蒙特卡洛模拟方法

合集下载

蒙特卡洛模型方法

蒙特卡洛模型方法
蒙特卡罗模型是利用计算机进行数值计算的一类特殊风格的方法,它是把某一现实或抽象系统的某种特征或部分状态,用模拟模型的系统来代替或模仿,使所求问题的解正好是模拟模型的参数或特征量,再通过统计实验,求出模型参数或特征量的估计值,得出所求问题的近似解。目前评价不确定和风险项目多用敏感性分析和概率分析,但计算上较为复杂,尤其各因素变化可能出现概率的确定比较困难。蒙特卡罗模型解决了这方面的问题,各种因素出现的概率全部由软件自动给出,通过多次模拟,得出项目是否应该投资。该方法应用面广,适应性强。
二、理论和方法
蒙特卡洛模拟早在四十年前就用于求解核物理方面的问题。当管理问题更为复杂时,传统的数学方法就难以进行了。模拟是将一个真实事物模型化,然后对该模型做各种实验,模拟也是一个通过实验和纠正误差来寻求最佳选择的数值性求解的过程。模拟作为一种有效的数值处理方法,计算量大。以前只是停留在理论探讨上,手工是无法完成的。在管理领域由于规律复杂随机因素多,很多问题难以用线性数学公式分析和解决,用模拟则有效得多。在新式的计算机普及后,用模拟技术来求解管理问题已成为可能。
从表中数据可以看到,一直到公元20世纪初期,尽管实验次数数以千计,利用蒙特卡罗方法所得到的圆周率∏值,还是达不到公元5世纪祖冲之的推算精度。这可能是传统蒙特卡罗方法长期得不到推广的主要原因。
计算机技术的发展,使得蒙特卡罗方法在最近10年得到快速的普及。现代的蒙特卡罗方法,已经不必亲自动手做实验,而是借助计算机的高速运转能力,使得原本费时费力的实验过程,变成了快速和轻而易举的事情。它不但用于解决许多复杂的科学方面的问题,也被项目管理人员经常使用。
设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。

蒙特卡洛方法

蒙特卡洛方法

蒙特卡洛方法整理介绍
通常蒙特卡罗方法通过构造符合一定规则的随机数来解决数学上的各种问题。

对于那些由于计算过于复杂而难以得到解析解或者根本没有解析解的问题,蒙特卡罗方法是一种有效的求出数值解的方法。

一般蒙特卡罗方法在数学中最常见的应用就是蒙特卡罗积分。

积分[编辑]
非权重蒙特卡罗积分,也称确定性抽样,是对被积函数变量区间进行随机均匀抽样,然后对被抽样点的函数值求平均,从而可以得到函数积分的近似值。

此种方法的正确性是基于概率论的中心极限定理。

当抽样点数为m时,使用此种方法所
得近似解的统计误差只与m有关(与正相关),不随积分维数的改变而改变。

因此当积分维度较高时,蒙特卡罗方法相对于其他数值解法更优。

圆周率[编辑]
蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看以这两个实数为横纵坐标的点是否在单位圆内。

生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和正方形面积之比为PI:4,PI为圆周率),当随机点取得越多时,其结果越接近于圆周率(然而准确度仍有争议:即使取10的9次方个随机点时,其结果也仅在前4位与圆周率吻合)。

用蒙特卡洛方法近似计算圆周率的先天不足是:第一,计算机产生的随机数是受到存储格式的限制的,是离散的,并不能产生连续的任意实数;上述做法将平面分割成一个个网格,在空间也不是连续的,由此计算出来的面积当然与圆或多或少有差距。

蒙特卡罗算法

蒙特卡罗算法

蒙特卡洛算法算法简介:蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。

是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

蒙特·卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·卡罗方法正是以概率为基础的方法。

与它对应的是确定性算法。

蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。

背景知识:蒙特卡洛是摩纳哥公国第一大城市,与澳门、美国拉斯维加斯并称世界三大赌城。

位于地中海沿岸,首都摩纳哥之北,建于阿尔卑斯山脉突出地中海的悬崖之上。

景色优美,是地中海地区旅游胜地。

市内建有豪华的旅馆、俱乐部、歌剧院、商店、游泳池、温泉浴室、运动场等娱乐设施。

城内开设有蒙特卡洛大赌场。

赌场建于1865年,为双层楼建筑,上有钟楼、塔厅和拱形亭阁,还饰以若干人物雕塑,庭前棕榈树成行,还辟有花园,旁边有大酒店和酒吧间。

整个城市在旺季时,约有赌场70多个,约有赌室3500间左右。

蒙特卡罗赌场由国家经营。

当地的其他活动,许多也带有赌博色彩。

游客住的旅店房间,有抽奖的号码,中奖的免付部分房费。

早餐的牛奶麦片粥里,如遇上金属牌子,亦可领奖。

该城只有1万人口,但每天报纸销量可达100万份,因为报纸上都印有可能得奖的号码。

游客最后离境,购买的车票上也印有彩票号码,于离境前开彩。

经营赌业是摩纳哥的主要经济来源,每年都从赌业中收取高额外汇利润。

蒙特卡洛算法简单描述:以概率和统计理论方法为基础的一种计算方法。

将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。

比如,给定x=a,和x=b,你要求某一曲线f和这两竖线,及x轴围成的面积,你可以起定y轴一横线y=c 其中c>=f(a) and c>=f(b),很简单的,你可以求出y=c,x=a,x=b,及x轴围成的矩形面积,然后利用随机参生生大量在这个矩形范围之类的点,统计出现在曲线上部点数和出现在曲线下部点的数目,记为:doteUpCount,nodeDownCount,然后所要求的面积可以近似为doteDownCounts所占比例*矩形面积。

