B9. 根据麦克斯韦方程组,以下哪个说法是正确的?A. 变化的电场产生磁场B. 变化的磁场产生电场C. 稳定的电场产生磁场D. 稳定的磁场产生电场答案:A10. 以下哪个选项是描述量子力学的?A. 物质波B. 光的波动性C. 光的粒子性D. 牛顿运动定律答案:A二、填空题(每题2分,共20分)1. 光年是______的单位。
答案:距离2. 根据开普勒第三定律,行星绕太阳公转的周期的平方与其轨道半长轴的立方成正比,这个比例常数与______有关。
高中物理竞赛练习题与答案
高中物理竞赛练习题与答案高中物理竞赛练习题与答案物理学起始于伽利略和牛顿的年代,它已经成为一门有众多分支的基础科学。
物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。
物理学充分用数学作为自己的工作语言,它是当今最精密的一门自然科学学科。
以下是店铺帮大家整理的高中物理竞赛练习题与答案,欢迎大家借鉴与参考,希望对大家有所帮助!1.天然放射现象的发现揭示了A.原子还可再分B.原子的核式结构C.原子核还可再分D.原子核由质子和中子组成2.下列说法中正确的是A.质子与中子的质量不等,但质量数相等B.两个质子间,不管距离如何,核力总是大于库仑力C.同一种元素的两个原子核可能有相同的质量数和不同的中子数D.除万有引力外,两个中子之间不存在其它相互作用力3.在氢原子中,电子绕核在各个可能轨道上运动的能量,包括电势能和动能两部分,当电子从离核较近的轨道向离核较远的轨道跃迁过程中A.电势能增大,动能减小,原子能量不变B.电势能增大,动能减小,原子能量减小C.电势能增大,动能减小,原子能量增大D.电势能增大,动能增大,原子能量增大n E/eV-0.28 4.氢原子能级图如右,用光子能量E=12.3eV的一束光照射一群处于基-0.38 态的氢原子,受光照后的氢原子可能发生跃迁的情况应是 -0.54-0.85 A.电子轨道量子数由n=1跃迁到n=3-1.51 B.电子轨道量子数由n=1跃迁到n=4-3.40 C.电子轨道量子数由n=1跃迁到n=2D.电子不可能发生轨道跃迁,氢原子仍处于基态2075.从23592U 衰变为82Pb,共经历的α衰变和β衰变的次数依次是 1 -13.60A.14次和10次B.7次和4次C.7次和5次D.7次和10次6.下面关于原子核衰变的说法中正确的是:①发生α衰变时,原子核在周期表中的位置向前移两位;②发生β衰变时,原子核在周期表中的位置向后移一位;③一个原子核不可能同时发生α、β衰变,④发生β衰变时原子核的质量数不变A.只有①② B.只有①②③ C.只有②④ D.①②③④7.以下几个原子核反应中,X代表α粒子的反应式是A.2He+4Be→126C+XC.1H+1H→10n+X 2349 234234B.90Th→91Pa+X 30D.15P→14Si+X 308.重核裂变和轻核聚变是人们利用原子能的两种主要途径,关于它们的说法中正确的是A.裂变过程质量增大,聚变过程质量亏损B.聚变过程质量增大,裂变过程质量亏损C.聚变和裂变过程都有质量亏损D.聚变和裂变过程都有质量增加9.下列说法正确的是A. α射线与γ射线都是电磁波B. β射线为原子的核外电子电离后形成的电子流C.用加温、加压或改变其化学状态的'方法都不能改变原子核衰变的半衰期D.原子核经过衰变生成新核,反应前后总质量不变10.若元素A的半衰期为4天,元素B的半衰期为5天,相同质量的A和B,经过20天后剩下的质量之比mA∶mB。
高中物理力学综合试题和答案
物理竞赛辅导测试卷(力学综合1)一、(10分)如图所时,A 、B 两小球用轻杆连接,A 球只能沿竖直固定杆运动,开始时,A 、B 均静止,B 球在水平面上靠着固定杆,由于微小扰动,B 开始沿水平面向右运动,不计一切摩擦,设A 在下滑过程中机械能最小时的加速度为a ,则a=。
二、(10分) 如图所示,杆OA 长为R ,可绕过O 点的水平轴在竖直平面内转动,其端点A 系着一跨过定滑轮B 、C 的不可伸长的轻绳,绳的另一端系一物块M ,滑轮的半径可忽略,B 在O 的正上方,OB 之间的距离为H ,某一时刻,当绳的BA 段与OB 之间的夹角为α时,杆的角速度为ω,求此时物块M 的速度v M三、(10分)在密度为ρ0的无限大的液体中,有两个半径为R 、密度为ρ的球,相距为d ,且ρ>ρ0,求两球受到的万有引力。
