2021届步步高数学大一轮复习讲义(文科)第三章 高考专题突破一 第1课时 导数与不等式
2021届步步高数学大一轮复习讲义(文科)第三章 高考专题突破一 第2课时 导数与方程
第2课时 导数与方程求函数零点个数例1 设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,当m ≥1时,讨论f (x )与g (x )图象的交点个数. 解 令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数. F ′(x )=-(x -1)(x -m )x,当m =1时,F ′(x )≤0,函数F (x )为减函数, 注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点.当m >1时,若0<x <1或x >m ,则F ′(x )<0; 若1<x <m ,则F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增, 注意到F (x )的极小值F (1)=m +12>0,F (2m +2)=-m ln(2m +2)<0, 所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象总有一个交点.将本例条件“m ≥1”改为“m ≥0”,讨论f (x )与g (x )图象的交点个数.解 由例题解法知m ≥1时,两函数图象有一个交点; 当m =0时,F (x )=-12x 2+x ,x >0有唯一零点;当0<m <1时,0<x <m 或x >1时,F ′(x )<0;m <x <1时,F ′(x )>0,所以函数F (x )在(0,m )和(1,+∞)上单调递减,在(m,1)上单调递增,易得ln m <0, 所以F (x )的极小值F (m )=m2(m +2-2ln m )>0,而F (2m +2)=-m ln(2m +2)<0, 所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象有一个交点.思维升华 (1)可以通过构造函数,将两函数图象的交点问题转化为函数零点问题.(2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况.跟踪训练1 设函数f (x )=ln x +m x ,m ∈R ,讨论函数g (x )=f ′(x )-x3的零点的个数.解 由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知 ①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.根据函数零点情况求参数范围例2 已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间⎣⎡⎦⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 解 由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x ,设h (x )=x +2ln x +3x(x >0),所以h ′(x )=1+2x -3x 2=(x +3)(x -1)x 2.所以x 在⎣⎡⎦⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下表:x⎝⎛⎭⎫1e ,11(1,e)又h ⎝⎛⎭⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2. 且h (e)-h ⎝⎛⎭⎫1e =4-2e +2e <0. 所以在⎣⎡⎦⎤1e ,e 上,h (x )min =h (1)=4, h (x )max =h ⎝⎛⎭⎫1e =1e +3e -2,若方程在⎣⎡⎦⎤1e ,e 上有两个不等实根,则4<a ≤e +2+3e , 所以实数a 的取值范围为⎝⎛⎦⎤4,e +2+3e . 思维升华 方程根或函数零点的个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.跟踪训练2 已知函数g (x )=14x 2-32x +ln x -b 在[1,4]上有两个不同的零点,求实数b 的取值范围.解 g (x )=14x 2-32x +ln x -b (x >0),则g ′(x )=(x -2)(x -1)2x.在[1,4]上,当x 变化时,g ′(x ),g (x )的变化情况如下:g (x )极小值=g (2)=ln 2-b -2, 又g (4)=2ln 2-b -2,g (1)=-54-b .若方程g (x )=0在[1,4]上恰有两个不相等的实数根,则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln 2-2<b ≤-54.故实数b 的取值范围是⎝⎛⎦⎤ln 2-2,-54.1.已知函数f (x )=a +x ln x (a ∈R ). (1)求f (x )的单调区间; (2)判断f (x )的零点个数.解 (1)函数f (x )的定义域是(0,+∞), f ′(x )=(x )′ln x +x ·1x =x (ln x +2)2x,令f ′(x )>0,解得x >e -2,令f ′(x )<0,解得0<x <e -2, 所以f (x )的单调减区间为(0,e -2),单调增区间为(e -2,+∞). (2)由(1)得f (x )min =f (e -2)=a -2e ,若a >2e ,则f (x )min >0,f (x )无零点;若a =2e ,则f (x )min =0,f (x )有一个零点;若a <2e,则f (x )min <0,f (x )在(0,e -2]上单调递减,在[e -2,+∞)上单调递增, 当a ≤0时,在(0,e -2]上有f (x )=a +x ln x <a ≤0,∴f (x )在区间(0,e -2]上无零点,在[e -2,+∞)上有f (e -2a )=a (1-2e -a )≥0,f (x )在区间[e -2,+∞)上有一个零点;当0<a <2e时,有0<4e a -<e -2,424e ,e a af a a -⎛⎫=- ⎪⎝⎭易证当x >0时,e x >x 2成立,∴4e a f -⎛⎫ ⎪⎝⎭>a -4a ⎝⎛⎭⎫2a 2=0,又f (e -2)<0,f (1)=a >0,∴f (x )在(0,e -2]上有一个零点,在(e -2,+∞)上有一个零点. 综上,当a >2e 时,f (x )无零点,当a ≤0或a =2e 时,f (x )有一个零点,当0<a <2e 时,f (x )有2个零点.2.已知函数f (x )=13x 3-12x 2-2x +c 有三个零点,求实数c 的取值范围.解 f ′(x )=x 2-x -2=(x +1)(x -2), 由f ′(x )>0可得x >2或x <-1, 由f ′(x )<0可得-1<x <2,所以函数f (x )在(-∞,-1),(2,+∞)上是增函数, 在(-1,2)上是减函数,所以函数f (x )的极大值为f (-1)=76+c ,极小值为f (2)=c -103.而函数f (x )恰有三个零点,故必有⎩⎨⎧76+c >0,c -103<0,解得-76<c <103,所以使函数f (x )恰有三个零点的实数c 的取值范围是⎝⎛⎭⎫-76,103. 3.已知函数f (x )=12x 2-a ln x ,a ∈R .(1)讨论函数f (x )的单调性;(2)若a >0,函数f (x )在区间(1,e)上恰有两个零点,求a 的取值范围. 解 (1)f (x )=12x 2-a ln x 的定义域为(0,+∞),f ′(x )=x -a x =x 2-ax.①a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增; ②a >0时,由f ′(x )>0,得x >a , f ′(x )<0,得0<x <a .即f (x )在(0,a )上单调递减, 在(a ,+∞)上单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在(0,a )上单调递减, 在(a ,+∞)上单调递增.(2)当a >0时,由(1)知f (x )在(0,a )上单调递减, 在(a ,+∞)上单调递增, ①若a ≤1,即0<a ≤1时,f (x )在(1,e)上单调递增, f (1)=12,f (x )在区间(1,e)上无零点.②若1<a <e ,即1<a <e 2时,f (x )在(1,a )上单调递减,在(a ,e)上单调递增, f (x )min =f (a )=12a (1-ln a ).∵f (x )在区间(1,e)上恰有两个零点,∴⎩⎪⎨⎪⎧f (1)=12>0,f (a )=12a (1-ln a )<0,f (e )=12e 2-a >0,∴e<a <12e 2.③若a ≥e ,即a ≥e 2时,f (x )在(1,e)上单调递减,f (1)=12>0,f (e)=12e 2-a <0,f (x )在区间(1,e)上有一个零点.综上,f (x )在区间(1,e)上恰有两个零点时,a 的取值范围是⎝⎛⎭⎫e ,12e 2.4.已知函数f (x )=(2-a )(x -1)-2ln x (a ∈R ). (1)当a =1时,求f (x )的单调区间;(2)若函数f (x )在⎝⎛⎭⎫0,13上无零点,求a 的取值范围. 解 (1)当a =1时,f (x )=x -1-2ln x ,x >0, 则f ′(x )=1-2x =x -2x,由f ′(x )>0,得x >2,由f ′(x )<0,得0<x <2.故f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)因为当x →0时,f (x )→+∞,所以f (x )<0在区间⎝⎛⎭⎫0,13上不可能恒成立, 故要使函数f (x )在⎝⎛⎭⎫0,13上无零点, 只要对任意的x ∈⎝⎛⎭⎫0,13,f (x )>0恒成立, 即对x ∈⎝⎛⎭⎫0,13,a >2-2ln xx -1恒成立. 令h (x )=2-2ln xx -1,x ∈⎝⎛⎦⎤0,13, 则h ′(x )=2ln x +2x-2(x -1)2,再令m (x )=2ln x +2x-2,x ∈⎝⎛⎦⎤0,13, 则m ′(x )=-2(1-x )x 2<0,故m (x )在⎝⎛⎦⎤0,13上为减函数. 于是m (x )≥m ⎝⎛⎭⎫13=4-2ln 3≥0. 从而h ′(x )≥0,于是h (x )在⎝⎛⎦⎤0,13上为增函数, 所以对x ∈⎝⎛⎭⎫0,13有h (x )<h ⎝⎛⎭⎫13=2-3ln 3, 所以a 的取值范围为[2-3ln 3,+∞).5.(2020·贵州遵义第一次统考)已知f (x )=ln x ,g (x )=-13x 3+ax -34.(1)讨论函数g (x )的单调性;(2)记max{m ,n }表示m ,n 中的最大值,若F (x )=max{f (x ),g (x )}(x >0),且函数y =F (x )恰有三个零点,求实数a 的取值范围. 解 (1)g (x )=-13x 3+ax -34的定义域为R ,g ′(x )=-x 2+a .①当a ≤0时,g ′(x )≤0,所以g (x )的单调递减区间为(-∞,+∞); ②当a >0时,令g ′(x )>0,得x ∈(-a ,a ), 令g ′(x )<0,得x ∈(-∞,-a )∪(a ,+∞),综上得,当a ≤0时,g (x )的单调递减区间为(-∞,+∞);当a >0时,g (x )的单调递减区间为(-∞,-a )和(a ,+∞),单调递增区间为(-a ,a ). (2)F (x )=max{f (x ),g (x )}(x >0), f (x )=ln x 的唯一一个零点是x =1, ∴g ′(x )=-x 2+a (x >0),由(1)可得,①当a ≤0时,g (x )的单调递减区间为(-∞,+∞), 此时y =F (x )至多有两个零点,不符合题意. ②当a >0时,令G (x )=g (x )+34, 则G (x )=-13x 3+ax 的图象关于点(0,0)对称,即g (x )的图象关于⎝⎛⎭⎫0,-34中心对称, 注意到ln x 在(1,+∞)上恒正, F (x )要有3个零点,则g (x )必须在(0,1)上取到2个零点,如图,∴极大值g (a )>0,且g (1)<0,则有⎩⎨⎧g (1)<0,g (a )>0⇒⎩⎨⎧-13+a -34<0,-13(a )3+a ·a -34>0⇒34<a <34+13, 综上,实数a 的取值范围是⎝⎛⎭⎫34,34+13.。
2020届【步步高】高考文科数学一轮总复习讲义
1.集合与元素
(1)集合中元素的三个特征:确定性、互异性、无序性.
(2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示.
(3)集合的表示法:列举法、描述法、图示法.
(4)常见数集的记法
集合 自然数集 正整数集 整数集
符号
N
N*(或 N+)
Z
有理数集 Q
实数集 R
答案 (1)C (2)0 或98
解析 (1)∵2-3 x∈Z,∴2-x 的取值有-3,-1,1,3,
又∵x∈Z,∴x 值分别为 5,3,1,-1,
故集合 A 中的元素个数为 4.
(2)若 a=0,则 A=23,符合题意; 若 a≠0,则由题意得 Δ=9-8a=0,解得 a=98.
综上,a 的值为 0 或98. 思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数
2.集合间的基本关系 关系
子集
自然语言
集合 A 中所有元素都在集合 B 中(即 若 x∈A,则 x∈B)
符号语言 A⊆B(或 B⊇A)
Venn 图
真子集 集合相等
集合 A 是集合 B 的子集,且集合 B 中至少有一个元素不在集合 A 中
集合 A,B 中的元素相同或集合 A,B 互为子集
A B(或 B A) A=B
A.{-1,1,5}
B.{-1,5}
C.{1,5}
D.{-1}
答案 A
解析 ∵A={-1,5},B={-1,1},
∴A∪B={-1,1,5}.
