必修三.用样本估计总体

合集下载

人教高中数学必修三2.2.1用样本的频率分布估计总体分布课件

人教高中数学必修三2.2.1用样本的频率分布估计总体分布课件

频率散布直方图以面积的情势反应了数据落在 各个小组的频率的大小.
作业
1、课时训练 P73 2、探究咱班学生的身高
散布情况 3、探究频率散布折线图和
总密度曲线
频率 组距 0.5 0.4 0.3 0.2 0.1
宽度:组距
高度:
频率 组距
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
画频率散布直方图
频率/组距
注意:
① 这里的纵坐标不是频率, 而是频率/组距;
0.50 0.40
0.50 ② 某个区间上的频率用
0.44
这个区间矩形的面积表示;
2.2.1用样本的频率散布 估计总体散布
学习目标
1、理解并学会画频率散布表; 2、掌握频率散布直方图的画法,
并能理解在频率散布直方图 中用面积表示频率。
一、复习回顾
1.我们已经学习了哪些抽样的方法?
简单随机抽样
系统抽样
分层抽样
随机抽样是收集数据的方法,如何通过 样本数据所包含的信息,估计总体的基 本特征,即用样本估计总体,是我们需 要进一步学习的内容.
二、样本估计总体的方法
一般分成两种: ①用样本的频率散布估计总体的散布. ②用样本的数字特征(如平均数、标准差 等)估计总体的数字特征.
• 我国是世界上严重缺水的国家之一。
如何划在本市试
行居民生活用水定额管理,即确定一个居民月用 水量标准a , 用水量不超过a的部分按平价收费,超 过a的部分按议价收费。
思考:由上表,大家可以得到什么信息?
三、样本分析
一般通过表、图、计算来分析 数据,帮助我们找出样本数据中的 规律,使数据所包含的信息转化成 直观的容易理解的情势。

