详细介绍三个领域中来自微软亚洲研究院的那些硬核论文
微软亚洲研究院:风云二十年
微软亚洲研究院:风云二十年作者:暂无来源:《中国商界》 2018年第12期心念创新,行廿志远。
2018 年 11 月 8 日,培养出无数顶级计算机人才的研究院——微软亚洲研究院迎来建院二十周年华诞。
这所根植中国,历经李开复、张亚勤、沈向洋和洪小文四任院长,如今当之无愧地成为全球最好的研究院之一。
她既是中国改革开放四十年来计算机科学实现从无到有的引领者,也是科技力量驱动创新发展的推动者。
创新是企业的核心竞争力,基础科学是一切科技创新的源泉。
20 年来,微软亚洲研究院从基础研究出发,致力于以全球最顶尖的智慧解决计算机科学中最具挑战性的难题,在中国打造了一个引领世界的研究中心,取得了诸多突破性科研成果,对整个计算机科研领域的生态发展产生了重大的实质性影响。
在建院 20 周年庆典活动上,微软亚洲研究院集中展示了涵盖人工智能创作、机器认知智能、数据智能与开放平台、科技赋能等方向的 26 项技术原型和应用实例。
同时,通过一系列专家技术趋势文章解读的形式,勾勒出计算机科学核心领域未来十年发展的重点方向,涉及领域包括:机器学习、计算机视觉、系统研究、数据智能、个性化推荐系统、自然语言处理、计算机图形学等十余个人工智能核心技术方向。
微软全球资深副总裁、微软亚太研发集团主席兼微软亚洲研究院院长洪小文表示:“20 年来,微软亚洲研究院与亚太地区的产学研各界开展了广泛而深入的科研合作、人才合作、产业合作,在推动技术成果转化以及助力不同行业的企业数字化转型方面发挥了积极作用,为科技行业培养出了一大批具有科研精神的优秀人才。
自由、创新、多元和包容的文化,将确保我们的人才优势和创新精神不断传承下去。
”今天,当整个世界共同面对以人工智能为代表的新兴技术突飞猛进的发展及其所带来的数字化转型的机遇时,微软亚洲研究院又责无旁贷地肩负起了探索未来、引领技术创新趋势的使命,为人类未来发展开启更多可能。
【案例背景】上世纪 90 年代,中国经济刚刚起步,急需运用高科技赶超世界领先企业。
微软亚洲研究院院长洪小文 署名文章——人工智能予力永续未来
人工智能予力永续未来微软全球资深副总裁、微软亚太研发集团主席兼微软亚洲研究院院长洪小文博士二十一世纪第三个十年的开局时刻有些艰难。
当许多人还在为澳大利亚森林大火和席卷东非、西亚的蝗虫灾害而担忧时,一场突如其来的疫情又在全球各国次第爆发,迄今仍未有止息迹象。
事实上,被疫情困扰的不仅是人类,我们赖以生存繁衍的星球也正受“疫情”的侵袭:南北极洲冰川加速融化;全球平均海平面不断升高;酸雨“进阶”为微塑料颗粒雨;根据世界气象组织的声明,全人类刚刚度过了“有仪器记录以来”最热的十年(2010-2019),而接下来,极端天气现象可能会更频繁地出现……我相信,中国乃至全世界终会打赢与新冠疫情的“战争”,经济与民生亦将有序恢复。
这些事件也促使我们深思,我们应从更长远的周期、以更审慎的态度来看待人、自然、科技在未来的关联,并尽快行动起来,在个人、企业、社会利益的“可持续”与整个地球环境、生态系统的“可持续”之间实现可贵的平衡。
微软全球资深副总裁、微软亚太研发集团主席兼微软亚洲研究院院长洪小文博士从碳减排到碳负排拥抱更清洁的未来年初,微软CEO萨提亚·纳德拉在展望未来十年、解析公司使命时,特别强调了“致力于可持续发展的未来”的重要性。
他指出,尽管没有任何一家企业能够独力应对主要由碳危机导致的气候变化的破坏性影响,但微软作为一家全球性的科技公司,有义务为此而竭尽全力。
当前,微软已将大气中的碳排放、能源、水、废弃物等设定为主要关注方向,并承诺在2030年之前,实现公司的碳负排放,并在2050年之前,消除公司自1975年成立以来直接排放及因供应链而排放的所有碳。
同时,微软还投入了10亿美元设立了一项气候创新基金,以推动碳减排、碳捕获及碳消除技术的更快发展。
从明年起,微软还会在供应链采购流程中明确加入对碳排放的要求。
企业对环境的影响大体来自于以下几个方面:首先是产品和服务,如原料采购,产品研发、设计、制造、储存、运输、销售或提供服务支持的过程中的耗能与排放;其次是企业运维,是指在企业自身运营(如建筑物、办公环境、数据中心等)期间的耗能及排放;其三是政策,即企业的理念与行动是否与科学界乃至全球在可持续发展课题领域的共同目标保持一致;其四是客户与合作伙伴,例如来自生态链相关企业的耗能与排放;其五是员工的行为是否亦合乎可持续的准则。
微软亚洲研究院那些令人称奇的技术
微软亚洲研究院那些令人称奇的技术作者:尹一捷来源:《计算机世界》2010年第41期“创新日”展示了创新科技如何改变人们未来的工作、娱乐及生活方式,而这些前沿技术在微软不过是基础研究。
10月19日,微软亚洲研究院创新日在微软(中国)上海科技园区举行。
来自微软亚洲研究院和其它地区研究院的研究员以及亚太地区顶尖高校与研究机构的研究者共同展示了22项创新技术,覆盖了云端计算、自然用户界面、电脑科技造福人类社会三个主题。
“每次来到亚洲、来到中国,我都会深深地为这里蓬勃的创造力感到震撼!”微软公司高级副总裁、微软研究院院长里克•雷斯特博士表示,人类一直有创造更美好未来的愿景,创新日充分展示了微软正在将这种梦想变为现实。
未来技术争艳“上河去咯!”赶驴童子一声响亮的吆喝冲破城郊的寂静,带人们走进北宋张择端《清明上河图》的画卷之中。
踢踏的驴蹄声越来越近,鸟鸣声、犬吠声、牛叫声从广袤原野的深处隐隐传来。
老妇人唤鸡喂食,拉开一天劳作生活的序幕。
沿河而上,湍湍急流声、船夫摇橹声、纤夫号子声、搬运劳工的嘿呦声、河边酒店的喧哗声,组成一支围绕汴河而展开的多乐章交响曲……??上述场景并非今人“梦回汴梁”,而是“走进清明上河图”沉浸式数字音画展示项目所展现的精彩片段。
在创新日现场,“有声有色”吸引了不少记者来围观。
“走进清明上河图”沉浸式数字音画展示项目是由故宫博物院、微软亚洲研究院和北京大学在故宫博物院合作研发的,它采用千兆高分辨率的清晰数字影像,在基本覆盖了观众视角的63英寸屏幕上,最大程度地再现了原作的所有细节;根据画卷情节安排了54个场景,基于文物专家的研究成果模拟设计了700多段人物对话,由5.1声道输出实时合成的场景声效和优美音乐,准确再现了画面空间关系;通过最自然的人机交互方式,由观众根据自己的兴趣在多点触控的荧屏上进行操作,观赏画面的任意细节。
随着画面位置的变换,所有声音平滑过渡,逼真的立体声环境使观众仿佛置身画卷,与宋人摩臂擦肩,聆听市井喧哗、人物故事,领略风华盖世的古都盛景。
微软后院的酷技术(全文)
微软后院的酷技术Power Mp for Excel:3D数据可视化工具大部分人使用过Excel中的饼图、条形图等图表对数据进行可视化。
现在,MSR协助开发了一款先进的Excel 3D数据可视化工具——Power Mp。
它同意我们将大量数据以3D可视方式映射到必应地图上,并通过3D柱形图、泡泡图/饼图、热量图和区域图等形式实现数据的可视化,从而让至关重要却容易混淆的数据变得易于理解。
让手机更加聪慧手机上的3D发型设计真正长出来的头发在意自己的发型?或许大家也曾经尝试过用手机pp查看自己心仪发型的效果,可无奈“二维”图像总是显得不够真实,并没有什么实际用途。
现在,微软亚洲研究院(简称MSR)开发了一款手机应用程序,仅凭借一张照片便可创建一个非常逼真的3D头发模型。
学过人物素描的朋友应该知道,头发是最难画的部分。
对计算机而言,让上万根发丝看起来自然也是一件难事。
在现实世界中,头发的一点点变动都意味着发丝之间遮挡关系的变化:一些原来看不到的发丝暴露出来,另一些原先可见的发丝被遮挡住。
而在计算机图像中,这种变化是无法用传统的基于像素操作的图像编辑工具实现的。
但是,来自MSR的新技术模型基于物理真实性(physicl plusibility)原则,即模型中头发的根部应总是固定在图中人物的头部,发丝本身应平滑自然,且要尽可能地保持原图中真实头发的长度和连续性。
我们可以通过这个pp改变头发的颜色、长度等塑造自己的发型。
它是逼真的,不仅能用来娱乐,也可以在任何需要头发图像绘制的领域发挥作用。
基于多传感器融合技术的室内定位解决导航的最后100m打通移动互联时代位置服务的最后100m,才能触发新的潜力和商机。
在智能手机尚未普及的年代,MSR的技术专家就想到了利用装有加速度计、陀螺仪(即角速度计)和电子指南针的设备来跟踪物体的运动状态,从而实现室内定位。
20XX年前后,这几个传感器成为智能手机的标准配置,他们的跟踪技术也已经成熟。
微软亚洲研究院副院长刘铁岩 署名文章——可持续发展的人工智能
可持续发展的人工智能微软亚洲研究院副院长刘铁岩可持续发展是一个非常重要的主题,无论是环保、健康、能源和材料,都与人类的生存和发展息息相关。
随着工业的发展和科技的进步,我们看到大气、水质、土壤受到了严重的破坏和污染,维护生态平衡、保护自然环境,确保社会的可持续发展已经成为人类生存发展的根本性问题。
一直以来,微软在环保、节能方面投入了大量精力,而利用AI等技术解决环保、能源问题,实现可持续发展,也是微软亚洲研究院的一个重要研究课题。
人工智能助力环保,潜力巨大提到环保,大气污染治理是其中一个主要方向。
此前,微软承诺到2030年实现负碳排放,到2050年,消除微软自1975年成立以来的碳排放量总和,包括直接排放或因用电产生的碳排放,立足于科学和数学,为微软的碳足迹负责。
同时承诺未来四年内投入10亿美元设立一项气候创新基金,帮助加速全球碳减排、碳捕获和碳消除技术的发展。
现阶段一些大气污染治理方式取得了不错的效果,不过在精准度方面还有待进一步提高,不然很容易导致大气污染治理和经济发展之间产生难以调和的矛盾。
而实现精准的大气污染治理,面临两个挑战:首先,要知道当前各个地区具体的污染物排放情况,构建一份详细的排放清单;其次,要了解针对某一类特殊排放物或者污染源进行处理之后,它们在多大程度上、会以何种方式去影响最终空气的质量。
两个问题看似简单,实现起来并不容易。
以排放清单估计为例,由于污染排放源复杂且不断变化,我们需要理解各种排放物在各个地区每小时的变化,但又无法在每个排放源旁都摆放一个传感器,去采集细粒度、高精度的排放数据。
因此当前的排放清单估计,严重依赖于专家根据宏观经济信息进行排放普查,费时费力,缺乏精度保障。
据专家估计,该精度只有60%左右。
排放估计机器学习模型:误差降低65%利用人工智能、机器学习技术自动估计精确的排放清单,可以节省大量人力成本,并且为决策提供更及时、有力的支撑。
首先,我们来构建一个机器学习模型,从大气的污染物分布出发,去预测排放清单。
微软亚洲研究院大数据系列讲座
微软亚洲研究院大数据系列讲座微软亚洲研究院大数据系列讲座是一个非常重要的学术领域的研究项目。
在今天这个充满信息的时代,大数据已经成为了信息时代的重要组成部分,而微软亚洲研究院正是一家致力于研究和发展大数据技术的研究机构。
在微软亚洲研究院大数据系列讲座中,我们可以见到来自全球顶尖大数据专家的精彩演讲,分享着他们的经验和技术。
这些讲座涵盖了许多不同的主题,从影像和音频分析、机器学习、数据挖掘、自然语言处理、智能交通、人工智能等众多方面。
每个主题都有着属于自己的研究方向和重点。
在这些讲座中,我们可以了解到大数据技术的最新研究进展,了解它的应用和挑战。
例如,在自然语言处理领域,研究者们尝试将大数据和机器学习技术应用于语音识别、自然语言理解,目前已经有了一些很不错的成果。
同时,这些讲座也展示了微软亚洲研究院的研究成果和实践应用案例,例如,在人工智能和机器学习方向,微软亚洲研究院研究人员已经开发了能够感知环境、识别对象、理解语言的智能设备,并且在该领域取得了颇具价值的突破。
此外,在这些讲座中,我们也可以看到大数据技术面临的一些挑战和问题。
例如,在数据隐私、数据安全等方面,研究者们正在积极寻求解决方案。
总之,微软亚洲研究院大数据系列讲座是一个非常重要的学术研究项目,展示了大数据技术的最新进展和应用。
这些讲座不仅对科研工作者们具有重要的参考意义,而且对于企业和政府也具有重要的指导意义,帮助他们应对大数据时代的挑战和机遇。
在当今数字化的世界中,数据量快速增长,对于数据科学家和分析师、企业和政府机构和普通人而言,数据分析已经成为了日常生活的重要组成部分之一。
对于探索大数据利用的最新技术、框架和挑战的研究,微软亚洲研究院大数据系列讲座是一个非常重要的会议。
它通过组织众多领域内的专家,聚焦最新研究成果,促进技术的创新和发展,提高技术的推广和应用。
微软亚洲研究院大数据系列讲座是由微软联合多个机构和企业合作共同举办的国内著名的数据分析学术研究会议之一。
与微软亚洲研究院合作开设研究生专题研讨课的尝试与体会