3.已知集合 A={x|x2-x-2≤0},集合 B 为整数集,则 A∩B 等于( )
A.{-1,0,1,2}
《步步高》2021届高考数学大一轮复习(人教A版)专题训练:专题一函数图象与性质的综合应用
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
6
7
8
9
A
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
(2,+∞)
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
题型分类·深度剖析
高考圈题
2.高考中的函数零点问题
考点分析
求解策略
解析
解后反思
题型分类·深度剖析
高考圈题
2.高考中的函数零点问题
考点分析
求解策略
解析
解后反思
题型分类·深度剖析
2021届步步高数学大一轮复习讲义(文科)第三章 高考专题突破一 第1课时 导数与不等式
高考专题突破一 高考中的导数应用问题第1课时 导数与不等式证明不等式命题点1 构造函数法例1 (2020·皖南八校联考)已知函数f (x )=(2x -1)ln x -x .(1)求函数f (x )的零点个数;(2)求证:f (x )+2x >0.(1)解 f (x )的定义域为(0,+∞),f ′(x )=2ln x +2x -1x -1=2ln x +1-1x, f ′(1)=0,∴当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0,∴f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1),∵f (1)=-1<0,f ⎝⎛⎭⎫1e 2=⎝⎛⎭⎫2e 2-1ln 1e 2-1e 2 =-2⎝⎛⎭⎫2e 2-1-1e 2=2-5e 2>0, ∴f (x )在⎝⎛⎭⎫1e 2,1内有1个零点,∵f (e)=(2e -1)ln e -e =e -1>0,∴f (x )在(1,e)内有1个零点,∴f (x )有两个零点.(2)证明 令g (x )=f (x )+2x =(2x -1)ln x +x ,则g (x )的定义域为(0,+∞),g ′(x )=2ln x +2x -1x +1=2ln x -1x+3, 令h (x )=2ln x -1x+3, 则h ′(x )=2x +1x 2>0, ∴h (x )在(0,+∞)上是增函数,h (1)=2>0,h ⎝⎛⎭⎫12=1-ln 4<0,∴∃x 0∈⎝⎛⎭⎫12,1,使h (x 0)=0,即g ′(x 0)=2ln x 0-1x 0+3=0, ∴ln x 0=12x 0-32, ∴当x ∈(0,x 0)时,g ′(x )<0;当x ∈(x 0,+∞)时,g ′(x )>0,∴g (x )的单调递减区间为(0,x 0),单调递增区间为(x 0,+∞),∴g (x )min =g (x 0)=(2x 0-1)ln x 0+x 0=(2x 0-1)⎝⎛⎭⎫12x 0-32+x 0=52-2x 0-12x 0, 令m (x )=52-2x -12x,x ∈⎣⎡⎦⎤12,1, 则m ′(x )=-2+12x 2=1-4x 22x 2=(1+2x )(1-2x )2x 2≤0在⎣⎡⎦⎤12,1上恒成立, ∴m (x )在⎣⎡⎦⎤12,1上是减函数,∴x ∈⎝⎛⎭⎫12,1时,m (x )>m (1)=52-2-12=0, ∴g (x )min >0,∴f (x )+2x >0.命题点2 分拆函数法例2 已知函数f (x )=eln x -ax (a ∈R ).(1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0.(1)解 f ′(x )=e x-a (x >0). ①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;②若a >0,则当0<x <e a 时,f ′(x )>0,当x >e a时,f ′(x )<0, 故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫e a ,+∞上单调递减. (2)证明 因为x >0,所以只需证f (x )≤e x x-2e , 当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以f (x )max =f (1)=-e ,记g (x )=e x x -2e(x >0),则g ′(x )=(x -1)e x x 2, 所以当0<x <1时,g ′(x )<0,g (x )单调递减,当x >1时,g ′(x )>0,g (x )单调递增, 所以g (x )min =g (1)=-e ,综上,当x >0时,f (x )≤g (x ),即f (x )≤e x x-2e ,即xf (x )-e x +2e x ≤0. 思维升华 (1)利用导数证明不等式的基本思路是依据函数的单调性,求得函数的最值,然后由f (x )≤f (x )max 或f (x )≥f (x )min 证得不等式.(2)证明f (x )>g (x ),可以构造函数h (x )=f (x )-g (x ),然后利用h (x )的最值证明不等式.(3)若直接求导比较复杂或无从下手时,可将待证式进行变形分拆,构造两个函数,从而找到可以传递的中间量,达到证明的目的.跟踪训练1 (1)设函数f (x )=ln x -x +1.①讨论f (x )的单调性;②证明:当x ∈(1,+∞)时,1<x -1ln x<x . ①解 由题设知,f (x )的定义域为(0,+∞),f ′(x )=1x-1,令f ′(x )=0,解得x =1. 当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减.②证明 由①知,f (x )在x =1处取得极大值也为最大值,最大值为f (1)=0.所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x-1, 即1<x -1ln x<x . (2)已知函数f (x )=ln x +x ,g (x )=x ·e x -1,求证:f (x )≤g (x ).证明 令F (x )=f (x )-g (x )=ln x +x -x e x +1(x >0),则F ′(x )=1x +1-e x -x e x =1+x x-(x +1)e x =(x +1)⎝⎛⎭⎫1x -e x .令G (x )=1x-e x ,可知G (x )在(0,+∞)上为减函数, 且G ⎝⎛⎭⎫12=2-e>0,G (1)=1-e<0,∴存在x 0∈⎝⎛⎭⎫12,1,使得G (x 0)=0,即1x 0-0e x =0. 当x ∈(0,x 0)时,G (x )>0,∴F ′(x )>0,F (x )为增函数;当x ∈(x 0,+∞)时,G (x )<0,∴F ′(x )<0,F (x )为减函数.∴F (x )≤F (x 0)=ln x 0+x 0-x 00e x +1,又∵1x 0-0e x =0,∴1x 0=0e x ,即ln x 0=-x 0, ∴F (x 0)=0,即F (x )≤0,∴f (x )≤g (x ).例3 (12分)(2019·全国Ⅰ)已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)上存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.规范解答(1)证明 f ′(x )=cos x +x sin x -1,[1分]令g (x )=cos x +x sin x -1,则g ′(x )=x cos x ,∵当x ∈⎝⎛⎭⎫0,π2时,g ′(x )>0;当x ∈⎝⎛⎭⎫π2,π时,g ′(x )<0, ∴g (x )在⎝⎛⎭⎫0,π2上单调递增,在⎝⎛⎭⎫π2,π上单调递减, 又g (0)=1-1=0,g ⎝⎛⎭⎫π2=π2-1>0,g (π)=-1-1=-2,即当x ∈⎝⎛⎭⎫0,π2时,g (x )>0,此时g (x )无零点, 即f ′(x )无零点.[3分]∵g ⎝⎛⎭⎫π2·g (π)<0,g (x )在⎝⎛⎭⎫π2,π上单调递减, ∴∃x 0∈⎝⎛⎭⎫π2,π,使得g (x 0)=0,∴x =x 0为g (x ),即f ′(x )在⎝⎛⎭⎫π2,π上的唯一零点.综上所述,f ′(x )在区间(0,π)上存在唯一零点.[5分](2)解 若x ∈[0,π]时,f (x )≥ax ,即f (x )-ax ≥0恒成立,令h (x )=f (x )-ax =2sin x -x cos x -(a +1)x ,则h ′(x )=cos x +x sin x -1-a ,令d (x )=h ′(x ),则d ′(x )=x cos x =g ′(x ),由(1)可知,h ′(x )在⎝⎛⎭⎫0,π2上单调递增;在⎝⎛⎭⎫π2,π上单调递减, 且h ′(0)=-a ,h ′⎝⎛⎭⎫π2=π-22-a ,h ′(π)=-2-a ,∴h ′(x )min =h ′(π)=-2-a ,h ′(x )max =h ′⎝⎛⎭⎫π2=π-22-a .[7分] ①当a ≤-2时,h ′(x )min =h ′(π)=-2-a ≥0,即h ′(x )≥0在[0,π]上恒成立,∴h (x )在[0,π]上单调递增,∴在[0,π]上h (x )≥h (0)=0,即f (x )-ax ≥0,此时f (x )≥ax 恒成立.[8分]②当-2<a ≤0时,h ′(0)≥0,h ′⎝⎛⎭⎫π2>0,h ′(π)<0,∴∃x 1∈⎝⎛⎭⎫π2,π,使得h ′(x 1)=0,∴h (x )在[0,x 1)上单调递增,在(x 1,π]上单调递减,又h (0)=0,h (π)=2sin π-πcos π-(a +1)π=-a π≥0,∴h (x )≥0在[0,π]上恒成立,即f (x )≥ax 恒成立.[9分]③当0<a <π-22时,h ′(0)<0,h ′⎝⎛⎭⎫π2=π-22-a >0, ∴∃x 2∈⎝⎛⎭⎫0,π2,使得h ′(x 2)=0, ∴h (x )在[0,x 2)上单调递减,在⎝⎛⎭⎫x 2,π2上单调递增, ∴x ∈(0,x 2)时,h (x )<h (0)=0,可知f (x )≥ax 不恒成立.[10分]④当a ≥π-22时,h ′(x )max =h ′⎝⎛⎭⎫π2=π-22-a ≤0, ∴h (x )在⎝⎛⎭⎫0,π2上单调递减,∴h (x )<h (0)=0,可知f (x )≥ax 不恒成立.[11分]综上所述,a 的取值范围为(-∞,0].[12分]第一步:求导函数f ′(x );第二步:二次求导:设g (x )=f ′(x ),再求g ′(x );第三步:讨论g (x )的性质:根据g ′(x )的符号讨论f ′(x )的单调性和零点;第四步:构造函数h (x )=f (x )-ax ,根据h ′(x )的符号确定h ′(x )的最值;第五步:讨论h (x )=f (x )-ax 的最值,确定f (x )≥ax 成立时a 的取值范围.跟踪训练2 已知函数f (x )=ax +ln x ,x ∈[1,e],若f (x )≤0恒成立,求实数a 的取值范围. 解 ∵f (x )≤0,即ax +ln x ≤0对x ∈[1,e]恒成立,∴a ≤⎝⎛⎭⎫-ln x x min ,x ∈[1,e]. 令g (x )=-ln x x ,x ∈[1,e],则g ′(x )=ln x -1x 2, ∵x ∈[1,e],∴g ′(x )≤0,∴g (x )在[1,e]上单调递减,∴g (x )min =g (e)=-1e ,∴a ≤-1e. ∴实数a 的取值范围是⎝⎛⎦⎤-∞,-1e .近几年高考中的导数问题常以e x ,ln x 组合的函数为基础来命制,将基本初等函数与导数相结合,研究函数的性质,下面介绍解决这类问题的几种策略.一、函数零点设而不求例1 证明:e x -ln x >2.证明 设f (x )=e x -ln x (x >0),则f ′(x )=e x -1x. 令h (x )=f ′(x ),则h ′(x )=e x +1x 2>0, ∴f ′(x )在(0,+∞)上是增函数,又f ′⎝⎛⎭⎫12=e -2<0,f ′(1)=e -1>0,∴在⎝⎛⎭⎫12,1上存在x 0使f ′(x 0)=0,即x 0=-ln x 0.∴在(0,x 0)上f (x )单调递减,在(x 0,+∞)上f (x )单调递增,∴f (x )在x =x 0处有极小值,也是最小值.∴f (x 0)=0e x -ln x 0=1x 0+x 0>2, 故f (x )>2,即e x -ln x >2.二、分离ln x 与e x例2 已知函数f (x )=ax 2-x ln x .(1)若函数f (x )在(0,+∞)上单调递增,求实数a 的取值范围;(2)若a =e ,证明:当x >0时,f (x )<x e x +1e. (1)解 由题意知,f ′(x )=2ax -ln x -1.因为函数f (x )在(0,+∞)上单调递增,所以当x >0时,f ′(x )≥0,即2a ≥ln x +1x恒成立. 令g (x )=ln x +1x (x >0),则g ′(x )=-ln x x 2, 易知g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,则g (x )max =g (1)=1,所以2a ≥1,即a ≥12. 故实数a 的取值范围是⎣⎡⎭⎫12,+∞.(2)证明 若a =e ,要证f (x )<x e x +1e, 只需证e x -ln x <e x +1e x ,即e x -e x <ln x +1e x. 令h (x )=ln x +1e x (x >0),则h ′(x )=e x -1e x 2, 易知h (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,则h (x )min =h ⎝⎛⎭⎫1e =0, 所以ln x +1e x≥0. 再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )max =φ(1)=0,所以e x -e x ≤0.因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1e x, 故原不等式成立.三、借助e x ≥x +1和ln x ≤x -1进行放缩例3 已知函数f (x )=e x -a .(1)若函数f (x )的图象与直线l :y =x -1相切,求a 的值;(2)若f (x )-ln x >0恒成立,求整数a 的最大值.解 (1)f ′(x )=e x ,因为函数f (x )的图象与直线y =x -1相切,所以令f ′(x )=1, 即e x =1,得x =0,即f (0)=-1,解得a =2.(2)先证明e x≥x+1,设F(x)=e x-x-1,则F′(x)=e x-1,令F′(x)=0,则x=0,当x∈(0,+∞)时,F′(x)>0,当x∈(-∞,0)时,F′(x)<0,所以F(x)在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以F(x)min=F(0)=0,即F(x)≥0恒成立,即e x≥x+1,即e x-2≥x-1,当且仅当x=0时等号成立,同理可得ln x≤x-1,当且仅当x=1时等号成立,所以e x-2>ln x,当a≤2时,ln x<e x-2≤e x-a,即当a≤2时,f (x)-ln x>0恒成立.当a≥3时,存在x=1,使e x-a<ln x,即e x-a>ln x不恒成立.综上,整数a的最大值为2.1.已知f (x )=e x -ax 2,若f (x )≥x +(1-x )·e x 在[0,+∞)恒成立,求实数a 的取值范围. 解 f (x )≥x +(1-x )e x ,即e x -ax 2≥x +e x -x e x ,即e x -ax -1≥0,x ≥0.令h (x )=e x -ax -1(x ≥0),则h ′(x )=e x -a (x ≥0),当a ≤1时,由x ≥0知h ′(x )≥0,∴在[0,+∞)上h (x )≥h (0)=0,原不等式恒成立.当a >1时,令h ′(x )>0,得x >ln a ;令h ′(x )<0,得0≤x <ln a .∴h (x )在[0,ln a )上单调递减,又∵h (0)=0,∴h (x )≥0不恒成立,∴a >1不合题意.综上,实数a 的取值范围为(-∞,1].2.(2017·全国Ⅲ)已知函数f (x )=ln x +ax 2+(2a +1)x .(1)讨论f (x )的单调性;(2)当a <0时,证明:f (x )≤-34a-2. (1)解 f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +2a +1=(x +1)(2ax +1)x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0,故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈⎝⎛⎭⎫0,-12a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-12a ,+∞时,f ′(x )<0. 故f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)证明 由(1)知,当a <0时,f (x )在x =-12a处取得最大值,最大值为f ⎝⎛⎭⎫-12a =ln ⎝⎛⎭⎫-12a -1-14a, 所以f (x )≤-34a -2等价于ln ⎝⎛⎭⎫-12a -1-14a ≤-34a-2, 即ln ⎝⎛⎭⎫-12a +12a+1≤0. 设g (x )=ln x -x +1,则g ′(x )=1x-1. 当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝⎛⎭⎫-12a +12a+1≤0, 即f (x )≤-34a-2. 3.(2019·陕西宝鸡模拟)已知函数f (x )=(ax -1)e x (a ∈R ).(1)讨论f (x )的单调性;(2)当m >n >0时,证明:m e n +n <n e m +m .(1)解 由题意可得f (x )的定义域为R ,且f ′(x )=(ax +a -1)e x .①当a =0时,f ′(x )=-e x <0,此时f (x )在区间(-∞,+∞)上单调递减.②当a >0时,由f ′(x )>0,得x >-a -1a; 由f ′(x )<0,得x <-a -1a. 此时f (x )在区间⎝ ⎛⎭⎪⎫-∞,-a -1a 上单调递减,在区间⎝ ⎛⎭⎪⎫-a -1a ,+∞上单调递增. ③当a <0时,由f ′(x )>0,得x <-a -1a ;由f ′(x )<0,得x >-a -1a. 此时f (x )在区间⎝ ⎛⎭⎪⎫-a -1a ,+∞上单调递减,在区间⎝ ⎛⎭⎪⎫-∞,-a -1a 上单调递增. (2)证明 当m >n >0时,要证m e n +n <n e m +m ,只要证m (e n -1)<n (e m -1),即证e m -1m >e n -1n.(*) 设g (x )=e x -1x ,x >0,则g ′(x )=(x -1)e x +1x 2. 设h (x )=(x -1)e x +1,x ≥0,由(1)知当a =1时,y =(x -1)e x 在(0,+∞)上单调递增,所以h (x )在(0,+∞)上单调递增,所以当x >0时,h (x )>h (0)=0.即g ′(x )>0,所以g (x )在(0,+∞)上单调递增,所以当m >n >0时,g (m )>g (n ),即(*)式成立.故当m >n >0时,m e n +n <n e m +m .4.已知函数f (x )=m x+ln x ,g (x )=x 3+x 2-x . (1)若m =3,求f (x )的极值;(2)若对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥110g (t ),求实数m 的取值范围. 解 (1)f (x )的定义域为(0,+∞),当m =3时,f (x )=3x+ln x . ∵f ′(x )=-3x 2+1x =x -3x 2,f ′(3)=0, ∴当x >3时,f ′(x )>0,f (x )是增函数,当0<x <3时,f ′(x )<0,f (x )是减函数.∴f (x )有极小值f (3)=1+ln 3,没有极大值.(2)g (x )=x 3+x 2-x ,g ′(x )=3x 2+2x -1.当x ∈⎣⎡⎦⎤12,2时,g ′(x )>0,∴g (x )在⎣⎡⎦⎤12,2上是单调递增函数,g (x )max =g (2)=10.对于任意的s ,t ∈⎣⎡⎦⎤12,2,f (s )≥110g (t )恒成立,即对任意x ∈⎣⎡⎦⎤12,2,f (x )=m x+ln x ≥1恒成立,即m ≥x -x ln x 恒成立.令h (x )=x -x ln x ,则h ′(x )=1-ln x -1=-ln x .∴当x >1时,h ′(x )<0,当0<x <1时,h ′(x )>0,∴h (x )在(0,1]上是增函数,在[1,+∞)上是减函数,∴当x ∈⎣⎡⎦⎤12,2时,h (x )的最大值为h (1)=1,∴m ≥1,即m 的取值范围是[1,+∞).5.(2020·四川资阳、眉山、遂宁、广安、乐山、内江六市联考)已知函数f (x )=e x -12(x -a )2+4.(1)当a =1时,求f (x )在x =0处的切线方程;(2)若x ≥0,不等式f (x )≥0恒成立,求a 的取值范围.解 (1)当a =1时,f (x )=e x -12(x -1)2+4=e x -12x 2+x -12+4,f ′(x )=e x -x +1, 则f (0)=92,f ′(0)=2, 所以所求切线方程为4x -2y +9=0.(2)由f (x )=e x -12(x -a )2+4得f ′(x )=e x -x +a , 令h (x )=e x -x +a ,则h ′(x )=e x -1≥0.所以h (x )在[0,+∞)上单调递增,且h (0)=1+a .①当a ≥-1时,f ′(x )≥0,函数f (x )单调递增,由于f (x )≥0恒成立,则有f (0)=5-12a 2≥0,即-10≤a ≤10,所以-1≤a ≤10满足条件. ②当a <-1时,则存在x 0∈(0,+∞),使得h (x 0)=0, 当0<x <x 0时,h (x )<0,则f ′(x )<0,f (x )单调递减;当x >x 0时,h (x )>0,则f ′(x )>0,f (x )单调递增.所以f (x )min =f (x 0)=0e x -12(x 0-a )2+4≥0, 又x 0满足h (x 0)=0e x -x 0+a =0,即x 0-a =0e x , 所以0021e e 2x x -+4≥0,则002e 2e x x --8≤0, 即00(e 4)(e 2)x x -+≤0,得0<x 0≤ln 4.又a =x 0-0e x ,令u (x )=x -e x ,则u ′(x )=1-e x , 可知,当0<x ≤ln 4时,u ′(x )<0,则u (x )单调递减, 所以u (x )=x -e x ≥ln 4-4,此时ln 4-4≤a <-1满足条件.综上所述,a 的取值范围是[ln 4-4,10].。
高中数学步步高大一轮复习讲义文科专题一PPT课件
故 f(x)的单调递增区间为(-∞,
-1),(0,+∞),单调递减区
间为(-1,0).