北师大版高中数学必修三1.5用样本估计总体.docx

北师大版高中数学必修三1.5用样本估计总体.docx

高中数学学习材料唐玲出品§5用样本估计总体[读教材·填要点]1.用样本估计总体的两种情况(1)用样本的分布估计总体的分布.(2)用样本的数字特征估计总体的数字特征.2.频率分布直方图在频率分布直方图中,纵轴表示f iΔx i,数据落在各小组内的频率用频率直方图的面积来表示,各小长方形的面积的总和等于1.3.频率折线图在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间,从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线,我们称之为频率折线图.随着样本量的增大,所划分的区间数也可以随之增多,而每个区间的长度则会相应随之减小,相应的频率折线图就会越来接近于一条光滑曲线.[小问题·大思维]1.将数据的样本进行分组的目的是什么?提示:从样本中的一个个数字中很难直接看出样本所包含的信息,通过分组,并计算其频率,目的是通过描述样本数据分布的特征,从而估计总体的分布情况.2.频率分布直方图中,每个小长方形的面积表示什么含义?提示:表示相应各组的频率.[研一题][例1]已知一个样本:30,29,26,24,25,27,26,22,24,25,26,28,25,21,23,25,27,29,25,28.(1)列出样本的频率分布表.(2)画出频率分布直方图和频率分布折线图.(3)根据频率分布直方图,估计总体出现在23~28内的频率是多少?[自主解答](1)计算极差:30-21=9.决定组距和组数:取组距为2.∵92=412,∴共分5组.决定分点,使分点比数据多一位小数.并把第1小组的分点减小0.5,即分成如下5组:20.5~22.5,22.5~24.5,24.5~26.5,26.5~28.5,28.5~30.5.列出频率分布表如下:分组个数累计频数频率f i Δx i20.5~22.520.10.0522.5~24.530.150.07524.5~26.5正80.40.226.5~28.540.20.128.5~30.530.150.075合计2020 1.00(2)作出频率分布直方图如下:取各小长方形上的中点并用线段连接就构成了频率分布折线图,如上图.(3)由频率分布表和频率分布直方图观察得:样本值出现在23~28之间的频率为0.15+0.40+0.2=0.75,所以可以估计总体中出现在23~28之间的数的频率约为0.75.[悟一法]绘制频率分布直方图的具体步骤:(1)求极差:一组数据的最大值与最小值的差称为极差.(2)决定组距与组数:数据分组的组数与样本容量有关,一般样本容量越大,所分组数越多,当样本容量不超过120时,按照数据的多少,常分成5~12组.为方便起见,组距的选择应力求“取整”.(3)将数据分组:通常对组内数值所在区间取左闭右开区间,最后一组取闭区间.(4)列频率分布表:计算各小组的频率,作出频率分布表.说明:制作好频率分布表以后,可利用各组的频率之和为1来检验该表是否正确.(5)画出频率分布直方图:依据频率分布表画出频率分布直方图.[通一类]1.下表给出了某校从500名12岁男孩中随机抽选出的120人的身高情况(单位:cm):身高范围[122,126)[126,130)[130,134)[134,138)[138,142) 人数58102233身高范围[142,146)[146,150)[150,154)[154,158)人数20116 5(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高低于134 cm的人数占总人数的百分比.解:(1)样本频率分布表如下所示:分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28[142,146)200.17[146,150)110.09[150,154)60.05[154,158)50.04合计120 1.00(2)频率分布直方图如图所示.(3)由样本频率分布表可知,身高低于134 cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以可以估计身高低于134 cm 的人数占总人数的19%.[研一题][例2] 某校开展了一次小制作评比活动,作品上交时间为5月1日至30日.评委会把同学们上交作品的件数按5天一组分组统计,绘制了如图所示的频率分布直方图.已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答有关问题:(1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,则这两组哪组获奖率较高? [自主解答] (1)依题意知,第三组的频率为42+3+4+6+4+1=0.2,又因为第三组的频数为12, 故本次活动的参评作品有120.2=60件. (2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有60×62+3+4+6+4+1=18件.(3)第四组的获奖率是1018=59.因为第六组上交的作品数量为60×12+3+4+6+4+1=3,所以第六组的获奖率为23.而23>59,显然第六组的获奖率较高. [悟一法]频率分布直方图的性质:(1)因为小矩形的面积=组距×频率/组距=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.(2)在频率分布直方图中,各小矩形的面积之和等于1. (3)频数/相应的频率=样本容量.[通一类]2.(2011·湖北高考)有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图,估计样本数据落在区间[10,12)内的频数为( )A .18B .36C .54D .72解析:样本数据落在区间[10,12)内的频率为1-(0.02×2+0.05×2+0.15×2+0.19×2)=0.18,所以样本数据落在区间[10,12)内的频数为0.18×200=36.答案:B3.为提高公众对健康的自我管理能力和科学认识,某调查机构共调查了200人在一天中的睡眠时间.现将数据整理分组,如下表所示.由于操作不慎,表中A ,B ,C ,D 四处数据污损,统计员只记得A 处的数据比C 处的数据大4,由此可知B 处的数据为________.分组(睡眠时间)频数 频率 [4,5) 8 0.04 [5,6) 52 0.26 [6,7) A B [7,8) C D [8,9) 20 0.10 [9,10]40.02合计200 1解析:设A处的数据为x,则C处的数据为x-4,则x+x-4+8+52+20+4=200,解得x=60,则B处数据为60200=0.30.答案:0.30[研一题][例3]为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换,已知某校使用的100只日光灯在必须换掉前的使用天数如下表:天数151~180181~210211~240241~270271~300301~330331~360361~390灯管数111182025167 2(1)试估计这种日光灯的平均使用寿命;(2)若定期更换,可选择多长时间统一更换合适?[自主解答](1)各组中值分别是165.5,195.5,225.5,255.5,285.5,315.5,345.5,375.5,由此可算得平均数约为165.5×1%+195.5×11%+225.5×18%+255.5×20%+285.5×25%+315.5×16%+345.5×7%+375.5×2%=268.4≈268(天).(2)将各组中值对(1)问中的平均数求方差:1100×[1×(165.5-268.4)2+11×(195.5-268.4)2+18×(225.5-268.4)2+20×(255.5-268.4)2+25×(285.5-268.4)2+16×(315.5-268.4)2+7×(345.5-268.4)2+2×(375.5-268.4)2]=2 128.59.故标准差为 2 128.59≈46(天).答:估计这种日光灯的平均使用寿命约为268天,标准差约为46天,故可在222到314天左右统一更换较合适.[悟一法]1.样本的标准差和方差描述了总体数据围绕平均数波动的大小程度,样本的标准差、方差越大,总体数据估计越分散;样本的标准差、方差越小,总体数据估计越集中.特别是当样本的标准差和方差都为0时,则表明总体数据估计没有波动,估计数据全相等.2.样本的平均数和方差是两个重要的数字特征.在应用平均数和方差解决实际问题时,若平均数不同,则直接应用平均数比较优劣,若平均数相同,则要由方差研究其与平均数的偏离程度.[通一类]4.两台机床同时生产直径(单位:cm)为10的圆形截面零件,为了检验产品质量,质量检验员从两台机床的产品中各抽出4件进行测量,结果如下:机床甲 10 9.8 10 10.2 机床乙10.1109.910如果你是质量检验员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件质量更符合要求?解:(1)先计算平均直径:x 甲=14×(10+9.8+10+10.2)=10,x 乙=14×(10.1+10+9.9+10)=10.由于x 甲=x 乙,因此仅由平均直径不能反映两台机床生产的零件的质量优劣. (2)再计算方差:s 2甲=14×[(10-10)2+(9.8-10)2+(10-10)2+(10.2-10)2]=0.02, s 2乙=14×[(10.1-10)2+(10-10)2+(9.9-10)2+(10-10)2]=0.005. s 2甲>s 2乙,这说明乙机床生产出的零件直径波动小,因此从产品质量稳定性的角度考虑,乙机床生产的零件质量更符合要求.中小学生的视力状况受到全社会的广泛关注,某市有关部门从全市6万名高一新生中随机抽取了400名学生,对他们的视力状况进行一次调查统计,将所得到的有关数据绘制成频率分布直方图,如图,从左至右五个小组的频率之比依次是5∶7∶12∶10∶6.则全市高一新生视力在[3.95,4.25]范围内的学生约有多少人?[错解] 因为第五小组的频率是0.5, 所以第一小组的频率为0.5×56=512.所以全市6万名高一新生中视力在[3.95,4.25]范围内的学生约有60 000×512=25 000人.[错因] 错误原因在于对频率分布直方图理解不正确,图中标注的0.5并不是第五组的频率,0.5×0.3=0.15才是频率.[正解] 因为第五小组的频率是0.5×0.3=0.15, 所以第一小组的频率是0.15×56=0.125,∴全市6万名高一新生中视力在[3.95,4.25]范围内的学生约有60 000×0.125=7 500人.1.当收集到的数据量很大时,比较合适的统计图是( ) A .茎叶图 B .频率分布直方图 C .频率分布折线统计图D .频率分布表解析:当收集到的数据量很大时,一般用频率分布直方图表示. 答案:B2.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a ,b )是其中的一组,抽查出的个体在该组上的频率为m ,该组上的直方图的高为h ,则|a -b |=( )A .hm B.m h C.h mD .h +m解析:频率组距=h ,故|a -b |=组距=频率h =m h .答案:B3.为了解一片经济林的生长情况,随机测量了其中100株树木的底部周长(单位:cm),根据所得数据画出样本的频率分布直方图(如图所示),那么这100株树木中,底部周长小于110 cm 的树有( )A .80株B .70株C .60株D .50株解析:(0.01×10+0.02×10+0.04×10)×100=70(株). 答案:B4.将容量为n 的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n 等于________.解析:∵第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1, ∴前三组频数为2+3+420·n =27,故n =60.答案:605.某社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本频率分布直方图(如图所示).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人进行调查,则在[2 500,3 000)(单位:元)的月收入段应抽出________人.解析:100×(0.000 5×500)=25(人). 答案:256.如图所示,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下.观察图形,回答下列问题:(1)79.5至89.5这一组的频数、频率分别是多少? (2)估计这次环保知识竞赛的及格率(60分及以上为及格). 解:(1)频率为0.025×10=0.25,频数为60×0.25=15.(2)由频率分布直方图得(0.015+0.025+0.03+0.005)×10=0.75,所以及格率为75%.一、选择题1.下列说法不.正确的是( ) A .频率分布直方图中每个小矩形的高就是该组的频率 B .频率分布直方图中各个小矩形的面积之和等于1 C .频率分布直方图中各个小矩形的宽一样大D .频率分布折线图是依次连接频率分布直方图的每个小矩形上端中点得到的解析:频率分布直方图的每个小矩形的高=频率组距.答案:A2.样本容量为100的频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在[6,10)内的频数为a ,样本数据落在[2,10)内的频率为b ,则a ,b 分别是( )A .32,0.4B .8,0.1C .32,0.1D .8,0.4解析:由于样本数据落在[6,10)内的频率为0.08×4=0.32,则a =100×0.32=32;由于样本数据落在[2,6)内的频率为0.02×4=0.08,则样本数据落在[2,10)内的频率b =0.08+0.32=0.4.答案:A3.将一个容量为50的样本数据分组后,组距与频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),6;[30.5,33.5),3.则估计小于30的数据大约占总体的( ) A .94% B .6% C .92%D .12%解析:由样本的频率分布估计总体的分布.小于30.5的样本频数为3+8+9+11+10+6=47,所以其频率为4750=94%.小于27.5的样本频数为3+8+9+11+10=41,所以其频率为4150=82%.因此小于30的样本频率应在82%~94%之间,满足条件的只有92%.答案:C4.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图所示).已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则抽取的学生人数为( )A .46B .48C .50D .60解析:前3个小组的频率和为1-0.037 5×5-0.012 5×5=0.75.又因为前3个小组的频率之比为1∶2∶3,所以第2小组的频率为26×0.75=0.25.又知第2小组的频数为12,则120.25=48,即为所抽样本的人数.答案:B5.设矩形的长为a ,宽为b ,其比满足b :a =5-12≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )A .甲批次的总体平均数与标准值更接近B .乙批次的总体平均数与标准值更接近C .两个批次总体平均数与标准值接近程度相同D .两个批次总体平均数与标准值接近程度不能确定 解析:x 甲=0.598+0.625+0.628+0.595+0.6395=0.617,x 乙=0.618+0.613+0.592+0.622+0.6205=0.613,∴x 甲与0.618更接近. 答案:A 二、填空题6.(2012·广东高考)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)解析:设x 1≤x 2≤x 3≤x 4,根据已知条件得到x 1+x 2+x 3+x 4=8,且x 2+x 3=4,所以x 1+x 4=4,又因为14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2]=1,所以(x 1-2)2+(x 2-2)2=2,又因为x 1,x 2,x 3,x 4是正整数,所以(x 1-2)2=(x 2-2)2=1,所以x 1=1,x 2=1,x 3=3,x 4=3.答案:1,1,3,37.《中华人民共和国道路交通安全法》规定;车辆驾驶员血液酒精浓度在20~80 mg/100 mL(不含80)之间,属于酒后驾车;血液酒精浓度在80 mg/100 mL(含80)以上时,属醉酒驾车.据《法制晚报》报道,2011年2月15日至2月28日,全国查处酒后驾车和醉酒驾车共28 800人,如图是对这28 800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为________.解析:(0.01×10+0.005×10)×28 800=4 320.答案:4 3208.一组数据中的每一个数据都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是________,________.解析:由题意得原来数据的平均数是80+1.2=81.2,方差不变,仍是4.4.答案:81.2 4.4三、解答题9.有一个容量为50的样本,数据的分组及各组的频率如下:[25,30),3;[30,35),8;[35,40),9;[40,45),11;[45,50),10;[50,55),5;[55,60],4.(1)列出样本的频率分布表;(2)画出频率分布直方图及频率分布折线图.解:(1)频率分布表如下:分组频数频率[25,30)30.06[30,35)80.16[35,40)90.18[40,45)110.22[45,50)100.20[50,55)50.10[55,60)40.08合计50 1.00(2)频率分布直方图、频率分布折线图如下图所示:10.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82848589798091897974 乙班:90768681848786828583(1)求两个样本的平均数;(2)求两个样本的方差和标准差;(3)试分析比较两个班的学习情况.解:(1)x甲=110(82+84+85+89+79+80+91+89+79+74)=83.2,x乙=110(90+76+86+81+84+87+86+82+85+83)=84.(2)s2甲=110[(82-83.2)2+(84-83.2)2+(85-83.2)2+(89-83.2)2+(79-83.2)2+(80-83.2)2+(91-83.2)2+(89-83.2)2+(79-83.2)2+(74-83.2)2]=26.36,s2乙=110[(90-84)2+(76-84)2+(86-84)2+(81-84)2+(84-84)2+(87-84)2+(86-84)2+(82-84)2+(85-84)2+(83-84)2]=13.2,∴s甲=26.36≈5.13,s乙≈13.2≈3.63.(3)由于x甲<x乙,则甲班比乙班平均水平低.由于s甲>s乙,则甲班没有乙班稳定.∴乙班的总体学习情况比甲班好.。