蒙特卡罗方法 boltzmann数值模拟

蒙特卡罗方法 boltzmann数值模拟

蒙特卡罗方法boltzmann数值模拟全文共四篇示例,供读者参考第一篇示例:蒙特卡罗方法是一种基于随机数的数值计算方法,被广泛应用于各个领域的数值模拟中。

蒙特卡罗方法在Boltzmann方程数值模拟中有着重要的应用,通过蒙特卡罗方法可以模拟气体分子在气体介质的运动规律,从而研究气体的输运性质,比如热传导、扩散等。

本文将详细介绍蒙特卡罗方法在Boltzmann数值模拟中的原理和应用。

一、蒙特卡罗方法的基本原理蒙特卡罗方法是一种基于随机抽样的数值计算方法,主要用于处理那些难以用解析方法求解的问题。

其基本思想是通过随机抽样的方法,模拟系统的随机行为,并根据大量的模拟数据来估计系统的性质。

蒙特卡罗方法的核心思想是大数定律,即当重复进行随机模拟的次数足够多时,随机变量的平均值将趋于其期望值。

在Boltzmann方程数值模拟中,蒙特卡罗方法可以用于模拟气体分子在气体介质中的运动。

根据分子间的相互作用,可以通过随机抽样的方法模拟分子的碰撞和运动,从而推导出气体的输运性质。

通过蒙特卡罗方法,可以有效地模拟大规模气体分子系统的运动,为研究气体输运性质提供了有力的工具。

二、Boltzmann方程的数值模拟Boltzmann方程是描述气体分子在气体介质中运动规律的基本方程,其数值模拟可以通过离散化空间坐标和速度分布来实现。

在蒙特卡罗方法中,可以通过模拟气体分子的随机运动,来求解Boltzmann方程获得气体的输运性质。

在实际应用中,蒙特卡罗方法在Boltzmann数值模拟中可以用于研究气体的传热性质。

通过模拟气体分子的运动规律,可以得到气体的热传导系数、导热性等重要参数,从而揭示气体在不同条件下的传热规律。

这对于设计热传导设备、优化热传导效率等具有重要的意义。

四、总结第二篇示例:蒙特卡罗方法是一种数学上的随机模拟方法,可以用于解决各种复杂的问题,其中蒙特卡罗方法的一种应用就是Boltzmann数值模拟。

Boltzmann数值模拟是一种基于统计力学和蒙特卡罗方法的数值模拟技术,用于模拟大规模复杂系统的行为。

物理问题的计算机模拟方法(2)—蒙特卡罗方法

物理问题的计算机模拟方法(2)—蒙特卡罗方法

第三章 随机性模拟方法—蒙特卡罗方法(MC )§ 3.1 预备知识例:一个粒子在一个二维正方格点上跳跃运动随机行走:每一时间步上,粒子可选择跳到四个最近邻格点上的任何一个,而记不得自己来自何方;自回避行走:粒子记得自己来自什么地方,而回避同它自己的路径交叉。

随机行走的每一步的结果就是系统的一个状态,从一个状态到另一个状态的跃迁只依赖于出发的状态,这些状态形成一个序列,这就是一个马尔可夫链。

状态序列:x 0, x 1, …, x n , …已给出状态x 0, x 1, …, x n+1 的确定值,x n 出现的概率叫做条件概率 ()01,x x x -n n P 马尔可夫链的定义:如果序列x 0, x 1, …, x n , …对任何n 都有 ()()101,--=n n n n P P x x x x x 则此序列为一个马尔可夫链(或过程)。

§ 3.2 布朗动力学(BD ) 1.郎之万方程 v t R dtdvmβ-=)( 方程右边第一项为随机力,对粒子起加热作用;第二项为摩擦力,避免粒子过热。

将方程变形为:dt mvt R dt m v dv )(+-=β 于是,解可写为:])0()(11[)0( )0()(0)()(10⎰+≈⎰=---tt mt md v R m tm d ev R m ev eev t v tττββτττβ⎰+≈---t m t t md Re m ev 0)()(1)0( ττβτβ当随机力R(t)服从高斯分布时,上述方程的解描述的即为布朗运动,于是,布朗运动问题就化为在一些补充条件下求解郎之万方程,即⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧><=>=<>=<=+><--)( 2)()(2)0()(,0)()(222/2/12高斯分布R R B e R R P t T k R t R t R m t R m v dt dv πδββ 注:)()()(t t q t R t R '->='<δ 表示随机力R 在t 和t ’时刻没有关联, q 为噪声强度。

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。

一起源这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。

Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。

Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。

蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特•罗方法正是以概率为基础的方法。

与它对应的是确定性算法。

二解决问题的基本思路Monte Carlo方法的基本思想很早以前就被人们所发现和利用。

早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。

蒙特·卡罗方法(MonteCarlomethod)

蒙特·卡罗方法(MonteCarlomethod)

蒙特·卡罗⽅法(MonteCarlomethod)蒙特·卡罗⽅法(Monte Carlo method),也称统计模拟⽅法,是⼆⼗世纪四⼗年代中期由于科学技术的发展和电⼦计算机的发明,⽽被提出的⼀种以概率统计理论为指导的⼀类⾮常重要的数值计算⽅法。

是指使⽤随机数(或更常见的伪随机数)来解决很多计算问题的⽅法。

与它对应的是确定性算法。

这个⽅法的发展始于20世纪40年代,和原⼦弹制造的曼哈顿计划密切相关,当时的⼏个⼤⽜,包括乌拉姆、冯.诺依曼、费⽶、费曼、Nicholas Metropolis,在美国洛斯阿拉莫斯国家实验室研究裂变物质的中⼦连锁反应的时候,开始使⽤统计模拟的⽅法,并在最早的计算机上进⾏编程实现。

现代的统计模拟⽅法最早由数学家乌拉姆提出,被Metropolis命名为蒙特卡罗⽅法,蒙特卡罗是著名的赌场,赌博总是和统计密切关联的,所以这个命名风趣⽽贴切,很快被⼤家⼴泛接受。

被不过据说费⽶之前就已经在实验中使⽤了,但是没有发表。

说起蒙特卡罗⽅法的源头,可以追溯到18世纪,布丰当年⽤于计算π的著名的投针实验就是蒙特卡罗模拟实验。

统计采样的⽅法其实数学家们很早就知道,但是在计算机出现以前,随机数⽣成的成本很⾼,所以该⽅法也没有实⽤价值。

随着计算机技术在⼆⼗世纪后半叶的迅猛发展,随机模拟技术很快进⼊实⽤阶段。

(类⽐深度学习,感叹~)对那些⽤确定算法不可⾏或不可能解决的问题,蒙特卡罗⽅法常常为⼈们带来希望。

蒙特卡罗基本思想:利⽤⼤量采样的⽅法来求解⼀些难以直接计算得到的积分。

例如,假想你有⼀袋⾖⼦,把⾖⼦均匀地朝这个图形上撒,然后数这个图形之中有多少颗⾖⼦,这个⾖⼦的数⽬就是图形的⾯积。

当你的⾖⼦越⼩,撒的越多的时候,结果就越精确。

借助计算机程序可以⽣成⼤量均匀分布坐标点,然后统计出图形内的点数,通过它们占总点数的⽐例和坐标点⽣成范围的⾯积就可以求出图形⾯积。

蒙特卡罗模型

蒙特卡罗模型

一、概念蒙特卡罗法(MonteC盯10method)是一种应用广泛的系统模拟技术,产生于40年代,也称为统计模拟法(Statistiealsimulationmethod)或随机采样技术(stoehastiesamplingtechnique)。