第4页/共56页
高考题型突破
题型一
利用导数研究函数的单调性
【例 1】 设函数 f(x)=x(ex-1) 思维启迪 解析 思维升华
(2)f(x)=x(ex-1-ax),
-ax2.
令 g(x)=ex-1-ax,
(1)若 a=12,求 f(x)的单调区间; g′(x)=ex-a.
思维启迪 解析 思维升华
(2)解 2xln x≥-x2+ax-3, 则 设ha(≤x)2=ln2lxn+x+x+x+3x,3x(x>0), 则h′(x)=x+3x2x-1, ①当x∈(0,1)时,h′(x)<0,h(x)
单调递减, ②当x∈(1,+∞)时,
h′(x)>0,h(x)单调递增, 所以h(x)min=h(1)=4,对一切
-ax2. (1)若 a=12,求 f(x)的单调区间;
(2)若当 x≥0 时,f(x)≥0,求 a
求出 f′(x),分析函数的单 调性,得出结论.
的取值范围.
第3页/共56页
高考题型突破
题型一
利用导数研究函数的单调性
【例 1】 设函数 f(x)=x(ex-1)
-ax2. (1)若 a=12,求 f(x)的单调区间;
(2)若当 x≥0 时,f(x)≥0,求 a
若 a≤1,则当 x∈(0,+∞)时, g′(x)>0,g(x)为增函数,
的取值范围.
而 g(0)=0,
从而当 x≥0 时,g(x)≥0,
即 f(x)≥0.
若 a>1,则当 x∈(0,ln a)时, g′(x)<0,g(x)为减函数,
高中数学步步高大一轮复习讲义(文科)-64省公开课获奖课件市赛课比赛一等奖课件
练出高分
题型分类·深度剖析
题型一
分组转化求和
思维启迪 解析 思维升华
【例 1】 已知数列{an}是 3+2 解 由已知得,数列{an}的通项公式
-1,6+22-1,9+23-1,12+24 为 an=3n+2n-1=3n-1+2n,
-1,…,写出数列{an}的通项 ∴Sn=a1+a2+…+an
=(2+5+…+3n-1)+(2+22+…
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三
裂项相消法求和
思维启迪 解析 思维升华
【例 3】 在数列{an}中,a1=1,
当 n≥2 时,其前 n 项和 Sn 满足 S2n=anSn-12.
(1)求 Sn 的表达式; (2)设 bn=2nS+n 1,求{bn}的前
n 项和 Tn.
第(1)问利用 an=Sn-Sn-1 (n≥2) 后,再同除 Sn-1·Sn 转化为S1n的 等差数列即可求 Sn.
题型分类·深度剖析
题型一
分组转化求和
思维启迪 解析 思维升华
【例 1】 已知数列{an}是 3+2
-1,6+22-1,9+23-1,12+24 先写出通项,然后对 分组后利用等差数列、等比数列
公式并求其前 n 项和 Sn.
的求和公式求解.
基础知识
题型分类
思想方法
∴S1n=1+2(n-1)=2n-1, ∴Sn=2n1-1. (2)∵bn=2nS+n 1=2n-112n+1
=122n1-1-2n1+1,
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三
裂项相消法求和
思维启迪 解析 思维升华
[数学]步步高大一轮复习讲义数学文科a版【答案解析】版-精品文档
§1.1 集合的概念及其基本运算要点梳理1.(1)确定性 互异性 无序性 (2)属于 不属于 ∈ ∉ (3)列举法 描述法 图示法 区间法 (5)有限集 无限集 空集2.(1)A B B A ⊆ ⊆ ⊆ 2n 2n -1 2n -23.(1){x |x ∈A ,且x ∈B } {x |x ∈U ,且x ∉A } 基础自测 1.{2,4} 2.{x |0<x <1} 3.(2,3)4.⎩⎨⎧⎭⎬⎫0,1,-12 5.B题型分类·深度剖析例1 解 (1)当a +2=1,即a =-1时,(a +1)2=0,a 2+3a +3=1与a +2相同,∴不符合题意.当(a +1)2=1,即a =0或a =-2时,①a =0符合要求. ②a =-2时,a 2+3a +3=1与(a +1)2相同,不符合题意. 当a 2+3a +3=1,即a =-2或a =-1.①当a =-2时,a 2+3a +3=(a +1)2=1,不符合题意. ②当a =-1时,a 2+3a +3=a +2=1,不符合题意. 综上所述,a =0,∴2 013a =1.(2) ∵当x =0时,x =x 2-x =x 3-3x =0,∴它不一定能表示一个有三个元素的集合.要使它表示一个有三个元素的集合,则应有⎩⎪⎨⎪⎧x ≠x 2-x ,x 2-x ≠x 3-3x ,x ≠x 3-3x .∴x ≠0且x ≠2且x ≠-1且x ≠-2时,{x ,x 2-x ,x 3-3x }能表示一个有三个元素的集合. 变式训练 1 0或98例2 解 A 中不等式的解集应分三种情况讨论:①若a =0,则A =R ;②若a <0,则A =⎩⎨⎧⎭⎬⎫x |4a ≤x <-1a ;③若a >0,则A =⎩⎨⎧⎭⎬⎫x |-1a <x ≤4a .(1)当a =0时,若A ⊆B ,此种情况不存在.当a <0时,若A ⊆B ,如图:,则⎩⎨⎧4a >-12-1a ≤2,∴⎩⎪⎨⎪⎧a >0或a <-8a >0或a ≤-12,又a <0,∴a <-8.当a >0时,若A ⊆B ,如图:,则⎩⎨⎧-1a ≥-124a ≤2,∴⎩⎪⎨⎪⎧a ≥2或a <0a ≥2或a <0.又∵a >0,∴a ≥2.综上知,当A ⊆B 时,a <-8或a ≥2. (2)当a =0时,显然B ⊆A ;当a <0时,若B ⊆A ,如图:,则⎩⎨⎧4a ≤-12-1a >2,∴⎩⎪⎨⎪⎧-8≤a <0-12<a <0.又∵a <0,∴-12<a <0.当a >0时,若B ⊆A ,如图:,则⎩⎨⎧-1a ≤-124a ≥2,∴⎩⎪⎨⎪⎧0<a ≤20<a ≤2.又∵a >0,∴0<a ≤2.综上知,当B ⊆A 时,-12<a ≤2.(3)当且仅当A 、B 两个集合互相包含时,A =B ,由(1)、(2)知,a =2.变式训练 2 4 例3 1或2变式训练3 解 (1)∵A ={x |12≤x ≤3},当a =-4时,B ={x |-2<x <2},∴A ∩B ={x |12≤x <2},A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3},当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时, B ={x |--a <x <-a },要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,实数a 的取值范围是a ≥-14.例4 A变式训练 4 6 {0,1,2,3}课时规范训练 A 组1.C2.C3.A4.-1或25.{(0,1),(-1,2)}6.187.解 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3.∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∵A ⊆∁R B ,∴m -2>3或m +2<-1,即m >5或m <-3. 8.解 ∵M ={y |y =x 2,x ∈R }={y |y ≥0},N ={y |y =3sin x ,x ∈R }={y |-3≤y ≤3},∴M -N ={y |y >3},N -M ={y |-3≤y <0},∴M *N =(M -N )∪(N -M )={y |y >3}∪{y |-3≤y <0}={y |y >3或-3≤y <0}. B 组1.C2.B3.A4.A5.a ≤06.-37.(-∞,-3)8.解 由x -5x +1≤0,∴-1<x ≤5,∴A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}. (2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8. 此时B ={x |-2<x <4},符合题意,故实数m 的值为8.§1.2 命题及其关系、充分条件与必要条件要点梳理1.判断真假 判断为真 判断为假2.(1)若q ,则p 若綈p ,则綈q 若綈q ,则綈p ,(2)逆命题 否命题 逆否命题 (3)①相同 ②没有3.(1)充分条件 必要条件 (2)充要条件基础自测 1.3 2.②③ 3.充分不必要 4.C 5.D 题型分类·深度剖析 例1 ②④ 变式训练1 ①③例2 解 (1)在△ABC 中,∠A =∠B ⇒sin A =sin B ,反之,若sin A =sin B ,∵A 与B 不可能互补(∵三角形三个内角和为180°),∴只有A =B .故p 是q 的充要条件.(2)易知,綈p :x +y =8,綈q :x =2且y =6,显然綈q ⇒綈p ,但綈p 綈q ,即綈q 是綈p 的充分不必要条件,根据原命题和逆否命题的等价性知,p 是q 的充分不必要条件.(3)显然x ∈A ∪B 不一定有x ∈B ,但x ∈B 一定有x ∈A ∪B ,∴p 是q 的必要不充分条件.(4)条件p :x =1且y =2,条件q :x =1或y =2,∴p ⇒q 但q p ,故p 是q 的充分不必要条件. 变式训练2 ①④例3 证明 充分性:当a =0时,方程为2x +1=0,其根为x =-12,方程有一个负根,符合题意.当a <0时,Δ=4-4a >0,方程ax 2+2x +1=0有两个不相等的实根,且1a <0,方程有一正一负根,符合题意.当0<a ≤1时,Δ=4-4a ≥0,方程ax 2+2x +1=0有实根,且⎩⎨⎧-2a<01a >0,故方程有两个负根,符合题意.综上知:当a ≤1时,方程ax 2+2x +1=0至少有一个负根. 必要性:若方程ax 2+2x +1=0至少有一个负根. 当a =0时,方程为2x +1=0符合题意.当a ≠0时,方程ax 2+2x +1=0应有一正一负根或两个负根.则1a<0或⎩⎨⎧Δ=4-4a ≥0-2a <01a>0,解得a <0或0<a ≤1.综上知:若方程ax 2+2x +1=0至少有一负根,则a ≤1.故关于x 的方程ax 2+2x +1=0至少有一个负根的充要条件是a ≤1.变式训练3 证明 充分性:当q =-1时,a 1=S 1=p +q =p -1.当n ≥2时,a n =S n -S n -1=p n -1(p -1),当n =1时也成立,于是a n +1a n =p n(p -1)p n -1(p -1)=p (n ∈N *)即数列{a n }为等比数列.必要性:当n =1时,a 1=S 1=p +q ,当n ≥2时,a n =S n -S n -1=p n -1(p -1). ∵p ≠0,p ≠1,∴a n +1a n=p n (p -1)p n -1(p -1)=p .∵{a n }为等比数列,∴a 2a 1=a n +1a n =p ,又S 2=a 1+a 2=p 2+q ,∴a 2=p 2-p =p (p -1),∴p (p -1)p +q =p ,即p -1=p +q .∴q =-1.综上所述,q =-1是数列{a n }为等比数列的充要条件.课时规范训练 A 组1.D2.B3.A4.充分不必要5.①③④6.[3,8)7.解 由题意p :-2≤x -3≤2,∴1≤x ≤5,∴綈p :x <1或x >5,q :m -1≤x ≤m +1,∴綈q :x <m -1或x >m +1.又∵綈p 是綈q 的充分而不必要条件,∴⎩⎪⎨⎪⎧m -1≥1,m +1≤5.∴2≤m ≤4.8.解 设A ={x |p }={x |x 2-4ax +3a 2<0,a <0}={x |3a <x <a ,a <0},B ={x |q }={x |x 2-x -6≤0或x 2+2x -8>0}={x |x 2-x -6≤0}∪{x |x 2+2x -8>0} ={x |-2≤x ≤3}∪{x |x <-4或x >2}={x |x <-4或x ≥-2}.∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈pD ⇒/綈q ,则{x |綈q x |綈p },而{x |綈q }=∁R B ={x |-4≤x <-2},{x |綈p }=∁R A ={x |x ≤3a 或x ≥a ,a <0}, ∴{x |-4≤x <-x |x ≤3a 或x ≥a ,a <0},则⎩⎨⎧ 3a ≥-2,a <0或⎩⎨⎧a ≤-4,a <0.综上,可得-23≤a <0或a ≤-4.B 组1.A2.C3.B4.⎝⎛⎭⎫34,1∪(1,+∞) 5.[1,2) 6.①③②④ 7.3或48.解 (1)当a =12时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x -52<0=⎩⎨⎧⎭⎬⎫x |2<x <52,B =⎩⎨⎧⎭⎬⎫x |x -94x -12<0=⎩⎨⎧⎭⎬⎫x |12<x <94, ∴∁U B =⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥94,∴(∁U B )∩A =⎩⎨⎧⎭⎬⎫x |94≤x <52.(2)∵a 2+2>a ,∴B ={x |a <x <a 2+2}.①当3a +1>2,即a >13时,A ={x |2<x <3a +1}.∵p 是q 的充分条件,∴A ⊆B .∴⎩⎨⎧a ≤23a +1≤a 2+2,即13<a ≤3-52. ②当3a +1=2,即a =13时,A =∅,不符合题意;③当3a +1<2,即a <13时,A ={x |3a +1<x <2},由A ⊆B 得⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,∴-12≤a <13.综上所述,实数a 的取值范围是⎣⎡⎭⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.§1.3 简单的逻辑联结词、全称量词与存在量词要点梳理1.(1)或 且 非 (2)真 假 假 真 假 假 真 真 假 真 假 真 真 2.(3)∀ ∃ (4)①含有全称量词 ②含有存在量词 基础自测1.所有的三角形都不是等边三角形 2.[-4,0] 3.①② 4.A 5.C 题型分类·深度剖析 例1 q 1,q 4变式训练1 解 (1)p ∨q :1是素数或是方程x 2+2x -3=0的根.真命题.p ∧q :1既是素数又是方程x 2+2x -3=0的根.假命题. 綈p :1不是素数.真命题.(2)p ∨q :平行四边形的对角线相等或互相垂直.假命题. p ∧q :平行四边形的对角相等且互相垂直.假命题. 綈p :有些平行四边形的对角线不相等.真命题.(3)p ∨q :方程x 2+x -1=0的两实根的符号相同或绝对值相等.假命题. p ∧q :方程x 2+x -1=0的两实根的符号相同且绝对值相等.假命题. 綈p :方程x 2+x -1=0的两实根的符号不相同.真命题.例2 解 (1)綈p :∃x 0∈R ,x 20-x 0+14<0,假命题.(2)綈q :至少存在一个正方形不是矩形,假 命题.(3)綈r :∀x ∈R ,x 2+2x +2>0,真命题.(4)綈s :∀x ∈R ,x 3+1≠0,假命题. 变式训练2 解 (1)綈p :∃x >0,使x 2-x >0,为真命题.(2)綈q :∀x ∈R,2x +x 2>1,为假命题. 例3 解 ①若p 正确,则由0<⎝⎛⎭⎫12|x -1|≤1,得a >1.②若q 正确,则ax 2+(a -2)x +98>0解集为R .当a =0时,-2x +98>0不合题意,舍去;当a ≠0时,则⎩⎪⎨⎪⎧a >0(a -2)2-4a ×98<0,解得12<a <8. ③∵p 和q 中有且仅有一个正确,∴⎩⎪⎨⎪⎧a >1a ≤12或a ≥8或⎩⎪⎨⎪⎧a ≤112<a <8,∴a ≥8或12<a ≤1.变式训练3 解 ∵函数y =a x 在R 上单调递增,∴p :a >1,不等式ax 2-ax +1>0对∀x ∈R 恒成立,∴a >0且a 2-4a <0,解得0<a <4,∴q :0<a <4.∵“p ∧q ”为假,“p ∨q ”为真,∴p 、q 中必有一真一假.①当p 真,q 假时,⎩⎪⎨⎪⎧ a >1a ≥4,得a ≥4;②当p 假,q 真时,⎩⎪⎨⎪⎧0<a ≤10<a <4,得0<a ≤1.