高中数学人教版必修3用样本估计总体 课件PPT

高中数学人教版必修3用样本估计总体 课件PPT

解析答案
12345
5.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是___4_5____, ___4_6____.
解析 甲组数据为:28,31,39,42,45,55,57,58,66,中位数为45. 乙组数据为:29,34,35,42,46,48,53,55,67,中位数为46.
解析答案
课堂小结 1.总体分布指的是总体取值的频率分布规律,由于总体分布不易统计, 因此我们往往用样本的频率分布去估计总体的分布. 2.总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估 计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组, 用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布 直方图.
又乙组数据的平均数为
5
=16.8,
∴y=8,故选C.
解析答案
易错点 频率分布直方图的应用
例4 为了解某地居民的月收入情况,一
个社会调查机构调查了20 000 人,并根
据所得数据画出样本的频率分布直方图
如图所示(最后一组包含两端值,其他组
包含最小值,不包含最大值).现按月收入
分层,用分层抽样的方法在这20 000 人
135 98 102 110 99 121 110 96 100 103 125 97 117 113
110 92 102 109 104 112 105 124 87 131 97 102 123 104 104 128
109 123 111 103 105 92 114 108 104 102 129 126 97 100 115 111 106 117 104 109 111 89 110 121 80 120 121 104 108 118 129 99 90 99 121 123 107 111 91 100 99 101 116 97 102 108 101 95 107 101 102 108 117 99 118 106 119 97 126 108 123

最新人教版高中数学必修3第二章用样本估计总体1

最新人教版高中数学必修3第二章用样本估计总体1

用样本估计总体一、教学目标1.通过实例进一步体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图,并体会它们各自的特点.2.能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.3.在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性.二、设计思路与教学建议在实际应用中,总体可以指研究对象的某一指标的全体.在抽象意义下,总体可以看作是一个分布,但不要求学生追究总体的定义.6.1估计总体的分布在统计分析中,首先要将统计对象中的某些数量或与数量有关的量用比较直观的图表表示出来.当然,最理想的办法就是将总体的分布情况用图表表示出来,通常情况下,我们对总体情况的了解是通过对样本的信息进行分析得到的,因此,我们通常要将样本的分布情况用图表表示出来.在义务教育阶段,学生已经通过实例,了解了频数分布的意义和作用,会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题.在这个基础上,高中阶段还将进一步通过一些统计案例的学习,学会列频率分布表、画频率分布直方图、频率折线图.例 P38通过这个例子体会分布的意义和作用,并体会用样本估计总体的思想.在表示样本数据(此例中即为挖掘出土得到的头盖骨的宽度)的过程中,学会列频率分布表、画频率分布直方图,体会它们各自的特点,并会用它们分别来估计总体的分布.思考交流 P40(1)头盖骨的宽度位于140~145 mm的数据最多;(2)头盖骨的宽度位于140~145 mm的频率约是43.4%;(3)头盖骨的宽度小于140 mm的频率约是28.3%;(4)头盖骨的宽度位于137~142 mm的频率约是:0.208×3/5+0.434×2/5=0.298 4,即29.84%.抽象概括 P41在现实生活中,人们通常需要了解某些总体的详细情况.例如,某个工厂中所有工人的工资情况,北京市所有在校的高一年级学生的身高情况,以及教科书中提到的1665年~1666年之间英国男性头盖骨的宽度情况.以上几个例子中,需要了解的都是总体取值的全部数据的概率分布状况,也就是总体的分布情况,简单地说,即“总体中个体的取值的分布”.当然,由于总体分布是一个比较复杂的概念,此处只需要通过简单的例子让学生初步感受即可,切勿追求严格的形式化的定义.例如,总体中包含1 000名工人,我们关注的是其工资,那么这1 000名工人工资的分布可以告诉我们:有多少工人其工资是多少,或工资处于一定界限之内的工人有多少,所占比例如何,等等.而当总体的分布未知时,我们只能通过样本的情况来估计它.假如,为了估计上面总体中工人工资的分布情况,其中要估计工资在300~500元之间的工人在全体中所占比例,我们只需用其频率,即样本中工资在此范围内人数所占比率就可以.但因为总体分布是一个全面的概念,为了提供充分的信息,我们必须对许多区间段的比率做出估计,为此,我们引入频率分布直方图来估计总体的分布.在频率折线图中,我们不难证明:折线与横轴所围成的面积也是1.因此,当样本量较大时,我们还可以用频率折线图来估计总体的分布情况.实际上,当总体是连续分布时,频率折线图往往用来估计总体的分布密度.思考交流 P41前面我们已经知道:当样本量较大时,可以用样本的频率分布(频率分布表、频率分布直方图、频率折线图)来估计总体的分布.在此基础上,教科书又设计了两个问题,让学生思考当样本量发生变化时,估计的结果会有哪些变化.教师可以鼓励学生实际动手完成(1),然后再与同学交流.抽象概括 P42在学生思考交流的基础上,教科书给出了一般的结论:样本容量越大,用样本的频率分布去估计总体的分布就越精确.另外,当样本量增大时,为使所得的频率分布直方图更好地反映总体的分布情况,我们往往将划分的区间数相应增多,每个区间的长度则会相应减小,这样得到的频率折线图也就会越来越接近于一条光滑曲线.练习 P42(1)(2)频率分布直方图如下所示:频率折线图如下所示:鼓励学生用自己的语言来描述此类植物生长1年之后的高度分布情况,如,超过50%的此类植物在生长1年之后的高度在60~80 cm之间,50 cm以下及90 cm以上所占的比例相对较小.。

必修三2.2.用样本估计总体(教案)

必修三2.2.用样本估计总体(教案)

必修三2.2.用样本估计总体(教案)必修三2.2.用样本估计总体(教案)导语:本文为必修三2.2.用样本估计总体(教案)的教学指南,旨在引导学生了解和应用样本估计总体的方法。

通过学习本课,学生将能够理解抽样和样本的基本概念,并能够运用点估计和区间估计的方法进行总体参数的估计。

为了达到良好的教学效果,本教案采用了多样的教学方法,例如引导讨论、示例演示和小组合作等。

一、教学目标:1. 理解样本与总体的概念和关系;2. 掌握点估计的方法;3. 了解区间估计的原理和应用;4. 能够进行样本估计总体的实际问题分析。

二、教学过程:1. 导入(5分钟)引导学生思考以下问题:什么是样本?什么是总体?样本和总体之间有什么关系?为什么需要用样本来估计总体?2. 点估计的方法(15分钟)a. 讲解点估计的基本原理,即通过样本数据来估计总体参数的值。

b. 示例演示:设计一个问题,如某班级数学考试成绩的平均分。

用班级中的五位同学的成绩作为样本,通过计算样本的平均分来估计全班的平均分。

c. 引导学生讨论点估计的优点和缺点。

3. 区间估计的方法(15分钟)a. 讲解区间估计的概念和原理,即通过样本数据构造一个置信区间来估计总体参数的范围。

b. 示例演示:使用同样的例子,构造一个置信水平为95%的置信区间,来估计全班的平均分。

c. 引导学生讨论区间估计的优点和缺点。

4. 实际问题分析(25分钟)a. 设计一个实际问题,例如某个城市的人均收入。

要求学生提出估计该城市人均收入的方法和步骤,并结合点估计和区间估计的方法进行分析。

b. 小组合作:分组讨论,每个小组根据实际问题设计一个解决方案,并准备向全班汇报。

c. 汇报与讨论:每个小组轮流汇报他们的解决方案,并进行讨论。

5. 总结与延伸(10分钟)a. 概括本课内容,强调样本估计总体的方法和应用。

b. 提出延伸问题,鼓励学生进一步探索样本估计总体的其他应用领域。

三、教学反思:本节课通过引导讨论、示例演示和小组合作等多种教学方法,促使学生自主思考和应用样本估计总体的方法。

必修三2.2.用样本估计总体(教案)

必修三2.2.用样本估计总体(教案)