四、(15分)长度为l 的不可伸长的轻线两端各系一个小物体,它们沿光滑水平面运动。
在某一时刻质量为m 1的物体停下来,而质量为m 2的物体具有垂直连线方向的速度v ,求此时线的X 力。
五、(15分)二波源B 、C 具有相同的振动方向和振幅,振幅为0.01m ,初位相相差π,相向发出两线性简谐波,二波频率均为100Hz ,波速为430m/s ,已知B 为坐标原点,C点坐标为x C =30m ,求:①二波源的振动表达式;②二波的表达式;③在B 、C 直线上,因二波叠加而静止的各点位置。
六、(15分) 图是放置在水平面上的两根完全相同的轻质弹簧和质量为m 的物体组成的振子,没跟弹簧的劲度系数均为k ,弹簧的一端固定在墙上,另一端与物体相连,物体与水平面间的静摩擦因数和动摩擦因数均为μ。
当弹簧恰为原长时,物体位于O 点,现将物体向右拉离O 点至x 0处(不超过弹性限度),然后将物体由静止释放,设弹簧被压缩及拉长时其整体不弯曲,一直保持在一条直线上,现规定物体从最右端运动至最左端(或从最左端运动至最右端)为一个振动过程。
高中物理竞赛题(含答案)
高中物理竞赛题(含答案)高中物理竞赛题(含答案)一、选择题1. 以下哪个量纲与能量相同?A. 动量B. 功C. 功率D. 力答案:B. 功2. 以下哪个力不属于保守力?A. 弹簧力B. 重力C. 摩擦力D. 电场力答案:C. 摩擦力3. 一块物体在重力作用下自由下落,下列哪个物理量不随时间变化?A. 动能B. 动量C. 速度D. 位移答案:B. 动量4. 在以下哪个条件下,物体落地时速度为零?A. 重力作用下自由下落B. 匀加速直线运动C. 抛体运动D. 飞机减速降落答案:B. 匀加速直线运动5. 下列哪个现象可以说明动量守恒定律?A. 质点在外力作用下保持做直线运动B. 物体上升时速度减小C. 原地旋转的溜冰运动员脚迅速收回臂伸直D. 跳板跳高运动员下降时肌肉突然放松答案:C. 原地旋转的溜冰运动员脚迅速收回臂伸直二、填空题1. 单个质点的能量守恒定律表达式为________。
答案:E1 + K1 + U1 = E2 + K2 + U22. 一个质量为2.0 kg的物体从静止开始下滑,下滑的最后速度为4.0 m/s,物体下滑的高度为5.0 m,重力加速度为9.8 m/s²,摩擦力大小为2.0 N,那么物体所受到的摩擦力的摩擦因数为________。
答案:0.53. 在太阳系中,地球和太阳之间的引力为F,地球和月球之间的引力为f。
已知太阳质量为地球质量的300000倍,月球质量为地球质量的0.012倍。
下列哪个关系式成立?A. F = 300,000fB. F = 0.012fC. F = 300,000²fD. F = 0.012²f答案:A. F = 300,000f4. 一个质点从A点沿一固定的能量守恒定律表达式为E1 + K1 + U1 = E2 + K2 + U2路径运动到B点,以下哪个表达式正确?A. E1 + K1 + U1 = E2 + K2 + U2 + WB. E1 + K1 + U1 = E2 + K2 + U2 - WC. K1 + U1 = K2 + U2D. E1 - E2 = U2 - U1答案:D. E1 - E2 = U2 - U1三、解答题1. 一个木块沿水平面内的光滑竖直墙壁从静止开始下滑,当木块下滑一段距离后,由于摩擦力的作用,木块的速度减小。
高一物理奥赛试题答案
物理测试题答案
1.解答:分析物体受力情况,选斜面方向为x 轴,垂直斜面方向为y 轴,把不在轴上的重力G 和水平分力F 分解到坐标轴上,由于物体处于平衡状态,则有 θθμsin cos mg F F +=
θθcos sin mg F F N +=
N F F μμ= 解得:θ
μθθμθsin cos )cos (sin -+=mg F 2.解析:作出A 受力图如图所示,由平衡条件有:
F.cos θ-F 2-F 1cos θ=0
Fsin θ+F 1sin θ-mg=0
要使两绳都能绷直,则有:F 10,02≥≥F
由以上各式可解得F 的取值范围为:N F N 340320≤≤。
3.(1)当水平拉力F=0时轻绳处于竖直位置,绳子张力最小G T =1 当水平拉力F=2G 时,绳子张力最大G G G T 5)2(222=+= 因此轻绳的张力范围是
(2)θcos G T =即θ
cos 1∝T 关系图象如右图所示:
说明:只画出图线给1分,加上数字再给2分
4.