它是为了求解随机型问题而构造一个与原来问题没有直接关系的概率过程,并利用它产生统计现象的方法。

它的最大优点是收敛速度和问题维数无关,适应性强。

不仅适用于处理随机型问题,如存储系统、排队系统、质量检验问题、市场营销问题、项目进度风险评价、社会救急系统问题、生态竞争问题和传染病蔓延问题等;也可处理确定型问题,如计算多重积分、解积分方程及微分方程、解整数规划(特别是非线形整数规划)等。

蒙特卡罗方法的基本原理及思想如下:当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。

这就是蒙特卡罗方法的基本思想。

蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。

它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。

可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。

蒙特卡罗解题三个主要步骤:1)、构造或描述概率过程:对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。

即要将不具有随机性质的问题转化为随机性质的问题。

2)、实现从已知概率分布抽样:构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。

MonteCarlo模拟

MonteCarlo模拟
if x(i)<l*sin(phi(i))/2 %满足此条件表示针与线的相交 plot(phi(i),x(i),‘r.’);
counter=counter+1; %统计针与线相交的次数 frame(counter)=getframe; %描点并取帧
end
end
fren=counter/n; pihat=2*l/(a*fren) %用频率近似计算π
1901 3408
3.1415929
蒙特卡罗投点法是蒲丰投针实验的推广:
在一个边长为a的正方形内随机投点,
该点落在此正方形的内切圆中的概率 y
(a/2,a/2)
应为该内切圆与正方形的面积比值,
即 πa/22 : a2 π/4
n=10000; a=2; m=0; for i=1:n
ox
x=rand(1)*a; y=rand(1)*a;
rand(1) %每次重新启动matlab时,输出的随机数不一样
注意: 产生一个参数为λ的指数分布的随机数应输入 exprnd(1/λ)
产生m×n阶参数为A1,A2,A3的指定分布'name'的随机数矩阵 random('name',A1,A2,A3,m,n)
举例: 产生2×4阶的均值为0方差为1的正态分布的随机数矩阵 random('Normal',0,1,2,4) 'name'的取值可以是(详情参见help random): 'norm' or 'Normal' / 'unif' or 'Uniform' 'poiss' or 'Poisson' / 'beta' or 'Beta' 'exp' or 'Exponential' / 'gam' or 'Gamma' 'geo' or 'Geometric' / 'unid' or 'Discrete Uniform' ……

蒙特卡洛模拟法

蒙特卡洛模拟法

( exact ) one component failure Probability of event = 3.689875E-001 ( +/- 5.682113E-003 )
蒙特卡洛模拟法应用实例
Rank Failure mode
Failures Estimated Probability Importance 1 ac 1421 1.243375E-001 ( +/- 3.298413E-003 ) 33.70% 2 ab 1413 1.236375E-001 ( +/- 3.289116E-003 ) 33.51% 3 abc 1383 1.210125E001 ( +/- 3.254012E-003 ) 32.80%
蒙特卡洛模拟法应用实例
Primary Event Analysis: Event
a
b
c
Failure contrib. Importance 4.900000E-001 132.80% 2.446500E-001 66.30% 2.453500E-001 66.49%
差等),所构造的模型在主要特征参量方面 要与实际问题或系统相一致 2 .根据模型中各个随机变量的分布,在计算 机上产生随机数,实现一次模拟过程所需的 足够数量的随机数。通常先产生均匀分布的 随机数,然后生成服从某一分布的随机数, 方可进行随机模拟试验。
蒙特卡洛模拟法步骤
3. 根据概率模型的特点和随机变量的分布特 性,设计和选取合适的抽样方法,并对每个 随机变量进行抽样(包括直接抽样、分层抽
蒙特卡洛模拟法应用实例
Compressed: Rank Failure mode
Failures Estimated Probability Importance 1 ab 2796 2.446500E-001 ( +/- 4.626756E-003 ) 66.30% 2 ac 2804 2.453500E-001 ( +/- 4.633371E-003 ) 66.49%

《蒙特卡罗模拟》课件

《蒙特卡罗模拟》课件

蒙特卡罗模拟的基本原理
重复实验:多次重复抽样实 验,得到大量样本
统计分析:对样本进行统计 分析,得到估计值
随机抽样:从概率分布中随 机抽取样本
误差估计:计算估计值的误 差,评估模拟结果的准确性
蒙特卡罗模拟的应用领域
金融领域:风 险评估、投资 决策、期权定
价等
工程领域:可 靠性分析、优 化设计、系统
建立模型:根据问 题建立数学模型
设定参数:设定模 型中的参数
模拟实验:进行模 拟实验,验证模型 的准确性
实现随机抽样
确定抽样范围:确定需要抽样的总体范围
生成随机数:使用随机数生成器生成随机数
确定抽样方法:选择合适的抽样方法,如简单随机抽样、 分层抽样等
实施抽样:根据抽样方法,从总体中抽取样本
Part Four
蒙特卡罗模拟的案 例分析
金融衍生品定价
蒙特卡罗模拟在金融 衍生品定价中的应用
案例分析:期权定价 模型
蒙特卡罗模拟在期权 定价中的应用
案例分析:利率衍生 品定价模型
蒙特卡罗模拟在利率 衍生品定价中的应用
风险评估
蒙特卡罗模拟是一种风险评估方法,通过模拟随机事件来预测可能的结果 案例分析可以帮助我们更好地理解蒙特卡罗模拟的应用场景和效果 风险评估可以帮助我们更好地理解风险,并采取相应的措施来降低风险 蒙特卡罗模拟在金融、工程、医学等领域都有广泛的应用
统计分析:对计算得到的统计量进行统计分析,得出结论
分析和解读结果
蒙特卡罗模拟是一种随机模拟方法,通过模拟随机事件来估计概率分布
实现步骤包括:设定随机变量、设定随机数生成器、设定模拟次数、模拟随机事件、计算结 果
结果分析:通过模拟结果可以估计出概率分布,从而进行决策