2.2 用样本估计总体教案 A第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1. 通过实例体会分布的意义和作用.2. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.二、探究新知探究1:我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,第 1 页为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1.计算一组数据中最大值及最小值的差,即求极差;2.决定组距及组数;3.将数据分组;4.列频率分布表;5.画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)频率分布直方图的特征:1.从频率分布直方图可以清楚的看出数据分布的总体趋势.2.从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.探究2:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同.不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?(把学生分成两大组进行,分别作出两种组距的图,然后组织同学们对所作图的不同看法进行交流……)接下来请同学们思考下面这个问题:思考:如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-2和频率分布直方图2.2-1,(见教材P67)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)(二)频率分布折线图、总体密度曲线1.频率分布折线图的定义:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.思考:1.对于任何一个总体,它的密度曲线是不是一定存在?为什么?2.对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把第 3 页这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.三、例题精析例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm 的人数占总人数的19%.cm )例2 为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:40.0824171593=+++++, 又因为频率=.第二小组频数样本容量所以,12150.0.08===第二小组频数样本容量第二小组频率 (2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、课堂小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、评价设计1.P81习题2.2 A组1、2.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征(板出课题).二、探究新知(一)众数、中位数、平均数探究(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后展开讨论)初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供第 5 页关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t (最高的矩形的中点)(图见教材第72页)它告诉我们,该市的月均用水量为2. 25t 的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等.由此可以估计出中位数的值为2.02.(图略见教材73页图2.2-6)思考:2.02这个中位数的估计值,及样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)图2.2-6显示,大部分居民的月均用水量在中部(2.02t 左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的.思考:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)(二)标准差、方差1.标准差平均数为我们提供了样本数据的重要信息,可是,有时平均数也会使我们作出对总体的片面判断.某地区的统计显示,该地区的中学生的平均身高为176cm ,给我们的印象是该地区的中学生生长发育好,身高较高.但是,假如这个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质.因此,只有平均数难以概括样本数据的实际状态.例如,在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛? 我们知道,77x x ==乙甲,.两个人射击的平均成绩是一样的.那么,是否两个人就没有水平差距呢?(观察P74图2.2-7)直观上看,还是有差异的.很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据.考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示.样本数据1,2,,n x x x 的标准差的算法:第 7 页(1) 算出样本数据的平均数x .(2) 算出每个样本数据及样本数据平均数的差:(1,2,)i x x i n -= (3) 算出(2)中(1,2,)i x x i n -=的平方.(4) 算出(3)中n 个平方数的平均数,即为样本方差.(5) 算出(4)中平均数的算术平方根,即为样本标准差.其计算公式为:显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小.提问:标准差的取值范围是什么?标准差为0的样本数据有什么特点?从标准差的定义和计算公式都可以得出:s ≥0.当0s =时,意味着所有的样本数据都等于样本平均数.2.方差从数学的角度考虑,人们有时用标准差的平方2s (即方差)来代替标准差,作为测量样本数据分散程度的工具:在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差.三、例题精析例1 画出下列四组样本数据的直方图,说明他们的异同点.(1)5,5,5,5,5,5,5,5,5(2)4,4,4,5,5,5,6,6,6(3)3,3,4,4,5,6,6,7,7(4)2,2,2,2,5,8,8,8,8分析:先画出数据的直方图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差.解:(图见教材P76)四组数据的平均数都是5.0,标准差分别为:0.00,0.82,1.49,2.83.他们有相同的平均数,但他们有不同的标准差,说明数据的分散程度是不一样的.例2 甲乙两人同时生产内径为25.40mm 的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm ):甲 25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.3825.42 25.39 25.43 25.39 25.40 25.44 25.40 25.4225.45 25.35 25.41 25.39乙 25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.3625.34 25.49 25.33 25.43 25.43 25.32 25.47 25.3125.32 25.32 25.32 25.48从生产的零件内径的尺寸看,谁生产的质量较高?分析:比较两个人的生产质量,只要比较他们所生产的零件内径尺寸所组成的两个总体的平均数及标准差的大小即可,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样本数据,然后比较这两个样本数据的平均数、标准差,以此作为两个总体之间的差异的估计值.解:四、课堂小结1. 用样本的数字特征估计总体的数字特征分两类:(1)用样本平均数估计总体平均数.(2)用样本标准差估计总体标准差.样本容量越大,估计就越精确.2. 平均数对数据有“取齐”的作用,代表一组数据的平均水平.3. 标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度.五、评价设计P81 习题 2.2 A组 3、4.教案 B第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1.通过实例体会分布的意义和作用.2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点教学重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.教学难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境,导入新课我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.二、新课探知(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1. 计算一组数据中最大值及最小值的差,即求极差;2. 决定组距及组数;第 9 页cm ) 3. 将数据分组;4. 列频率分布表;5. 画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)一画出频率分布直方图;(3)估计身高小于134C m的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图:(3134cm 的男孩出现的,所以我们估计身高小 (1趋势. (2把数据抹掉了.曲线 1.频率分布折线图连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.(见教材P69)(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.例2某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39.用茎叶图表示,你能通过该图说明哪个运动员的发挥更稳定吗?解:“茎”指的是中间的一列数,表示得分的十位数;“叶”指的是从茎的旁边生长出来的数,分别表示两人得分的个位数.画这组数据的茎叶图的步骤如下第一步,将每个数据分为“茎”(高位)和“叶”(低位)两部分;第二步,茎是中间的一列数,按从小到大的顺序排列;第三步,将各个数据的叶按大小次序写在茎右(左)侧.甲乙8 04 6 3 1 2 53 6 8 2 5 43 8 9 3 1 6 1 6 7 94 4 91 5 0从图中可以看出,乙运动员的得分基本上是对称的,页的分布是“单峰”的,有的叶集中在茎2,3,4上,中位数为36;甲运动员的得分除一个特殊得分(51分)外,也大致对称,叶的分布也是“单峰”的,有的叶主要集中在茎1,2,3上,中位数是26.由此可以看出,乙运动员的成绩更好. 另外i,从叶在茎上的分布情况看,乙运动员的得分更集中于峰值附近,这说明乙运动员的发挥更稳定.练习:在NBA的2010赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33学生画出茎叶图(略)三、巩固练习为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(见下页图示),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.第 11 页(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:40.08 24171593=+++++,又因为频率=第二小组频数样本容量,所以,121500.08===第二小组频数样本容量第二小组频率.(2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、布置作业P71练习1、2、3.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境导入新课在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征.二、新课探究(一)众数、中位数、平均数初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t(最高的矩形的中点)(图略见教材第72页)它告诉我们,该市的月均用水量为2. 25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,第 13 页。

高中数学人教A版必修3统计 用样本估计总体 精品课件

高中数学人教A版必修3统计 用样本估计总体 精品课件
中位数:使频率分布直方图左右两边 相等面积的分界线与 x 轴交点的横坐 标。
平均数:频率分布直方图中每个小矩形的面积 乘以小矩形底边中点的横坐标之和。
高中数学人教A版必修3第二章 统计2.2 用样本估计总体 课件
高中数学人教A版必修3第二章 统计2.2 用样本估计总体 课件
思考:从居民月均用水量样本数据和频率分布直方图
∴中位数为60+5=65. (2)依题意,平均成绩为
55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67,
∴平均成绩约为67.
课堂练习
从高三抽出50名学生参加数学竞赛,由成绩得到如下的频率分 布直方图.
由于一些数据丢失,试利用频率分布直方图求: (1)这50名学生成绩的众数与中位数. (2)这50名学生的平均成绩.
中位数是:4
当 数 据 个 数 n 为 奇 数 时 , 第 n 1 个 数 据 为 中 位 数 . 2
当 数 据 个 数 n为 偶 数 时 , 第 n和 n+ 1个 数 据 的
平 均 值 为 中 位 数 .
22
高中数学人教A版必修3第二章 统计2.2 用样本估计总体 课件
二.从频率分布直方图中估计众数、中位数、 平均数.
0.5
0.4
0.3
0.2
0.1
0
高中数学人教A版必修3第二章 统计2.2 用样本估计总体 课件
0.5
1
1.5
2
2.5
3
3.5
4
4.5
2.25
月均用水量/t
如何利用频率分布直方图求中位数 : 高中数学人教A版必修3第二章 统计2.2 用样本估计总体 课件 频率分布直方图
频率 组距