G T G 5≤
≤G F 2 F 1 F x y θ θ
5.因蚂蚁运动的速度ν与蚂蚁离巢的距离x成反比,故1/ν∝x.作出1/ν—x图像如图,为一条通过原点的直线,将AB连线分成相等的足够小的n段,每一小段的时间△t i=△x/νi,其数值近似对应着1/ν—x图像中矩形的面积,故蚂蚁从A到B的时间:
T=75S
6.(1)静摩擦力的大小和方向都是可以变化的,要达成下滑力,F,静摩擦力三者合力为0,F的取值必不唯一。
(2)250/ 3 =144N。
高中物理奥赛试题及答案
高中物理奥赛试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项描述的是电场强度的方向?A. 沿着电场线的方向B. 垂直于电场线的方向C. 与电场线的方向无关D. 与电场线的方向相反答案:A2. 根据牛顿第三定律,作用力和反作用力的大小和方向关系是:A. 大小相等,方向相反B. 大小不等,方向相反C. 大小相等,方向相同D. 大小不等,方向相同答案:A3. 光的双缝干涉实验中,相邻亮条纹之间的距离与下列哪个因素无关?A. 光的波长B. 双缝之间的距离C. 屏幕与双缝之间的距离D. 观察者的眼睛答案:D4. 一个物体在水平面上做匀加速直线运动,下列哪个物理量不会发生变化?A. 速度B. 加速度C. 位移D. 动能答案:B二、填空题(每题5分,共20分)5. 根据热力学第一定律,一个封闭系统的内能变化等于______和______的代数和。
答案:热量;做功6. 欧姆定律的数学表达式为V=______,其中V表示电压,I表示电流,R表示电阻。
答案:IR7. 根据相对论,当一个物体的速度接近光速时,其相对论质量会______。
答案:增加8. 光的折射定律可以表示为n1sinθ1 = n2sinθ2,其中n1和n2分别表示光从介质1到介质2时的折射率,θ1和θ2分别表示入射角和折射角。
当光从空气进入水中时,如果入射角为30°,则折射角θ2为______。
答案:19.47°(保留两位小数)三、计算题(每题10分,共20分)9. 一个质量为2kg的物体从静止开始在水平面上做匀加速直线运动,加速度为4m/s²。
求物体在第3秒末的速度。
答案:物体在第3秒末的速度为12m/s。
10. 一个电阻为10Ω的电阻器通过电流I=2A,求该电阻器消耗的电功率。
答案:该电阻器消耗的电功率为40W。
四、实验题(每题10分,共20分)11. 在验证牛顿第二定律的实验中,如何确定小车的质量远大于滑块的质量?答案:通过测量小车和滑块的总质量以及小车的质量,如果小车的质量远大于滑块的质量,则可以认为小车的质量远大于滑块的质量。
高中物理奥赛综合训练题(参考解答或答案)
高中物理奥赛综合训练题1、长方形风筝如图1所示,其宽度a = 40cm ,长度b = 50cm ,质量M = 200g(其中包括以轻绳吊挂的纸球“尾巴”的质量M′= 20g ,纸球可当作质点)。
AO 、BO 、CO 为三根绑绳,AO=BO,C为底边中点;绑绳及放风筝的牵绳均不可伸缩,质量不计。
放风筝时,设风速为零,牵绳保持水平拉紧状态。
当放风筝者以速度v持牵绳奔跑时,风筝单位面积所受的空气作用力垂直于风筝表面,量值为P = Kvsinα,K = 8N s/m3,α为风筝表面与水平面的夹角。
风筝表面为光滑平面,各处所受空气作用力近似相等,g取10m/s2。
试求:(1)放风筝者至少应以多大速度持牵绳奔跑,风筝才能做水平飞行?(2)这时风筝面与水平面的夹角应为何值?假设通过调整绑绳长度可使风筝面与水平面成任意角度α。
2、如图2是一个直径为D的圆柱体,其侧面刻有螺距为h的螺旋形凹槽,槽内有一小球,为使小球能自由落下,必须要以多大的加速度来拉缠在圆柱体侧面的绳子?3、(前苏联奥林匹克竞赛题)快艇系在湖边,湖岸是直线,系绳突然松脱,风吹着快艇以恒定速度v0 = 2.5km/h沿与湖岸成15°角的方向飘去,一人能在岸上以v1 = 4km/h行走或在水中以v2 = 2km/h游泳。
试问:(1)他能否赶上快艇;(2)当快艇速度多大时,他总可以赶上快艇。
4、(北京市高中物理竞赛题)一辆汽车沿水平公路以速度v无滑动地运动,如果车轮半径为R ,试求车轮抛出的水滴上升的最大高度和抛出点的位置。
5、(全国中学生物理竞赛题)图3中,AOB是一内表面光滑的楔形槽,固定在水平桌面(图中纸面)上,夹角α = 15°,现将一质点在BOA面内从C处以速度v = 3m/s射出,其方向与AO间的夹角为β = 30°,OC= 1m ,设质点与桌面的摩擦可忽略不计,质点与OB 面及OA面的碰撞都是弹性碰撞,且每次碰撞时间极短,可忽略不计。
【精品】高中物理竞赛选拔综合经典习题(Word版含详细答案)
高中物理竞赛复赛经典练习题1. (本题6分)一长度为l 的轻质细杆,两端各固结一个小球A 、B (见图),它们平放在光滑水平面上。