蒙特卡洛模型方法

蒙特卡洛模型方法

蒙特卡罗方法Monte Carlo method 蒙特卡罗方法概述蒙特卡罗方法又称统计模拟法、随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数或更常见的伪随机数来解决很多计算问题的方法;将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解;为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡罗命名;蒙特卡罗方法的提出蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出;数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩;在这之前,蒙特卡罗方法就已经存在;1777年,法国Buffon提出用投针实验的方法求圆周率∏;这被认为是蒙特卡罗方法的起源;蒙特卡罗方法的基本思想Monte Carlo方法的基本思想很早以前就被人们所发现和利用;早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”;19世纪人们用投针试验的方法来决定圆周率π;本世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能;考虑平面上的一个边长为1的正方形及其内部的一个形状不规则的“图形”,如何求出这个“图形”的面积呢Monte Carlo方法是这样一种“随机化”的方法:向该正方形“随机地”投掷N个点,有M个点落于“图形”内,则该“图形”的面积近似为M/N;可用民意测验来作一个不严格的比喻;民意测验的人不是征询每一个登记选民的意见,而是通过对选民进行小规模的抽样调查来确定可能的优胜者;其基本思想是一样的;科技计算中的问题比这要复杂得多;比如金融衍生产品期权、期货、掉期等的定价及交易风险估算,问题的维数即变量的个数可能高达数百甚至数千;对这类问题,难度随维数的增加呈指数增长,这就是所谓的“维数的灾难”Curse of Dimensionality,传统的数值方法难以对付即使使用速度最快的计算机;Monte Carlo方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数;以前那些本来是无法计算的问题现在也能够计算量;为提高方法的效率,科学家们提出了许多所谓的“方差缩减”技巧;另一类形式与Monte Carlo方法相似,但理论基础不同的方法—“拟蒙特卡罗方法”Quasi-Monte Carlo方法—近年来也获得迅速发展;我国数学家华罗庚、王元提出的“华—王”方法即是其中的一例;这种方法的基本思想是“用确定性的超均匀分布序列数学上称为Low Discrepancy Sequences代替Monte Carlo方法中的随机数序列;对某些问题该方法的实际速度一般可比Monte Carlo方法提出高数百倍,并可计算精确度;蒙特卡罗方法的基本原理由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率;因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率;蒙特卡罗法正是基于此思路进行分析的;设有统计独立的随机变量Xii=1,2,3,…,k,其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=gx1,x2,…,xk;首先根据各随机变量的相应分布,产生N组随机数x1,x2,…,xk值,计算功能函数值 Zi=gx1,x2,…,xki=1,2,…,N,若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标;从蒙特卡罗方法的思路可看出,该方法回避了结构可靠度分析中的数学困难,不管状态函数是否非线性、随机变量是否非正态,只要模拟的次数足够多,就可得到一个比较精确的失效概率和可靠度指标;特别在岩土体分析中,变异系数往往较大,与JC法计算的可靠指标相比,结果更为精确,并且由于思路简单易于编制程序;蒙特卡罗方法在数学中的应用通常蒙特·卡罗方法通过构造符合一定规则的随机数来解决数学上的各种问题;对于那些由于计算过于复杂而难以得到解析解或者根本没有解析解的问题,蒙特·卡罗方法是一种有效的求出数值解的方法;一般蒙特·卡罗方法在数学中最常见的应用就是蒙特·卡罗积分;蒙特卡罗方法的应用领域蒙特卡罗方法在金融工程学,宏观经济学,生物医学,计算物理学如粒子输运计算、量子热力学计算、空气动力学计算等领域应用广泛;蒙特卡罗方法的工作过程在解决实际问题的时候应用蒙特·卡罗方法主要有两部分工作:1.用蒙特·卡罗方法模拟某一过程时,需要产生各种概率分布的随机变量;2.用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解;蒙特卡罗方法分子模拟计算的步骤使用蒙特·卡罗方法进行分子模拟计算是按照以下步骤进行的:1.使用随机数发生器产生一个随机的分子构型;2.对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型;3.计算新的分子构型的能量;4.比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型;·若新的分子构型能量低于原分子构型的能量,则接受新的构型,使用这个构型重复再做下一次迭代;·若新的分子构型能量高于原分子构型的能量,则计算玻尔兹曼因子,并产生一个随机数;若这个随机数大于所计算出的玻尔兹曼因子,则放弃这个构型,重新计算;若这个随机数小于所计算出的玻尔兹曼因子,则接受这个构型,使用这个构型重复再做下一次迭代;5.如此进行迭代计算,直至最后搜索出低于所给能量条件的分子构型结束;蒙特卡罗模型的发展运用从理论上来说,蒙特卡罗方法需要大量的实验;实验次数越多,所得到的结果才越精确;以上Buffon的投针实验为例、历史上的记录如下表1;从表中数据可以看到,一直到公元20世纪初期,尽管实验次数数以千计,利用蒙特卡罗方法所得到的圆周率∏值,还是达不到公元5世纪祖冲之的推算精度;这可能是传统蒙特卡罗方法长期得不到推广的主要原因;计算机技术的发展,使得蒙特卡罗方法在最近10年得到快速的普及;现代的蒙特卡罗方法,已经不必亲自动手做实验,而是借助计算机的高速运转能力,使得原本费时费力的实验过程,变成了快速和轻而易举的事情;它不但用于解决许多复杂的科学方面的问题,也被项目管理人员经常使用;借助计算机技术,蒙特卡罗方法实现了两大优点:一是简单,省却了繁复的数学报导和演算过程,使得一般人也能够理解和掌握;二是快速;简单和快速,是蒙特卡罗方法在现代项目管理中获得应用的技术基础;蒙特卡罗方法有很强的适应性,问题的几何形状的复杂性对它的影响不大;该方法的收敛性是指概率意义下的收敛,因此问题维数的增加不会影响它的收敛速度,而且存贮单元也很省,这些是用该方法处理大型复杂问题时的优势;因此,随着电子计算机的发展和科学技术问题的日趋复杂,蒙特卡罗方法的应用也越来越广泛;它不仅较好地解决了多重积分计算、微分方程求解、积分方程求解、特征值计算和非线性方程组求解等高难度和复杂的数学计算问题,而且在统计物理、核物理、真空技术、系统科学、信息科学、公用事业、地质、医学,可靠性及计算机科学等广泛的领域都得到成功的应用;项目管理中蒙特卡罗模拟方法的一般步骤项目管理中蒙特卡罗模拟方法的一般步骤是:1、对每一项活动,输入最小、最大和最可能估计数据,并为其选择一种合适的先验分布模型;2、计算机根据上述输入,利用给定的某种规则,快速实施充分大量的随机抽样;3、对随机抽样的数据进行必要的数学计算,求出结果;4、对求出的结果进行统计学处理,求出最小值、最大值以及数学期望值和单位标准偏差;5、根据求出的统计学处理数据,让计算机自动生成概率分布曲线和累积概率曲线通常是基于正态分布的概率累积S曲线;6、依据累积概率曲线进行项目风险分析;非权重蒙特卡罗积分非权重蒙特卡罗积分,也称确定性抽样,是对被积函数变量区间进行随机均匀抽样,然后对被抽样点的函数值求平均,从而可以得到函数积分的近似值;此种方法的正确性是基于概率论的中心极限定理;当抽样点数为m时,使用此种方法所得近似解的统计误差恒为 