高中数学必修三-用样本估计总体

高中数学必修三-用样本估计总体

用样本估计总体知识集结知识元用样本的频率分布估计总体分布知识讲解1.收集数据的方法【知识点的知识】数据收集的基本方法:(1)做试验:通过设计一些合适的试验,能够直接地获得样本数据,如统计一颗骰子各点出现的频率,就可做抛掷骰子试验.(2)查阅资料:有些数据不易直接调查到,可通过查阅图书馆文献或通过搜索因特网上的相关资料等办法获得所需数据或相关数据.(3)设计调查问卷:问卷一般由一组有目的、有系统、有顺序的题目组成.2.分布和频率分布表【知识点的认识】1.频数与频率①频数:指一组数据中,某范围内的数据出现的次数.②频率:把频数除以数据的总个数,就得到频率.2、频率分布表当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布.我们把反映总体频率分布的表格称为频率分布表.【解题方法点拨】绘制频率分布表的步骤:1.求全距:决定组数和组距,组距=;(全距指整个取值区间的长度,组距指分成的区间的长度)2.分组:通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;3.登记频数,计算频率,频率=,列出频率分布表.【命题方向】能根据频率分布表读取信息,进行简单计算,多以选择、填空题形式出现,作为大题时,比较常见和概率统计问题结合进行考查,但难度不大.在计算频率的时候,熟悉使用公式频率=求出频率是解题关键.例:容量为20的样本数据,分组后的频数如下表分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)频数 2 3 4 5 4 2则样本数据落在区间[10,40]的频率为()A.0.35 B.0.45 C.0.55 D.0.65分析:先求出样本数据落在区间[10,40]频数,然后利用频率等于频数除以样本容量求出频率即可.解答:由频率分布表知样本在[10,40]上的频数为2+3+4=9故样本在[10,40]上的频率为9÷20=0.45故选B.点评:本题主要考查了频率分布表,解题的关键是频率的计算公式是频率=,属于基础题.3.频率分布直方图【知识点的认识】1.频率分布直方图:在直角坐标系中,横轴表示样本数据,纵轴表示频率与组距的比值,将频率分布表中的各组频率的大小用相应矩形面积的大小来表示,由此画成的统计图叫做频率分布直方图.2.频率分布直方图的特征①图中各个长方形的面积等于相应各组的频率的数值,所有小矩形面积和为1.②从频率分布直方图可以清楚地看出数据分布的总体趋势.③从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息被抹掉.3.频率分布直方图求数据①众数:频率分布直方图中最高矩形的底边中点的横坐标.②平均数:频率分布直方图各个小矩形的面积乘底边中点的横坐标之和.③中位数:把频率分布直方图分成两个面积相等部分的平行于y轴的直线横坐标.【解题方法点拨】绘制频率分布直方图的步骤:3.茎叶图【知识点的认识】1.茎叶图:将样本数据有条理地列出来,从中观察样本分布情况的图称为茎叶图.例:某篮球运动员在某赛季各场比赛的得分情况:12,15,24,25,31,31,36,36,37,39,44,49,50得分表示成茎叶图如下:2.茎叶图的优缺点:优点:(1)所有信息都可以从茎叶图上得到(2)茎叶图便于记录和表示缺点:分析粗略,对差异不大的两组数据不易分析;表示三位数以上的数据时不够方便.【解题方法点拨】茎叶图的制作步骤:(1)将每个数据分为“茎”(高位)和“叶”(低位)两部分(2)将最小的茎和最大的茎之间的数按小大次序排成一列(3)将各个数据的叶按大小次序写在茎右(左)侧第1步中,①如果是两位数字,则茎为十位上的数字,叶为个位上的数字,如89,茎:8,叶:9.②如果是三位数字,则茎为百位上的数字,叶为十位和个位上的数字,如123,茎:1,叶:23.对于重复出现的数据要重复记录,不能遗漏,同一数据出现几次,就要在图中体现几次.例题精讲用样本的频率分布估计总体分布例1.如图为某公司10个销售店某月售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()A.0.3 B.0.4 C.0.5 D.0.6例2.如图是2018年第一季度五省GDP情况图,则下列陈述中不正确的是()A.2018年第一季度GDP增速由高到低排位第5的是浙江省B.与2017年同期相比,各省2018年第一季度的GDP总量实现了增长C.2017年同期河南省的GDP总量不超过4000亿元D.2018年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个用样本的数字特征估计总体特征知识讲解1.用样本的数字特征估计总体的数字特征【知识点的知识】1.样本的数字特征:众数、中位数、平均数众数、中位数、平均数都是描述一组数据的集中趋势的特征数,只是描述的角度不同,其中以平均数的应用最为广泛.(1)众数:在一组数据中,出现次数最多的数据叫做这组数据的众数;(2)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数;(3)平均数:一组数据的算术平均数,即.2、三种数字特征的优缺点::(1)样本众数通常用来表示分类变量的中心值,比较容易计算,但是它只能表示样本数据中的很少一部分信息.(2)中位数不受少数几个极端值的影响,容易计算,它仅利用了数据排在中间的数据的信息.(3)样本平均数与每个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变.这是中位数,众数都不具有的性质,也正因为这个原因,与众数,中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.(4)如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之,说明数据中存在许多较小的极端值.(5)使用者根据自己的利益去选择使用中位数或平均数来描述数据的中心,从而产生一些误导作用.3、如何从频率分布直方图中估计众数、中位数、平均数?利用频率分布直方图估计众数、中位数、平均数:估计众数:频率分布直方图面积最大的方条的横轴中点数字.(最高矩形的中点)估计中位数:中位数把频率分布直方图分成左右两边面积相等.估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.4、样本平均数、标准差对总体平均数、标准差的估计现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道(或不可求)的.如何求得总体的平均数与标准差呢?通常的做法是用样本的平均数与标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.如要考查一批灯泡的质量,我们可从中随机抽取一部分作为样本,要分析一批钢筋的强度,可以随机抽取一定数目的钢筋作为样本,只要样本的代表性强就可以用来对总体作出客观的判断.但需要注意的是,同一个总体,抽取的样本可以是不同的.如一个总体包含6个个体,现在要从中抽取3个作为样本,所有可能的样本会有20种不同的结果,若总体与样本容量较大,可能性就更多,而只要其中的个体是不完全相同的,这些相应的样本频率分布与平均数、标准差都会有差异.这就会影响到我们对总体情况的估计.例题精讲用样本的数字特征估计总体特征例1.某校从参加高一年级期末考试的学生中抽取60名学生的成绩(均为整数),其成绩的频率分布直方图如图所示,由此估计此次考试成绩的中位数,众数和平均数分别是()A.73.3,75,72 B.73.3,80,73C.70,70,76 D.70,75,75例2.已知一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,则这组数据的平均数和方差分别为()A.B.C.D.例3.一组数据1,3,2的方差为__当堂练习单选题练习1.以下茎叶图记录了甲、乙两人期末考试中的5门成绩(单位:分).已知甲数据的中位数与乙数据的平均数均为90,则x+y=()A.5 B.6 C.7 D.8练习2.如图是2018年第一季度五省GDP情况图,则下列陈述中不正确的是()A.2018年第一季度GDP增速由高到低排位第5的是浙江省B.与2017年同期相比,各省2018年第一季度的GDP总量实现了增长C.2017年同期河南省的GDP总量不超过4000亿元D.2018年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个练习3.如图是某赛季甲,乙两名篮球运动员9场比赛所得分数的茎叶图,则下列说法错误的是()A.甲所得分数的极差为22B.乙所得分数的中位数为18C.两人所得分数的众数相等D.甲所得分数的平均数低于乙所得分数的平均数练习4.某市为最大限度的吸引“高精尖缺”人才,向全球“招贤纳士”,推进了人才引入落户政策,随着人口增多,对住房要求也随之而来,而选择购买商品房时,住户对商品房的户型结构越来越重视,因此某商品房调查机构随机抽取n名市民,针对其居住的户型结构和满意度进行了调查,如图1调查的所有市民中四居室共200户,所占比例为,二居室住户占,如图2是用分层抽样的方法从所有调查的市民的满意度问卷中,抽取10%的调查结果绘制成的统计图,则下列说法正确的是()A.样本容量为70B.样本中三居室住户共抽取了25户C.根据样本可估计对四居室满意的住户有70户D.样本中对三居室满意的有15户练习5.比较甲、乙两名学生的数学学科素养的各项能力指标值(满分为5分,分值高者为优),绘制了如图所示的六维能力雷达图,例如图中甲的数学抽象指标值为4,乙的数学抽象指标值为5,则下面叙述正确的是()A.乙的逻辑推理能力优于甲的逻辑推理能力B..甲的数学建模能力指标值优于乙的直观想象能力指标值C..乙的六维能力指标值整体水平优于甲的六维能力指标值整体水平D..甲的数学运算能力指标值优于甲的直观想象能力指标值练习6.为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是()A.乙的数据分析素养优于甲B.乙的数学建模素养优于数学抽象素养C.甲的六大素养整体水平优于乙D.甲的六大素养中数据分析最差填空题练习1.如图,矩形长为5,宽为3,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96_(结果用分数表示).颗,以此实验数据为依据可以估计出椭圆的面积约为__练习2.已知一组数据x1,x2,x3,…,x n的方差是s,那么另一组数据x1-3,x2-3,x3-3,…,x n-3的方差是___.练习3.已知样本x1,x2,x3,…,x n的方差是2,则样本3x1+2,3x2+2,3x3+2,…,3x n+2的标准差为___.定义:函数f(x)在闭区间[a,b]上的最大值与最小值之差为函数f(x)的极差,若定义在区间[-2b,3b-1]上的函数f(x)=x3-ax2-(b+2)x是奇函数,则a+b=___,函数f(x)的极差为___.练习5.已知由小到大排列的一组数据7,8,a,12,13的平均数为10,则方差为__.练习6.某班开展一次智力竞赛活动,共a,b,c三个问题,其中题a满分是20分,题b,c满分都是25分.每道题或者得满分,或者得0分.活动结果显示,全班同学每人至少答对一道题,有1名同学答对全部三道题,有15名同学答对其中两道题.答对题a与题b的人数之和为29,答对题a与题c的人数之和为25,答对题b与题c的人数之和为20.则该班同学中只答对一道题的人数是___;该班的平均成绩是____.练习1.'某乡镇为了打赢脱贫攻坚战,决定盘活贫困村的各项经济发展要素,实施了产业、创业、就业“三业并举”工程.在实施过程中,引导某贫困村农户因地制宜开展种植某经济作物.该类经济作物的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为k,其质量指标的等级划分如表:为了解该类经济作物在当地的种植效益,当地引种了甲、乙两个品种.并随机抽取了甲、乙两不品种的各10000件产品,测量了每件产品的质量指标值,得到下面产品质量指标值频率分布直方图(图甲和图乙)。