另有一小球D ,以垂直于杆身的初速度v 0与杆端的Α球作弹性碰撞.设三球质量同为m ,求:碰后(球Α和Β)以及D 球的运动情况.2. (本题6分)质量m =10 kg 、长l =40 cm 的链条,放在光滑的水平桌面上,其一端系一细绳,通过滑轮悬挂着质量为m 1 =10 kg 的物体,如图所示.t = 0时,系统从静止开始运动, 这时l 1 = l 2 =20 cm< l 3.设绳不伸长,轮、绳的质量和轮轴及桌沿的摩擦不计,求当链条刚刚全部滑到桌面上时,物体m 1速度和加速度的大小.3. (本题6分) 长为l 的匀质细杆,可绕过杆的一端O 点的水平光滑固定轴转动,开始时静止于竖直位置.紧挨O 点悬一单摆,轻质摆线的长度也是l ,摆球质量为m .若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止.求: (1) 细杆的质量.(2) 细杆摆起的最大角度θ.4. (本题6分)质量和材料都相同的两个固态物体,其热容量为C .开始时两物体的温度分别为T 1和T 2(T 1 > T 2).今有一热机以这两个物体为高温和低温热源,经若干次循环后,两个物体达到相同的温度,求热机能输出的最大功A max .5. (本题6分)如图所示,123415641 为某种一定量的理想气体进行的一个循环过程,它是由一个卡诺正循环12341 和一个卡诺逆循环15641 组成.已知等温线温度比T 1 / T 2 = 4,卡诺正逆循环曲线所包围面积大小之比为S 1 / S 2 = 2.求循环123415641的效率η.6. (本题6分)将热机与热泵组合在一起的暖气设备称为动力暖气设备,其中带动热泵的动力由热机燃烧燃料对外界做功来提供.热泵从天然蓄水池或从地下水取出热量,向温度较高的暖气系统的水供热.同时,暖气系统的水又作为热机的冷却水.若燃烧1kg 燃料,锅炉能获得的热量为H ,锅炉、地下水、暖气系统的水的温度分别为210℃,15℃,60℃.设热机及热泵均是可逆卡诺机.试问每燃烧1kg 燃料,暖气系统所获得热量的理想数值(不考虑各种实际损失)是多少?7. (本题5分) 如图所示,原点O 是波源,振动方向垂直于纸面,波长是λ .AB 为波的反射平面,反射时无相位突变π.O 点位于A 点的正上方,h AO =.Ox 轴平行于AB .求Ox 轴上干涉加强点的坐标(限于x ≥ 0).8. (本题6分)一弦线的左端系于音叉的一臂的A 点上,右端固定在B 点,并用T = 7.20 N 的水平拉力将弦线拉直,音叉在垂直于弦线长度的方向上作每秒50次的简谐振动(如图).这样,在弦线上产生了入射波和反射波,并形成了驻波.弦的线密度η = 2.0 g/m , 弦线上的质点离开其平衡位置的最大位移为4 cm .在t = 0时,O 点处的质点经过其平衡位置向下运动,O 、B 之间的距离为L = 2.1 m .试求:12T 1 6543 VpOT 2A(1) 入射波和反射波的表达式; (2) 驻波的表达式.9. (本题6分)用每毫米300条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱.已知红谱线波长λR 在 0.63─0.76μm 范围内,蓝谱线波长λB 在0.43─0.49 μm 范围内.当光垂直入射到光栅时,发现在衍射角为24.46°处,红蓝两谱线同时出现. (1) 在什么角度下红蓝两谱线还会同时出现?(2) 在什么角度下只有红谱线出现?10. (本题6分)如图所示,用波长为λ= 632.8 nm (1 nm = 10-9 m)的单色点光源S 照射厚度为e = 1.00×10-5 m 、折射率为n 2 = 1.50、半径为R = 10.0 cm 的圆形薄膜F ,点光源S 与薄膜F 的垂直距离为d = 10.0 cm ,薄膜放在空气(折射率n 1 = 1.00)中,观察透射光的等倾干涉条纹.问最多能看到几个亮纹?(注:亮斑和亮环都是亮纹).11. (本题6分)507⨯双筒望远镜的放大倍数为7,物镜直径为50mm .据瑞利判据,这种望远镜的角分辨率多大?设入射光波长为nm 550.已知眼睛瞳孔的最大直径为7.0mm .求出眼睛对上述入射光的分辨率.用得数除以7,和望远镜的角分辨率对比,然后判断用这种望远镜观察时实际起分辨作用的是眼睛还是望远镜.12. (本题6分)一种利用电容器控制绝缘油液面的装置示意如图. 平行板电容器的极板插入油中,极板与电源以及测量用电子仪器相连,当液面高度变化时,电容器的电容值发生改变,使电容器产生充放电,从而控制电路工作. 已知极板的高度为a ,油的相对电容率为εr ,试求此电容器等效相对电容率与液面高度h 的关系.13. (本题6分)在平面螺旋线中,流过一强度为I 的电流,求在螺旋线中点的磁感强度的大小.螺旋线被限制在半径为R 1和R 2的两圆之间,共n 圈.[提示:螺旋线的极坐标方程为b a r +=θ,其中a ,b 为待定系数]14. (本题6分)一边长为a 的正方形线圈,在t = 0 时正好从如图所示的均匀磁场的区域上方由静止开始下落,设磁场的磁感强度为B ϖ(如图),线圈的自感为L ,质量为m ,电阻可忽略.求线圈的上边进入磁场前,线圈的速度与时间的关系.15. (本题6分)如图所示,有一圆形平行板空气电容器,板间距为b ,极板间放一与板绝缘的矩形线圈.线圈高为h ,长为l ,线圈平面与极板垂直,一边与极板中心轴重合,另一边沿极板半径放置.若电容器极板电压为U 12 = U m cos ω t ,求线圈电压U 的大小.Bϖ16. (本题6分)在实验室中测得电子的速度是0.8c ,c 为真空中的光速.假设一观察者相对实验室以0.6c 的速率运动,其方向与电子运动方向相同,试求该观察者测出的电子的动能和动量是多少?