故a 的取值范围为(0,1]∪[4,+∞).课时规范训练 A 组1.C 2.A 3.C 4.-22≤a ≤22 5.a >1 6.綈p 、綈q7.解 由命题p 为真知,0<c <1,由命题q 为真知,2≤x +1x ≤52,要使此式恒成立,需1c <2,即c >12,若p 或q 为真命题,p 且q 为假命题,则p 、q 中必有一真一假,当p 真q 假时,c 的取值范围是0<c ≤12;当p 假q 真时,c 的取值范围是c ≥1. 综上可知,c 的取值范围是⎩⎨⎧⎭⎬⎫c |0<c ≤12或c ≥1.8.解 设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,∴函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2.又∵函数f (x )=(3-2a )x 是增函数,∴3-2a >1,∴a <1. 又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.(1)若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥1,,∴1≤a <2;(2)若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2或a ≥2,a <1,,∴a ≤-2.综上可知,所求实数a 的取值范围为1≤a <2,或a ≤-2. B 组1.C 2.D 3.D 4.⎣⎡⎦⎤0,12 5.(-∞,1] 6.(-∞,-2]∪[-1,3) 7.①③ 8.解 由2x 2+ax -a 2=0得(2x -a )(x +a )=0, ∴x =a2或x =-a ,∴当命题p 为真命题时⎪⎪⎪⎪a 2≤1或|-a |≤1,∴|a |≤2.又“只有一个实数x 0满足x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2,∴当命题q 为真命题时,a =0或a =2. ∴命题“p 或q ”为真命题时,|a |≤2,∵命题“p 或q ”为假命题,∴a >2或a <-2. 即a 的取值范围为{a |a >2或a <-2}.§2.1 函数及其表示要点梳理1.(1)数集 任意 唯一确定 y =f (x ),x ∈A (2)定义域 值域 (3)定义域 值域 对应关系 (4)定义域 对应关系2.解析法 图象法 列表法3.都有唯一 一个映射4.函数 非空数集 基础自测1.⎩⎨⎧⎭⎬⎫-2,-12,1,522.①②3.-1 104.23或-1题型分类·深度剖析 例1 (2)(3)变式训练1 解 (1)y =1的定义域为R ,y =x 0的定义域为{x |x ∈R 且x ≠0},∴它们不是同一函数.(2)y =x -2·x +2的定义域为{x |x ≥2},y =x 2-4的定义域为{x |x ≥2或x ≤-2},∴它们不是同一函数.(3)y =x ,y =3t 3=t ,它们的定义域和对应关系都相同,∴它们是同一函数. (4)y =|x |的定义域为R ,y =(x )2的定义域为{x |x ≥0},∴它们不是同一函数.例2 (2) 变式训练2 (1)D (2)A 例3 C 变式训练3 B 例4 0 变式训练4 D 课时规范训练 A 组1.D2.D3.A4.65.16.-347.解 当x ∈[0,30]时,设y =k 1x +b 1,由已知得⎩⎪⎨⎪⎧b 1=030k 1+b 1=2,解得⎩⎪⎨⎪⎧k 1=115b 1=0,∴y =115x .当x ∈(30,40)时,y =2;当x ∈[40,60]时,设y =k 2x +b 2, 由已知得⎩⎪⎨⎪⎧40k 2+b 2=260k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110b 2=-2,∴y =110x -2.综上,f (x )=⎩⎨⎧115x , x ∈[0,30]2, x ∈(30,40)110x -2, x ∈[40,60].8.解 当f (x )≤0时,由x 2+2x -3≤0,可得-3≤x ≤1,此时,g (x )=0;当f (x )>0时,由x 2+2x -3>0可得x <-3或x >1,此时g (x )=f (x )=(x +1)2-4.∴g (x )=⎩⎪⎨⎪⎧0 (-3≤x ≤1)(x +1)2-4 (x <-3或x >1),其图象如图所示:B 组1.C2.D3.D4.②④5.(1)a (a 为正整数) (2)166.-27.[-4,2]8.解 (1)∵x =716时,4x =74,∴f 1(x )=⎣⎡⎦⎤74=1,g (x )=74-⎣⎡⎦⎤74=34,∴f 2(x )=f 1[g (x )]=f 1⎝⎛⎭⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1,∴f 2(x )=f 1(4x -1)=[16x -4]=3,∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4.∴716≤x <12.§2.2 函数的定义域、值域及函数的解析式要点梳理1.(1)使函数有意义的自变量的取值范围 (3)③R ④R ⑤⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z⑥{x |x ∈R 且x ≠0}2.(1)函数值 函数值的集合 (2)①R ②⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a ③{y |y ∈R 且y ≠0} ④(0,+∞) ⑤R ⑥[-1,1] ⑦R 基础自测1.[-1,2)∪(2,+∞)2.{x |-3<x <2}3.(0,+∞)4.x 2+1x 2-1(x ≠0)题型分类·深度剖析 例1 (1)⎝⎛⎭⎫-13,1 (2)(-1,1) 变式训练1 (1)A (2)⎣⎡⎦⎤0,34 例2 解 ∵f (2x )的定义域是[-1,1],∴12≤2x ≤2,即y =f (x )的定义域是⎣⎡⎦⎤12,2,由12≤log 2x ≤2⇒2≤x ≤4.∴f (log 2x )的定义域是[2,4].变式训练2 解 ∵f (x )的定义域为[0,4],(1)有0≤x 2≤4,∴-2≤x ≤2,故f (x 2)的定义域为[-2,2];(2)有⎩⎪⎨⎪⎧0≤x +1≤4,0≤x -1≤4,∴1≤x ≤3.故f (x +1)+f (x -1)的定义域为[1,3].例3 解 (1)(配方法) y =x 2+2x =(x +1)2-1,y =(x +1)2-1在[0,3]上为增函数,∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15].(2)(分离常数法) y =x -3x +1=x +1-4x +1=1-4x +1,∵4x +1≠0,∴1-4x +1≠1,即函数的值域是{y |y ∈R ,y ≠1}.(3)方法一 (换元法) 令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,∴y ≤12,故函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.方法二 (单调性法) 容易判断函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,∴y ≤f ⎝⎛⎭⎫12=12,即函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12. (4)(基本不等式法) 函数定义域为{x |x ∈R ,x >0,且x ≠1},当x >1时,log 3x >0, 于是y =log 3x +1log 3x-1≥2log 3x ·1log 3x-1=1;当0<x <1时,log 3x <0,于是y =log 3x +1log 3x -1=-⎣⎢⎡⎦⎥⎤(-log 3x )+⎝ ⎛⎭⎪⎫1-log 3x -1 ≤-2-1=-3.故函数的值域是(-∞,-3]∪[1,+∞).变式训练3 解 (1)方法一 (配方法) ∵y =1-1x 2-x +1,又x 2-x +1=⎝⎛⎭⎫x -122+34≥34, ∴0<1x 2-x +1≤43,∴-13≤y <1,∴函数的值域为⎣⎡⎭⎫-13,1. 方法二 (判别式法) 由y =x 2-xx 2-x +1,x ∈R ,得(y -1)x 2+(1-y )x +y =0.∵y =1时,x ∈∅,∴y ≠1,又∵x ∈R ,∴Δ=(1-y )2-4y (y -1)≥0,解得-13≤y ≤1.综上得-13≤y <1,∴函数的值域为⎣⎡⎭⎫-13,1. (2)方法一 (换元法):设13-4x =t ,则t ≥0,x =13-t 24,于是f (x )=g (t )=2·13-t 24-1-t =-12t 2-t +112=-12(t +1)2+6,显然函数g (t )在[0,+∞)上是单调递减函数,∴g (t )≤g (0)=112,因此原函数的值域是⎝⎛⎦⎤-∞,112. 方法二 (单调性法):函数定义域是⎩⎨⎧⎭⎬⎫x |x ≤134,当自变量x 增大时,2x -1增大,13-4x 减小,∴2x -1-13-4x 增大,因此函数f (x )=2x -1-13-4x 在其定义域上是一个单调递增函数,∴当x =134时,函数取得最大值f ⎝⎛⎭⎫134=112,故原函数的值域是⎝⎛⎦⎤-∞,112. 例4 解 (1)令x +1x =t ,则t 2=x 2+1x 2+2≥4,∴t ≥2或t ≤-2且x 2+1x2=t 2-2,∴f (t )=t 2-2,即f (x )=x 2-2 (x ≥2或x ≤-2).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1 (x >1).(3)设f (x )=kx +b ,∴3f (x +1)-2f (x -1)=3[k (x +1)+b ]-2[k (x -1)+b ]=kx +5k +b =2x +17.∴⎩⎪⎨⎪⎧ k =25k +b =17,即⎩⎪⎨⎪⎧k =2b =7.∴f (x )=2x +7. (4)∵2f (x )+f ⎝⎛⎭⎫1x =3x ,∴2f ⎝⎛⎭⎫1x +f (x )=3x .∴f (x )=2x -1x(x ≠0). 变式训练4 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,∴f (x )=x 2-1 (x ≥1).(2)设f (x )=ax 2+bx +c ,又f (0)=c =3,∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧ 4a =44a +2b =2,∴⎩⎪⎨⎪⎧a =1b =-1,∴f (x )=x 2-x +3. 课时规范训练 A 组1.C2.B3.C4.C5.(-∞,3]6.⎣⎡⎦⎤2,103 7.[-2,7] 8.解 (1)设f (x )=ax 2+bx +c (a ≠0),又f (0)=0,∴c =0,即f (x )=ax 2+bx ,又f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1.∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1a +b =1,解得⎩⎨⎧a =12b =12,∴f (x )=12x 2+12x .(2)由(1)知y =f (x 2-2)=12(x 2-2)2+12(x 2-2)=12(x 4-3x 2+2)=12⎝⎛⎭⎫x 2-322-18, 当x 2=32时,y 取最小值-18,∴函数y =f (x 2-2)的值域为⎣⎡⎭⎫-18,+∞. B 组1.B2.C3.A4.(-1,-910)∪(-910,2] 5.22 6.2837.解 ∵f (x )=12(x -1)2+a -12.∴其对称轴为x =1,即[1,b ]为f (x )的单调递增区间.∴f (x )min =f (1)=a -12=1① f (x )max =f (b )=12b 2-b +a =b②又b >1,由①②解得⎩⎪⎨⎪⎧a =32,b =3.∴a 、b 的值分别为32、3.8.解 (1)∵函数的值域为[0,+∞),∴Δ=16a 2-4(2a +6)=0,∴2a 2-a -3=0,∴a =-1或a =32.(2)∵对一切x ∈R 函数值均为非负,∴Δ=16a 2-4(2a +6)=8(2a 2-a -3)≤0.∴-1≤a ≤32.∴a +3>0,∴g (a )=2-a |a +3|=-a 2-3a +2=-⎝⎛⎭⎫a +322+174 ⎝⎛⎭⎫a ∈⎣⎡⎦⎤-1,32. ∵二次函数g (a )在⎣⎡⎦⎤-1,32上单调递减,∴g ⎝⎛⎭⎫32≤g (a )≤g (-1),即-194≤g (a )≤4. ∴g (a )的值域为⎣⎡⎦⎤-194,4.§2.3 函数的单调性与最值要点梳理1.(1)f (x 1)<f (x 2) f (x 1)>f (x 2) 上升的 下降的 (2)增函数 减函数 区间D2.(1)f (x )≤M (2)f (x 0)=M (3)f (x )≥M (4)f (x 0)=M 基础自测 1.[1,4] 8 2.43,1 3.(-3,0) 4.A 5.C题型分类·深度剖析例1 (1)解 由2f (1)=f (-1),可得22-2a =2+a ,得a =23. (2)证明 任取x 1,x 2∈[0,+∞),且x 1<x 2,f (x 1)-f (x 2)=x 21+1-ax 1-x 22+1+ax 2=x 21+1-x 22+1-a (x 1-x 2)=x 21-x 22x 21+1+x 22+1-a (x 1-x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎪⎫x 1+x 2x 21+1+x 22+1-a . ∵0≤x 1<x 21+1,0<x 2<x 22+1,∴0<x 1+x 2x 21+1+x 22+1<1.又∵a ≥1,∴f (x 1)-f (x 2)>0,∴f (x )在[0,+∞)上单调递减.(3)解 任取1≤x 1<x 2,f (x 1)-f (x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎪⎫x 1+x 2x 21+1+x 22+1-a , ∵f (x )单调递增,∴f (x 1)-f (x 2)<0,又x 1-x 2<0,那么必须x 1+x 2x 21+1+x 22+1-a >0恒成立.∵1≤x 1<x 2⇒2x 21≥x 21+1,2x 22>x 22+1,∴2x 1≥x 21+1,2x 2>x 22+1.相加得2(x 1+x 2)>x 21+1+x 22+1⇒x 1+x 2x 21+1x 22+1>22,∴0<a ≤22. 变式训练1 (1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.例2 解 令u =x 2-3x +2,则原函数可以看作y =12log u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2,∴函数y =212log (32)x x -+的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =12log u 在(0,+∞)上是单调减函数,∴y =212log (32)x x -+的单调减区间为(2,+∞),单调增区间为(-∞,1).变式训练2 解 令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数.由u =x 2+x -6≥0,得x ≤-3或x ≥2.∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在(0,+∞)上是增函数,∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞).例3 (1)证明 方法一 ∵函数f (x )对于任意x ,y ∈R 总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0,再令y =-x ,得f (-x )=-f (x ),在R 上任取x 1>x 2,则x 1-x 2>0, f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),因此f (x )在R 上是减函数. 方法二 设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2). 又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数. (2)解 ∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数, ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3).而f (3)=3f (1)=-2,f (-3)=-f (3)=2,∴f (x )在[-3,3]上的最大值为2,最小值为-2. 变式训练3 解 (1)∵当x >0,y >0时,f ⎝⎛⎭⎫x y =f (x )-f (y ),∴令x =y >0,则f (1)=f (x )-f (x )=0.(2)设x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 2)-f (x 1)=f ⎝⎛⎭⎫x 2x 1,∵x 2>x 1>0.∴x 2x 1>1,∴f ⎝⎛⎭⎫x 2x 1>0,∴f (x 2)>f (x 1),即f (x )在(0,+∞)上是增函数. (3)由(2)知f (x )在[1,16]上是增函数.∴f (x )min =f (1)=0,f (x )max =f (16),∵f (4)=2,由f ⎝⎛⎭⎫x y =f (x )-f (y ), 知f ⎝⎛⎭⎫164=f (16)-f (4),∴f (16)=2f (4)=4,∴f (x )在[1,16]上的值域为[2,4]. 课时规范训练 A 组1.B2.D3.A4.[3,+∞)5.①③6.(1,+∞)7.(1)证明 设x 2>x 1>0,设x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=⎝⎛⎭⎫1a -1x 2-⎝⎛⎭⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是单调递增的.(2)解 ∵f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,又f (x )在⎣⎡⎦⎤12,2上单调递增, ∴f ⎝⎛⎭⎫12=12,f (2)=2.∴易得a =25. 8.解 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 21-1<0,x 22-1<0.-1<x 1x 2<1,∴x 1x 2+1>0,∴(x 2-x 1)(x 2x 1+1)(x 21-1)(x 22-1)>0. 因此,当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时函数在(-1,1)上为减函数;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时函数在(-1,1)上为增函数.B 组1.B2.B3.C4.(-∞,0)∪(1,3]5.a >0且b ≤06.[1,+∞)7.①③④8.解 (1)任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],∵f (x )为奇函数,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2),由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上单调递增.(2)∵f (x )在[-1,1]上单调递增,∴⎩⎪⎨⎪⎧x +12<1x -1,-1≤x +12≤1,-1≤1x -1≤1.∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增.∴在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]成立,下面来求m 的取值范围. 设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0,且g (1)≥0, ∴m ≤-2,或m ≥2,∴m 的取值范围是m =0或m ≥2或m ≤-2.§2.4 函数的奇偶性与周期性要点梳理1.f (-x )=f (x ) f (-x )=-f (x ) 2.(1)相同 相反 (2)①奇函数 ②偶函数 ③奇函数 3.(1)f (x ) (2)存在一个最小 基础自测1.132.②③3.-9 4.(-1,0)∪(1,+∞) 5.C 题型分类·深度剖析例1 解 (1)由⎩⎪⎨⎪⎧9-x 2≥0x 2-9≥0,得x =±3,∴f (x )的定义域为{-3,3}.又f (3)+f (-3)=0,f (3)-f (-3)=0,即f (x )=±f (-x ).∴f (x )既是奇函数,又是偶函数. (2)由⎩⎪⎨⎪⎧1-x 1+x ≥01+x ≠0,得-1<x ≤1.∵f (x )的定义域(-1,1]不关于原点对称,∴f (x )既不是奇函数,也不是偶函数.(3)由⎩⎪⎨⎪⎧4-x 2≥0|x +3|-3≠0,得-2≤x ≤2且x ≠0,∴f (x )的定义域为[-2,0)∪(0,2],关于原点对称.∴f (x )=4-x 2(x +3)-3=4-x 2x,∴f (x )=-f (-x ),∴f (x )是奇函数. 变式训练1 解 (1)由1-x1+x>0⇒-1<x <1,定义域关于原点对称.又f (-x )=lg 1+x 1-x =lg ⎝ ⎛⎭⎪⎫1-x 1+x -1=-lg 1-x1+x =-f (x ),故原函数是奇函数. (2)由2+x2-x≥0且2-x ≠0⇒-2≤x <2,定义域关于原点不对称,故原函数是非奇非偶函数. (3)函数定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0,故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0,故f (-x )=x 2+x =f (x ),故原函数是偶函数.(4)由⎩⎪⎨⎪⎧1-x 2>0,|x 2-2|-2≠0得定义域为(-1,0)∪(0,1),关于原点对称,∴f (x )=lg (1-x 2)-(x 2-2)-2=-lg (1-x 2)x 2. ∵f (-x )=-lg[1-(-x )2](-x )2=-lg (1-x 2)x 2=f (x ),∴f (x )为偶函数.例2 解 (1)令x =y =0⇒f (0)=0,令y =-x ,则f (x )+f (-x )=0⇒f (-x )=-f (x )⇒f (x )在(-1,1)上是奇函数.(2)设0<x 1<x 2<1,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f ⎝⎛⎭⎪⎫x 1-x 21-x 1x 2,而x 1-x 2<0,0<x 1x 2<1⇒x 1-x 21-x 1x 2<0⇒f ⎝ ⎛⎭⎪⎫x 1-x 21-x 1x 2>0,即当0<x 1<x 2<1时,f (x 1)>f (x 2),∴f (x )在(0,1)上单调递减.(3)由于f ⎝⎛⎭⎫12-f ⎝⎛⎭⎫15=f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫-15=f ⎝ ⎛⎭⎪⎫12-151-12×5=f ⎝⎛⎭⎫13, 同理,f ⎝⎛⎭⎫13-f ⎝⎛⎭⎫111=f ⎝⎛⎭⎫14,f ⎝⎛⎭⎫14-f ⎝⎛⎭⎫119=f ⎝⎛⎭⎫15,∴f ⎝⎛⎭⎫12-f ⎝⎛⎭⎫111-f ⎝⎛⎭⎫119=2f ⎝⎛⎭⎫15=2×12=1. 变式训练2 解 ∵y =f (x )为奇函数,且在(0,+∞)上为增函数, ∴y =f (x )在(-∞,0)上也是增函数,且由f (1)=0得f (-1)=0.若f [x (x -12)]<0=f (1),则⎩⎨⎧x (x -12)>0x (x -12)<1即0<x (x -12)<1,解得12<x <1+174或1-174<x <0.若f [x (x -12)]<0=f (-1),则⎩⎨⎧x (x -12)<0x (x -12)<-1,由x (x -12)<-1,解得x ∈∅.∴原不等式的解集是{x |12<x <1+174或1-174<x <0}.例3 (1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8,又f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].(3)解 ∵f (0)=0,f (2)=0,f (1)=1,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 008)+f (2 009)+f (2 010)+f (2 011)=0,∴f (0)+f (1)+f (2)+…+f (2 011)=0. 变式训练3 2.5 课时规范训练 A 组1.B2.A3.B4.A5.-16.-1 7.-38.解 (1)当a =0时,f (x )=x 2,f (-x )=f (x ) ,函数是偶函数.当a ≠0时,f (x )=x 2+ax (x ≠0,常数a ∈R ),取x =±1,得f (-1)+f (1)=2≠0;f (-1)-f (1)=-2a ≠0,∴f (-1)≠-f (1),f (-1)≠f (1). ∴函数f (x )既不是奇函数也不是偶函数.(2)若f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x ,任取x 1,x 2∈[2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=(x 21+1x 1)-⎝⎛⎭⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫x 1+x 2-1x 1x 2. 由于x 1≥2,x 2≥2,且x 1<x 2,∴x 1-x 2<0,x 1+x 2>1x 1x 2,∴f (x 1)<f (x 2), 故f (x )在[2,+∞)上是单调递增函数. B 组1.A2.C3.B4.(1)(2)(3) 5.0 6.②③⑤7.(1)证明 由函数f (x )的图象关于直线x =1对称,有f (x +1)=f (1-x ),即有f (-x )=f (x +2).又函数f (x )是定义在R 上的奇函数,故有f (-x )=-f (x ).故f (x +2)=-f (x ). 从而f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数. (2)解 由函数f (x )是定义在R 上的奇函数,有f (0)=0. x ∈[-1,0)时,-x ∈(0,1],f (x )=-f (-x )=--x ,故x ∈[-1,0]时,f (x )=--x .x ∈[-5,-4]时,x +4∈[-1,0],f (x )=f (x +4)=--x -4.从而,x ∈[-5,-4]时,函数f (x )=--x -4.8.解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16). 又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1. ∴x 的取值范围是{x |-15<x <17且x ≠1}.§2.5 二次函数要点梳理 1.(2)①ax 2+bx +c (a ≠0) ②a (x -m )2+n (a ≠0) ③a (x -x 1)(x -x 2) (a ≠0) 基础自测 1.2 2.[1,2] 3.6 4.(-∞,-2] 5.B 题型分类·深度剖析例1 解 方法一 设f (x )=ax 2+bx +c (a ≠0),依题意有⎩⎨⎧4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解之,得⎩⎪⎨⎪⎧a =-4,b =4,c =7,,∴所求二次函数为y =-4x 2+4x +7.方法二 设f (x )=a (x -m )2+n ,a ≠0,∵f (2)=f (-1),,∴抛物线对称轴为x =2+(-1)2=12.∴m =12,又根据题意函数有最大值为n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解之,得a =-4.∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 方法三 依题意知:f (x )+1=0的两根为x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x +1),a ≠0.即f (x )=ax 2-ax -2a -1.又函数有最大值y max =8,即4a (-2a -1)-a24a=8,解之,得a =-4或a =0(舍去).∴函数解析式为f (x )=-4x 2+4x +7.变式训练1 解 (1)设顶点为P (3,4)且过点A (2,2)的抛物线的方程为y =a (x -3)2+4,将(2,2)代入可得a =-2,∴y=-2(x -3)2+4,即x >2时,f (x )=-2x 2+12x -14.当x <-2时,即-x >2,又f (x )为偶函数,f (x )=f (-x )=-2×(-x )2-12x -14, 即f (x )=-2x 2-12x -14.∴函数f (x )在(-∞,-2)上的解析式为f (x )=-2x 2-12x -14.(2)函数f (x )的图象如图:(3)由图象可知,函数f (x )的值域为(-∞,4].例2 解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,∴要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.(3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈(0,6]x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0,6],单调递减区间是[-6,0].变式训练2 解 f (x )=-4⎝⎛⎭⎫x -a 22-4a ,对称轴为x =a2,顶点为⎝⎛⎭⎫a 2,-4a . ①当a2≥1,即a ≥2时,f (x )在区间[0,1]上递增.∴y max =f (1)=-4-a 2.令-4-a 2=-5,∴a =±1<2(舍去).②当0<a 2<1,即0<a <2时,y max =f ⎝⎛⎭⎫a 2=-4a ,令-4a =-5,∴a =54∈(0,2). ③当a2≤0,即a ≤0时,f (x )在区间[0,1]上递减,此时f (x )max =f (0)=-4a -a 2.令-4a -a 2=-5,即a 2+4a -5=0,∴a =-5或a =1(舍去).综上所述,a =54或a =-5.例3 解 (1)由f (0)=1得,c =1.∴f (x )=ax 2+bx +1.又f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x ,∴⎩⎪⎨⎪⎧ 2a =2,a +b =0,∴⎩⎪⎨⎪⎧a =1b =-1.因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减,∴g (x )min =g (1)=-m -1,由-m -1>0得,m <-1. 因此满足条件的实数m 的取值范围是(-∞,-1). 变式训练3 解 (1)∵f (x )=x 2+mx +n ,∴f (-1+x )=(-1+x )2+m (-1+x )+n =x 2-2x +1+mx +n -m =x 2+(m -2)x +n -m +1, f (-1-x )=(-1-x )2+m (-1-x )+n =x 2+2x +1-mx -m +n =x 2+(2-m )x +n -m +1. 又f (-1+x )=f (-1-x ),∴m -2=2-m ,即m =2.又f (x )的图象过点(1,3), ∴3=12+m +n ,即m +n =2,∴n =0,∴f (x )=x 2+2x ,又y =g (x )与y =f (x )的图象关于原点对称,∴-g (x )=(-x )2+2×(-x ),∴g (x )=-x 2+2x . (2)∵F (x )=g (x )-λf (x )=-(1+λ)x 2+(2-2λ)x ,当λ+1≠0时,F (x )的对称轴为x =2-2λ2(1+λ)=1-λλ+1,又∵F (x )在(-1,1]上是增函数.∴⎩⎪⎨⎪⎧ 1+λ<01-λ1+λ≤-1或⎩⎪⎨⎪⎧1+λ>01-λ1+λ≥1,∴λ<-1或-1<λ≤0.当λ+1=0,即λ=-1时,F (x )=4x 显然在(-1,1]上是增函数. 综上所述,λ的取值范围为(-∞,0]. 课时规范训练 A 组1.D2.A3.B4.y =12(x -2)2-1 5.0≤m ≤146.0或-17.解 f (x )=(x -a )2+a -a 2,当a <-1时,f (x )在[-1,1]上为增函数,∴⎩⎪⎨⎪⎧ f (-1)=1+3a =-2,f (1)=1-a =2⇒a =-1(舍去);当-1≤a ≤0时,⎩⎪⎨⎪⎧f (a )=a -a 2=-2,f (1)=1-a =2⇒a =-1; 当0<a ≤1时,⎩⎪⎨⎪⎧f (a )=a -a 2=-2,f (-1)=1+3a =2⇒a 不存在;当a >1时,f (x )在[-1,1]上为减函数,∴⎩⎪⎨⎪⎧f (-1)=1+3a =2,f (1)=1-a =-2⇒a 不存在.综上可得a =-1.8.解 (1)∵f (x )满足f (1+x )=f (1-x ),∴f (x )的图象关于直线x =1对称. 而二次函数f (x )的对称轴为x =-b2a ,∴-b2a=1.① 又f (x )=x 有等根,即ax 2+(b -1)x =0有等根,∴Δ=(b -1)2=0.②由①②得b =1,a =-12.∴f (x )=-12x 2+x .(2)∵f (x )=-12x 2+x =-12(x -1)2+12≤12,如果存在满足要求的m ,n ,则必需3n ≤12,∴n ≤16.从而m <n ≤16<1,而x ≤1,f (x )单调递增,∴⎩⎨⎧f (m )=-12m 2+m =3mf (n )=-12n 2+n =3n ,可解得m =-4,n =0满足要求.∴存在m =-4,n =0满足要求. B 组1.D2.B3.C4.⎝⎛⎭⎫2,525.0<a ≤146.⎣⎡⎦⎤1,31277.[1,+∞)8.证明 (1)由于f (x )=x 2+(2t -1)x +1-2t .∴f (x )=1⇔(x +2t )(x -1)=0,(*)∴x =1是方程(*)的根,即f (1)=1,因此x =1是f (x )=1的实根,即f (x )必有实根. (2)当12<t <34时,f (-1)=3-4t >0,f (0)=1-2t =2⎝⎛⎭⎫12-t <0. f ⎝⎛⎭⎫12=14+12(2t -1)+1-2t =34-t >0,又函数f (x )的图象连续不间断.因此f (x )=0在区间(-1,0)及⎝⎛⎭⎫0,12上各有一个实根.§2.6 指数与指数函数要点梳理1.(1)a 的n 次方根 根式 根指数 被开方数 (2)①n a ②n a - n a ± na ③a④a ⎩⎪⎨⎪⎧a (a ≥0)-a (a <0)2.(1)②1 ③1a p ④n a m ⑤1a m n 1na m ⑥0 没有意义 (2)①a r +s ②a rs ③a r b r3.(1)R (2)(0,+∞) (3)(0,1) (4)y >1 0<y <1 (5)0<y <1 y >1 (6)增函数 (7)减函数 基础自测1.(1)x 23 (2)(a +b )34 (3)m 52 2.7 3.(-2,-1)∪(1,2) 4.3 5.B题型分类·深度剖析例1 解 (1)原式=23278-⎛⎫- ⎪⎝⎭+121500-⎛⎫ ⎪⎝⎭-105-2+1=23827⎛⎫- ⎪⎝⎭+12500-10(5+2)+1=49+105-105-20+1=-1679. (2)原式=5-2-1-(5-2)2=(5-2)-1-(5-2)=-1.(3)原式=1122323311233ba b a b ab a -⎛⎫ ⎪⎝⎭=3111111226333a b +-++--=ab -1. 变式训练1 解 (1)原式=1323⎛⎫⎪⎝⎭×1+()1342×142+(132×123)6-1323⎛⎫⎪⎝⎭=2+4×27=110. (2)令13a =m ,13b =n ,则原式=m 4-8mn 3m 2+2mn +4n 2÷⎝⎛⎭⎫1-2n m ·m =m (m 3-8n 3)m 2+2mn +4n 2·m 2m -2n=m 3(m -2n )(m 2+2mn +4n 2)(m 2+2mn +4n 2)(m -2n )=m 3=a . 例2 (1)D (2)0<a <1、b <0 (3)1 变式训练2 (1)A(2)解 函数y =|3x -1|的图象是由函数y =3x 的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴 上方得到的,函数图象如图所示.当k <0时,直线y =k 与函数y =|3x -1|的图象无交点,即方 程无解;当k =0或k ≥1时,直线y =k 与函数y =|3x -1|的 图象有唯一的交点,∴方程有一解;当0<k <1时,直线y =k 与函数y =|3x -1|的图象有两个不同交点,∴方程有两解. 例3 解 令t =a x (a >0且a ≠1),则原函数化为y =(t +1)2-2 (t >0). ①当0<a <1时,x ∈[-1,1],t =a x ∈⎣⎡⎦⎤a ,1a ,此时f (t )在⎣⎡⎦⎤a ,1a 上为增函数. ∴f (t )max =f ⎝⎛⎭⎫1a =⎝⎛⎭⎫1a +12-2=14,∴⎝⎛⎭⎫1a +12=16,∴a =-15或a =13. 又∵a >0,∴a =13.②当a >1时,x ∈[-1,1],t =a x ∈⎣⎡⎦⎤1a ,a ,此时f (t )在⎣⎡⎦⎤1a ,a 上是增函数. ∴f (t )max =f (a )=(a +1)2-2=14,解得a =3(a =-5舍去). 综上得a =13或3.变式训练3 解 (1)当x <0时,f (x )=0,无解;当x ≥0时,f (x )=2x -12x ,由2x -12x =32,得2·22x -3·2x -2=0,看成关于2x 的一元二次方程,解得2x =2或-12,∵2x >0,∴x =1.(2)当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0,即m (22t -1)≥-(24t -1),∵22t -1>0, ∴m ≥-(22t +1),∵t ∈[1,2],∴-(22t +1)∈[-17,-5], 故m 的取值范围是[-5,+∞). 课时规范训练 A 组1.B2.D3.D4.m <n5.16.12或327.-2。
高中数学步步高大一轮复习讲义文科压轴题目突破练解析几何
1
2
3
4
5
6
7
8
9 10
Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0
Copyright 2004-2011 Aspose Pty Ltd.
练出高分
A组 专项基础训练
1
2
3
4
5
则椭圆 E 的离心率为
( A)
A.
5 3
B.23 EvaluCa.tio32n only.D.13
eated解w析ith由A题sp意os可e知.S,lid∠eFs1fPoFr2 .是N直ET角3,.5且Client Profile 5.2.0 tan∠PCFo1Fp2=yr2ig,h∴t ||2PPFF0120||=4-22,0又1|1PFA1|s+p|oPFse2| Pty Ltd.
解析 设C点opPy(xr0i,ghy0t).20依0题4意 -2得01,1焦A点spFo(2s,e0),Pty Ltd.
x0+2=5, y20=8x0,
于是有 x0=3,y20=24;
a2+b2=4, a92-2b42=1, 由此解得 a2=1,b2=3, 因此该双曲线的渐近线方程是 y=±bax=± 3x.
0 的距离等于 1,则半径 r 的取值范围是
(A )
A.(4,6)
B.[4,6)
C.(4,6]
D.[4,6]
解 析 因 为 圆 心 (3E,va-lu5)a到tio直n线on4lxy-. 3y - 2 = 0 的 距 离 为 eated|4×w3it-hC34oA×2+pspy-3ro2i5gs-eh.t2S|2l=i0d50e,4s -f2o0r1.N1EATsp3o.5seClPietyntLtPdr.ofile 5.2.0
《新步步高》北师大版数学(文)大一轮复习文档:高考专题突破一.doc
高考中的导数应用问题u 考点自测 1 •若函数心)在R 上可导,月•满足■代Q_xf (x)>0,贝%A.3Al)</(3)C.3A1)=A3) 答案B解析 由于./W>h ⑴,则[竽]丄 Qfr/(0<0恒成立,因此学在R 上是单调递减函数, ・・・警坪,即3/(1)>/(3).故选B.2. 若函数Av)=^-lnx 在区间(1, +<-)上单调递增,则k 的取值范围是()A.(——2] C.[2, +oo ) 答案D解析 由于/' (x)=k —^ Xx)=hr —lnx 在区间(1, +°°)上单调递增0广(x)=£—0在(1, A A+ oo)上恒成立.由于k£,而0<,1,所以即A 的取值范围为[1, +8).3. 函数Av)=3x 2 + lnx-2x 的极值点的个数是()A.OB.lC.2D.无数个答案A解析函数定义域为(0, +8),由于 x>0, g(x) = 6,—2x+1 中力=一20<0,所以g(x)>0恒成立,故.广(兀)>0恒成立, 即./(X )在定义域上单调递增,无极值点.4. (2015•课标全国I)已知函数J(x)=ax 3+x+l 的图像在点(1,如))处的切线过点(2,7),则答案1解析 f (x)=3tzx 2+l, / (l)=l + 3a, ./(1)=仇+2.(1, ./(I))处的切线方程为 y-(a+2)=(\+3a)(x-\).将(2,7)代入切线方程,得7 — (a + 2)=l+3a,解得Q=l.快速解答自查自纠D :A1)=A3)B ・(一— 1]D.[l, +oo)5. _____________________ 设函数./(x)=e [+ 1, g(x)=/,对任意X ],也丘(0, +°°),不等式赵尹W 誓恒成立,则 正数k 的取值范围是 ・答案[1, +8)解析 因为对任意Xi ,X 2e (0, +°°),不等式嚳誥裁成立,所以治储e 2x因为 g(x)=H ,所以 g ,(x)=e 2_x (l —x).当 0<*1 时,g‘ (x)>0;当 x>l 时,g f(x)<0,所以g(x)在(0,1]上单调递增,在[1, +<-)上单调递减.所以当兀=1时,g(X )取到最大值,即g(Qnax=g(l) = C.又,A X )=e 2x+丄 M 2c(x>0).X 当且仅当e 2x=^即兀=右时取等号,故,/«min =2e.Ji c所以血1)沁=2=丄应有—丄旳以心2皿2e 2'女竇+1"2'又Q0,所以k^\.题型分类题型一利用导数研究函数性质 例1 (2015-课标全国II)已知函数.心)=1眦+°(1—兀).⑴讨论/(X )的单调性;(2)当/(X )有最大值,且最大值大于2°—2时,求Q 的取值范围. 解(l)/(x)的定义域为(0, +8), f (x)=\~a.若Q WO,则/ (x)>0,所以./(x)在(0, +8)上单调递增.若a>0,则当泻(0, £)时,/ (x)>0;当xwg, +町时,f (x)<0.所以夬兀)在(0, £)上单对接高考深度剖析调递增,在e ,+8)上单调递减.⑵由⑴知,当QWO 时,Xx)在(0, +8)无最大值;当a>0时,夬对在x=+取得最大值,最大值为yQ) = l£+a(l —+)=—lna+Q —l. 因此匍>2a~2等价于 血+。
高2021届高2018级苏教版步步高大一轮高三数学复习课件第三章 3.3
概念方法微思考
1. 对 于 可 导 函 数 f (x),“f′(x0) = 0” 是 “ 函 数 f (x) 在 x = x0 处 有 极 值 ” 的 _必__要__不__充__分___条件.(填“充要”“充分不必要”“必要不充分”) 2.函数的最大值一定是函数的极大值吗? 提醒 不一定,函数的最值可能在极值点或端点处取到.
大一轮复习讲义
§3.3 导数与函数的极值、最值
INDEX
基础落实 回扣基础知识 训练基础题目
知识梳理
1.函数的极值与导数
f′(x0)=0
条件
x0附近的左侧f′(x)>0,右侧 x0附近的左侧f′(x)<0,右侧
f′(x)<0
f′(x)>0
图象
极值 极值点
f (x0)为_极__大__值__ x0为_极__大__值__点__
√B.-1是函数y=f(x)的最小值点
C.y=f (x)在区间(-3,1)上单调递增
√D.y=f(x)在x=0处切线的斜率小于零
解析 根据导函数的图象可知当x∈(-∞,-3)时,f′(x)<0, 当x∈(-3,+∞)时,f′(x)≥0, ∴函数y=f (x)在(-∞,-3)上单调递减,在(-3,+∞)上单调递增, 则-3是函数y=f(x)的极值点, ∵函数y=f (x)在(-3,+∞)上单调递增, ∴-1不是函数y=f(x)的最小值点, ∵函数y=f (x)在x=0处的导数大于0, ∴y=f (x)在x=0处切线的斜率大于零. 故错误的命题为BD.
所以当x变化时,f′(x),f(x)的变化情况如下表:
x (0, a)
a ( a,+∞)
f′(x) -
0
+
f (x)
高中数学步步高大一轮复习讲义三PPT课件
(3)求斜率为 1 的曲线的切线
方程.
探究提高
第22页/共74页
题型分类·深度剖析
题型三
导数的几何意义
【例 3】 已知曲线 y=f(x)=13x3 +34. (1)求曲线在点 P(2,4)处的切 线方程;
(2)求曲线过点 P(2,4)的切线 方程;
(3)求斜率为 1 的曲线的切线
方程.
思维启迪 解析 探究提高
求曲线的切线方程,方法是通过切 点坐标,求出切线的斜率,再通过 点斜式得切线方程.
第23页/共74页
题型分类·深度剖析
题型三
导数的几何意义
【例 3】 已知曲线 y=f(x)=13x3
思维启迪
解析
解 (+1)34∵. P(2,4)在曲线 y=f(x)=13x3+43上,且 f′(x)=x2,
探究提高
思维启迪
解析 探究提高
正确理解导数的定义,理 解导数的几何意义是本题 的关键.
第12页/共74页Leabharlann 题型分类·深度剖析题型一
利用定义求函数的导数
【例 1】利用导数的定义求函数 f(x)=x3 思维启迪
解析 探究提高
在 x=x0 处的导数,并求曲线 f(x) 解 = =f′xx33(的x在0)交=x点=xl→i.mxx00处f的xx- -切fx线0x与0=曲x线l→imxf0(xxx)3--xx030=xl→imx0 (x2+xx0+x20)=3x20. 曲线 f(x)=x3 在 x=x0 处的切线方程为 y-x30=3x20·(x-x0), 即 y=3x20x-2x30,由yy= =x33x,20x-2x30, 得(x-x0)2(x+2x0)=0,解得 x=x0,x=-2x0.
函数的复合层次,通过设中间变
步步高文科高考数学一轮复习1
§1.1 集合旳概念及其基本运算
基础知识 自主学习
要点梳理
1.集合与元素 (1)集合元素旳三个特征:__拟__定__性___、_互__异__性___、
__无__序__性___. (2)元素与集合旳关系是__属__于__或_不__属__于___关系,
用符号____或_____表达.
2 .
2
a
2.
综上知,当A B 时,a<-8或a≥2.
6分
(2)当a=0时,显然B A;
当a<0时,若B A,如图,
4 则 a
1 a
1 2, 2
a a
8 1.
2
1 2
a
0;
当a>0时,若B A,如图,
则4 a
1 a
2
1 2 ,
a a
2 . 2
0
a
2.
综上知,当B A时, 1 a 2
4.韦恩图示法和数轴图示法是进行集合交、并、补运 算旳常用措施,其中利用数轴图示法要尤其注意端点 是实心还是空心.
5.要注意A B、A∩B=A、A∪B=B、 这五个关系式旳等价性.
返回
B.{1,4,5}
(B )
C.{4,5}
D.{1,5}
解析 ∵A={1,2,3},B={2,3,4},
∴A∩B={2,3}.
又U={1,2,3,4,5},
∴ U(A∩B)={1,4,5}.
2.已知三个集合U,A,B及元素间旳关系如图所示,
则( UA)∩B等于
(A )
A.{5,6}
B.{3,5,6}
思想措施 感悟提升
措施与技巧
1.集合中旳元素旳三个性质,尤其是无序性和互异性 在解题时经常用到.解题后要进行检验,要注重符号 语言与文字语言之间旳相互转化.
高中数学步步高大一轮复习讲义(文科)第三章
§3.1 导数的概念及运算1.函数y =f (x )从x 0到x 1的平均变化率Δy Δx =f (x 1)-f (x 0)x 1-x 0=f (x 0+Δx )-f (x 0)Δx . 2.函数y =f (x )在x =x 0处的导数(1)定义当x 1趋于x 0,即Δx 趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y =f (x )在x 0点的瞬时变化率.在数学中,称瞬时变化率为函数y =f (x )在x 0点的导数,通常用符号f ′(x 0)表示,记作f ′(x 0)=lim x 1→x 0f (x 1)-f (x 0)x 1-x 0=lim Δx →0f (x 0+Δx )-f (x 0).(2)几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.函数f (x )的导函数如果一个函数f (x )在区间(a ,b )上的每一点x 处都有导数,导数值记为f ′(x ):f ′(x )=lim Δx →f (x +Δx )-f (x )Δx ,则f ′(x )是关于x 的函数,称f ′(x )为f (x )的导函数,通常也简称为导数.4.基本初等函数的导数公式5. (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)f ′(x 0)与(f (x 0))′表示的意义相同.( × ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( × ) (3)曲线的切线不一定与曲线只有一个公共点.( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (5)若f (x )=a 3+2ax -x 2,则f ′(x )=3a 2+2x .( × ) (6)函数f (x )=x 2ln x 的导函数为f ′(x )=2x ·1x=2.( × )2.(2013·江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________.答案 2解析 设e x =t ,则x =ln t (t >0),∴f (t )=ln t +t ∴f ′(t )=1t+1,∴f ′(1)=2.3.已知曲线y =x 3在点(a ,b )处的切线与直线x +3y +1=0垂直,则a 的值是( )A .-1B .±1C .1D .±3 答案 B解析 由y =x 3知y ′=3x 2,∴切线斜率k =y ′|x =a =3a 2. 又切线与直线x +3y +1=0垂直, ∴3a 2·(-13)=-1,∴即a 2=1,a =±1,故选B.4.如图所示为函数y =f (x ),y =g (x )的导函数的图像,那么y =f (x ),y =g (x )的图像可能是( )答案 D解析 由y =f ′(x )的图像知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C. 又由图像知y =f ′(x )与y =g ′(x )的图像在x =x 0处相交,说明y =f (x )与y =g (x )的图像在x =x 0处的切线的斜率相同,故可排除B.故选D. 5.已知点P 在曲线y =4e x+1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是________. 答案 [34π,π)解析 ∵y =4e x +1,∴y ′=-4e x(e x +1)2=-4e xe 2x +2e x +1=-4e x +1e x +2. ∵e x >0,∴e x +1ex ≥2,∴y ′∈[-1,0),∴tan α∈[-1,0). 又α∈[0,π),∴α∈[3π4,π).题型一 利用定义求函数的导数例1 利用导数的定义求函数f (x )=x 3在x =x 0处的导数,并求曲线f (x )=x 3在x =x 0处的切线与曲线f (x )=x 3的交点.思维启迪 掌握导数的定义,理解导数的几何意义是解决本题的关键. 解 f ′(x 0)=lim x →x 0f (x )-f (x 0)x -x 0=lim x →x 0x 3-x 30x -x 0=lim x →x 0(x 2+xx 0+x 20)=3x 20. 曲线f (x )=x 3在x =x 0处的切线方程为y -x 30=3x 20·(x -x 0), 即y =3x 20x -2x 30,由⎩⎪⎨⎪⎧y =x 3,y =3x 20x -2x 30,得(x -x 0)2(x +2x 0)=0,解得x =x 0,x =-2x 0.若x 0≠0,则交点坐标为(x 0,x 30),(-2x 0,-8x 30);若x 0=0,则交点坐标为(0,0).思维升华 求函数f (x )的导数步骤: (1)求函数值的增量Δy =f (x 2)-f (x 1); (2)计算平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1;(3)计算导数f ′(x )=lim Δx→0ΔyΔx. (1)函数y =x +1x 在[x ,x +Δx ]上的平均变化率ΔyΔx=________;该函数在x =1处的导数是________.(2)若函数y =f (x )在区间(a ,b )内可导,且x 0∈(a ,b ),则lim h →0f (x 0+h )-f (x 0-h )h 的值为( )A .f ′(x 0)B .2f ′(x 0)C .-2f ′(x 0)D .0答案 (1)1-1x (x +Δx )0 (2)B解析 (1)∵Δy =(x +Δx )+1x +Δx -x -1x=Δx +1x +Δx -1x=Δx +-Δxx (x +Δx ).∴Δy Δx =1-1x (x +Δx ).y ′|x =1=lim Δx →0Δy Δx =0. (2)lim h →0f (x 0+h )-f (x 0-h )h =2×lim h →0f (x 0+h )-f (x 0-h )2h=2f ′(x 0). 题型二 导数的运算 例2 求下列函数的导数:(1)y =e x ·ln x ; (2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; 思维启迪 求函数的导数,首先要搞清函数的结构;若式子能化简,可先化简再求导. 解 (1)y ′=(e x ·ln x )′=e x ln x +e x ·1x=e x (ln x +1x).(2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x3.思维升华 (1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;(2)有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量;求下列函数的导数.(1)y =(x +1)(x +2)(x +3); (2)y =sin x 2(1-2cos 2x4);解 (1)方法一 ∵y =(x 2+3x +2)(x +3) =x 3+6x 2+11x +6,∴y ′=3x 2+12x +11.方法二 y ′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′ =[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+(x +1)(x +2) =3x 2+12x +11.(2)∵y =sin x 2(-cos x 2)=-12sin x ,∴y ′=(-12sin x )′=-12(sin x )′=-12cos x .题型三 导数的几何意义例3已知函数f (x )=x 3-4x 2+5x -4.(1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程.思维启迪 由导数的几何意义先求斜率,再求方程,注意点是否在曲线上,是否为切点. 解 (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1, 又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0,或y +2=0. 思维升华 导数几何意义的应用,需注意以下两点:(1)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0;(2)注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.(1)曲线y =x +sin x 在点(0,0)处的切线方程是________.答案 2x -y =0解析∵y =x +sin x ,∴y ′=1+cos x ,当x =0时,y ′=1+cos 0=2,故曲线y =x +sin x 在点(0,0)处的切线方程是y -0=2(x -0),2x -y =0.(2)已知函数f (x )=x 3-3x ,若过点A (0,16)且与曲线y =f (x )相切的切线方程为y =ax +16,则实数a 的值是( ) A .-3 B .3 C .6 D .9 答案 D解析 先设切点为M (x 0,y 0),则切点在曲线上,即y 0=x 30-3x 0,①求导数得到切线的斜率k =f ′(x 0)=3x 20-3,又切线l 过A 、M 两点,所以k =y 0-16x 0,则3x 20-3=y 0-16x 0,②联立①、②可解得x 0=-2,y 0=-2, 从而实数a 的值为a =k =-2-16-2=9.一审条件挖隐含典例:(12分)设函数y =x 2-2x +2的图像为C 1,函数y =-x 2+ax +b 的图像为C 2,已知过C 1与C 2的一个交点的两切线互相垂直. (1)求a ,b 之间的关系; (2)求ab 的最大值.C 1与C 2有交点↓(可设C 1与C 2的交点为(x 0,y 0))过交点的两切线互相垂直 ↓(切线垂直隐含着斜率间的关系) 两切线的斜率互为负倒数 ↓(导数的几何意义) 利用导数求两切线的斜率: k 1=2x 0-2,k 2=-2x 0+a ↓(等价转换)(2x 0-2)(-2x 0+a )=-1① ↓(交点(x 0,y 0)适合解析式)⎩⎪⎨⎪⎧y 0=x 20-2x 0+2y 0=-x 20+ax 0+b,即2x 20-(a +2)x 0+2-b =0 ② ↓(注意隐含条件方程①②同解) a +b =52↓(消元)ab =a ⎝⎛⎭⎫52-a =-⎝⎛⎭⎫a -542+2516 当a =54时,ab 最大且最大值为2516.规范解答解 (1)对于C 1:y =x 2-2x +2,有y ′=2x -2,[1分] 对于C 2:y =-x 2+ax +b ,有y ′=-2x +a ,[2分] 设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两切线互相垂直. ∴(2x 0-2)(-2x 0+a )=-1, 即4x 20-2(a +2)x 0+2a -1=0① 又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2y 0=-x 20+ax 0+b⇒2x 20-(a +2)x 0+2-b =0② 由①②消去x 0,可得a +b =52.[6分](2)由(1)知:b =52-a ,∴ab =a ⎝⎛⎭⎫52-a =-⎝⎛⎭⎫a -542+2516.[9分] ∴当a =54时,(ab )最大值=2516.[12分]温馨提醒 审题包括两方面内容:题目信息的挖掘、整合以及解题方法的选择;本题切入点是两条曲线有交点P (x 0,y 0),交点处的切线互相垂直,通过审题路线可以清晰看到审题的思维过程.方法与技巧1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常量,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误. 失误与防范1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.A 组 专项基础训练 (时间:40分钟)一、选择题1.设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( )A .e 2B .e C.ln 22D .ln 2答案 B解析 由f (x )=x ln x 得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e.2.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .0 答案 B解析 f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2.3.已知函数f (x )=12x 2+4ln x ,若存在满足1≤x 0≤3的实数x 0,使得曲线y =f (x )在点(x 0,f (x 0))处的切线与直线x +my -10=0垂直,则实数m 的取值范围是( ) A .[5,+∞) B .[4,5] C .[4,133] D .(-∞,4)答案 B解析f ′(x )=x +4x ,当1≤x 0≤3时,f ′(x 0)∈[4,5],又k =f ′(x 0)=m ,所以m ∈[4,5].4.曲线y =x 3在点(1,1)处的切线与x 轴及直线x =1所围成的三角形的面积为( )A.112B.16C.13D.12 答案 B解析 求导得y ′=3x 2,所以y ′=3x 2|x =1=3, 所以曲线y =x 3在点(1,1)处的切线方程为 y -1=3(x -1),结合图像易知所围成的三角形是直角三角形, 三个交点的坐标分别是(23,0),(1,0),(1,1),于是三角形的面积为12×(1-23)×1=16,故选B.5.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N +,则f 2 015(x )等于( ) A .-sin x -cos x B .sin x -cos xC .-sin x +cos xD .sin x +cos x答案 A解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x ,∴f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )是以4为周期的函数,∴f 2 015(x )=f 3(x )=-sin x -cos x ,故选A.二、填空题6.已知函数f (x )的导函数为f ′(x ),且满足f (x )=3x 2+2x ·f ′(2),则f ′(5)=________.答案 6解析 对f (x )=3x 2+2xf ′(2)求导,得f ′(x )=6x +2f ′(2).令x =2,得f ′(2)=-12.再令x =5,得f ′(5)=6×5+2f ′(2)=6.7.已知函数y =f (x )及其导函数y =f ′(x )的图像如图所示,则曲线y =f (x )在点P 处的切线方程是__________________.答案 x -y -2=0解析 根据导数的几何意义及图像可知,曲线y =f (x )在点P 处的切线的斜率k =f ′(2)=1,又过点P (2,0),所以切线方程为x -y -2=0.8.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x. ∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,x +1x -a =0,∴a =x +1x≥2.三、解答题9.求下列函数的导数.(1)y =x n lg x ;(2)y =1x +2x 2+1x 3; (3)y =sin x x n ; 解 (1)y ′=nx n -1lg x +x n ·1x ln 10=x n -1(n lg x +1ln 10). (2)y ′=(1x )′+(2x 2)′+(1x 3)′ =(x -1)′+(2x -2)′+(x -3)′=-x -2-4x -3-3x -4=-1x 2-4x 3-3x 4. (3)y ′=(sin x x n )′=x n (sin x )′-(x n )′sin x x 2n=x n cos x -nx n -1sin x x 2n=x cos x -n sin x x n +1. 10.已知曲线y =13x 3+43. (1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2, ∴在点P (2,4)处的切线的斜率为y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43, 则切线的斜率为y ′|x =x 0=x 20.∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43, 即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0.B 组 专项能力提升(时间:30分钟)1.在函数y =x 3-9x 的图像上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是( )A .0B .1C .2D .3答案 A解析 依题意得,y ′=3x 2-9,令0≤y ′<1得3≤x 2<103, 显然满足该不等式的整数x 不存在,因此在函数y =x 3-9x 的图像上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是0,选A. 2.若函数f (x )=x 2+bx +c 的图像的顶点在第四象限,则函数f ′(x )的大致图像是( )答案 A解析 ∵f (x )=x 2+bx +c =⎝⎛⎭⎫x +b 22-b 24+c , 由f (x )的图像的顶点在第四象限得-b 2>0,∴b <0. 又f ′(x )=2x +b ,斜率为正,纵截距为负,故选A.3.(2013·广州调研)已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为________.答案 278解析 设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率为k =y ′|x =t =3t 2-a ,①所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ).②将点(1,0)代入②式得,-(t 3-at +a )=(3t 2-a )(1-t ),解之得,t =0或t =32. 分别将t =0和t =32代入①式,得k =-a 和k =274-a , 由题意得它们互为相反数得a =278. 4.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3. 当x =2时,y =12.又f ′(x )=a +b x 2, 于是⎩⎨⎧ 2a -b 2=12,a +b 4=74, 解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x . (2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0, 从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.5.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限. (1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.解 (1)设点P 的坐标为(x 1,y 1),则y 1=kx 1,①y 1=-x 21+92x 1-4,② ①代入②得x 21+(k -92)x 1+4=0. ∵P 为切点,∴Δ=(k -92)2-16=0得k =172或k =12. 当k =172时,x 1=-2,y 1=-17. 当k =12时,x 1=2,y 1=1. ∵P 在第一象限,∴所求的斜率k =12. (2)过P 点作切线的垂线,其方程为y =-2x +5.③将③代入抛物线方程得x 2-132x +9=0. 设Q 点的坐标为(x 2,y 2),即2x 2=9,∴x 2=92,y 2=-4.∴Q 点的坐标为(92,-4).。
【步步高】2021届高考数学第一轮知识点巩固题库 第3讲 数学归纳法(含解析)新人教A版 (1)
第3讲 数学归纳法一、选择题1. 利用数学归纳法证明“1+a +a 2+…+a n +1=1-a n +21-a(a≠1,n∈N *)”时,在验证n =1成立时,左侧应该是( )A 1B 1+aC 1+a +a 2D 1+a +a 2+a 3 解析 当n =1时,左侧=1+a +a 2,应选C. 答案 C2.用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在第二步时,正确的证法是( ).A .假设n =k (k ∈N +),证明n =k +1命题成立B .假设n =k (k 是正奇数),证明n =k +1命题成立C .假设n =2k +1(k ∈N +),证明n =k +1命题成立D .假设n =k (k 是正奇数),证明n =k +2命题成立解析 A 、B 、C 中,k +1不必然表示奇数,只有D 中k 为奇数,k +2为奇数. 答案 D3.用数学归纳法证明1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n ,那么当n =k +1时,左端应在n=k 的基础上加上( ). A.12k +2B .-12k +2C.12k +1-12k +2D.12k +1+12k +2解析 ∵当n =k 时,左侧=1-12+13-14+…+12k -1-12k ,当n =k +1时,左侧=1-12+13-14+…+12k -1-12k +12k +1-12k +2.答案 C 4.关于不等式n 2+n <n +1(n ∈N *),某同窗用数学归纳法的证明进程如下:(1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *且k ≥1)时,不等式成立,即k 2+k <k +1,那么当n =k +1时,k +12+k +1=k 2+3k +2<k 2+3k +2+k +2=k +22=(k +1)+1,因此当n =k +1时,不等式成立,那么上述证法( ).A .进程全数正确B .n =1验得不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确解析 在n =k +1时,没有应用n =k 时的假设,故推理错误. 答案 D5.以下代数式(其中k ∈N *)能被9整除的是( ) A .6+6·7kB .2+7k -1C .2(2+7k +1)D .3(2+7k )解析 (1)当k =1时,显然只有3(2+7k )能被9整除.(2)假设当k =n (n ∈N *)时,命题成立,即3(2+7n )能被9整除, 那么3(2+7n +1)=21(2+7n )-36. 这确实是说,k =n +1时命题也成立. 由(1)(2)可知,命题对任何k ∈N *都成立. 答案 D6.已知1+2×3+3×32+4+33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a 、b 、c 的值为( ).A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在如此的a 、b 、c解析∵等式对一切n ∈N *均成立,∴n =1,2,3时等式成立,即⎩⎪⎨⎪⎧1=3a -b +c ,1+2×3=322a -b +c ,1+2×3+3×32=333a -b+c ,整理得⎩⎪⎨⎪⎧3a -3b +c =1,18a -9b +c =7,81a -27b +c =34,解得a =12,b =c =14.答案 A 二、填空题7.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的进程中,由n =k 推导n =k +1时,不等式的左侧增加的式子是________. 解析不等式的左侧增加的式子是12k +1+12k +2-1k +1=12k +12k +2,故填12k +12k +2.答案12k +12k +28. 用数学归纳法证明:121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3)即可.答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3)9.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,那么第60个数对是________.解析 此题规律:2=1+1;3=1+2=2+1; 4=1+3=2+2=3+1; 5=1+4=2+3=3+2=4+1; …;一个整数n 所拥有数对为(n -1)对. 设1+2+3+…+(n -1)=60,∴n -1n2=60,∴n =11时还多5对数,且这5对数和都为12, 12=1+11=2+10=3+9=4+8=5+7, ∴第60个数对为(5,7). 答案 (5,7)10.在数列{a n }中,a 1=13且S n =n (2n -1)a n ,通过计算a 2,a 3,a 4,猜想a n 的表达式是________.解析 当n =2时,a 1+a 2=6a 2,即a 2=15a 1=115;当n =3时,a 1+a 2+a 3=15a 3, 即a 3=114(a 1+a 2)=135;当n =4时,a 1+a 2+a 3+a 4=28a 4, 即a 4=127(a 1+a 2+a 3)=163.∴a 1=13=11×3,a 2=115=13×5,a 3=135=15×7,a 4=17×9,故猜想a n =12n -12n +1.答案 a n =12n -12n +1三、解答题11.已知S n =1+12+13+…+1n (n >1,n ∈N *),求证:S 2n >1+n2(n ≥2,n ∈N *).证明 (1)当n =2时,S 2n =S 4=1+12+13+14=2512>1+22,即n =2时命题成立;(2)假设当n =k (k ≥2,k ∈N *)时命题成立,即S 2k =1+12+13+…+12k >1+k2,那么当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k +1>1+k 2+12k +1+12k +2+…+12k +1>1+k2+2k2k +2k =1+k 2+12=1+k +12,故当n =k +1时,命题成立. 由(1)和(2)可知,对n ≥2,n ∈N *.不等式S 2n >1+n2都成立.12.已知数列{a n }:a 1=1,a 2=2,a 3=r ,a n +3=a n +2(n ∈N *),与数列{b n }:b 1=1,b 2=0,b 3=-1,b 4=0,b n +4=b n (n ∈N *).记T n =b 1a 1+b 2a 2+b 3a 3+…+b n a n . (1)假设a 1+a 2+a 3+…+a 12=64,求r 的值; (2)求证:T 12n =-4n (n ∈N *).(1)解 a 1+a 2+a 3+…+a 12=1+2+r +3+4+(r +2)+5+6+(r +4)+7+8+(r +6)=48+4r . ∵48+4r =64,∴r =4.(2)证明 用数学归纳法证明:当n ∈N *时,T 12n =-4n .①当n =1时,T 12=a 1-a 3+a 5-a 7+a 9-a 11=-4,故等式成立. ②假设n =k 时等式成立,即T 12k =-4k ,那么当n =k +1时,T 12(k +1)=T 12k +a 12k +1-a 12k +3+a 12k +5-a 12k +7+a 12k +9-a 12k +11=-4k +(8k +1)-(8k +r )+(8k +4)-(8k +5)+(8k +r +4)-(8k +8)=-4k -4=-4(k +1),等式也成立.依照①和②能够判定:当n ∈N *时,T 12n =-4n .13.设数列{a n }知足a 1=3,a n +1=a 2n -2na n +2,n =1,2,3,… (1)求a 2,a 3,a 4的值,并猜想数列{a n }的通项公式(不需证明);(2)记S n 为数列{a n }的前n 项和,试求使得S n <2n 成立的最小正整数n ,并给出证明. 解 (1)a 2=5,a 3=7,a 4=9,猜想a n =2n +1. (2)S n =n 3+2n +12=n 2+2n ,使得S n <2n 成立的最小正整数n =6.下证:n ≥6(n ∈N *)时都有2n >n 2+2n . ①n =6时,26>62+2×6,即64>48成立;②假设n =k (k ≥6,k ∈N *)时,2k >k 2+2k 成立,那么2k +1=2·2k >2(k 2+2k )=k 2+2k +k 2+2k >k 2+2k +3+2k =(k +1)2+2(k +1),即n =k +1时,不等式成立; 由①、②可得,关于所有的n ≥6(n ∈N *) 都有2n >n 2+2n 成立.14.数列{x n }知足x 1=0,x n +1=-x 2n +x n +c (n ∈N *).(1)证明:{x n }是递减数列的充分必要条件是c <0; (2)求c 的取值范围,使{x n }是递增数列.(1)证明 先证充分性,假设c <0,由于x n +1=-x 2n +x n +c ≤x n +c <x n ,故{x n }是递减数列; 再证必要性,假设{x n }是递减数列,那么由x 2<x 1可得c <0. (2)解 ①假设{x n }是递增数列. 由x 1=0,得x 2=c ,x 3=-c 2+2c . 由x 1<x 2<x 3,得0<c <1.由x n <x n +1=-x 2n +x n +c 知,对任意n ≥1都有x n <c , ① 注意到c -x n +1=x 2n -x n -c +c =(1-c -x n )(c -x n ),②由①式和②式可得1-c -x n >0,即x n <1-c .由②式和x n ≥0还可得,对任意n ≥1都有c -x n +1≤(1-c )(c -x n ).③反复运用③式,得c -x n ≤(1-c )n -1(c -x 1)<(1-c )n -1, x n <1-c 和c -x n <(1-c )n -1两式相加,知2c -1<(1-c )n -1对任意n ≥1成立.依照指数函数y =(1-c )n 的性质,得2c -1≤0,c ≤14,故0<c ≤14.②假设0<c ≤14,要证数列{x n }为递增数列,即x n +1-x n =-x 2n +c >0,即证x n <c 对任意n ≥1成立.下面用数学归纳法证明当0<c ≤14时,x n <c 对任意n ≥1成立.(i)当n =1时,x 1=0<c ≤12,结论成立. (ii)假设当n =k (k ∈N *)时,结论成立,即x n <c .因为函数f (x )=-x 2+x +c在区间⎝ ⎛⎦⎥⎤-∞,12内单调递增,因此x k +1=f (x k )<f (c )=c ,这确实是说当n =k+1时,结论也成立. 故x n <c 对任意n ≥1成立.因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列.由①②知,使得数列{x n }单调递增的c 的范围是⎝ ⎛⎦⎥⎤0,14.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)当a=e时,证明:xf(x)-ex+2ex≤0.
∴ln x0=21x0-32, ∴当x∈(0,x0)时,g′(x)<0; 当x∈(x0,+∞)时,g′(x)>0, ∴g(x)的单调递减区间为(0,x0),单调递增区间为(x0,+∞), ∴g(x)min=g(x0)=(2x0-1)ln x0+x0 =(2x0-1)21x0-32+x0 =52-2x0-21x0, 令 m(x)=25-2x-21x,x∈12,1
证明 因为x>0, 所以只需证 f(x)≤exx-2e, 当a=e时,由(1)知,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
所以f (x)max=f (1)=-e, 记 g(x)=exx-2e(x>0),则 g′(x)=x-x21ex,
所以当0<x<1时,g′(x)<0,g(x)单调递减,当x>1时,g′(x)>0,g(x)单调递增,
证明 令g(x)=f(x)+2x=(2x-1)ln x+x,
则g(x)的定义域为(0,+∞),
g′(x)=2ln x+2x-x 1+1=2ln x-1x+3, 令 h(x)=2ln x-1x+3, 则 h′(x)=2x+x12>0, ∴h(x)在(0,+∞)上是增函数,h(1)=2>0,h21=1-ln 4<0, ∴∃x0∈12,1,使 h(x0)=0, 即 g′(x0)=2ln x0-x10+3=0,
∴存在 x0∈12,1,使得 G(x0)=0,即x10- ex0 =0.
当x∈(0,x0)时,G(x)>0, ∴F′(x)>0,F(x)为增函数; 当x∈(x0,+∞)时,G(x)<0, ∴F′(x)<0,F(x)为减函数.
∴F(x)≤F(x0)=ln x0+x0-x0 ex0 +1, 又∵x10- ex0=0,∴x10= ex0,即 ln x0=-x0,
所以g(x)min=g(1)=-e, 综上,当x>0时,f(x)≤g(x), 即 f(x)≤exx-2e,即 xf(x)-ex+2ex≤0.
思维升华
SI WEI SHENG HUA
(1)利用导数证明不等式的基本思路是依据函数的单调性,求得函数的最值, 然后由f (x)≤f (x)max或f (x)≥f (x)min证得不等式. (2)证明f (x)>g(x),可以构造函数h(x)=f (x)-g(x),然后利用h(x)的最值证明不 等式. (3)若直接求导比较复杂或无从下手时,可将待证式进行变形分拆,构造两个 函数,从而找到可以传递的中间量,达到证明的目的.
∴F(x0)=0,即F(x)≤0,∴f(x)≤g(x).
题型二 答题模板 不等式恒成立问题
例3 (12分)(2019·全国Ⅰ)已知函数f (x)=2sin x-xcos x-x,f′(x)为f (x)的 导数. (1)证明:f′(x)在区间(0,π)上存在唯一零点; (2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
大一轮复习讲义
高考专题突破一 高考中的导数应用问题
第1课时 导数与不等式
题型一 多维探究 证明不等式
命题点1 构造函数法 例1 (2020·皖南八校联考)已知函数f(x)=(2x-1)ln x-x. (1)求函数f(x)的零点个数;
解 f(x)的定义域为(0,+∞), f′(x)=2ln x+2x-x 1-1=2ln x+1-1x, f′(1)=0, ∴当0<x<1时,f′(x)<0;当x>1时,f′(x)>0, ∴f (x)的单调递增区间为(1,+∞),单调递减区间为(0,1),
跟踪训练1 (1)设函数f(x)=ln x-x+1. ①讨论f (x)的单调性;
解 由题设知,f(x)的定义域为(0,+∞), f′(x)=1x-1,令 f′(x)=0,解得 x=1. 当0<x<1时,f′(x)>0,f(x)单调递增;当x>1时,f′(x)<0,f(x)单调递减.
②证明:当 x∈(1,+∞)时,1<xl-n x1<x.
证明 由①知,f(x)在x=1处取得极大值也为最大值,最大值为f(1)=0.
所以当x≠1时,ln x<x-1.
故当 x∈(1,+∞)时,ln x<x-1,ln 1x<1x-1,
即
x-1 1< ln x <x.
(2)已知函数f(x)=ln x+x,g(x)=x·ex-1,求证:f(x)≤g(x).
证明 令F(x)=f(x)-g(x)=ln x+x-xex+1(x>0), 则 F′(x)=1x+1-ex-xex=1+x x-(x+1)ex=(x+1)1x-ex. 令 G(x)=1x-ex,可知 G(x)在(0,+∞)上为减函数,
规范解答 (1)证明 f′(x)=cos x+xsin x-1, 令g(x)=cos x+xsin x-1,则g′(x)=xcos x,
∵当 x∈0,π2时,g′(x)>0;当 x∈π2,π时,g′(x)<0, ∴g(x)在0,π2上单调递增,在π2,π上单调递减, 又 g(0)=1-1=0,gπ2=π2-1>0, g(π)=-1-1=-2, 即当 x∈0,π2时,g(x)>0,此时 g(x)无零点, 即f′(x)无零点.
∵f (1)=-1<0,f e12=e22-1ln e12-e12=-2e22-1-e12=2-e52>0, ∴f(x)在e12,1内有 1 个零点, ∵f(e)=(2e-1)ln e-e=e-1>0, ∴f (x)在(1,e)内有1个零点, ∴f (x)有两个零点.
(2)求证:f(x)+2x>0.
则 m′(x)=-2+21x2=1-2x42x2=1+2x2x21-2x≤0 在21,1上恒成立, ∴m(x)在21,1上是减函数,
∴x∈12,1时,m(x)>m(1)=25-2-21=0, ∴g(x)min>0已知函数f(x)=eln x-ax(a∈R). (1)讨论f(x)的单调性;