1除于根号M,不随积分维数的改变而改变;因此当积分维度较高时,蒙特卡罗方法相对于其他数值解法更优;蒙特卡罗方法案例分析案例一:蒙特卡罗模型在投资项目决策中的开发应用1一、问题的提出随着社会主义市场经济体制的逐步完善、经济水平的逐步提高,我国社会经济活动日趋复杂,越来越多变,其影响越来越广泛,越来越深远,不确定性逐渐成为企业决策时所面临的主要难题;因此,如何在不确定条件下做出投资决策,就成为目前理论和实践工作者们广泛关注的一个核心课题;传统的投资评价理论——以净现值法NPV为代表的投资决策分析方法,其根本缺陷在于它们是事先对未来的现金流量做出估计,并假设其为不变或静态的状况,无法衡量不确定因素的影响,不能体现递延决策以应对所带来的管理弹性;所以,在不确定环境下的投资,用净现值法评估项目不能体现柔性投资安排决策所体现的价值,无助于项目在决策中回避风险;在多变的市场环境中,不确定性与竞争者的反应使实际收入与预期收入有所出入,所以净现值法NPV适用于常规项目,未来不确定性比较小的项目;为此理论界对未来投资环境不确定性大的项目提出了实物期权法,但在实践中应用的还是比较少;实物期权法的应用对企业决策者的综合素质要求比较高,对企业资源能力要求也比较高;但是实物期权法改变了我国管理者对战略投资的思维方式;基于以上的分析,我们得出这样的结论:传统的投资决策方法对风险项目和不确定性项目的评价有较多不完善之处,有必要对其改进;实物期权法理论上解决了传统决策方法对不确定性项目评价的不足,但其应用尚处于体系不成熟阶段,在实践中应用并不广泛;至此,引入蒙特卡罗模型的理论和其分析方法,此方法特别适用于参数波动性大,且服从某一概率分布的项目,例如地质勘察、气田开发等项目;蒙特卡罗模型是利用计算机进行数值计算的一类特殊风格的方法,它是把某一现实或抽象系统的某种特征或部分状态,用模拟模型的系统来代替或模仿,使所求问题的解正好是模拟模型的参数或特征量,再通过统计实验,求出模型参数或特征量的估计值,得出所求问题的近似解;目前评价不确定和风险项目多用敏感性分析和概率分析,但计算上较为复杂,尤其各因素变化可能出现概率的确定比较困难;蒙特卡罗模型解决了这方面的问题,各种因素出现的概率全部由软件自动给出,通过多次模拟,得出项目是否应该投资;该方法应用面广,适应性强;惠斯通Weston对美国1 000 家大公司所作的统计表明:在公司管理决策中,采用随机模拟方法的频率占29 % 以上,远大于其他数学方法的使用频率;特别,该方法算法简单,但计算量大,在模拟实际问题时,要求所建模型必须反复验证,这就离不开计算机技术的帮助,自然可利用任何一门高级语言来实现这种方法;通过一案例具体实现了基于Excel 的Monte Carlo 模拟系统,由于Microsof tExcel 电子表格软件强大的数据分析功能和友好的界面设计能力,使系统实现起来颇感轻松自如;二、理论和方法蒙特卡洛模拟早在四十年前就用于求解核物理方面的问题;当管理问题更为复杂时,传统的数学方法就难以进行了;模拟是将一个真实事物模型化,然后对该模型做各种实验,模拟也是一个通过实验和纠正误差来寻求最佳选择的数值性求解的过程;模拟作为一种有效的数值处理方法,计算量大;以前只是停留在理论探讨上,手工是无法完成的;在管理领域由于规律复杂随机因素多,很多问题难以用线性数学公式分析和解决,用模拟则有效得多;在新式的计算机普及后,用模拟技术来求解管理问题已成为可能;计算机模拟技术和其它方法相比有以下优点:1成本低、风险小,在产品未投产,实际生产未形成就可以对市场进行分析模拟,极大地减少费用和风险;2环境条件要求低,工作人员不需要高深的数学能力,完全依靠计算机进行,在硬件和软件日益降价的情况下,可以成为现实;3可信度高,常用的统计推理方法需要大量历史数据如平均数法、最小二乘法,对无历史资料的场合就无能为力如新产品,而且精度低;模拟的最大特点是借助一个随机数来模仿真实的现实,随机数的产生则由计算机来产生;称为伪随机数;即:Rn = F r - 1 , r - 2 ,……r - k在以对象为中心的软件中, EXCEL 有一个RANE函数实现伪随机数功能;RANE实际上是一个会自动产生伪随机数的子程序;用产生的伪随机数模拟市场购买行为,得出产品销售量,在生产成本相对固定时进而推测出产品的利润;此方法不用编制复杂的程序,思路假设为,作为系统内部是可以控制的,即企业内部生产成本可以人为控制,但系统外部因素是不可控制的消费心理导致的消费行为,则生产与销售就会产生矛盾;生产量小于销售量,造成开工不足资源浪费;生产量大于销售量,造成产品积压,资金占用,同样形成资源的浪费;最好生产量等于销售量,则资源浪费最小,自然经济效益就最高,实际就是利润最大化;如果能科学地测算出在什么情况下利润最大,则这时的产量就是最佳产量,成本也就最低;这就是市场作为导向,以销定产的公认市场经济的准则;实际工作中,很多产品的消费是具有随机性的,主要是一些需求弹性大、价格弹性大、价格低、与日常生活有关的中、小商品,如副食品、日用消费品、玩具、轻工业产品;对企业而言利润较高的产品;从以上分析可以看出,蒙特卡洛模拟可以动态实现对产品利润的预测,从而对产品产量科学控制,实现资源优化,是一种较好的决策支持方法;三、蒙特卡罗模型在Excel 表中的应用某气田投资项目期投资、寿命期、残值以及各年的收入、支出,以及应付税金的税率、项目的资本成本等都是独立的随机变量,他们的概率密度函数如表1所示;表各变量对应概率密度函数表本案例用windowsXP 中的Excel2003 对该项目进行模拟如下:1在A32 单元格投资Yo 模拟:随机数输入:= RANDBETWEEN 0 ,99;在B32 单元格投资Yo模拟:投资输入:= VLOO KUP A32 , $C $3 : $D$5 ,2;2在C32 单元格寿命N 模拟:随机数输入:=RANDBETWEEN 0 ,99;在D32 单元格寿命N 模拟:寿命输入:= VLOO KUP C32 , $C $6 : $D$8 ,2;3 E32 ,G32 , I32 , K32 ,M32 单元格分别输入:=RANDBETWEEN 0 , 99; F32 = VLOOPUP E32 ,$C $9 : $D $11 , 2, H32 = VLOOPUP G32 , $C$12 : $D $14 ,2,J 32 = VLOO KUP I32 , $C $15 :$D $18 ,2,L32 = VLOO KUP K32 , $C $19 : $D$22 ,2,N32 = VLOO KUPM32 , $C $23 : $D $27 ,24 O32 =B32 - F32 / D32 , P32 =J 32 - L32 -O32 3 1 - H32/ 100+ O32 ,Q32 = PV N32/ 100 ,D32 ,- P32- B32 ;5 H3 = AVERA GE Q32 , Q5031 , H4 =STDEV Q32 ,Q5031,H5 = MAX Q32 , Q5031 , H6 = MIN Q32 ,Q5031,H7 = H4/ H3 ,H8 = COUN TIF Q32 :Q5031 ,“ < 0” / COUN TQ32 ,Q5031;在Excel 工具表中模拟5000次,结果输出见下表:表结果输出表1表结果输出表2表结果输出表3所得结果如下:表净现值模拟计算结果表表净现值概率分布统计表从分析结果得出,虽然此项目未来的不确定性很大,但由图可知,此气田开发项目服从正态分布,模拟5 000次的结果是净现值为负的概率为零,并且项目的期望净现值为952113 万元,说明项目值得开发;由以上的案例分析可知,基于蒙特卡罗模拟的风险分析,对于工程实际应用具有较强的参考价值;随机模拟5 000 次,如果仅靠人的大脑进行计算,这在现实世界中是不可能的,但考虑到系统决策支持功能,算法设计为由使用者自己设计方案,采用人机交互,这样可以发挥使用者的经验判断;系统实现模拟运算——系统对每一个设定的投资项目期投资、寿命期、残值以及各年的收入、支出,以及应付税金的税率、项目的资本成本等随机变量及他们的概率密度函数,通过蒙特卡罗模拟方法,得出了项目在不同概率发生的情况下净现值模拟计算结果;为人们解决不确定性项目的决策提供了简单的方法,节约了人们的工作量和时间;但是利用蒙特卡罗模型分析问题时,收集数据是非常关键的;。