(电子的静止质量m e =9.11×10-31kg )17. (本题6分)已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于1.37×103 W/m 2.(1) 求太阳辐射的总功率. (2) 把太阳看作黑体,试计算太阳表面的温度.(地球与太阳的平均距离为1.5×108 km ,太阳的半径为6.76×105 km ,σ = 5.67×10-8 W/(m 2·K 4))18. (本题6分))已知氢原子的核外电子在1s 态时其定态波函数为 a r a /3100e π1-=ψ,式中 220em h a e π=ε .试求沿径向找到电子的概率为最大时的位置坐标值.( ε0 = 8.85×10-12 C 2·N -1·m -2 ,h = 6.626×10-34 J ·s , m e = 9.11×10-31 kg , e = 1.6 ×10-19 C )参考答案1. (本题6分)解:设碰后刚体质心的速度为v C ,刚体绕通过质心的轴的转动的角速度为ω,球D 碰后的速度为v ',设它们的方向如图所示.因水平无外力,系统动量守恒:C m m m v v v )2(0+'= 得:(1)20C v v v ='- 1分 弹性碰撞,没有能量损耗,系统动能不变;222220])2(2[21)2(212121ωl m m m m C ++'=v v v ,得 (2)22222220l C ω+='-v v v 2分 系统对任一定点的角动量守恒,选择与A 球位置重合的定点计算.A 和D 碰撞前后角动量均为零,B 球只有碰后有角动量,有])2([0C B l ml ml v v -==ω,得(3)2lC ω=v 2分(1)、(2)、(3)各式联立解出 lC 00;2;0vv v v ==='ω。
高中物理奥林匹克竞赛专题重点习题(有答案)-精选文档
8-6 长=15.0cm的直导线AB 上均匀地分布着线密度=5.0x10-9C ·m-1的正电荷.试求:(1)在导线的延长线上与导线B 端相距=5.0cm 处点的场强;(2)在导线的垂直平分线上与导线中点相距=5.0cm处点的场强. 解: 如题8-6图所示(1)在带电直线上取线元,其上电量在点产生场强为用,, 代入得方向水平向右(2)同理 方向如题8-6图所示由于对称性,即只有分量,以, ,代入得,方向沿轴正向8-7 一个半径为的均匀带电半圆环,电荷线密度为,求环心处点的场强.解: 如8-7图在圆上取题8-7图,它在点产生场强大小为方向沿半径向外则积分∴,方向沿轴正向.8-9 (1)点电荷位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷的电场中取半径为R 的圆平面.在该平面轴线上的点处,求:通过圆平面的电通量.() 解: (1)由高斯定理立方体六个面,当在立方体中心时,每个面上电通量相等∴ 各面电通量.(2)电荷在顶点时,将立方体延伸为边长的立方体,使处于边长的立方体中心,则边长的正方形上电通量l λ1a P 2d Qx d q d P 15=l cm 9100.5-⨯=λ1m C -⋅5.12=a cm 21074.6⨯=P E 1C N -⋅2220d d π41d +=x x E Q λε⎰=lQxEd QEy 9100.5-⨯=λ1cm C -⋅15=l cm 5d 2=cm 21096.14⨯==Qy Q E E 1C N -⋅y R λO ϕRd dl =ϕλλd d d R l q ==O 20π4d d R R E εϕλ=ϕϕελϕd sin π4sin d d 0RE E x ==RR E x 000π2d sin π4ελϕϕελπ==⎰R E E x 0π2ελ==x q q q A x Rarctan=α0d εq S E s ⎰=⋅ q 06εqe =Φa 2q a 2a 206εq e =Φ对于边长的正方形,如果它不包含所在的顶点,则,如果它包含所在顶点则.如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图 (3)∵通过半径为的圆平面的电通量等于通过半径为的球冠面的电通量,球冠面积**关于球冠面积的计算:见题8-9(c)图8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理,当时,,时, ∴, 方向沿半径向外. cm 时,∴沿半径向外.8-11 半径为和(>)的两无限长同轴圆柱面,单位长度上分别带有电量和-,试求:(1)<;(2) <<;(3) >处各点的场强. 解: 高斯定理取同轴圆柱形高斯面,侧面积 则对(1)(2)∴沿径向向外(3)8-16 如题8-16图所示,在,两点处放有电量分别为+,-的点电荷,间距离为2,现a q 024εqe =Φq0=Φe R 22x R +510-0d ε∑⎰=⋅q S E s2π4ε∑=qr E 5=r cm 0=∑q 0=E 8=r cm ∑q 3π4p =3(r )3内r -()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅12=r 3π4∑=ρq -3(外r )内3r ()420331010.4π43π4⨯≈-=r r r E ερ内外1C N -⋅1R 2R 2R 1R λλr 1R 1R r 2R r 2R 0d ε∑⎰=⋅q S E srl S π2=rlE S E Sπ2d =⋅⎰1R r <0,0==∑E q 21R r R <<λl q =∑rE 0π2ελ=2R r >0=∑q A B q q AB R将另一正试验点电荷从点经过半圆弧移到点,求移动过程中电场力作的功.