与微软亚洲研究院合作开设研究生专题研讨课的尝试与体会一、引言北京航空航天大学计算机学院,高度重视研究生培养质量。
遵循精英教育的人才培养理念,加强师资队伍、科研教学条件等方面的建设。
同时,坚持进行教育教学改革,在研究生培养模式、培养体系和创新机制等方面开展了深入研究与实践,取得了显著效果。
“研究型学院人才培养模式与体系的研究及实践”获得国家教学一等奖。
在这一过程中,如何培养更加适应社会需要的人才,以及如何转变以教师为中心的单纯知识传授型教学模式,一直是我们改革探索的重要方面。
多年来在我们自己教师主导下进行了一些试验,有一定收获,但效果均不太理想。
于是学院决定采取新的尝试,与高水平外企研究院联合开设研究生专题研讨课。
外企研究院与外企结合紧密,更加了解市场的需求,同时拥有高水平的学科领域专家,可以形成互补,在教学改革中走出新的路子。
微软亚洲研究院在计算机图形学领域的研究一直是走在国际计算机视觉及图形学的前沿。
在基于图像的建模与绘制、纹理合成、表观与几何建模、辐射传输以及高真实感实时绘制等方面都取得了重要的研究成果,推动了计算机图形学的发展。
微软亚洲研究院成立以来,吸引了一批拔尖的计算机科研人才。
同时,作为一个开放的国际性研究机构,每年还吸引着来自美国、加拿大等国家和地区的学者到研究院进行访问研究,他们带来了大量最新研究信息,促进了中外学术交流。
微软亚洲研究院已经成为一所国际知名的跨国企业研究院。
微软亚洲研究院与北航计算机学院虚拟现实新技术教育部重点实验室,在图形图像处理研究领域有着多年的良好合作关系。
由于这些有利条件,北航计算机学院决定与微软亚洲研究院开展新的合作项目:2005年春季面向研究生联合开设“可视化建模方法(Visual Modeling)”专题研讨课。
由微软亚洲研究院院长沈向洋博士和访问学者加拿大多伦多大学计算机科学系Kyros Kutulakos博士共同担任研讨课主持教授。
这是北航首次与跨国企业研究机构合作开设专题研讨课的尝试。
微软亚洲研究院十年间的技术创新
工作效率 、 少走弯 路 , 好 的达 到数 据监 督 目的十分
关键 。监督工作 流程化 , 范化 , 利 于数据 监督 工 规 有
[]李 雁翎 、 5 李允 俊 、 洪革 , sa F x r 王 Vi l o P0使用 与 开 发技 术 ,05 u 2o [ ]梁 钦 , 善数 据 质 量 与数 据 整 合 一 样 刻 不 容缓 , N T科 技 资 讯 6 改 cE
2 O
( mp r p n 伽so , rf e p c“ ,j f0e 2O,0a 6 02 A e 删 09T t 2N . l
口, 涉及专 业 、 门多 , 求 高 , 力大 。在 整个 钻 录 部 要 压 井数据监督工作发展历 程中 , 数据监督管理 经历 了艰
() 4 做好数 据监 督管理 工 作 , 有先 进科 学 的理 仅
完善是做好数据 监督 工作 的基础 。它对 于把 握数 据 监督工作 内容 , 指导数据监督有条不 紊的开展各 项工 作, 明确数据监督 的职责等等均具有重要指 导意义 。
[] 袁 满 , 据 元方 法论 与 企业 语 义 数 据 字 典/ 2 数 目录 标 准 化 ,08年 5 2o
月2 O日
类问题 , 每一项 工 作 , 一个 环节 该 如何把 握 、 理 、 每 处
参 考 文 献
[] 袁 满 , 据元 技术 是 解决 I 1 数 T行 业 信 息 标 准化 不 可 忽 视 的 重 要 技
术 ,0 8年 5月 2 2O O日
解决 , 首先须有 清 晰 的工 作指 导思 路 , 监督 理 念创 新
1数字 墨水 : . 让连 接 到 P C机 的写字板 可 以根据 数字设置 , 模仿油墨落在纸 张上的特征 。
微软的技术方向
微软的技术方向
张亚勤
【期刊名称】《计算机》
【年(卷),期】2002(000)040
【摘要】在全球科技支出低迷的时期,我们仍然坚信:下一个十年里,计算将继续在人类日常生活中发挥更为重要的作用。
在微软亚洲研究院,我们一直在进行扩展计算机工作能力的研究,并试图使人与机器、人与信息、机器与机器以及人与人之间的交流更为便利。
我们的乐观情绪是建立在几个不断深入的趋势上的。
首先,摩尔定律至少在下一个十年内仍然起作用,因此,十年后,一个手表大小的装置将具有今天一台膝上型电脑的计算能力。
这种在计算能力上的增长将推动像数字视频和电子照片这类的多媒体应用。
【总页数】1页(P76)
【作者】张亚勤
【作者单位】微软亚洲研究院
【正文语种】中文
【中图分类】F407.67
【相关文献】
1.微软的六个技术方向 [J], 李开复
2.告诉你一个真实的微软创投加速器--《lT时代周刊》对话微软全球资深副总裁、微软亚太研发集团主席张亚勤博士 [J], 冯敏
3.审视微软的统一消息战略u3000微软是如何把Exchangeu3000Server2007、OCS2007和其它微软产品整合来创建一个统一平台的? [J], Paul Robichaux;李小轲(译)
4.校企合作新能源汽车技术专业汽车智能控制技术方向人才培养探索——以四川工商职业技术学院为例 [J], 赖冬寅;周少璇;李中志
5.专访微软全球资深副总裁、微软亚太研发集团主席张亚勤:微软“云图” [J], 孙冰
因版权原因,仅展示原文概要,查看原文内容请购买。
微软亚洲研究院演讲系列量子力学的奇妙故事
微软亚洲研究院演讲系列量子力学的奇妙故事量子力学是一门令人着迷和奇妙的科学,它揭示了微观世界的真相。
微软亚洲研究院的演讲系列就带领听众深入了解了这个引人入胜的学科。
量子力学的故事源远流长,最早可以追溯到20世纪初。
当时,科学家们发现在观察原子和分子时,它们会表现出奇特的行为,与经典物理的预测结果不同。
例如,光的发射和吸收只能以离散的量子单位进行,而不是连续的。
这种现象被称为光的波粒二象性。
随着研究的深入,科学家们发现了更多的量子奇异性。
其中之一是量子叠加原理,即粒子可以同时处于多个可能的状态中,直到被观察为止。
这种现象被称为叠加态。
另一个是量子纠缠现象,即两个粒子之间的状态紧密相连,无论它们相距多远。
这意味着改变一个粒子的状态会立即影响另一个粒子的状态,即使它们之间没有任何可见的相互作用。
这种奇怪的关联被爱因斯坦称为“鬼魂的距离”。
这些奇妙的现象在量子力学的理论框架下得到了解释和证实。
量子力学使用数学工具来描述微观粒子的行为,如波函数和概率分布。
波函数是一个描述粒子状态的数学对象,根据量子力学的方程进行演化。
概率分布则描述了对粒子位置、动量等物理量的测量结果的可能性。
量子力学的发现和研究给科学家们带来了巨大的挑战,同时也带来了重大的应用前景。
量子计算就是其中之一、量子计算利用了量子叠加和纠缠现象,在一些特定的问题中提供了比经典计算更高效的解决方案。
例如,量子计算可以快速地解决素数分解和等复杂问题,这在经典计算中是非常困难甚至不可能实现的。
微软亚洲研究院的科学家们积极参与了量子计算的研究,并在该领域作出了重要贡献。
他们致力于开发新的量子算法、编码方法和量子硬件技术,以推动量子计算的发展。
他们还在量子通信方面进行研究,利用量子纠缠实现更安全的通信系统。
此外,微软亚洲研究院的科学家们还在量子物理学的其他领域进行研究,如量子材料和量子仿真。
他们致力于发现和利用新的量子现象,以及利用量子技术解决实际问题。
微软亚洲研究院演讲系列量子力学的奇妙故事.doc
>> Kim Ricketts: My name is Kim Ricketts, and I'm here to introduce and welcome James Kakalios, who is visiting us as part of the Microsoft Research visitor research series. James is here today to discuss his new book, The Amazing Story of Quantum Mechanics.Science has met more demands of science fiction than most people realize, thanks to quantum mechanics. Though we don't see the world of the Jetsonswith flying cars, people getting to work by jet pack or Star Trek's teleporters, yet, we do have smart phones, pocket-size computers and hybrid vehicles.Because of quantum mechanics, we may also see many more science fiction technologies become a reality.James is a professor in the School of Physics and Astronomy at the University of Minnesota. He served as a consultant for the film Watchmen and won a regional Emmy Award for his role in the Science of Watchmen. He is the author of the critically acclaimed The Physics of Superheroes. So please join me inwelcoming James Kakalios to Microsoft.[applause].>> James Kakalios: Thank you very much. Thank you for the introduction. Thank you all very much for inviting me and welcoming me. I must say the working title of my new book originally was the World Of Tomorrow and so it'skind of a pleasure to come here, see the guys responsible for that.Actually Microsoft seems to be following me. Two weeks ago I was in New York for some media events and walking around Times Square at night seeing these huge throngs of people lined up. And what impose are concert are they going to? No, they're waiting for the Connect to go on sale at midnight. So I assume that you just like give one out to the speakers, but [laughter].So I want to talk about the The Amazing Story of Quantum Mechanics, my new book. First let me give you a little bit of background. How did a mild-mannered physics professor get associated with comic book superheroes, Spider-Man, Superman in my day job I'm a condensed matter experimentalist though I do basically solid state physics. I've been doing this for over 20 years. Doing research on amorphous semiconductors, you know, this is amorphous siliconused in solar cells or flat panel displays. Done film transistors. I've done a lot of