Isight-12-蒙特卡洛

Isight-12-蒙特卡洛

MCS原理
• 如果将系统的不确定性因素都建模为随机变量R1、R2、R3 ,并且已知它们的概率分布,通过对R1、R2、R3的随机抽 样,可以估计系统响应Y1的概率分布特征(均值、标准方 差等)。因为MCS模拟中抽样点的计算是独立的,因此适 合用并行计算提高效率
MCS术语
• 均值 Mean -Average of a set of values • 标准方差 Standard Deviation - measure of how widely values are
• Custom – You can create your own pdf as a plug in using the SDK
MCS采样技术
• 经常需要大量的采样点 • 使用减少变异的技术可以减少采样点 • 既然采样点是完全独立的,分布和并行计算是完全可行的
பைடு நூலகம்
采样技术: Monte Carlo Simulation
compared to a normal distribution. Negative indicates flatter.
MCS: Basic Approach
• 采样技术: – Simple Random Sampling – Descriptive Sampling
• 分布 Distributions: – Normal – Lognormal – Weibull – Gumbel – Uniform – Exponential
dispersed from the mean • 变异系数 Coefficient of Variation - Standard Deviation/Mean • 偏斜度 Skewness - Measure of distribution asymmetry about the mean.

蒙特卡洛模拟方法及其应用场景

蒙特卡洛模拟方法及其应用场景

蒙特卡洛模拟方法及其应用场景蒙特卡洛模拟方法是一种基于随机抽样的数值计算方法,通过随机抽样的方式来模拟系统的行为,从而得出系统的统计特性。

蒙特卡洛模拟方法在众多领域都有着广泛的应用,包括金融、物理、生物、工程等领域。

本文将介绍蒙特卡洛模拟方法的基本原理,以及在不同领域中的应用场景。

一、蒙特卡洛模拟方法的基本原理蒙特卡洛模拟方法是一种基于随机抽样的数值计算方法,其基本原理可以简单概括为以下几步:1. 确定模拟对象:首先需要确定要模拟的系统或问题,包括系统的输入、输出以及系统内部的运行机制。

2. 设定随机抽样规则:根据系统的特性和要求,设定随机抽样的规则,包括随机数的生成方法、抽样的次数等。

3. 进行模拟计算:根据设定的随机抽样规则,进行大量的随机抽样计算,得出系统的统计特性。

4. 分析结果:对模拟计算得到的结果进行统计分析,得出系统的性能指标、概率分布等信息。

蒙特卡洛模拟方法的核心思想是通过大量的随机抽样来逼近系统的真实行为,从而得出系统的统计特性。

在实际应用中,蒙特卡洛模拟方法可以帮助分析复杂系统的行为,评估系统的性能,优化系统设计等。

二、蒙特卡洛模拟方法在金融领域的应用在金融领域,蒙特卡洛模拟方法被广泛应用于风险管理、资产定价、投资组合优化等方面。

其中,蒙特卡洛模拟方法在金融风险管理中的应用尤为突出。

1. 风险管理:通过蒙特卡洛模拟方法,可以对金融市场的波动性进行建模,评估不同投资组合的风险水平,帮助投资者制定风险管理策略。

2. 资产定价:蒙特卡洛模拟方法可以用来估计金融资产的价格,包括期权、债券等衍生品的定价,为投资决策提供参考。

3. 投资组合优化:通过蒙特卡洛模拟方法,可以对不同投资组合的收益和风险进行模拟计算,找到最优的投资组合配置方案。

三、蒙特卡洛模拟方法在物理领域的应用在物理领域,蒙特卡洛模拟方法被广泛应用于统计物理学、凝聚态物理学、粒子物理学等领域。

蒙特卡洛模拟方法在这些领域的应用主要包括以下几个方面:1. 统计物理学:通过蒙特卡洛模拟方法,可以模拟复杂系统的热力学性质,如相变、磁性等现象,为理论模型的验证提供支持。

蒙特卡罗模拟方法

蒙特卡罗模拟方法

蒙特卡罗模拟方法的优点: (1)模拟算法简单,过程灵活; (2)可模拟分析多元风险因素变化 对结果的影响; (3)模拟成本低,并可方便地补充 更新数据。
蒙特卡罗模拟方法的局限性: (1)蒙特卡罗方法要求的数据信息较多。 (2)进行模拟的前提是各输入变量是相 互独立的。 (3)对一些复杂问题,要想达到较高的 模拟精度需要进行较多的模拟次数。
有了这些随机产生函数,就 可以直接产生满足分布F(x)的随 机数了,而无需通过先求出连 续均匀分布的随机数,在通过 抽样公式得出所求分布的随机 数。下面来通过一个实例来加 深对蒙特卡罗模拟方法的理解。
第五节 项目风险案例分析
现以成都某房地产开发公司对一综合开 发用地进行投资开发为例,用基于蒙特卡 罗模拟方法为原理的 EXCEL 插件—— Crystal Ball工具对该开发项目进行风险决 策分析。 一、项目概况和基本数据的确定
a,b,c为三角分布 的参数
分布
a ( b a ) r1
f [ a ( b a ) r1 ] f ( m ) r2 b r 1 a s 1
m rs2
r,s为函数参数
实际上,Matlab软件为我们提供了一种 简单快捷的产生各种常用分布随机数的方 法。其功能和特点: (1)界面友好,编程效率高。 (2)功能强大,可扩展性强。 (3)强大的数值计算功能和符号计算功 能。 (4)图形功能灵活方便。
二、采用蒙特卡罗方法进行风险决策分析
(一)、识别项目风险 在投资开发项目时,实际情况千差万别,重要 的风险变量也各不相同,这就需要分析人员根据 项目的具体情况,运用适当的风险辨识的方法从 影响投资的众多因素中找出关键的风险变量。本 案例采用“德尔菲法”确定影响该项目的7个主要 风险变量:住宅销售收入(P1*S1)、商业销售 收入(P2*S2)、土地费用(K1)、前期费用 (K2)、开发建设费用(K3)、营销费用 (K4)、其他费用(K5)。

蒙特卡洛模拟法的步骤-概述说明以及解释

蒙特卡洛模拟法的步骤-概述说明以及解释

蒙特卡洛模拟法的步骤-概述说明以及解释1.引言1.1 概述蒙特卡洛模拟法是一种基于随机数的数值计算方法,用于解决复杂的数学问题和模拟真实世界的现象。

它在各个领域都有广泛的应用,包括金融、物理学、工程学、统计学等。

蒙特卡洛模拟法的核心思想是通过生成大量的随机样本,并统计这些样本的结果来获取问题的解或现象的模拟。

它模拟随机变量的概率分布,以此推断未知参数的分布或评估某种决策的风险。

蒙特卡洛模拟法的步骤可以简单概括为以下几个关键步骤:1. 确定问题或现象的数学模型:首先,需要将问题或现象抽象为数学模型。

这个模型需要描述问题的输入、输出以及各个元素之间的关系。

2. 生成随机样本:通过使用合适的随机数生成方法,生成满足问题模型要求的随机样本。

样本的生成应充分反映问题模型的特征。

3. 计算模型输出:将生成的随机样本代入问题模型,计算出相应的模型输出。

这个输出可能是一个统计量、概率分布或者其他有意义的指标。

4. 统计分析样本结果:对计算得到的模型输出进行统计分析。

可以计算均值、方差等统计指标,也可以对结果进行可视化分析。

5. 得出结论:根据统计分析的结果,可以得出关于问题的解或现象的模拟。

结论可以包括对问题的影响因素的评估、风险的评估等。

蒙特卡洛模拟法的优势在于它能够处理复杂的数学模型和现象,而不需要依赖于精确的解析方法。

它可以通过增加样本数量来提高模拟结果的精度,因此在计算资源充足的情况下能够得到非常准确的结果。

尽管蒙特卡洛模拟法有着许多优势,但也存在一些限制和挑战。

例如,随机样本的生成可能会消耗大量的计算资源和时间;模型的结果可能受到随机样本选择的影响等。

在未来,随着计算机计算能力的不断提升,蒙特卡洛模拟法将在更多的领域得到应用,并且有望进一步发展和优化,以应对更加复杂的问题和模拟需求。

1.2 文章结构文章结构部分应该介绍整篇文章的组成和内容安排,让读者了解到接下来会讲解哪些内容。

以下是文章结构部分的内容示例:文章结构本文分为引言、正文和结论三个部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1707-1788

1777年,古稀之年的蒲丰在家中请来 好些客人玩投针游戏(针长是线距之半), 他事先没有给客人讲与π 有关的事。客人 们虽然不知道主人的用意,但是都参加了 游戏。他们共投针2212次,其中704次相交。 蒲丰说,2212/704=3.142,这就是π 值。 这着实让人们惊喜不已。
因此,可以通俗地说,蒙特卡罗方法是用随机试 验的方法计算积分,即将所要计算的积分看作服从某 种分布密度函数f(r)的随机变量g(r)的数学期望
g g (r ) f (r )dr
0

通过某种试验,得到N个观察值r1,r2,…,rN(用 概率语言来说,从分布密度函数 f(r) 中抽取 N 个子样 r1 , r2 , … , rN ,),将相应的 N 个随机变量的值 g(r1) , g(r2),…,g(rN)的算术平均值
离散型分布的直接抽样方法

对于任意离散型分布:
F ( x) Pi
xi x
其中 x1 , x2 , … 为离散型分布函数的跳跃点, P1 , P2,… 为相应的概率,根据前述直接抽样法,有离散型 分布的直接抽样方法如下:
X F xI , 当 Pi Pi
i=1 i=1 I-1 I
0, x 0 F ( x ) x, 0 x 1 特征:独立性、均匀性 1, x 1
分布函数为:
随机数的产生方法
随机数表 物理方法 计算机方法
随机数表
随机数表是由0,1,2,…,9十个数字组成,每 个数字以0.1的概率出现,数字之间相互独 立。 方法:如果要得到n位有效数字的随机数, 只需将表中每n个相邻的随机数字合并在一 起,且在最高位的前边加上小数点即可。
抽样次数与结果精度
1 2 E ( X ) , Var ( X ) x 解的均值与方差的计算公式: n
x2
是随机变量X的方差,而称 Var ( X ) 为估计量方差。通常蒙特卡罗模拟 X 中的样本量n很大,由统计学的中心极限定理知 渐进正态分布, 即: n
x
1 x 1 t2 X lim p( x) e 2 dt 2 x x n
我们就把
x / n 记做是误差
得到人们习惯的结果误差表示:
X
2
对于指定的误差ε,模拟所需抽样次数n可由 x / n 导出:
x n
随机数
随机数的定义
用Monte Carlo方法模拟某过程时,需要产生各种概率分布的随机变 量。最简单、最基本、最重要的随机变量是在[0,1]上均匀分布 的随机变量。由该分布抽取的简单子样称为随机数序列,其中每一 个体称为随机数。随机数属于一种特殊的由已知分布的随机抽样问 题。随机数是随机抽样的基本工具。 [0,1]上均匀分布(单位均匀分布),其分布密度函数为: 1, 0 x 1 f ( x) 0, 其他
i=0 i=0 n-1 n
例2. 掷骰子点数的抽样


掷骰子点数X=n的概率为:
P ( X n) 1 6
为了便于在计算机上使用,通常取 : M=2s 其中s为计算机中二进制数的最大可能有效位数 x1= 奇数 a = 52k+1 其中 k 为使 52k+1 在计算机上所能容纳的最 大整数,即a为计算机上所能容纳的5的最大奇次 幂。一般地,s=32时,a=513;s=48,a=515等。 伪随机数序列的最大容量λ(M)=2s-2 。 乘同余方法是使用的最多、最广的方法,在 计算机上被广泛地使用。
蒙特卡罗模拟方法
报 告 人 :杨林 吴颖 科 目 :项目风险管理 任课教师 :尹志军
蒙特卡罗模拟方法
一、蒙特卡罗方法概述 二、蒙特卡罗方法模型 三、蒙特卡罗方法的优缺点及其适用范围 四、相关案例分析及软件操作 五、问题及相关答案
Monte Carlo方法的发展历史
早在17世纪,人们就知道用事件发生的 “频率”来决定事件的“概率”。从方法 特征的角度来说可以一直追溯到18世纪后 半叶的蒲丰(Buffon)随机投针试验,即 著名的蒲丰问题。
①建立概率统计模型
N
②收集模型中风险变量的数据 , 确定风 险因数的分布函数
⑤根据随机数在各风 险变量的概率分布中 随机抽样,代入第一 步中建立的数学模型
N
N
③根据风险分析的精度要求,确 定模拟次数 N
④建立对随机变量的抽样 方法,产生随机数。

N 个样本值
⑦统计分析,估计均 值,标准差
例子
某投资项目每年所得盈 利额A由投资额P、劳动 生产率L、和原料及能 源价格Q三个因素。
蒙特卡罗方法的基本思想
蒙特卡罗方法又称计算机随机模拟方法。 它是以概率统计理论为基础的一种方法。 由蒲丰试验可以看出,当所求问题的解是 某个事件的概率,或者是某个随机变量的 数学期望,或者是与概率、数学期望有关 的量时,通过某种试验的方法,得出该事 件发生的频率,或者该随机变量若干个具 体观察值的算术平均值,通过它得到问题 的解。这就是蒙特卡罗方法的基本思想。
1 N g N g (ri ) N i 1
作为积分的估计值(近似值)。
计算机模拟试验过程
计算机模拟试验过程,就是将试验过 程(如投针问题)化为数学问题,在计算 机上实现。
模拟程序
l=1; d=2; m=0; n=10000 for k=1:n; x=unifrnd(0,d/2); y=unifrnd(0,pi); if x<0.5*1*sin(y) m=m+1 else end end p=m/n pi_m=1/p
产生伪随机数的乘同余方法
乘同余方法是由Lehmer在1951年提出来的,它的一般形式是:对于 任一初始值x1,伪随机数序列由下面递推公式确定:
xi 1 a.xi (mod M )
2
xi 1 , i 1, 2, M
被M 整除后的余数,叫做
a 为乘子, X i为种子(初值);M成为模数。上式表示
从而
p(
X ) 1 x n
是标准正态分布中与 α对应的临界值,
式中α位小概率,1- α称为置信度: 可有统计分布表查得。

p(
X ) 1 x n
得统计学上称为与置信水平α对应的置信区间:
X x / n X x / n
用MATLAB产生随机数
语言:连续均匀分布的函数表达式为 R=unifrnd(A,B) 演示:for n=1:100; k=unifrnd(0,1) end
随机抽样及其特点

由巳知分布的随机抽样指的是由己知分 布的总体中抽取简单子样。随机数序列是 由单位均匀分布的总体中抽取的简单子样, 属于一种特殊的由已知分布的随机抽样问 题。下表所叙述的由任意已知分布中抽取 简单子样,是在假设随机数为已知量的前 提下,使用严格的数学方法产生的。
N
A aP bL2 cQ d
收集P,L,Q数据,确定分布函 数 f ( P), f ( L), f (Q) 模拟次数N;根据分 布函数,产生随机数
N
1 2
N
A aP bL2 cQ d
1 2
根据历史数据,预测未来。 产生
N 个 A值
抽取 P,L,Q一 组随机 数,带 入模型
1, 当x l sin s( x, ) 0, 其他
1 sN N
s ( x , )
i 1 i i
N
P s ( x, ) f1 ( x) f 2 ( )dxd

d
0


l sin
0
dx 2l a a
2l 2l aP as N
x1

a.xi 对模 M的同余。
xi 1 是
a.xi
•利用乘同余法产生伪随机数的步骤如下: (1)取种子 1 、乘子 a 、和模数M; (2)由式(1)获得一系列 , ...; 1 2 (3)由式(2)得到一系列 , … 。这就是所要产生的伪随机数 2 1 的序列
x

x x
乘同余方法在计算机上的使用
例如:某随机数表第一行数字为7634258910…,要想得 到三位有效数字的随机数依次为:0.763,0.425,0.891
物理方法
基本原理:利用某些物理现象,在计算机 上增加些特殊设备,可以在计算机上直接 产生随机数。 缺点:无法重复实现 费用昂贵
计算机方法
在计算机上产生随机数最实用、最常见的方 法是数学方法,即用如下递推公式: n1 T (n ) 产生随机数序列,对于给定的初始值 n ,确 定 n 1 ,n=1,2… 存在的问题:1,不满足相互独立的要求 2,不可避免的出现重复问题 所以成为伪随机数 问题的解决:1.选取好的递推公式 2.不是本质问题

该结果表明,为了实现由任意离散型分布的随机抽 样,直接抽样方法是非常理想的。
例1. 二项,其概率函数
n P( x n) Pn CN P n (1 P) N n

其中,P为概率。对该分布的直接抽 样方法如下:
X F n, 当 Pi Pi
统计分析,估计 均值,标准差
X
模型建立的两点说明
Monte Carlo方法在求解一个问题是,总 是需要根据问题的要求构造一个用于求 解的概率统计模型,常见的模型把问题 的解化为一个随机变量 X 的某个参数 的估计问题。 要估计的参数 通常设定为 X 的数学 期望(亦平均值,即 E( X ) )。按 统计学惯例, 可用 的样本 ( X1, X 2, ...X n ) 1 X X 的平均值来估计,即 n
相关文档
最新文档