解: 如题8-16图示8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为的正电荷,两直导线的长度和半圆环的半径都等于.试求环中心点处的场强和电势.解: (1)由于电荷均匀分布与对称性,和段电荷在点产生的场强互相抵消,取则产生点如图,由于对称性,点场强沿轴负方向题8-17图(2)电荷在点产生电势,以同理产生半圆环产生8-24 半径为的金属球离地面很远,并用导线与地相联,在与球心相距为处有一点电荷+,试求:金属球上的感应电荷的电量. 解: 如题8-24图所示,设金属球感应电荷为,则球接地时电势8-24图由电势叠加原理有:得9-6 已知磁感应强度Wb ·m-2的均匀磁场,方向沿轴正方向,如题9-6图所示.试求:(1)通过图中面的磁通量;(2)通过图中面的磁通量;(3)通过图中面的磁通量.解: 如题9-6图所示题9-6图(1)通过面积的磁通是(2)通过面积的磁通量 (3)通过面积的磁通量(或曰)题9-7图9-7 如题9-7图所示,、为长直导线,为圆心在点的一段圆弧形导线,其半径为.若通以电流,求点的磁感应强度.解:如题9-7图所示,点磁场由、、三部分电流产生.其中产生产生,方向垂直向里q O C λR O AB CD O θd d R l =θλd d R q =O Ed O y AB O 0=∞U CD 2ln π402ελ=U 0034π4πελελ==R R U R R d 3=q q '0=O U -='q 3q0.2=B x abcd befc aefd abcd 1S befc 2S aefd 3S 24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb 24.0-Wb AB CD C BO R I O O AB C BCD AB 01=B CD RIB 1202μ=段产生 ,方向向里 ∴,方向向里.9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的,两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心的磁感应强度. 解: 如题9-9图所示,圆心点磁场由直电流和及两段圆弧上电流与所产生,但和在点产生的磁场为零。
高中物理奥赛试题及答案
高中物理奥赛试题及答案一、选择题(每题3分,共30分)1. 根据牛顿第二定律,若物体的质量为m,加速度为a,作用在物体上的力为F,则下列关系正确的是:A. F = maB. F = m/aC. F = a/mD. F = 1/ma2. 一个物体从静止开始自由下落,其下落的高度h与时间t的关系为:A. h = 1/2gtB. h = gtC. h = 1/2gt^2D. h = gt^23. 以下哪个选项不是描述电磁波的性质?A. 电磁波是横波B. 电磁波在真空中传播速度为光速C. 电磁波具有能量D. 电磁波是物质波4. 一个理想气体在等压过程中,温度T和体积V的关系是:A. V ∝ TB. V ∝ 1/TC. V ∝ T^2D. V ∝ 1/T^25. 根据麦克斯韦方程组,以下哪个选项描述了电场与电荷的关系?A. ∇ × E = 0B. ∇ × E = ∂B/∂tC. ∇ · E = ρ/ε₀D. ∇ · B = 06. 一个物体在水平面上以恒定的加速度a运动,其位移s与时间t的关系为:A. s = 1/2at^2B. s = atC. s = 1/2atD. s = at^27. 光的折射定律是什么?A. sinθ₁/sinθ₂ = n₂/n₁B. sinθ₁/sinθ₂ = n₁/n₂C. sinθ₁/sinθ₂ = n₁D. sinθ₁/sinθ₂ = n₂8. 一个完全弹性碰撞中,两个物体的动量守恒,但动能不守恒,这种说法:A. 正确B. 错误9. 根据热力学第一定律,以下哪个说法是正确的?A. 能量可以被创造或消灭B. 能量守恒定律C. 能量可以被转化为其他形式D. 能量只能从高温物体传递到低温物体10. 以下哪个选项是描述光电效应的条件?A. 光的频率必须大于金属的极限频率B. 光的强度必须大于金属的极限强度C. 光的波长必须小于金属的极限波长D. 光的频率必须小于金属的极限频率答案:1. A2. C3. D4. D5. C6. A7. B8. B9. B10. A二、简答题(每题10分,共20分)11. 简述牛顿第三定律的内容及其在日常生活中的应用。
高中奥林匹克物理竞赛题解及练习
高中奥林匹克物理竞赛题解赛题精讲例1:如图1—1所示,人和车的质量分别为m 和M ,人用水平力F 拉绳子,图中两端绳子均处于水平方向,不计滑轮质量及摩擦,若人和车保持相对静止,且水平地面是光滑的,则车的加速度为 .解析:要求车的加速度,似乎需将车隔离出来才能求解,事实上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用牛顿第二定律求解即可.将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力.在竖直方向重力与支持力平衡,水平方向绳的拉力为2F ,所以有:2F=(M+m)a ,解得:mM F a +=2 例2 用轻质细线把两个质量未知的小球悬挂起来,如图1—2所示,今对小球a 持续施加一个向左偏下30°的恒力,并 对小球b 持续施加一个向右偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是 ( )解析 表示平衡状态的图是哪一个,关键是要求出两条轻质细绳对小球a 和小球b 的拉力的方向,只要拉力方向求出后,。