work on studying electronic noise in these materials. For about ten years Istudied sand piles. Sand was quite hot in physics there for a while. We call it granular media when we talk to the funding agencies. [laughter].And most recently collaborating with professors in neurosciences using techniques that developed a semielectronic noise into sorted semiconductorsand applying them to voltage fluctuations in the brain.But that's not why I'm here. I'm here because back in 2001 I created a freshman seminar class at that time University of Minnesota called everything I know aboutscience I learned from reading comic books. Which my colleagues said explained a lot. [laughter].This is a really physics class that covers everything from Isaac Newton to the transistor, but there's not an incline plane or pulley in sight. All the examples come from superhero comic books and as much as possible those cases where the superheroes get their physics right.Now, obviously, you know, the super powers themselves are impossible, but once you grant a one time miracle exemption from the laws of nature, whatthey're showing doing with their powers is scientifically correct.I showed this cover here because this is actually a comic that I bought as a kid, even though I wasn't a big fan of Superman at the time because Superman is here visiting a college campus and I was just fascinated to find out what life in college was going to be like.Even as a kid, back in the '60s I knew that this part wasn't too accurate. But there are things here on the cover that, you know, as you all know turn out to be correct, namely all professors at all times always wear caps and gowns. [laughter]. And all professors are 800 year old white men.But from this class then in May of 2002, I wrote an op ed that was published inthe Minneapolis Star Tribune pointing out how a key scene in a classicSpider-Man comic book turns out to be a textbook illustration of Newton's laws of motion. I thought, well, the Spider-Man movie is about to open, the first one.And so this might be a good opportunity to get some science into the newspaper. The University of Minnesota put out a little press release saying, well,Spider-Man's on the big screen but if you want to know about the science of superheroes, the person to ask is Jim Kakalios, he teaches this freshman seminar, blah, blah, blah.I should point out that they've sent out press releases about me before, about my work on amorphous semi-conductors or one over F noise. Result? Zero. You write one story about Spider-Man, however, and the movie opened on Friday, the on end appeared on Friday. By money was getting calls from the BBC, the London times, CNN Headline News, the Associated Press came to my office where I just happened to have these lecture demonstration tools on hand. [laughter]. That was a lucky break.At this stage of my life, I've reconciled myself to the fact that I can win three mobile prizes and I know what photo they're using in my obituary. My colleagues say win three mobile prices like how, on eBay?This article actually went across the nation. This is a clipping from the Chicago Sun Times. It actually went around the world. I think I know what they're saying about me here. In a Turkish clipping. And then I started showing up in places that physicists don't usually appear.So if you're ever playing Trivial Pursuit and you're playing volume six and you get card 291, I'll tell you right the science question, the answer is Krypton's. The question is what planet's gravity did science professor Jim Kakalios estimate by calculating the force needed to leap over an earth building in a single bound? Now, I didn't even know about this. One of the graduate students came to me one day and showed me this card, brought this to my attention. I borrowed the card, brought it downstairs, showed it to my department chairman. And I said, Alan, who is the most famous scientist you know? [laughter]. And he looked at the card and he looked at me and he said Steven Hawking. [laughter]. Who is not a genius. Oh, well then it's you.And so in 2005, one of the nice things about all this attention was the receiving hundreds and hundreds of e-mails from students and teachers and people long out of college who liked this idea of teaching science using comic books, asking if I had a book, which eventually led to my writing a book, which is now out in a second edition. And that has led me to the current talk and the current book talking about the The Amazing Story of Quantum Mechanics that I want to talk about today.Because there is also a comic book connection to this. You know, reading comic books, they all predicted what life was going to be like in the future.Here's -- here's an old adventure comics where Superboy visits -- goes 1,000 years in the future and meets these other super power teenagers, the legion of superheroes. And this was a very popular feature and he constantly by being able to break the time barrier would go a thousand years into the future and have adventures with the legion of superheroes.And in the future it was promised that we would be in a better place. And the reason we would be in a better place is thanks to science. In a thousand years from now, if you got in trouble, you wouldn't call for the police, you called for the science police.Here in another comic, one of the