高二数学必修3第二章重点:用样本估计总体

高二数学必修3第二章重点:用样本估计总体

高二数学必修3第二章重点:用样本估计总体高二数学必修3第二章重点用样本估计总体1、数据的两个特征集中趋势和波动性。

集中趋势指的是数据的”一般水平或曰”平均水平,波动性指的是数据围绕”平均值的变化情况。

2、反映数据”大多数水平(集中趋势)的量众数众数即样本数据中频数最大(或频率最高)的数据。

特点①可以不存在或不止一个;②不受极端数据的影响,求法简单;③可靠性差,如0,0,2,3,5这组数据中,众数是0,它很难真实反映这组数据的”平均水平(集中趋势);④众数在难以定义”平均数或”中位数时常用,故一般可用于统计非数字型数据,如”牛,羊,马,鱼,牛这组数据中,众数是”牛;⑤众数在销售统计中常用3、反映数据”中间水平(集中趋势)的量中位数中位数把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数。

特点①中位数把样本数据分为两部分,一部分大于中位数,另一部分小于中位数;②中位数不受少数几个极端值的影响;③由于当样本数据为偶数个时,中位数等于中间两个数据的平均值,因此有时中位数未必在样本数据中.。

高中数学必修三《用样本的数字特征估计总体的数字特征》课件

高中数学必修三《用样本的数字特征估计总体的数字特征》课件

乙:9 5 7 8 7 6 8 6 7 7
如果你是教练,你应当如何对这次射击作出评价?
如果看两人本次射击的平均成绩,由于
x甲
7,x 乙
7
两人射击 的平均成绩是一样的.那么两个人的水平就没有什
么差异吗?
17
频率
频率
0.3
0.4
0.3 0.2
0.2
0.1
0.1
环数
4 5 6 7 8 9 10
(甲)
环数
1.75
1.80 1.85 1.90
人数 2
3
2
3
4
1
1
1
分别求这些运动员成绩的众数,中位数与
平均数 。
解:在17个数据中,1.75出现了4次,出现的 次数最多,即这组数据的众数是1.75.
上面表里的17个数据可看成是按从小到大 的顺序排列的,其中第9个数据1.70是最中间 的一个数据,即这组数据的中位数是1.70;
2.2.2 用样本的 数字特征估计总
体的数字特征
1. 众数、中位数、平均数 2. 标准差
1
复习引入
1、统计的基本思想:用样本去估计总体 这种估计一般分成两种: ①是用样本的频率分布估计总体的分布. ②是用样本的数字特征(如平均数、标准差 等)估计总体的数字特征.
2
2、表示样本分布的方法:
频率分布表、频率分布直方图、 频率分布折线图、茎叶图
x1 x x2 x xn x
S
.
n
由于上式含有绝对值,运算不太方便,因此,通常改用 如下公式来计算标准差.
s
1 n
(x1
x)2
( x2
x)2
( xn
x)2

最新人教版高中数学必修3第二章用样本估计总体2

最新人教版高中数学必修3第二章用样本估计总体2

2.2 用样本估计总体一、本节知识结构二、教学重点与难点重点:1.体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,学会计算数据标准差.对样本数据中提取基本的数字特征(如平均数、标准差)作出合理的解释.3.体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.4.初步体会样本频率分布和数字特征的随机性.5.会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异,形成对数据处理过程进行初步评价的意识.难点:对总体分布概念的理解,统计思维的建立.三、编写意图与教学建议本节的引言说明了用统计方法解决实际问题的一般框架,明确了估计总体分布和总体数字特征的重要性.在实际应用中,总体分布可以为合理决策提供依据(总体分布描述了总体在各个范围内个体的百分比).因此很多实际问题的解答就转化为求总体分布的问题,其求解途径是通过样本来估计总体分布.在很多情况下,总体分布是由几个总体数字特征所唯一确定的,或者需要解决的统计问题是关于总体数字特征的问题.这时就需要估计总体的数字特征,其求解途径也是通过样本来估计.教科书通过探究栏目提出“居民生活用水定额管理问题”,引出总体分布的估计问题,以及估计总体分布的途径,而且这个问题贯穿本节始终.通过对该问题的探究,使学生学会列频率分布表、画频率分布直方图、频率折线图.教师可以利用初中有关随机事件的知识,引导学生进一步体会由样本确定的频率分布直方图的随机性;通过初中有关频率与概率之间的关系,了解频率分布直方图的规律性,即频率分布与总体分布之间的关系,进一步体会用样本估计总体的思想来源.由于样本频率分布直方图可以估计总体分布直方图,因此可以用样本频率分布特征来估计相应的总体分布特征,教科书中还通过该问题展示了利用频率分布直方图估计总体分布的众数、中位数和平均数的方法.当然,总体的中位数和平均数都可以通过相应的样本中位数和样本平均数来估计,并且这样的估计通常具有更高的精度,教师可以通过计算机模拟让学生体会这一点.用样本频率分布特征来估计相应的总体分布特征的意义在于,当原始样本数据丢失时还可以估计总体特征.为了便于理解茎叶图和标准差(方差)的实际含义和应用,这两个概念都是通过离散型随机变量引入的.进一步地,对于正态分布的总体,利用总体平均数和总体标准差,可以完全确定总体分布,从而在这种情况下,可以用样本平均数和样本标准差来估计总体平均数和总体标准差,进而估计总体分布.在教学中,应该让学生利用上一节对特定实际问题所收集的样本,模仿居民生活用水定额管理问题的解决思路,给出相应实际问题的解答.通过此过程,初步培养学生运用统计思想表述、思考和解决现实世界中的问题的能力.。

数学2.2用样本估计总体新必修3

数学2.2用样本估计总体新必修3

(2)频率分布直方图如图所示:
(3)答对下述两条中的一条即可: ①该市一个月中空气污染指数有 2 天处 于优的水平,占当月天数的115;有 26 天 处于良的水平,占当月天数的1135;处于优
或良的天数为 28,占当月天数的1145.说明 该市空气质量基本良好.
②轻微污染有 2 天,占当月天数的115;污染指 数在 80 以上的接近轻微污染的天数 15,加上处 于轻微污染的天数 17,占当月天数的1370,超过 50%,说明该市空气质量有待进一步改善.
【思路分析】 (1)将十位数字作为茎,个位数字 作为叶,逐一统计,样本中有一位数,有两位数, 把一位数的十位数字看为0. (2)根据茎叶图分析两组数据,得到结论.
【解】 (1)为便于对比分析,可将茎放在中间共 用,叶分列左、右两侧.如图:
(2)从这个茎叶图可以看出,甲运动员的得分大致 对称,平均得分及中位数都是30多分.乙运动员 的得分除一个51分外,也大致对称,平均得分及 中位数都是20多分.因此甲运动员发挥比较稳定, 总体得分情况比乙好.
【规律小结】 当样本数据较少时,用茎叶图表示 数据的效果较好.但当样本数据较多时,就不太方 便了.因为每一个数据都要在图中占据一个空间, 如果数据很多,枝叶就会很长.同时,茎叶图还可 以帮助我们分析样本数据的一些数字特征.
用样本的数字特征估计总体的分布
平均数、众数、中位数描述一组数据的集中趋 势,方差和标准差描述其波动大小,也可以说 方差、标准差反映各个数据与其平均数的离散 程度.一组数据的方差或标准差越大,说明这 组数据波动越大.方差的单位是原数据的单位 的平方,标准差的单位与原单位相同.
13)2
+(14-13)2]=0.8. (2)由 s2甲>s2乙可知乙的成绩较稳定.

必修3 用样本估计总体

必修3   用样本估计总体

用样本估计总体用样本的频率分布估计总体的分布:频率分布图、频率分布直方图、频率折线图、茎叶图用样本的数字特征估计总体的特征:众数、中位数、平均数、极差、方差、标准差频率分布表:当总体很大或不便获得时,可以用样本的频率分布估计总体的频率分布,我们把反映总体频率分布的表格称为频率分布表.频率分布直方图频率分布的概念:指一个样本数据在各个小范围内所占比例的大小. 一般用频率分布直方图反映样本的频率分布. 编制频率分布直方图的步骤: ①求极差:最大值-最小值②决定组距与组数(注意取整):当样本容量不超过100时,按照数据的多少,常分成5至12组,组数=组距极差③将数据分组(给出组的界限)④列频率分布表(包括分组、频数、频率、频率/组距) ⑤画频率分布直方图.注意:①在频率分布直方图中,纵轴表示“频率/组距”,数据落在各小组内的频率用小矩形的面积表示,各小矩形 的面积总和等于1;②在频率分布直方图中,中位数左边和右边的直方图的面积相等; ③频率=组距组距频率=小矩形的面积; ④平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标的和;⑤众数是出现次数最多的,在直方图中,高度最高的小矩形的中间值的横坐标即为众数;⑥中位数是所有数据中的中间值,在直方图中,体现的是中位数的左右两边频数应用相等,即频率相等,从而就是小矩形的面积和相等,此在频率分布直方图中,将频率分布直方图中所有小矩形面积一分为二的直线所对应的成绩即为所求.频率分布折线图:把频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图.总体密度曲线:如果样本不断增大,分组的组数增加,组距不断缩小,则频率分布直方图实际上越来越接近于总体的分布,它可以用一条光滑曲线y=f(x)来描绘,这条光滑的曲线就叫总体密度曲线.茎叶图:统计中还有一种被用来表示数据的图叫做茎叶图.茎是指中间的一列数,叶是从茎的旁边生长出来的数.制作茎叶图的方法是:将所有两位数的十位数字作“茎”,个位数字作“叶”,茎相同者共用一个茎,茎按从小到大顺序由上到下列出,共茎的叶按从大到小(或从小到大)的顺序同行列出.四种图表的区别与联系几种表示样本分布方法的比较频数:将一批数据按照要求分成若干组,各组内数据的个数叫做该组的频数.频率:每组的频数除以全体数据个数得到该组的频率,即表示该组数据在样本中所占的比例大小.众数:一组数据中出现次数最多的数据;中位数:将一组数据按大小顺序排列,处在最中间的一个数据(数据个数为奇数时)或最中间的两个数据的平均数(数据个数为偶数时)叫做这组数据的中位数. 平均数:()n x x x nx +⋅⋅⋅++=211众数、中位数与平均数的优缺点平均距离、方差、标准差设样本数据为x 1,x 2,…,x n ,样本平均数为x ,平均距离:nxx x x x x S n -+⋅⋅⋅+-+-=21方差:()()()[]2222121x x x x x x nS n -+⋅⋅⋅+-+-=,用来衡量这组数据的波动大小,一组数据方差越大,说明这组数据波动越大.标准差:2S S =(方差的算术平方根)数据的离散程度可以通过极差、方差或标准差来描述,其中极差反映了一组数据变化的最大幅度;方差则反映一组数据围绕平均数波动的大小;标准差是样本数据到平均数的一种平均距离. 课堂练习1. 关于频率直方图的下列有关说法正确的是( ) A. 直方图的高表示取某数的频率B. 直方图的高表示该组上的个体在样本中出现的频率C. 直方图的高表示取某组上的个体在样本中出现的频数与组距的比值D. 直方图的高表示取该组上的个体在样本中出现的频率与组距的比值2. 对于样本频率分布折线图与总体密度曲线的关系,下列说法中正确的是()A.频率分布折线图与总体密度曲线无关B.频率分布折线图就是总体密度曲线C.样本容量很大的频率分布折线图就是总体密度曲线D.如果样本容量无限增大,分组的组距无限减小,那么频率分布折线图就会无限接近于总体密度曲线3. 一个容量为20的样本数据,分组后组距与频数如下表.则样本在区间[10,50)上的频率为( )A. 0.5B. 0.25C. 0.6D. 0.74. 运动鞋员参加体操比赛,当评委亮分后,往往是先去掉一个最高分,去掉一个最低分,再计算剩下分数的平均值,这是为了( )A.减少计算量 B.避免故障 C.剔除异常值 D.活跃赛场气氛5. 某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是()A.85,85,85B.87,85,86C.87,85,85D.87,85,906. 从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图). 由图中数据可知a=______. 若要从身高在[120,130﹚,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为_______.7. 甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为______和______.8. 从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:(1)________________________________________________;(2)________________________________________________.9. 从甲、乙两人手工制作的圆形产品中,各自随机抽取6件,测得其直径如下(单位:cm):甲:9.00,9.20,9.00,8.50,9.10,9.20乙:8.90,9.60,9.50,8.54,8.60,8.90据以上数据估计两人的技术稳定性,结论是()A.甲优于乙B.乙优于甲C.两人没区别D.无法判断10. 某射击小组有20人,教练根据他们某次射击的数据绘制如图所示的统计图,则这组数据的众数和中位数分别是( )A.7,7B.8,7.5C.7,7.5D.8,611. 某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )A.73.3,75,72B.72,75,73.3C.75,72,73.3D.75,73.3,7212. 如图①是某城市三月份1至10日的最低气温随时间变化的图象.(1)根据图①提供的信息,在图②中补全直方图;(2)这10天最低气温的众数是______摄氏度,最低气温的中位数______摄氏度,最低气温的平均数是_____摄氏度.13. 为迎接国庆,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:请根据以上图表提供的信息,解答下列问题:(1)表中m和n所表示的数分别为:m=_____,n=_____;(2)请在图中,补全频数分布直方图;(3)比赛成绩的中位数落在分数段是___________;(4)若该校共有3600名学生,且规定比赛成绩80分以上(含80分)可以获得奖励,请根据上述调查结果估计该校,那么全校共有多少学生获奖?课后练习A. 0.13B. 0.39C. 0.52D . 0.642. 某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图. 已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A.588B.480C.450D.1203. 为了调查学生每天零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.样本容量1000的频率分布直方图如图所示,则样本数据落在[6,14)内的频数为( )A. 780B. 680C. 648D. 4604. 已知一组数据4,6,5,8,7,6,那么这组数据的平均数为______.5. 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是______.6. 重庆市2013年各月的平均气温(°C)数据的茎叶图如下:0 8 91 2 5 82 0 03 3 83 1 2则这组数据中的中位数是()A.19B.20C.21.5D.237. 对某商店一个月30天内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A.46,45,56B.46,45,53C.47,45,56D.45,47,538. 在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示. 若将运动员按成绩由好到差编为1∼35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是_____.9. 右图是某赛季甲、乙两名篮球运动员参加的每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是()A.65 B.64 C.63 D.6210. 在抽查某批产品尺寸的过程中,样本尺寸数据的频率分布表如下,则m等于()A.10B.20C.30D.4011. 样本容量为100的频率分布直方图如图所示. 根据样本的频率分布直方图估计样本数据落在[6,10)内的频数为a ,样本数据落在[2,10)内的频率为b ,则a 、b 分别是( )A.32,0.4B.8,0.1C.32,0.1D.8,0.412. 样本中五个个体,其值分别为a,0,1,2,3,若该样本的平均值为1,则样本方差为( ) A.56B.56C.2D.213. 某部门计划对某路段进行限速,为调查限速60km/h 是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据[40,50),[50,60),[60,70),[70,80]分组,绘制成如图所示的频率分布直方图,则这300辆汽车中车速低于限速的汽车有______辆.14. 某部门计划对某路段进行限速,为调查限速60km/h 是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按[40,50),[50,60),[60,70),[70,80]分组,绘制成如图所示的频率分布直方图。

人教B版必修三2.2.1用样本的频率分布估计总体的分布

人教B版必修三2.2.1用样本的频率分布估计总体的分布
37
(1)将这两组数据用茎叶图表示;
(2)将这两组数据进行比较分析,得到 什么结论? (1)将 这两组数 据用茎叶 图表示;
38
(2)电脑杂志上每个句子的字数集中在 10,30之间,中位数为22.5,而报纸上每 个句子的字数集中在20,40之间,中位数 为27.5,还可以看出电脑杂志上每个句子 的平均字数比报纸上每个句子的平均字数 要少,说明电脑杂志作为科普读物需要简 洁明了、通俗易懂。
35
(3)频率分布折线图的优点是它反映了 数据的变化趋势,如果样本容量不断增 大,分组的组距不断缩小,那么折线图 就趋向于总体密度曲线。
(4)用茎叶图刻画数据有两个优点:一 是所有的信息都可以从这个茎叶图中得 到;二是茎叶图便于记录和表示,能够 展示数据的分布情况,但当样本数据较 多或数据位数较多时,茎叶图就显得不 太方便了。
33
画茎叶图的步骤 S1 将每个数据分为茎(高位)和叶 (低位)两部分; S2 将最小茎和最大茎之间的数按大小 次序排成一列,写在左(右)侧;
S3 将各个数据的叶按大小次序写在其
茎右(左)侧。
34
几种表示样本分布的方法比较: (1)频率分布表在数量表示上比较确切, 但不够直观、形象,分析数据分布的总体 态势不太方便; (2)频率分布直方图能够很容易地表示 大量数据,非常直观地表明分布的形状, 使我们能够看到频率分布表中看不清楚 的数据模式,但是从频率分布直方图本 身不能得出原始的数据内容,也就是说, 把数据表示成直方图后,原有的具体数 据信息就被抹掉了。
39
例2. 有人说:“茎叶图表示三位数以上的 数据时不够方便”, 果真如此吗?请看下例:
现在能否用茎叶图来表示上述数据呢?
40
解:从上述数据可以看到它们的百位数字 都是3,所不同的仅仅是十位和个位,而 两位数据是可以作茎的,那么只需在茎的 位置写上百位和十位,叶的位置上写上个 位即可。

必修3用样本估计总体

必修3用样本估计总体

二.题型分析
题型1. 绘制统计图表,用样本分布估计总体分布
【例1】 某中学同年级40名男生的体重数据如 下(单位:kg): 61 60 59 59 58 58 58 57 57 57 57 56 56 56 56 56 56 56 55 55 55 55 54 54 54 54 53 53 52 52 52 52 52 51 51 51 50 50 49 48 (1)列出样本的频率分布表; (2)画出频率分布直方图.
3.5 4
月均用水量 /t 4.5
8.总体密度曲线:如果样本容量不断增大,分组 的组距不断缩小,则频率分布折线图越来越接近 于总体在各小值内所取值的个数与总数比值的大 小,它可以用一光滑曲线来描绘,这条光滑曲线 就叫做总体密度曲线. 总体密度曲线
频率 组距
月均用 水量/t
a
b
(图中阴影部分的面积,表示总体在 某个区间 (a, b) 内取值的百分比)。
2(08 山东卷文 9)从某项综合能力测试中抽取 100 人的成绩,统计如表,则这 100 人成绩的标准差为 分 数 人 数 A. 3 5 4 3 2 1
20 10 30 30 10 C.3
8 D. 5
2 10 B. 5
3(08 广东卷文 11)为了调查某厂工人生产某种产品的能 力, 随机抽查了 20 位工人某天生产该产品的数量.产品数 量的分组区间为 45, 55 , 55, 65 , 65, 75 , ,75, 85 85, 95 由 此得到频率分布直方图如图 3,则这 20 名工人中一天生 产该产品数量在 55, 75 的人数是 .
3.用样本的有关情况去估计总体的相应情况,这种 估计大体分为两类,一类是用样本频率分布估计 总体分布,另一类是用样本的某种数字特征(例 如平均数、方差等)去估计总体的相应数字特征。

【必修3】【课件】用样本估计总体

【必修3】【课件】用样本估计总体

课堂练习
1、某个容量
为100的样本
的频率分布直
方图如右,则
在区间[4,5)
上的数据的频
数为

0.40
0.15 0.10 0.05
O 1 2 3 4 5 6 数据
2、某地区为了了解知识分子的年龄结构,随机 抽样50名,其年龄分别如下:
42,38,29,36,41,43,54,43,34,44, 40,59,39,42,44,50,37,44,45,29, 48,45,53,48,37,28,46,50,37,44, 42,39,51,52,62,47,59,46,45,67, 53,49,65,47,54,63,57,43,46,58. (1)列出样本频率分布表; (2)画出频率分布直方图; (3)估计年龄在32~52岁的知识分子所占的比例 约是多少. 极差为67-28=39,取组距为5,分为8组.
总体密度曲线反映 了总体在各个范围内取 值的百分比,它比频率分 布直方图提供更加精细 的信息。
例如:图中阴影部分的面积就表示总体在[a ,b]内的百分比。
注意点:由于样本是随机的,不同的样本得到的频率分
布折线图不同;即使对于同一样本,不同的分组情况得 到的频率分布折线图也不同,频率分布折线图是随着样 本的容量和分组情况的变化而变化的,因此不能由样本 的频率分布折线图得到准确的总体密度曲线。
从一个总体得到一个包含大量数据的样本 时,我们很难从一个个数字中直接看出样本所 包含的信息,如果把这些数据形成频数分布或 频率分布,就可以比较清楚地看出样本数据的 特征,从而估计总体的分布情况。用样本估计 总体,是研究统计问题的一个基本思想方法, 而对于总体的分布,我们总是用样本的频率分 布对它进行估计。
寿命(小时)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这些数字告诉我们什么信息?
很容易发现的是一个居民月平均用水量的最小值 是0.2t,最大值是4.3t,其他在0.2t~4.3t之间.
分析数据的一种基本方法是用图将它们画出来,或者 用紧凑的表格改变数据的排列方式.
(一)从数据中提取信息, (二)利用图形传递信息。
初中我们曾经学过频数分布图和频数分布表,这使我 们能够清楚地知道数据分布在各个小组的个数.
(2)样本容量是多少?
(3)若次数在110以上(含110次)
为达标, 试估计该学校全体高 二学生的达标率是多少?
23
例2.有一个容量为200的样本,其频率分布直方图如图 所示,根据样本的频率分布直方图估计,样本数据落
B 在区间[10,12)内的频数为( )
(A)18 (B)36 (C)54 (D)72
(2)为了较合理地确定这个标准,你认为需要 做哪些工作?
通过抽样,我们获得了100位居民某年的月平均用水量 (单位:t) ,如下表:
3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.6 4.1 3.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8 4.3 3.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2
下面将要学习的频率分布表和频率分布图,则 是从各个小组数据在样本容量中所占比例大小的 角度,来表示数据分布的规律. 它可以使我们看到整个样本数据的频率分布情况.
频率分布相关概念
频数:在统计学中,将样本按照一定的方法分成
若干组,每组内含有这个样本的个体的数目叫做
频数.
频率:样本中某个组的频数和样本容量的比,叫
我国是世界上严重缺水的国家之一,城市缺水问 题较为突出.
2000年全国主要城市中缺水情况排在前10位的城市
成都市市政府为了节约生活用水,计划在本 市试行居民生活用水定额管理,即确定一个居民 月用水量标准a,用水量不超过a的部分按平价收 费,超过a的部分按议价收费. (1)如果希望大部分居民的日常生活不受影响, 那么标准a定为多少比较合理呢?
x轴:数据单位
知识探究(二):频率分布直方图
宽度:组距 高度:频率 组距
1.各组的频率在图中哪里显示出来?
小长方形的面积 = 组距× 频率 = 频率 组距
知识探究(二):频率分布直方图
2.各小长方形的面积之和是否为定值?
各小长方形的面积之和为1
知识探究(二):频率分布直方图
3.你能根据上述频率分布直方图指出居民月均用 水量的一些数据特点吗?
组距:指每个小组的两个端点的距离; 组数:k=极差÷组距,若k为整数,则组数=k, 否则,组数=[k]+1. 将数据分组,当数据在100个以内时, 按数据 多少常分5-12组.
(4.3 0.2) 0.5 8.2 将8.2取整加1, 故可取组距为0.5, 组数为9
知识探究(一):样本频率分布表
做该数据的频率.
频率

频数 样本容量
所有数据(或数据组)的频数的分布变化规律叫做样本 的频率分布.
频率分布的表示形式有:
①样本频率分布表 ②样本频率分布直方图
③样本频率分布折线图
知识探究(一):样本频率分布表
第一步: 求极差(一组数据中的最大值与最小值的差)
4.3 0.2 4.1
第二步: 决定组距与组数
知识探究(二):频率分布直方图
(1)居民月均用水量的分布是“山峰”状的, 而且是“单峰”的;
知识探究(二):频率分布直方图
(2)大部分居民的月均用水量集中在一个中间值 附近,只有少数居民的月均用水量很多或很少;
知识探究(二):频率分布直方图 (3)居民月均用水量的分布有一定的对称性等.
Байду номын сангаас
频率分布直方图如下:
第三步:确定分点,将数据分组
各组均为左闭右开区间,最后一组是闭区间
以组距为0.5将数据分组时, 可以分成以下9组:
[0,0.5),[0.5,1), ,[3.5, 4),[4, 4.5]
第四步:列频率分布表
计算各小组的频率,作出频率分布表 频率分布表一般分五列: ①分组; ②频数累计(可省) ; ③频数; ④频率; ⑤频率/组距. 最后一行是合计
频率/组距
连接频率分布直方图中各 小长方形上端的中点,得到 频率分布折线图.
0.5
0.4
0.3
0.2
0.1
月均用水量/t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
频率分布直方图如下:
频率/组距 当样本容量无限增大,组距无限缩小, 那么频率分布直方图就会无限接近于 一条光滑曲线.
0.5
知识探究(二):频率分布直方图
第一步:画平面直角坐 标系;
频率/组距
y轴:频率/组距
第二步:在横轴上均匀 0.50
标出各组分点,在纵轴 0.40
上标出单位长度;
0.30
第三步:以组距为宽, 0.20
各组的频率与组距的 商为高,分别画出各 组对应的小长方形.
0.10
月均用
水量/t
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.4
0.3
0.2
0.1
月均用水量/t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
总体密度曲线
频率/组距
o
月均用水量/t
例1.为了了解高二学生的体能情况, 我校抽取部分
学生进行一分钟跳绳测试, 将测试次数所得数据 整理后, 画出频率分布直方图(如图),图中从左到 右各小长方形面积之比为2 : 4 :17 :15 : 9 : 3,第二小 组频数为12. (1)第二小组的频率是多少?
相关文档
最新文档