图就确定了。
先以小球a 、b 及连线组成的系统为研究对象,系统共受五个力的作用,即两个重力(m a +m b )g ,作用在两个小球上的恒力F a 、F b 和上端细线对系统的拉力T 1.因为系统处于平衡状态,所受合力必为零,由于F a 、F b 大小相等,方向相反,可以抵消,而(m a +m b )g 的方向竖直向下,所以悬线对系统的拉力T 1的方向必然竖直向上.再以b 球为研究对象,b 球在重力m b g 、恒力F b 和连线拉力T 2三个力的作用下处于平衡状态,已知恒力向右偏上30°,重力竖直向下,所以平衡时连线拉力T 2的方向必与恒力F b 和重力m b g 的合力方向相反,如图所示,故应选A.例3 有一个直角架AOB ,OA 水平放置,表面粗糙,OB 竖直向下,表面光滑,OA 上套有小环P ,OB 上套有小环Q ,两个环的质量均为m ,两环间由一根质量可忽略、不何伸长的细绳相连,并在某一位置平衡,如图1—4所示.现将P 环向左移动一段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态相比,OA 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是 ( )A .N 不变,T 变大B .N 不变,T 变小C .N 变大,T 变小D .N 变大,T 变大解析 先把P 、Q 看成一个整体,受力如图1—4—甲所示,则绳对两环的拉力为内力,不必考虑,又因OB 杆光滑,则杆在竖直方向上对Q 无力的作用,所以整体在竖直方向上只受重力和OA 杆对它的支持力,所以N 不变,始终等于P 、Q 的重力之和。
高中物理竞赛试题库附详细答案
高中物理竞赛试题库附详细答案一、选择题1. 下图是一台垂直面上的运动物体的加速度-时间图象,物体的初始速度为零。
根据图象可知,该物体的速度-时间图象为:A) 直线斜率为正的一条直线B) 曲线C) 直线斜率为负的一条直线D) 无法确定答案:A) 直线斜率为正的一条直线解析:根据加速度-时间图象的性质,直线斜率为正的一条直线表示物体在做匀加速运动。
2. 一个物体垂直抛掷,竖直上抛的速度和竖直下落的速度分别为v0和v1,则该物体上抛的时间与下落的时间比值为:A) v1/v0B) √(v1/v0)C) v0/v1D) √(v0/v1)答案:D) √(v0/v1)解析:根据物体竖直抛掷运动的性质,上抛和下落的时间比值为:上抛的时间/下落的时间= √(v0/v1)。
3. 将物体1质量为m1=2kg的铁块放在静止的光滑桌面上,物体2质量为m2=3kg的物体1上,两物体间没有任何摩擦力。
物体1与物体2在竖直方向上的加速度为:A) 7/5m/s²B) 6/5m/s²C) 5/7m/s²D) 5/6m/s²答案:A) 7/5m/s²解析:根据牛顿第二定律和叠加力的原理:F = (m1 + m2) * am1 * g - m2 * g = (m1 + m2) * a2 * 9.8 -3 * 9.8 = (2 + 3) * a19.6 - 29.4 = 5a-9.8 = 5aa = -9.8 / 5a = -1.96 m/s²因为加速度的方向与重力方向相反,所以取绝对值:|a| = 1.96 m/s²所以物体1与物体2在竖直方向上的加速度为1.96 m/s²,即7/5m/s²。
二、填空题1. 物体从A点自由下落到B点,高度差为10m,重力加速度为10m/s²,则到达B点时的速度为___m/s。
答案:14 m/s解析:根据加速度公式:v² = u² + 2as其中,v是最终速度,u是初始速度,a是加速度,s是位移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切的半个椭圆轨道正好射到火星上,如图 9-a 所示,问:
( 1)为使探测器成为沿地球轨道运行的人造卫星,必须加速探测器,使之在地面附近
第 5 页 共 10 页
获得多大的速度 (相对地球 )?
( 2)当探测器脱离地球并沿地球公转轨道稳定运行后,在某年
3 月 1 日 0 时测得探测
器与火星之间的角距离为 60°,如图 9-b 所示,问应在何年何月何日点燃探测器上的火箭
筝时, 设风速为零, 牵绳保持水平拉紧状态。 当放风筝者以速度 v 持牵绳奔跑时, 风筝单位
面积所受的空气作用力垂直于风筝表面, 量值为 P = Kvsin α ,K = 8N s/m3 ,α为风筝表面
与水平面的夹角。风筝表面为光滑平面,各处所受空气作用力近似相等,
g 取 10m/s2 。试
求:
( 1)放风筝者至少应以多大速度持牵绳奔跑,风筝才
( 1)圆管弹起后圆球不致滑落, L 应满足什么条件。
( 2)圆管上升的最大高度是多少 ?
( 3)圆管第二次弹起后圆球不致滑落, L 又应满足什么条件 ?