legionaires is falsely accused of betraying the legion and so they lock him up. And he's got this computerized device that provides the three necessities of life, food, water, books. [laughter].But really, this goes back even further. Here's from 1928, if first appearance of Buck Rogers in the science fiction pulp magazine Amazing Stories. And they promised us that in the future we'd have jet packs, flying cars, robot domestic assistants, underwater cities. What we got instead why cell phones, laptop computers, DVDs, Magnetic Resonance Imaging. So some guys are reluctant to give up on the jet pack. [laughter].But we do have jet packs. And you can take a jet pack to work provided you live just a couple of blocks from where you work. Because the problem isit -- they -- the writers of the science fiction pulps and kind of books thought that we would have a revolution in energy, which is necessary in order to have like flying cars and death rays when what we got instead was a revolution in information.And energy you're pretty much limited to the chemical bonding strengths between atoms and molecules. And, you know, for the physicists it's on theorder of a few electron volts. That's the energy scale, visible like red light has an energy of about a little under two electronic volts. So that gives you the sense of the energy.What you -- very few people in order to have enough energy to take an extended trip or to levitate a car, you'd need like nuclear power which produces millions of electron volts per reactive. And but few people are willing to have an unlicensed nuclear power pack on their backs unless you're a member of the Ghost Busters. But there was still -- it was promised that we might have, you know, nuclear power in our day-to-day lives thought back in the '50s. This is the 1957 Ford Nucleon, the prototype of a nuclear car. I like -- they never built it, but it would have a little nuclear -- fission reactor with little mini cooling tower here with tailfins longer than the car even. And the idea is that you could go 5,000 miles before you would have to swap out the nuclear core. What you do in the case of a fender bender was never really talked about.But there's actually an interesting convergence between the science fiction future and the real future that we had. Hugo Gernsback first publishes Amazing Stories, the first pulp magazine devoted to science fiction in April 1926. Also publishingin 1926, Erwin Schrodinger, publishing his -- the Schrodinger equation, which would serve as the foundation for modern quantum theory.Schrodinger and a handful of other scientists developed quantum mechanics because they're trying to understand how atoms interact with light. A generation later, groups of scientists at Bell Labs, other research laboratories developed the laser and the transistor. You don't accidentally discover a laser, okay, you have to go into the lab and willfully, with malice aforethought go in and build such a device.And you can't do it without an understanding of how atoms and light interact provided by quantum mechanics. A generation later you get CD players, personal computers, laptops, cell phones, everything my teenage children would say without which life is not worth living. None of these are possible without the transistor and or the laser, neither of which are possible without quantum mechanics.This is pure -- nowadays, we would say that this is curiosity based research. Schrodinger is just trying to understand how the world works. Schrodinger, Heisenberg, Pauli, Born. If you went to him and said, nice equation, Erwin,what's it good for, he's not going to say well if you want to store music in a compact digital format, but really without the insights provided by a handful of people, the world we live in would be profoundly different.For example, you know, we'd still have computers, but they would use vacuum tubes. So to have a computer that has the same power as a laptop, it would have to have -- be about the size of the room. So there would be very few ofthem. Only corporations and the government would own them. There would be very little reason to link them together in an Internet. There would be no World Wide Web. So there's all sorts of things that the world has changed that we don't really think of.I think I once figured out that in an average hospital there's probably more transistors than there are stars in the Milky Way galaxy. So we don't notice how often this comes about. So this all came about thanks to semiconductor and solid-state physics which was enabled due to quantum mechanics.How many people don't know quantum mechanics here? Great. That will change by the end of the talk. I have like about 40 minutes to teach you all quantum mechanics which leaves me with a problem. What am I going to dowith the other 35? [laughter].It has a reputation for being weird and incomprehensible. The ideas are certainly weird, but they're no weirder than saying that we live in a sea of invisible electromagnetic waves, only a small slice we can actually detect. We never think about that unless you can't get five bars or your phone or your laptop. Then you notice that the sea is missing.So let's -- let me boil it down to understand how quantum mechanics leads to something like a laser. Let me boil it down to three things like in the comic book, three suspensions of disbelief, three things that you would have to buy into. That light has both a wave and particle like property associated with the term photons, matter has both particle and wavelength properties, and of everything, light and matter has an intrinsic spin. These are -- this is all -- if you buy that,that's -- this is not, this has nothing to do with, you know, wave indeterminacy or the measurement problem or Schrodinger's cat. This is -- I'm taking what I describe a working man's view of quantum mechanics. This is the stuff that we experimentalists make use of when designing semiconductor devices.So let's look at the first principle. Light has both a wave and particle like property, photon. A manifestation of that is that when you shine light on a metal, if light was just a continuous series of waves like washing up on a beach, the waves might eventually push some pebbles up the slope of the beach. But really what the light is composed of is a series of -- is a machine gun bullet spray. And by changing the frequency of the light, is the waves would just -- the frequency would just be the spacing between the crests, and that would just determine the rate at which the pebbles are advanced.But the frequency actually controls the energy of the bullets and so by increasing the frequency we can have bullets that can promote the electrons out of the material. This is called the photoelectric effect. There are of course practical applications to this that we all know, right, that you can get [laughter] photon in this way.Matter has both partially and wave like properties. One of the most striking examples of this is interference. That's the hallmark of wave phenomena. Youhave a wave striking a surface and it gets reflected. But maybe part of it passes through and reflects off the bottom and if these two waves are in phase they would add up coherently, we would get a very strong signal. But if they come in out of phase here, then they would add up destructively and cancel out.And so when you look at an oil slick on a wet driveway, the oil slick floats on the water and create a free floating -- freestanding film. And if it's not too thick, some of the light can be reflected from the top or passed through and come out because the oil slick is not a uniform thickness. Some regions might have a thickness such that some colors add up coherently. We'll see the red light out of the white light that's striking the surface whereas the other wavelengths interfere destructively and cancel and then we might get a blue light over here and so on. And this interference pattern is a hallmark of the wave phenomena.If I pass a laser light through a screen, I can get an interference pattern. By choosing the grid of the screen, I can get this nice circular with dot pattern. But if I send electrons on a crystal, electrons have a wavelike nature that's associated with their momentum. We don't notice our wavelike aspect because we're made of lots of atoms. So we have even moving very slowly, we have an enormous momentum compared to an electron.The bigger the momentum, the smaller the wavelength. If I walk across the room, the momentum of my matter wave is a trillionth, trillionth smaller than the nucleus of an atom. It's impossible to detect. There's no way to see such a thing.For electron inside an atom, its wavelength is about the size of the atom. It's impossible to ignore. And that's why this wavelike nature only became evident when studying the properties of atoms in detail. Back in the 1920s. Yousend -- you choose the momentum of the electrons correctly and they scatter off the atoms in a crystal and well, if the room were darker you could actually see this a little bit better, but you see the same type of ring pattern with the spots that I saw -- this is for laser light, and these are for electrons. So you have the same interference pattern for matter or light.And then the last part is that everything light and matter has an intrinsic spin. Of course those who look at the old -- those old pulp magazines know that every month had an application of spin. But I'm actually more talking about the spinsay like of a twirling ballerina. Even that is a bit of a misnomer. It's not as if the electron were actually rotating like a top but this is still the phrase that's used. This rotation is also associated with a magnetic field that has both the North and South Pole, and we know the North and South Pole the magnetic fields flow outof the north into the south. And so that means that electrons can have magnetic fields that can point in two directions. It can either have a North Pole down here or it can have a North Pole here. Because the charge of the electron is negative, the magnetic field lines are drawn in the opposite direction. That's a technicality that we don't have to worry about. But there's basically two ways to -- every electron in addition to having a mass and electric charge has a little built-in magnetic field, and that magnetic field can point up or it can point down. Andthat's all we need. Right? So that took about five minutes.Okay. So now you're all masters of quantum mechanics. So now we can -- oh, that magnetism is also very important, at least a lot of practical applications. We know from Dick Tracy comic strips it will give us flying garbage cans. And I love this note, the nation that controls magnetism will control the universe.But this internal magnetic field that electrons, protons, neutrons have actually enables us to -- we can do things like we can store information on hard drivesthis way. In the movies, Ray Milland had to take a serum in order to -- as a doctor, in order to diagnose people and see inside their body. Now we have Magnetic Resonance Imaging. And that's made possible by making use of this internal magnetic field that the nuclei of all atoms have. And so it is impossible without quantum mechanics. If you saw this in a 1930's movie, you'd say no way. Did someone just go into this cylinder and the doctor sees inside them and can diagnose what's, you know -- what has a tumor and what isn't? Right. And nowit's a standard diagnostic tool.Oh, one of my colleagues at -- professor Bruce Hammer at the University of Minnesota as a favor used his MRI and did a scan ever -- does anyone recognize what these are? Huh?>>: Reese's Peanut Butter Cups?>> James Kakalios: Yup. Reese's Peanut Butter Cups.>>: [inaudible]. [laughter].>> James Kakalios: The surprise inside. [laughter] yeah. Yeah. You could just foolishly bite into it, but thanks to science, we can verify.So how do we combine these three principles to explain how atoms interact with slight? Let's use that first make use of the second principal that matter has both particle and wavelike nature. For the electrons inside the atom that puts constraints on the possible waves that can exist. We're used to their being constraints on possible waves. Think about a guitar string. It's clamped at both ends. So if I pluck it, it can vibrate and I might get this type of a wave that could be created. But I could not get this wave because it's not clamped at the end down here. It would be moving.So this is not allowed, but this is an allowed wave. If I have an electron that goes around in a circular orbit around a nucleus, this constraint means that there are certain waves that fit exactly in and create nice standing wave patterns and -- but there might be other waves that don't. And they're not -- they can't exist because it doesn't make any sense to talk about a wave that doesn't join up smoothly.But singles I said that the wavelength is associated with the momentum, then the momentum is associated with the energy, it means that the electron can only have certain energy values inside the atom. And so when you look and then you ask what does that do in terms of how the atom then interacts with light, now we make use of the fact that the energy of the lightly comes in discrete packets ofenergy and photons so when the atom, when the electron and the atom moves from one orbit to another, it emits a photon of energy that has a color characteristic to that transition. And every atom has its own fingerprint so that there's a series of possible wavelength that is are observed for hydrogen and a different series for sodium. This also explains why sodium street lamps have a yellow tinge.Helium looks a lot like hydrogen, but there's a line that hydrogen doesn't have. Helium was actually discovered by looking at the spectrum of light emitted from atoms in the sun. That's why it's called helium, after Helios, the Sun God. And so for a long time scientists thought that maybe this is an element that only existed in stars until it was discovered on Earth. Before it was discovered on Earth, you know, there was no helium. People didn't know about it. So they would just like drag the deflated balloons in the Macy's parade up Broadway. [laughter]. It was kind of a pointless exercise, but anyway.Neon has a bit of a red tinge. Mercury. Every element has a unique fingerprint of different wavelengths. And this was known for at least 30 years prior to being understood with the introduction of quantum mechanics. This was one of the main pushes to under -- to develop quantum mechanics, to explain this and whenever people say well, you know, some aspect of biology is too complicated to -- you can't explain it, right. Not being able to explain something, you know, is a feature, not a bug. It's -- it's -- if we understood everything, I'd be out of a job. So this is -- but eventually it was understood. If you want another example of these line spectra back in the 1950s, you take out the DC Comic Strange Adventures where a scientist here is amazed to discover that his spectrogram plate shows colored lines are caused by various elements, and this line reveals the presence nearby of a radioactive metallic element hitherto undiscovered in the entire solar system.I love this for two reasons. One, this is, in fact, what a line spectra looks like. This is, in fact, how you would, like the discovery of helium discover a new element. And why doesn't anyone use hitherto anymore in everyday conversation? And he's thinking it to himself in complete sentences. [laughter]. You could maybe say that the comic books back in the '50s were corrupting kids' minds, right, because isn't that what literature's supposed to do? But you can't say it wasn't improving their vocabulary.Now, this picture of these orbits and the transitions is so appealing that it's a pity that it's not right. This was the motivation for Schrodinger to develop the Schrodinger equation. Because basically if the electrons were orbiting a positively charged nucleus, they should emit energy continuously in a continuous spectrum of light. And since light carries energy they should lose energy, slow down, and eventually within actually a trillionth of a second, all electrons should just spiral into the nucleus. That would be a bad thing.So to understand why that doesn't happen, Schrodinger basically developed what is -- it certainly doesn't look like it, but it is, in essence, force equals masstimes acceleration for electrons in atoms. It says you tell me the forces acting on the electron, and I'll get this function here psi and if I square psi it tells me the probability of finding the electron at some point in space and time.And what you find is that there's actually a series of different wave probability distributions. Each one has its own energy. And the electron can be only be in one possible wave at a time, one different wave function at a time. But each one has a different energy and you can then calculate things like what's the average radius, the energy, the angle of momentum of these electrons and the calculated values and the measured values exactly.So basically Schrodinger says that for an electron in an atom, these different possible wave patterns are analogous to a series of chairs in an auditorium. The positively charged nucleus is the front of the room and there's a seat and then at a higher energy, a little bit further back in the next row there's another seat. And then there's another row that's got three seats. Why? Doesn't matter. Another seat, three, one, five, three, and so on.And the electron can only sit in the seats, can't stand between rows. And so when you have hydrogen say it can move -- if I give it some energy, it can move from one row to another and then emit energy as it moves down. You put in the nature of the forces acting on the electron with the positively charged nucleus,the proton, the force is known. It's electrostatics. And you get exact agreement with the measured line spectrum. Okay?So we understand hydrogen. Now I need my third principle in order to understand something a lot more complicated like two electrons. What happens if I have two electrons? Then I make use of the fact that everything light and matter has an intrinsic spin. If the electrons have an intrinsic spin, how does that influence when the two electrons are so close that their waves overlap, like in say helium?Well, the Pauli Exclusion Principle states that if two electrons are in the same quantum state they have to have opposite spins. Basically the magnetic fields have to be opposite. That's the lowest energy configuration. Not even the lowest energy. That's the only allowed configuration. Anything else cannot happen. Well, anything else the Schrodinger equation says the probability is zero. Not small, but zero. And if the probability of something happening is zero, it never happens. It's forbidden. So I have hydrogen and I want to add another electron to helium, and it can sit in the front -- these seats it turns out are actually love seats. Okay. And actually like the old curvy kind, so they fit facing away from each other.But now if I have something more complicated like three electrons and Lithium,it's got to go sit in another seat because this can either be spin up or spin down, but I -- then it would be the same as this one here and that the probability is zero. Carbon has six, aluminum has 13. And so now we start to see why chemistry. These arrangement of the rows come out of the Schrodinger equation, which the。
微软亚洲研究院的压力管理
微软亚洲研究院的压力管理[地点:北京人物:本站原创点击数:232 时间:2004-7-28 文章录入:admin]减小字体增大字体“压力”既可成为工作的阻力又能成为向上的动力。
众所周知,在知识密集型企业里,员工的压力直接影响工作的成绩,而在很多人比较关注的国内一流研究机构——微软亚洲研究院里,这种压力又被赋予了另一种含义。
微软亚洲研究院:化解压力让工作与生活平衡文/师至洁在位于北京海淀知春路的微软亚洲研究院里,集聚着一群国内外知名的科学家和优秀研究人员。
以张亚勤、张宏江和沈向洋等业界精英们为首的科研团队在紧张的工作环境中,创造着一个又一个高科技成果。
“高压”在这里已不能用“程度”来形容,但是,由此带来的看得见的“动力”却充满整个研究院。
压力来源于对事业的追求在微软亚洲研究院里,压力来自各个方面,但主要是来自于对自身事业的追求,即如何在一家世界一流的研究机构里找到自己的事业发展曲线并取得成功;如何在一群“best of the best”的同事当中体现自身价值并保持出类拔萃,这是一种无形中自己加给自己的压力。
从环境和机制上来看的话,一些原本旨在消除压力的措施又在另一个层面上带来新的压力,但微软亚洲研究院更愿意称其为正面的压力,即动力。
如高自由度所带来的“压力”:工作时间是弹性的,研究方向要自己去把握,研究项目要由自己设定,大的研究项目还可能需要介入一个团队的力量。
如果项目最后证明是没有价值的话,公司资源特别是整个团队一段时间的努力就会白费。
这一压力所带来的效应是:项目负责人在最初确立项目时会更缜密的从用户需求、学术价值、公司利益等各个角度去做全面考核和评价。
张宏江告诉记者,坦率地讲,大家普遍感到有压力,但没有人觉得自己是被强迫在做任何事情。
公司的发展曲线与个人的发展曲线在大多数情形下是弥合的。
在研究院工作不仅是要达到公司预定的目标,同时也是达到自己事业上的目标;虽然大家都感到有很大的压力,但并没有太多的怨气。
记微软亚洲研究院院长洪小文 科学无国界 管理资料
记微软亚洲研究院院长洪小文科学无国界管理资料洪小文是谁,最常见诸报端的是他微软亚洲研究院院长头衔,但是如果翻开他的简历,才会见识到何谓低调的华美:美国电机电子工程师学会院士;现任《美国计算机协会通讯》的编委;他参与合著的《语音技术处理》一书被全世界多所采用为语音教学课本;另外,洪小文在多项技术领域拥有36项专利创造——他是CMU SPHINX System的联合创造人之一,这一成果被包括微软、苹果在内的许多公司作为商用语音识别系统的根底加以应用,xx年10月洪小文被正式任命为微软亚洲研究院院长。
对于洪小文的任命,原任沈向洋赞其能力“超高”,是“领导亚洲研究院走向下一个十年的最正确人选”。
事实上,洪小文早在1998年就参与了微软亚洲研究院的筹建。
洪小文20年的职业生涯里,供职于微软的时间就占去了其中的3/4。
在这个软件帝国之中,他更多的是以一种学术的眼光看待企业的开展,包括从年初一直火爆至今的“微软雅虎”案。
今年1月31日,微软向雅虎董事会提交收购报价,希望以总价值约446亿美元收购后者股份,这一价格较雅虎当时股价溢价62%。
但是,雅虎董事会随后拒绝了微软的收购请求,认为微软严重低估了雅虎的价值。
然而,随着微软股价持续下跌,交易价值已经缩水至416亿美元左右。
(微软亚洲研究院院长洪小文)xx年4月6日,微软公司向雅虎公司发出“最后通牒”,限雅虎在三周之内接受每股31美元、现金加换股的收购提案,否那么就将以更低的价格发动恶意收购。
雅虎当即声称并不反对与微软交易,但前提是后者提高收购报价。
而几天之后,雅虎宣布,将实施一项试验性,未来两周内在不超过3%的雅虎搜索中投放谷歌的广告。
人们猜想,此举意味着为双方未来开展进一步的合作提供了可能;随后有称,雅虎同时代华纳的合作谈判已经接近尾声;最后又有消息人士透露,微软方案与集团联合收购雅虎,将雅虎、微软,以及新闻集团MySpace整合在一起,xx年4月13日,据国外媒体报道,消息人士透露,雅虎董事会召开会议,主要内容是评估微软收购请求和其他替代方案。
微软研究院:发现中国智慧
微软研究院:发现中国智慧
侯继勇
【期刊名称】《软件工程师》
【年(卷),期】2003(000)007
【摘要】五年过去了,微软研究院在中国发现了多少智慧,这些智慧又给了微软什么样的回馈呢?
【总页数】3页(P31-33)
【作者】侯继勇
【作者单位】无
【正文语种】中文
【中图分类】F49
【相关文献】
1.微软亚洲研究院(MSRA)创新进行时系列专栏之十二——微软地图寻踪 [J], 马荟
2.追随人才微软(美国)来中国办研究院:微软中国研究院院长李开复博士答本刊记 [J], 刘观;朱春波
3.一斤棉花和一斤铁,哪个更重?微软之重:共创中国良好创新生态——专访微软亚洲研究院技术创新中心工程总监田江森博士 [J], 章勇
4.微软亚洲研究院(MSRA)创新进行时系列专栏之十四微软搜图志 [J], 马荟
5.微软亚洲研究院(MSRA)创新进行时系列专栏之二十一微软决策搜索 [J], 武佳因版权原因,仅展示原文概要,查看原文内容请购买。
微软亚洲研究院 芮勇 从AI到AI
微软亚洲研究院芮勇从AI到AI
佚名
【期刊名称】《中国教育网络》
【年(卷),期】2016(0)4
【摘要】全球信息化的迅猛发展,正引发当今世界的深刻变革,经过多年的发展,我国科研信息化取得了长足进展。
“十三五”期间,全面深化科技体制改革与国家创新驱动发展战略将对我国科研信息化提出更高要求,需求也更为迫切。
2015年底,第四届中国科研信息化发展研讨会召开,在专题为“科学大数据”的研讨会上,与会专家发表了精彩演讲,探讨了我国科研信息化发展情况,本刊撷取了其中部分专家的观点。
【总页数】1页(P35-35)
【关键词】亚洲研究院;AI;第四范式;数据密集型;学术期刊;互联网搜索;数据挖掘;最后一次;端对端;知识发现
【正文语种】中文
【中图分类】F407.67
【相关文献】
1.微软亚洲研究院常务副院长芮勇人工智能趋势之四化 [J],
2.在中国共同创新——微软亚洲研究院联合实验室(上):微软亚洲研究院联合实验室 [J], 管刚
3.夯实基础布局未来和芮勇博士聊聊联想的AI [J], 陈鹏(文/图)[1]
4.人工智能的未来已来微软亚洲研究院让AI Manager量产 [J], 杨蓉
5.专访微软亚洲研究院副院长芮勇拥抱人工智能 [J], 张兴军
因版权原因,仅展示原文概要,查看原文内容请购买。
从微软看世界
从微软看世界
马荟
【期刊名称】《互联网周刊》
【年(卷),期】2009(000)013
【摘要】“微软”二字已经不单单代表着一个软件公司,它更像是一个技术和人才交相辉映的时代的象征。
从2009年1月5日起,《互联网周刊》将连续推出针对微软亚洲研究院的系列报道,带领读者领略微软的技术创新,寻找微软的企业文化,挖掘微软亚洲研究院背后的故事。
【总页数】2页(P58-59)
【作者】马荟
【作者单位】《互联网周刊》编辑部
【正文语种】中文
【中图分类】TP3-55
【相关文献】
1.全球CSR创意——微软:用智能科技帮助盲人看世界 [J], ;
2.用技术追寻"浑然天成"的世界——从eHeritage看微软主题研究支持计划 [J], 郭小明
3.微软黑屏是维权还是垄断——从价格角度看微软的黑屏事件 [J], 刘玲莉
4.由微软看世界——外设劲吹设计风 [J],
5.微软亚洲研究院(MSRA)创新进行时系列专栏之九在微软看72变 [J], 武佳
因版权原因,仅展示原文概要,查看原文内容请购买。
微软亚洲研究院联手四大高校,共建新一代人工智能开放科研教育平台
微软亚洲研究院联手四大高校,共建新一代人工智能开放科研
教育平台
佚名
【期刊名称】《中国机电工业》
【年(卷),期】2018(0)6
【摘要】微软亚洲研究院宣布,联手北京大学、中国科学技术大学、西安交通大学和浙江大学四所凼内顶级院校,共建新一代人工智能开放科研教育平台,以助力中国新一代人工智能领域科研成果的进发,促进高端科技人才的培养及共享科教生态的建立。
【总页数】1页(P18-18)
【关键词】微软亚洲研究院;人工智能;科研成果;平台;教育;中国科学技术大学;高校;西安交通大学
【正文语种】中文
【中图分类】F407.67
【相关文献】
1.15部委合力构筑国家新一代人工智能开放创新平台r——聚焦我国新一代人工智能发展规划 [J],
2.新一代人工智能发展规划启动,首批四大国家AI开放创新平台公布 [J], ;
3.搭建教育合作平台共筑软件人才长城——教育部与微软亚洲研究院高等教育合作回顾与瞻望 [J],
4.在中国共同创新——微软亚洲研究院联合实验室(上):微软亚洲研究院联合实
验室 [J], 管刚
5.搭建教育合作平台共筑软件人才长城——教育部与微软亚洲研究院高等教育合作回顾与瞻望 [J], 无
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
详细介绍三个领域中来自微软亚洲研究院的那些硬核论文
AAAI即将举行,本文带来微软亚洲研究院入选的27篇论文解读,包括机器学习、自然语言处理(NLP)、计算机视觉和图形学等多个领域。
人工智能领域的国际顶级会议AAAI 2019 将于 1 月27 日至 2 月 1 日在美国夏威夷举行。
根据已经公布的论文录取结果,今年的大会录取率创历史新低,投稿数量高达7745 篇,录取的数量仅有16% 左右。
在被录取的论文中,来自微软亚洲研究院的有27 篇之多,包括了机器学习、自然语言处理(NLP)、计算机视觉和图形学等多个领域。
本文将详细介绍这三个领域中来自微软亚洲研究院的那些硬核论文。
机器学习
非自回归机器翻译模型的两种优化新方式
2018 年,非自回归(Non-Autoregressive)机器翻译模型引起了众多研究人员的兴趣。
非自回归模型打破了翻译过程顺序性,将原来自回归机器翻译的逐词顺序生成转变为一次性产生所有目标端单词,极大地提升了机器翻译速度。
然而,随着顺序依赖关系的打破,非自回归模型的翻译准确率却远远不及自回归机器翻译模型;同时,漏翻译和重复翻译也将翻译质量大打折扣。
微软亚洲研究院分别通过以下两篇论文提出了针对上述两个问题的解决方法。
代表论文:Non-Autoregressive Neural Machine Translation with Enhanced Decoder Input
论文链接:https://arxiv/abs/1812.09664
在该论文中,研究员提出了两种方法来提升解码器的输入质量,减少翻译精度的损失。
如下图所示:第一种方法(Phrase-Table Lookup)直接利用词表将源语言查表翻译成目标语言并输入到解码器,第二种方法(Embedding Mapping)通过词级别的对抗学习以及句子级别的对齐信息,将源语言的词向量对齐到目标语言的词向量,作为解码器的输入。