11、(全国中学生物理竞赛题)从地球表面向火星发射火星探测器,设地球和火星在
同一平面上绕太归作圆周运动,火星轨道半径
R 。为地球轨道半径 R0 的 1.5 倍,简单而又
高中物理奥赛综合训练题
1、长方形风筝如图 1 所示,其宽度 a = 40cm ,长度 b = 50cm ,质量 M = 200g (其中
包括以轻绳吊挂的纸球“尾巴”的质量
M ′ = 20g ,纸球可当作质点)。 AO 、 BO 、 CO
为三根绑绳, AO = BO ,C 为底边中点;绑绳及放风筝的牵绳均不可伸缩,质量不计。放风
比较节省能量的发射过程可分为两步进行:第
1 步,在地球表面用火箭对探测器进行加速,
使之获得足够动能, 从而脱离地球引力作用成为一个沿着地球轨道运动的人造卫星。
第二步,
在适当时刻点燃与探测器连在一起的火箭发动机, 在短时间内对探测器沿原方向加速, 使其
速度数值增加到适当值, 从而使得探测器沿着一个与地球轨道及火星轨道分别在长轴两端相
α为 2.3°,周期 T 为 50 年,且呈正弦曲线 (与地球上观察者的运动无关) ,如图 7 所示. 贝
塞耳推测天狼星运动路线的弯曲是由于存在着一个较小的伴星。如果天狼星自身的质量
M
为 2.3M 日 ,求它的伴星质量与太阳质量 M 日之比。 已知从天狼星看地球轨道半径 R0的张角
β为 0.276°,可以把天狼星和它的伴星的轨道看作圆形,并且轨道平面垂直于太阳系到天
B 与桌面间的 F ,作用一
( 1)力 F 大小为多小 ?
( 2)力 F 最短作用时间为多少 ?
第 3 页 共 10 页
8、(吉林省高中物理竞赛题)如图 6 所示,质量为 m 的链条,围成半径为 R 的圆,套
在半张角为 θ的光滑圆锥上。如果链条以恒定的角速度
ω绕竖直轴旋转,试求链
条内的张力。
9、1844 年杰出的数学家和天文学家贝塞耳发现天狼星的运动偏离直线路径的最大角度
狼星的方向。
第 4 页 共 10 页
10、(上海市高中物理竞赛题)如图 8 所示,竖直放置的质量为 4m ,长为 L 的圆管
顶端塞有一个质量为 m 的弹性圆球, 球和管间的滑动摩擦力和最大静摩擦力大小均为
4mg 。
圆管从下端离地面距离为 H 处自由落下,落地后向上弹起的速度与落地时速度大小相等。
试求:
( 1)上述质点的多次碰撞中,最后一次碰撞是发生在哪个面 上?
( 2)质点从 C 出发至发生最后一次碰撞, 共经历了多少时间 ?
第 2 页 共 10 页
6、图 4 中细杆 AB 长 L ,端点 A 、B 分别被约束在 x 和 y 轴上运动,试求:
( 1)杆上与 A 相距( 0< a< L )的 P 点的运动轨迹; ( 2)如果图中 θ角和 v A 为已知,那么 P 点的 x 、y 方向分 运动速度 vpx 、v py 是多少 ?
发动机, 方能使探测器恰好落在火星表面 (时间计算需要精确到日) ?已知地球半径 R0 = 6.4 ×106m ,重力加速度 g 取 9.8m/s2 。
12、如图 10 所示,有一绝缘水平台面,处于一个够大空间有互相正交的匀强电场和
( 1)他能否赶上快艇; ( 2)当快艇速度多大时,他总可以赶上快艇。
第 1 页 共 10 页
4、(北京市高中物理竞赛题)一辆汽车沿水平公路以速度
v 无滑动地运动,如果车轮
半径为 R ,试求车轮抛出的水滴上升的最大高度和抛出点的位置。
5、(全国中学生物理竞赛题)图 3 中, AOB 是一内表面光滑的楔形槽,固定在水平桌 面( 图中纸面 )上,夹角 α= 15 °,现将一质点在 BOA 面内从 C 处以速度 v = 3m/s 射出,其 方向与 AO 间的夹角为 β= 30°, OC = 1m ,设质点与桌面的摩擦可忽略不计, 质点与 OB 面及 OA 面的碰撞都是弹性碰撞,且每次碰撞时间极短,可忽略不 计。并设 OA 和 OB 都足够长。试求:
能做水平飞行 ?
( 2)这时风筝面与水平面的夹角应为何值 ?假设通过调
整绑绳长度可使风筝面与水平面成任意角度
α。
2、如图 2 是一个直径为 D 的圆柱体,其侧面刻有 螺距为 h 的螺旋形凹槽,槽内有一 小球,为使小球能自由落下, 必须要以多大的加速度来拉缠在圆柱体侧面的绳 子?
3、(前苏联奥林匹克竞赛题)快艇系在湖边,湖岸是直线,系绳突然松 脱,风吹着快艇以恒定速度 v 0 = 2.5km/h 沿与湖岸成 15°角的方向飘去, 一人 能在岸上以 v 1 = 4km/h 行走或在水中以 v2 = 2km/h 游泳。试问:
7、(全国中学生力学竞赛题)如图 5 所示,平板 A 长 L = 5m ,质量 M = 5kg ,放在
水平桌面上,板右端与桌边相齐。在 A 上距右端 s = 3m 处放一物 B( 大小可忽略,即可看成
质点 ),其质量 m = 2kg 。已知 A 、B 间动摩擦因数 μ1 = 0.1 ,A 与桌面间和 动摩擦因数都是 μ2 = 0.2 ,原来系统静止。现在板的右端施大小一定的水平力 段时间后,将 A 从 B 下抽出,且使 B 最后恰停于桌的右侧边缘。试求: