分子生物学知识点归纳
分子生物学知识点总结

宛本人自己总结, 大家随便一看。
基因与基因组基因(gene): 储存有功能的蛋白质多肽链或RNA序列信息, 及表达这些信息所必须的全部核苷酸序列所构成的遗传单位。
1.顺式作用元件有: 启动子和上游启动子元件, 反应元件, 增强子, 沉默子, Poly加尾信号启动子: 有方向性, 转录起始位点上游, TA TA盒, B地贫, 与RNA聚合酶特异结合及启动转录上游启动子元件: TATA盒上游, 与反式作用因子结合, 调控基因转录效率。
CAAT盒, GC盒, CACA盒—B地贫反应元件: 与激活的信息分子受体结合, 调控基因表达增强子: 与反式作用因子结合, 基因表达正调控, 无方向性沉默子: 与反式作用因子结合, 基因表达负调控Poly加尾信号: 结构基因末端AA TAAA及下游富含GT或T区, 多聚腺苷酸化特异因子, 在3末端加200个A B地贫1.除逆转录病毒外, 通常为单倍体基因组。
逆转录病毒: 单股正链二倍体RNA, 三个结构基因, gag, pol, env, 5端甲基化帽, 3端poly加尾。
HIV免疫缺陷病毒, 白血病病毒, 肉瘤病毒感染细菌的病毒基因组与细菌相似, 基因连续, 感染真核细胞的病毒基因组与真核细胞相似, 有内含子, 基因不连续。
3.基因组连续:冠状病毒, 脊髓灰质炎病毒, 鼻病毒4.编码区占大部分原核生物基因组1.由一条环状双链DNA分子组成, 通常只有一个复制起点。
2.结构基因大多组成操纵子, 形成多顺反子(mRNA)3.非编码区主要是调控序列。
(转录终止区可有强终止子有反向重复序列, 形成茎环结构)4.存在可移动的DNA序列(转座因子:能够在一个DNA内或两个DNA间移动的DNA片段转座因子:插入序列, 转座子, 可转座的噬菌体, 转座作用的机制:复制性转座, 简单转座, 共整合体, 插入突变)5.编码区大于非编码区真核生物基因组1.有同源性的功能相关基因构成基因家族核酸序列相同, 核酸序列高度同源, 编码产物的功能或功能区相同, 假基因2.真核基因为断裂基因, 编码为单顺反子。
(完整word版)分子生物学知识点归纳

分子生物学1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。
2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。
3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。
4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。
甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。
真核生物中的DNA甲基化则在基因表达调控中有重要作用。
真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’.5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。
“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。
6.DNA双螺旋结构模型要点:(1)DNA是反向平行的互补双链结构。
(2)DNA双链是右手螺旋结构。
螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA 双链说形成的螺旋直径为2 nm。
每个碱基旋转角度为36度。
DNA双螺旋分子表面存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。
(3)疏水力和氢键维系DNA双螺旋结构的稳定。
DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。
7.核小体的组成:染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。
各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。
核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。
8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。
9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。
分子生物学知识点

一、名词解释:1. 基因:基因是位于染色体上的遗传基本单位,是负载特定遗传信息的DNA片段,编码具有生物功能的产物包括RNA和多肽链;2. 基因表达:即基因负载遗传信息转变生成具有生物学功能产物的过程,包括基因的激活、转录、翻译以及相关的加工修饰等多个步骤或过程;3.管家基因:在一个生物个体的几乎所有组织细胞中和所有时间段都持续表达的基因,其表达水平变化很小且较少受环境变化的影响;如GAPDH、β-肌动蛋白基因;4. 启动子:是指位于基因转录起始位点上游、能够与RNA聚合酶和其他转录因子结合并进而调节其下游目的基因转录起始和转录效率的一段DNA片段;5.操纵子:是原核生物基因表达的协调控制单位,包括有结构基因、启动序列、操纵序列等;如:乳糖操纵子、色氨酸操纵子等;6.反式作用因子:指由其他基因表达产生的、能与顺式作用元件直接或间接作用而参与调节靶基因转录的蛋白因子转录因子;7.顺式作用元件:即位于基因附近或内部的能够调节基因自身表达的特定DNA序列;是转录因子的结合位点,通过与转录因子的结合而实现对真核基因转录的精确调控;8. Ct值:即循环阈值cycle threshold,Ct,是指在PCR扩增过程中,扩增产物的荧光信号达到设定的荧光阈值所经历的循环数;它与PCR扩增的起始模板量存在线性对数关系,由此可以对扩增样品中的目的基因的模板量进行准确的绝对和或相对定量;9.核酸分子杂交:是指核酸分子在变性后再复性的过程中,来源不同但互不配对的核酸单链包括DNA和DNA,DNA和RNA,RNA和RNA相互结合形成杂合双链的特性或现象,依据此特性建立的一种对目的核酸分子进行定性和定量分析的技术则称为分子杂交技术;10. 印迹或转印:是指将核酸或蛋白质等生物大分子通过一定的方法转移并固定至尼龙膜等支持载体上的一种方法,该技术类似于用吸墨纸吸收纸张上的墨迹;11. 探针:是一种用同位素或非同位素标记核酸单链,通常是人工合成的寡核苷酸片段;12. 基因芯片:又称DNA芯片或DNA微阵列,是基于核酸分子杂交原理建立的一种对DNA进行高通量、大规模、并进行分析的技术,其基本原理是将大量寡核苷酸分子固定于支持物上,然后与标记的待测样品进行杂交,通过检测杂交信号的强弱进而对待测样品中的核酸进行定性和定量分析;13. 基因文库:是指通过克隆方法保存在适当宿主中的一群混合的DNA分子,所有这些分子中的插入片段的总和,可代表某种生物的全部基因组序列或全部的mRNA 序列,因此基因文库实际上是包含某一生物体或生物组织样本的全部DNA序列的克隆群体;基因文库包括两类:基因组文库和cDNA文库;14. 克隆:是来自同一始祖的相同副本或拷贝的集合;15. 载体:为携带的目的基因,实现其无性繁殖或表达有意义的蛋白质所采用的一些DNA分子;16. 限制性核酸内切酶:识别DNA的特意序列,并在识别位点或其周围切割双链DNA的一类内切酶;17. 基因工程Genetic Engineering:又称基因操作gene manipulation、DNA重组DNA recombination,是指采用类似于工程建设的方式,按照预先设计的蓝图,将一种或多种生物体供体的基因育载体在体外进行拼接重组构建成杂种DNA分子,然后转入另一种生物体受体内,以改变生物原有的遗传特性并表达出新的性状;获得新品种,生产新产品,或是研究基因的结构和功能;因此,供体、受体和载体称为基因工程的三大要素,其中相对于受体而言,来自供体的基因属于外源基因;由于DNA 重组分子大都需在受体细胞中复制扩增,故还可以将基因工程表征为分子克隆Molecular Cloning或基因的无性繁殖;18. 目的基因:感兴趣的基因或DNA序列;19.生长因子:growth factor通过质膜上特异的受体,将信息传递至细胞内部,调节细胞生长与增殖的多肽类物质;20. 基因组:泛指一个生命体、病毒或细胞器的全部遗传物质;21. 蛋白质组:指一个细胞内的全套蛋白质,反映了特殊阶段、环境状态下,细胞或组织在翻译水平的蛋白质表达谱;22. 人类基因组计划:是美国科学家于1986年率先提出,1990年正式启动的,这一计划的目标是为30亿个碱基对构成的人类基因组精确测序,从而最终弄清楚每种基因产生的蛋白质及其作用,它的实施将会为认识疾病的分子机制以及诊断和治疗提供重要依据;23. 基因诊断:利用现代分子生物学和分子遗传学的技术方法直接检测基因结构及其表达水平是否正常,从而对人体状态和疾病做出诊断的方法;24. 基因治疗:从广义来说,将某种遗传物质转移到患者细胞内,使其在体内发挥作用而达到治疗疾病目的的方法均称为基因治疗;25. 基因替换:用正常的基因通过体内基因同源重组,原位替换病变细胞内的致病基因,使细胞内DNA完全恢复正常状态的基因治疗方法;26. 自杀基因:某些病毒或细菌的基因所表达的酶能将对人体无毒或低毒的药物在人体细胞内转变为细胞毒性产物,从而导致携带该基因的受体细胞也被杀死,故称这类基因为“自杀基因”;27. 转录组:是一个细胞内的一套RNA转录物,包含了某一环境条件下、某一生命阶段、某一生理或病理状态下,生命体的细胞或组织所表达的基因种类及水平; 28.癌基因:oncogene细胞内控制细胞生长和分化的基因,它的结构异常或表达异常,可以引起细胞癌变;29. 病毒癌基因:存在于肿瘤细胞中,能使靶细胞发生恶性转化的基因;30. 抑癌基因:也称为抗癌基因;抑癌基因的产物是抑制细胞增殖,促进细胞分化,和抑制细胞迁移,因此起负调控作用,抑癌基因的突变是隐性的也称抗癌基因;抑癌基因的产物是抑制细胞增殖,促进细胞分化,和抑制细胞迁移,因此起负调控作用,抑癌基因的突变是隐性的;31. 结构基因组学:是以全基因组测序为目标的基因结构研究,弄清楚基因组中全部基因的位置和结构,为基因功能的研究奠定基础;其主要内容就是制作高分辨率的人类基因组的遗传图和物理图,最终完成人类其他重要模式生物全部基因组DNA 序列测定;二、问答题1.以乳糖操纵子为模型解释原核生物转录水平的调控模式转录水平的调节——操纵子调控模式1操纵子的概念:操纵子是原核生物基因表达的协调控制单位,包括有结构基因、启动序列、操纵序列等;如:乳糖操纵子、色氨酸操纵子等;2乳糖操纵子的结构:乳糖操纵子包括调节基因I、一个操纵序列O、一个启动序列P以及单个结构基因Z、Y、A;其中调节基因I编码生成阻遏蛋白,后者与操纵序列结合;RNA聚合酶与启动序列结合;分解代谢物基因激活蛋白CAP也结合在操纵序列附近;结构基因Z、Y和A分别编码三个与乳糖代谢有关的酶,即:β-半乳糖苷酶,透酶和乙酰转移酶;这三个酶的基因作为一个整体由同一个调控区调节,以实现基因的协调表达;3其调节机制主要有正性和负性两种模式;①阻遏蛋白的负性调节:当没有乳糖时,调节基因表达生成阻遏蛋白,阻遏蛋白结合操纵子序列出,阻碍RNA结合酶与启动序列结合,抑制结构基因的转录启动,此时操纵子处于阻遏状态;当有半乳糖存在时,乳糖首先被转变成半乳糖,半乳糖则作为一种诱导剂与阻遏蛋白结合,诱发蛋白质构象改变,使阻遏蛋白从启动序列上解离下来,从而启动结构基因的转录,此时操纵子处于诱导状态;②CAP的正性调节:当没有葡萄糖时,cAMP浓度升高,与CAP结合,CAP进而结合在启动序列附近,从而进一步促进结构基因的转录;当有葡萄糖时,cAMP浓度降低,结合在启动序列附近的CAP减少,结构基因转录速率降低;③协调调节:实际情况下,上述两种调节方式是相辅相成、相互协调的;譬如:在无乳糖且有葡萄糖时,阻遏蛋白负性调节起作用,此时结构基因不被转录;在有乳糖且有葡萄糖时,阻遏蛋白负性调节不起作用,此时结构基因转录水平低;在有乳糖且无葡萄糖时,阻遏蛋白的抑制作用不解除,CAP正性调节被激活,此时结构基因的转录水平最高;2.生长因子的作用机制生长因子由不同的细胞的细胞合成后分泌,作用于靶细胞上的相应受体,这些受体有的是位于细胞膜上的,有的是位于细胞内部;生长因子与受体结合后,激活细胞内信号传递体系,产生相应的生物学作用;根据受体的分布和对生长因子不同的响应,生长因子是作用机制分为三种情况:①生长因子与具有酪氨酸蛋白激酶TPK 活性的跨膜受体结合,TPK 被活化,磷酸化相应蛋白质,产生生理效应;②与膜上受体结合,通过胞内信息传递,产生第二信使,是蛋白激酶活化,再磷酸化相应的效应蛋白质,这些被磷酸化的蛋白质再活化核内的转录因子,引发基因转录,达到调节生长与分化的作用;③与膜内受体结合,形成生长因子-受体复合物,进入胞核活化相关基因,促进细胞生长;3.常规PCRDNA①变性denature :模板DNA 经加热至95℃左右一定时间后,使模板DNA 双链或经PCR 扩增形成的双链DNA 解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②退火annealing 复性:模板DNA 经加热变性成单链后,将温度降至引物的Tm 值左右或以下55℃左右,引物与模板DNA 单链的互补序列配对结合,形成杂交链; ③延伸extension :DNA 模板-引物结合物在TaqDNA 聚合酶的作用下,以dNTP 为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链;以上三步为一个循环,约需2~4分钟,每一循环的产物作为下一个循环的模板,如此循环30次,大约2~3小时后,新生DNA片段理论上可达到2n-1个分子拷贝;4.定量PCR技术的基本原理基本原理:将荧光信号强弱与PCR扩增情况结合在一起,通过监测PCR反应管内荧光信号的变化来实时检测PCR反应进行的情况,PCR反应管内的荧光信号强度达到设定阈值所经历的循环数即Ct值与扩增的起始模板量进行准确的绝对和或相对定量;循环阈值cycle threshold,Ct是指在PCR扩增过程中,扩增产物的荧光信号达到设定的荧光阈值所经历的循环数;荧光阈值threshold一般是以PCR反应的前15个循环的荧光信号作为荧光本底信号baseline,缺省设置是3~15个循环的荧光信号的标准偏差的10倍;实际上就是荧光信号开始由本底信号进入指数增长阶段的拐点时的荧光信号强度;5.Sanger测序法的基本原理Sanger法也称双脱氧链末端终止法,是目前应用最为广泛的方法;基本原理:它巧妙地利用了DNA复制的原理,是利用ddNTP来代替常规的dNTP 作为底物进行DNA合成反应;在DNA合成时,一旦ddNTP参入到合成的DNA链中,由于ddNTP脱氧核糖的3'-位碳原子上缺少羟基而不能与下一位核苷酸的5'-位磷酸基之间形成3',5'-磷酸二酯键,从而使得正在延伸的DNA链在此ddNTP处终止;6.Southern印迹、Northern印迹的异同相同点:基本流程相似不同点:7.基因工程中如何选择载体基因工程选择载体的标准如下:①能自主复制②具有两个以上的遗传标记物,便于重组体的筛选和鉴定③有克隆位点外源DNA插入点,常具有多个单一酶切位点,称为多克隆位点④分子量小,以容纳较大的外源DNA8.重组DNA技术的基本步骤重组DNA技术的基本操作过程可形象的归纳为“分、切、接、转、筛”,即“目的基因的获取→克隆载体的选择和构建→外源基因与载体的连接→DNA导入受体细胞→重组体的筛选→克隆基因的表达”;分述如下:①目的基因的获取;可通过化学合成法、基因组DNA文库、cDNA文库、PCR等方法获取;②克隆载体的选择和构建;根据实验目的和操作基因的性质选择合适的载体和改建方法;③外源基因与载体的连接;将外援DNA通过DNA连接酶进行共价连接;④DNA导入受体细胞;重组DNA 分子导入相应宿主细胞后,随受体细胞生长、增殖而得以复制、扩增;⑤重组体的筛选根据载体体系、宿主细胞特性及外源基因在受体细胞表达情况,采取直接选择法和非直接选择法进行筛选,获得含有重组DNA分子的克隆;⑥克隆基因的表达;克隆的目的基因如果需要正确而大量表达有特殊意义的蛋白质,则需要建立相应的表达体系,包括表达载体的构建、受体细胞的建立及表达产物的分离、纯化等; 9.目前基因治疗采用的方法分为哪几种基因治疗的方法分为以下:①基因矫正,将致病基因的异常碱基进行纠正,而正常部分予以保留的基因治疗方法;②基因置换,用正常的基因通过体内基因同源重组,原位替换病变细胞内的致病基因,使细胞内DNA完全恢复正常状态的基因治疗方法;③基因增补,将目的基因导入病变或其他细胞,不去除异常基因,通过目的基因的非定点整合,使其表达产物补偿缺陷基因的功能或使原有的功能得以加强的基因治疗方法;④基因失活,将特定的序列导入细胞后,在转录或翻译水平阻断某些基因的异常表达的治疗方法;⑤自杀基因的应用,用某些病毒或细菌的基因所表达的酶能将对人体无毒或低毒的药物前体在人体细胞内转变为细胞毒性产物,从而导致携带该基因的受体细胞也被杀死,故称这类基因为“自杀基因”;10.基因治疗的基本过程基因治疗的基本过程包括:①治疗性基因的选择,选择对疾病有治疗作用的特定目的基因是基因治疗的首要问题;②基因载体的选择,目前使用的载体分病毒性载体和非病毒性载体两类,而一般临床多选用病毒性载体;目前被用作基因转移的病毒有逆转录病毒、腺病毒、腺相关病毒;③靶细胞的选择,根据受体细胞的不同,基因治疗可分为体细胞的基因治疗和生殖细胞的基因治疗,而目前基因治疗禁止使用生殖细胞,仅限于使用体细胞为靶细胞;④基因转移,如何有效地将外源基因导入受体细胞,是基因治疗研究的一个重要环节,可分为非病毒介导的基因转移和病毒介导的基因转移;⑤外源基因表达的筛检,一般利用载体中的标记基因对转染细胞进行筛检,再检测转化细胞中的标记基因表达情况;⑥回输体内,将治疗基因修饰的细胞以不同的方式回输体内以发挥治疗作用;11.人类基因组计划的基本任务及意义HCG内容包括人类基因组作图及序列分析,基因的鉴定、基因组研究技术的建立与创新、模式生物基因组作图和测序、信息系统的建立、存储及相应软件的开发、相关产业的开发等;HCG基本任务可用四张图谱来概括,即遗传图、物理图、转录图基因图、序列图;①遗传图:又称连锁图,是具有遗传多态性的遗传标记作为“位标”,遗传学距离为“图距”的基因组图;需要应用多态性标志——RFLP、VNTR、SNP;②物理图谱:是以一段已知核苷酸的DNA片段为“位标”,以DNA实际长度Mb或kb作为图距的基因组图;③5转录图:是以表达序列标记作为位标,实际上就是人类“基因图”的雏形,又称cDNA图或“表达序列图”;④序列图:也就是人类基因组核苷酸序列图,是分子水平上最高层次、最详尽的物理图;这四张图被誉为人类“分子水平上的解剖图”或“生命元素周期表”,可见其重要性;意义:①鉴定人类的全部基因,推动生物技术的进一步发展;②将把人类带入基因医学的新时代;③推动模式生物基因组的研究;④促进学科交叉与重组;12.什么是基因组学包括哪些内容基因组学于1986年被首次提出,以“人类基因组计划”为诞生标志,由“后基因组计划”的实施推动其发展的一门学科;基因组学的内容亚领域内容结构基因组学整个基因组的遗传制图、物理制图及DNA测序功能基因组学认识、分析整个基因组所包含的基因、非基因序列及其功能比较基因组学比较不同物种整个基因组,增强对各个基因组功能及发育相关性的认识13.蛋白质组学研究的主要内容及方法有哪些蛋白质组是指基因组表达的所有相应的蛋白质;研究细胞内全部蛋白质的组成及其活动规律的科学称为蛋白质组学;蛋白质组研究包括两个方面的内容:一是对蛋白质组成表达模式的研究,二是对蛋白质组功能模式的研究;前者主要采取双向凝胶电泳和质谱技术;后者采用酵母双杂交系统;。
分子生物学知识点汇总

分子生物学知识点汇总A:细胞与大分子1、生物界的三域学说及其划分的依据三界:真细菌、古细菌、真核生物依据:核糖体小亚基上RNA16s和18s的序列比较+比较其同源性水平2、原核细胞与真核细胞的主要区别3、真核细胞除了细胞核外,还有哪些细胞器具有自身的基因组DNA:线粒体+叶绿体4、Nucleoprotein 核蛋白:核酸与蛋白质的结合体如核糖体、端粒酶、RNase P5、Celluar differentiation 细胞分化:在个体发育中,由一个或一种细胞增殖产生的后代,在形态结构和生理功能上发生稳定性的差异的过程称为细胞分化B:蛋白质结构4、结构域 domain :生物大分子中具有特异结构和独立功能的区域基序Motif :二级结构元件组合或在蛋白质家族的相关成员中常发现的氨基酸序列同源的Homolog :起源一个古老的基因及随后的趋异进化,如球蛋白家族的相关多肽直向同源Orthlog :不同物种的具有相同功能、承担相同生化角色的蛋白质家族成员共生同源Paralog :进化不同但功能类似的蛋白(alpha 与belta 球蛋白) 类似物Analog :由趋同进化而得到的类似结构和功能的蛋白质,即由无关基因进化到产生具有相似结构和催化活性的蛋白质。
C :核算的性质2:磷酸二酯键phosphodiester linkage在DNA或RNA分子中,核苷酸通过一个磷酸基团与前一个核糖的5’-羟基和下一个核糖的3’-羟基的共价连接形成多聚物,该连接为磷酸二酯键。
4:为什么细胞中的DNA通常是负超螺旋的?负超螺旋易于解链,DNA复制、重组和转录都需要将两条链解开,负超螺旋利于这些功能的进行,而正超螺旋使双螺旋结构更紧密,双螺旋圈数增加,不易解链5:维持DNA和RNA二级结构稳定的主要力量是什么?主要是碱基对之间的堆积力其他少量的还有氢键和偶极矩6:碱性环境分别对DNA和RNA产生什么效应?为什么?Effect of alkaline 碱效应:强碱条件下可使DNA分子的碱基的互变异构态改变,影响特定碱基间氢键的作用,导致DNA双链解离,即DNA变性。
分子生物学总结知识点

分子生物学总结知识点(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分子生物学总结知识点分子生物学总结知识点篇一:分子生物学总结第一章绪论1、细胞学说1847年由德国科学家施莱登和施旺提出。
细胞学说的主要内容有:①细胞是有机体,一切动植物都是由单细胞发育而来,即生物是由细胞和细胞的产物所组成;②所有细胞在结构和组成上基本相似;③新细胞是由已存在的细胞分裂而来;④生物的疾病是因为其细胞机能失常。
2、分子生物学的概念:分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与核酸、蛋白质与蛋白质之间的相互作用的关系及其基因表达调控机理的学科。
3、中心法则1958年由克里克提出4、分子生物学的研究内容:a:DNA重组技术(基因工程)b:基因的表达调控c:生物大分子的结构和功能研究(结构分子生物学)d:基因组、功能基因组与生物信息学研究RNA复制逆转录蛋白质【名词解释】:1、同功tRNA:多个tRNA携带一种氨基酸,这些tRNA称为同功tRNA。
2、iRNA:即起始RNA,DNA合成的引物3、核酶:即具有催化作用的一类RNA分子。
4、端粒酶:是一种自身携带模板RNA的逆转录酶,催化端粒DNA的合成,能够在缺少DNA模板的情况下延伸端粒内3’端的寡聚核苷酸片段,包含两个活性位点,即逆转录酶活性和核酸内切酶活性。
5、反义核酸:是根据碱基互补原理,用人工合成或生物体自身合成的特定互补的DNA或RN段(或其化学修饰的衍生物),能够与目的序列结合,通过空间位阻效应或诱导RNase活性,在复制、转录、剪接、mRNA转运及翻译等水平,抑制或封闭目的基因的表达。
第二章核酸的结构与功能1、染色质的类型分为两种类型:常染色质和异染色质。
常染色质处于伸展状态,碱性染料着色浅而均匀;异染色质处于凝集状态,碱性染料着色较深。
2、染色质蛋白质分为两类:组蛋白和非组蛋白。
分子生物学知识点整理

分子生物学知识点整理1.基本分子生物学概念:基因、DNA、RNA和蛋白质是分子生物学的基本概念。
基因是一段DNA序列,负责编码产生RNA和蛋白质。
DNA是脱氧核糖核酸,由含有遗传信息的碱基序列组成。
RNA是核糖核酸,负责将DNA的信息转录成具体蛋白质的制作指令。
蛋白质是由氨基酸组成的大分子,负责细胞的结构和功能。
2.DNA的结构:DNA是双螺旋结构,由两条互相缠绕的链组成,这两条链通过碱基之间的氢键相互连接。
DNA的碱基包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。
3.DNA复制:DNA复制是细胞分裂的过程中,DNA双链被复制为两条相同的DNA双链。
这是生命的一个基本过程,确保每个新细胞都有完整的遗传信息。
DNA复制是由DNA聚合酶酶进行的,它们能够将新的碱基加到原有的DNA链上。
4.转录:转录是将DNA的信息复制成RNA的过程。
这个过程包括三个步骤:启动、延伸和终止。
在转录开始时,RNA聚合酶酶会识别DNA链上一个特定的启动位点,然后沿着DNA模板链向前延伸合成RNA链。
转录的终止是由特定的序列标志着的,一旦被识别,RNA聚合酶酶就会停止合成RNA。
5.翻译:翻译是将RNA的信息转化成蛋白质的过程。
这个过程涉及到tRNA和核糖体的作用。
tRNA具有与特定氨基酸结合的能力,并根据mRNA 模板上的密码子序列,将氨基酸逐个带入核糖体中合成蛋白质。
6.基因调控:基因调控是细胞内基因表达的调控机制,使细胞能够根据需要调整哪些基因的表达,以适应不同的环境条件。
这包括启动子、转录因子和RNA干扰等机制。
7.基因突变和遗传变异:基因突变是指在DNA链上发生的改变,可能导致蛋白质的结构和功能的改变。
遗传变异包括基因重组、基因扩增和基因缺失等,能够产生新的基因组和生物特征。
8.PCR:聚合酶链式反应(PCR)是一种用于扩增DNA片段的技术。
它涉及到短的引物,用于界定所需扩增的DNA片段,然后通过多次的加热和冷却循环,DNA被不断复制,产生大量的DNA片段。
分子生物学重点完整版

第一章绪论1953年,Watson和Crick提出双螺旋模型。
1983年,美国遗传学家McClintock由于在50年代提出并发现了可移动的遗传因子而获得诺贝尔生理学奖或医学奖。
第二章染色体与DNA染色体组成:(1)组蛋白:H1、H2A、H2B、H3、H4。
(2)非组蛋白(3)DNA(4)RNA染色体包装:①核小体:200bp左右DNA分子盘绕在H2A、H2B、H3、H4各两分子生成的八聚体外,H1位于核小体外。
7②螺线管:染色细丝盘绕成而成,每一个螺旋包含6个核小体。
6③超螺旋:30个30nm螺线管缠绕而成。
40④染色体:超螺旋圆筒进一步压缩。
5真核生物基因组特点:①基因组庞大;②基因组存在大量重复序列;③大部分为非编码序列;④转录产物为单顺反子;⑤断裂基因,有内含子结构;⑥存在大量顺式作用元件;⑦存在大量的DNA多样性,包括单核苷酸多态性和串联重复序列多态性;⑧具有端粒结构。
C值:生物单倍体基因组DNA的总量。
原核生物基因组特点:①结构简练;②存在转录单元;③有重叠基因。
DNA的一级结构:4种核苷酸的连接及其排列顺序,表示该DNA分子的化学构成。
DNA的二级结构:两条多核苷酸链反向平行盘绕所生成的双螺旋结构。
①右手螺旋:A-DNA:与B-DNA比大沟变窄,小沟变宽。
每圈螺旋11个碱基对B-DNA:是大多数DNA的构象。
相邻碱基对平面之间的距离为0.34nm,即顺中心轴方向,每个0.34nm有一个核苷酸,以3.4nm为一个结构重复周期,双螺旋的直径为2.0nm。
②左手螺旋:Z-DNA:每圈螺旋含12对碱基,大沟平坦,小沟深而窄,核苷酸构象順反相间,螺旋骨架成呈Z字形。
DNA的变性:DNA溶液温度接近沸点或者pH较高时,DNA双链的氢键断裂,最后完全变成单链的过程。
复性是热变性的DNA经缓慢冷却,从单链恢复成双链的过程。
Tm值:DNA在260nm处吸光度最大。
将吸光度相对温度变化绘制曲线,吸光度增大到最DNA的解链温度(熔点)。
分子生物学总结知识点

分子生物学总结知识点分子生物学总结知识点在日常的学习中,大家都背过各种知识点吧?知识点就是掌握某个问题/知识的学习要点。
掌握知识点是我们提高成绩的关键!下面是店铺精心整理的分子生物学总结知识点,仅供参考,欢迎大家阅读。
分子生物学总结知识点11、生物体生命活动的物质基础是:组成生物体的各种化学元素和化合物。
2、大量元素: C、H、O、N、P、S、K、Ca、Mg微量元素:Fe、Mn、B、Zn、Cu、Mo、Cl、Ni (生物体必不可少的元素,但需要量很少)基本元素:C (也是生命的核心元素)主要元素:C、H、O、N、P、S (6种,占生物体总量的97%以上)矿质元素:N、P、S、K、Ca、Mg、Fe、Mn、B、Zn、Cu、Mo、Cl、Ni (14种)(糖类:C、H、O;脂肪:C、H、O;血红蛋白:C、H、O、N、Fe ;叶绿素:C、H、O、N、Mg;甲状腺激素:C、H、O、N、I;核酸:C、H、O、N、P; ATP: C、H、O、N、P;纤维素:C、H、O)3、自然界中含量最多的元素是O;占人体细胞干重最多的元素是C,占细胞鲜重最多的元素是O。
4、C、H、O、N四种元素含量比较:鲜重:O C H N;干重:C O N H5、组成生物体的化学元素的种类大体相同,但含量相差很大。
6、生物界与非生物界具有统一性:组成细胞的元素在无机自然界都可以找到,没有一种是细胞所特有的。
生物界与非生物界具有差异性:细胞与非生物相比,各种元素的含量又大不相同。
7、还原糖(葡萄糖、果糖、麦芽糖) + 斐林试剂—→(Cu2O)砖红色沉淀(条件是水浴加热)脂肪 + 苏丹Ⅲ—→橘黄色(或脂肪 + 苏丹Ⅳ—→红色)(使用50%的酒精的作用:洗去浮色)蛋白质 + 双缩脲试剂—→紫色反应(不需加热;若反应后颜色不为紫色,而为蓝色的原因:可能是加入的CuSO4溶液过多,生成大量的Cu(OH)2遮盖所产生的紫色)8、斐林试剂要现配现用,必须将甲液(0、1g/ml的NaOH)和乙液(0、05g/ml的CuSO4)先等量混匀后使用;双缩脲试剂使用时应先向蛋白质中加甲液(0、1g/ml的NaOH),混匀后再加乙液(0、01g/ml的CuSO4)9、在可溶性还原糖、脂肪、蛋白质鉴定中要用显微镜的是:脂肪的鉴定;需要加热的是:还原糖的鉴定;不发生化学反应的是:脂肪的鉴定。
分子生物学的知识点

基因的表达调控是分子生物学的重要研究内容之一。它包括转录调控和翻译调控两个层次。转录调控通过转录因子的结合来调节基因的转录水平,而翻译调控则通过调控mRNA的翻译过程来控制蛋白质的合成。
5.基因突变和遗传疾病
基因突变是指基因序列发生改变,它可以导致基因功能的改变或丧失。一些基因突变与遗传疾病的发生有关,如遗传性疾病、癌症等。通过研机制,并为疾病的预防和治疗提供理论基础。
2. RNA的结构和功能
RNA是DNA的转录产物,也是生物体内的重要分子。它由核苷酸组成,包括腺苷酸、鸟苷酸、胸苷酸和尿苷酸。RNA的结构包括mRNA、tRNA和rRNA等不同类型,它们分别参与基因的转录、翻译和蛋白质合成等过程。
3.蛋白质的结构和功能
蛋白质是生物体内最重要的分子之一,它由氨基酸组成,通过肽键连接成链状结构。蛋白质的结构包括一级结构、二级结构、三级结构和四级结构等不同层次,它们决定了蛋白质的功能和性质。蛋白质的功能包括酶的催化作用、结构支持、信号传导和免疫防御等。
6. PCR技术和基因克隆
PCR技术是分子生物学中常用的一种技术,它可以在体外扩增DNA片段。PCR技术的原理是通过DNA的复制过程,使用引物选择性地扩增目标DNA片段。基因克隆是指将DNA片段插入到载体中并复制出多个相同的DNA分子。基因克隆技术在基因工程和生物医学研究中有着广泛的应用。
7.基因组学和蛋白质组学
基因组学是研究基因组的科学,它包括基因的组成、结构和功能等方面的研究。蛋白质组学是研究蛋白质组的科学,它包括蛋白质的组成、结构和功能等方面的研究。基因组学和蛋白质组学的发展,为我们更好地理解生物体的功能和调控机制提供了重要的工具和方法。
总结起来,分子生物学是研究生物体内分子的结构、功能和相互作用的学科。它涉及到DNA、RNA、蛋白质等生物分子的研究,对于理解生命的本质和生物体的功能具有重要意义。通过对分子生物学的学习和研究,我们可以更好地了解生物体的基本结构和功能,为生物医学研究和生物技术的发展提供基础。
分子生物学知识点

分子生物学知识点1、分子生物学:研究核酸等生物大分子的功能、形状结构等特点及其重要性和规律性的科学,是人类从分子水平上真正掀开生物世界的隐秘,由被动的适应自然界转向主动地改造和重组自然界的基础学科2、基因:是合成一种功能蛋白或RNA分子所必需的全部DNA序列。
一个典型的真核基因包括:编码序列-外显子;内含子;5’端和3’端非翻译区UTR;调控序列3、基因组:某一特定生物体的整套遗传物质的综合。
基因组的大小用全部的DNA的碱基对总数表示5、分子生物学进展史1869年Miesher首次从莱茵河鲑鱼精子中提取了DNA。
1910年,德国科学家Kossel第一个分离了腺嘌呤、胸腺嘧啶和组氨酸。
1953年,Watson和Crick提出DNA反向平行双螺旋结构模型,为充分说明遗传信息的传递规律铺平了道路。
1961年,法国科学家Jacob和Monod提出并证实了操纵子作为调剂细菌细胞代谢的分子机制。
此外,他们还首次提出存在一种与染色体DNA序列相互补、能将编码在染色体DNA上的遗传信息带到蛋白质合成场所并翻译产生蛋白质的信使核糖核酸。
这一学说对分子生物学的进展起到了十分重要的作用。
1968年,美国科学家Nirenberg由于在破译DNA遗传密码方面的奉献,与Holley和Khorana 等人分享了诺贝尔生理医学奖。
Holley的功绩在于阐明了酵母丙氨酸tRNA的核苷酸序列,并证实所有tRNA 具有相似结构,而Khorana第一个合成了核苷酸分子,同时人工复制了酵母基因6、中心法那么内容DNA是自身复制的模板DNA通过转录作用将遗传信息传递给中间物质RNARNA通过翻译作用将遗传信息表达成蛋白质在某些病毒中,RNA也能够自我复制,同时还发觉在一些病毒蛋白质的合成过程中,RNA能够在逆转录酶的作用下合成DNA.7、分子生物学的3条差不多原理:构成生物体各类有机大分子的单体在不同生物中差不多上相同的;生物体内一切有机大分子的构成都遵循共同的规那么;某一特定生物体所拥有的核酸及蛋白质分子决定了它的属性。
分子生物学重点知识总结

分子生物学重点知识总结分子生物学一、名词解释1.ORF答:ORF是XXX的缩写,即开放阅读框架。
在DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码列,叫做一个开放阅读框架。
2.结构基因答:结构基因(structural genes)可被转录形成mRNA,并翻译成多肽链,构成各种结构蛋白质或催化各种生化反应的酶和激素等。
3.断裂基因答:基因是核酸分子中贮存遗传信息的遗传单位,一个基因不仅仅包括编码蛋白质或RNA的核酸序列,还包括保证转录所必需的调控序列、位于编码区5'端与3'端的非编码序列和内含子。
真核生物的结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因(split gene)。
4.选择性剪接答:选择性剪接(也叫可变剪接)是指从一个mRNA前体中经由过程不同的剪接体式格局(选择不同的剪接位点组合)发生不同的mRNA剪接异构体的过程,而终究的蛋白产物会表现出不同大概是相互拮抗的功能和布局特征,大概,在相同的细胞中由于表达程度的不同而招致不同的表型。
5.C值答:基因组的大小通常以其DNA的含量来表示,我们把一种生物体单倍体基因组DNA的总量成为C值(C value)。
6.生物大分子答:生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。
常见的生物大分子包括蛋白质、核酸、脂类、糖类。
7.酚抽提法答:酚抽提法最初于1976年由Stafford及其同事提出,经由过程改良,以含EDTA、SDS及无DNA酶的RNA酶裂解缓冲液破裂细胞,经蛋白酶K处理后,用pH8.0的Tris饱和酚抽提DNA,重复抽提至一定纯度后,按照不同需要进行透析或沉淀处理获得所需的DNA样品。
8.凝胶过滤层析答:凝胶过滤层析也称分子排阻层析或分子筛层析,利用凝胶分子筛对大小、形状不同的分子进行层析分离,是根据分子大小分离蛋白质混合物最有效的方法之一。
分子生物学知识点归纳

分子生物学知识点归纳1.DNA的结构和功能:DNA是生物体内贮存遗传信息的分子,由磷酸、五碱基、脱氧核糖组成。
DNA以双螺旋结构存在,通过序列编码生物体的遗传信息,并在细胞分裂中复制和传递。
2.RNA的结构和功能:RNA是将DNA信息翻译为蛋白质的中间分子,有多种类型,包括信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA (rRNA)。
RNA具有与DNA类似的结构,但是鸟嘌呤(G)和胸腺嘧啶(T)被腺嘌呤(A)和尿嘧啶(U)所取代。
3.基因表达:基因表达是指将DNA中的遗传信息转录成RNA,然后翻译成蛋白质的过程。
这个过程包括转录、剪接、RNA修饰、起始和终止等多个步骤。
基因表达过程中的调控对于维持生物体的正常功能至关重要。
4.蛋白质合成:蛋白质合成是指RNA翻译成蛋白质的过程。
这个过程包括译码、蛋白质折叠和修饰。
蛋白质的结构和功能由其氨基酸序列决定,但结构和功能的形成还受到其他因素的调控。
5.基因组学:基因组学是研究生物体基因组的学科,包括基因组的结构、功能和演化。
随着高通量测序技术的发展,基因组学成为了分子生物学的前沿领域。
6.分子遗传学:分子遗传学是研究遗传信息传递和表达的分子机制的学科。
它研究遗传物质的结构、复制、易位、突变和修复等,以及遗传信息的传递和表达的分子级机制。
7.基因调控:基因调控是指细胞内基因表达的调节过程。
这个过程包括转录因子与DNA结合、组蛋白修饰、DNA甲基化等多个调控机制。
基因调控决定了细胞的发育、分化和对环境刺激的响应。
9.蛋白质相互作用和信号传导:蛋白质相互作用是指蛋白质之间的物理或化学交互作用。
这些相互作用对于细胞信号传导、代谢调控和细胞活动的协调起着重要作用。
10.DNA修复和细胞凋亡:DNA修复是细胞内修复DNA损伤的过程,以维持遗传稳定性。
细胞凋亡是指细胞主动性死亡的过程,常常发生在DNA 严重损伤和细胞失控增殖时。
以上只是分子生物学的一些知识点,这个领域还有很多其他的重要概念和研究方向,如非编码RNA、表观遗传学和细胞信号转导等。
《分子生物学》知识要点汇总

《分子生物学》知识要点汇总1. 基因表达:转录+翻译。
2. 时间特异性、空间特异性,管家基因(组成性表达)3. 转录起始(基本控制点)4. 原核与真核区别:基因表达原核真核启动子o 因子识别-35 区TTGACA-10 区TATAAT -25 区TATA 盒TF- ⅡD 决定了聚合酶识别特异性特点操纵子模型具有普遍性顺式作用原件具有普遍性机制主要是负性调节(阻遏调节)主要是正性调节(诱导调节)结果转录衰减染色体结构改变原核生物:单复制子,多顺反子真核生物:多复制子,单顺反子1. 得:染色体分离、化学合成、基因组文库、cDNA 法、PCR 法。
2. 选:克隆载体(质粒、自我复制),表达载体(大肠杆菌)3. 接:DNA 连接酶,黏性末端连接准确性最高。
4. 转:重组质粒导入宿主细胞为转化,重组噬菌体导入大肠杆菌为转染。
5. 筛:载体遗传标志、标志补救、序列特异性(分子杂交、PCR、测序、RE 酶切)、亲和筛选1. RE:细菌产生,识别回文结构,切割双链DNA 得到黏性末端。
2. DNA 连接酶:目的基因+载体重组。
2. DNApol I 的大片段(Klenow):cDNA→dsDNA,标记3´-端。
3. 逆转录酶:mRNA→cDNA。
5. 多聚核苷酸激酶:5´-OH 末端磷酸化作标记探针。
6. 末端转移酶:3´-OH 末端加尾。
7. 碱性磷酸酶:切除末端磷酸基团。
1. 正常。
2. 获得启动子或增强子、染色体易位、基因扩增、点突变。
3. 产物:类别名称生长因子(本质是多肽)sis(过度表达)、int-2生长因子受体(本质蛋白质) fms、kit、her-2/erb-b2 (扩增)、EGFR/erb-b1细胞信号转导蛋白膜结合酪氨酸激酶src、abl(转位)细胞内酪氨酸激酶TRK细胞内丝/苏氨酸激酶 raf膜GTP 结合蛋白ras(点突变)转录因子fos、jun、myc(转位)细胞周期蛋白cyclin D4. 与肿瘤相关。
分子生物学知识点归纳

分子生物学知识点归纳分子生物学是现代生物学中的一个重要分支,它主要研究生物体内分子的结构、功能和相互作用等基本问题。
以下是分子生物学中的一些常见知识点。
DNADNA(脱氧核糖核酸)是生物体内负责遗传信息传递的分子,是生命存在的基础。
DNA的结构分为单链和双链结构,双链结构分为A-DNA、B-DNA和Z-DNA三种构象。
DNA中的碱基有四种,分别是腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。
腺嘌呤和鸟嘌呤构成了DNA的双螺旋结构,胸腺嘧啶和胞嘧啶则构成了DNA的核内部分。
DNA的重要功能是存储基因信息,即控制生物特征的遗传信息。
RNARNA(核糖核酸)是一种拥有糖基和碱基的单链分子,属于生物体内的重要机体,是生物合成蛋白质过程中的基本功能分子。
RNA分为多种类型,包括mRNA、rRNA和tRNA等。
mRNA是信使RNA,它负责将DNA中的遗传信息转录为RNA序列,再将其翻译为蛋白质序列。
rRNA是核糖体RNA,负责在蛋白质合成过程中构成蛋白质的核心部分。
tRNA是转运RNA,它将氨基酸与在mRNA上的残基进行配对,参与蛋白质的组装。
RNA的重要功能是在蛋白质的合成过程中转录、翻译和供应氨基酸。
蛋白质蛋白质是由氨基酸链组成的高分子,是生物体内最为重要的一类分子。
蛋白质的结构分为四级结构:一级结构是氨基酸序列,二级结构是α-螺旋和β-折叠,三级结构是折叠多肽链,四级结构是由多条多肽链组成的复合酶。
蛋白质的功能多种多样,包括结构、运输、调节、酶催化等。
其中,酶是蛋白质中数量最多的一类,负责生物体内的代谢和合成等过程。
基因调控基因调控是指在基因表达过程中,一系列机制对基因表达的过程进行调节。
基因调控有多种机制,包括转录因子调节、DNA甲基化、组蛋白修饰等。
转录因子是一类蛋白质,能够在基因启动子区域上结合并调控基因的转录。
DNA甲基化是一种在基因启动子区域甲基化的化学修饰,能够影响基因的转录。
分子生物学知识点整理

分子生物学知识点整理1.基因结构与功能:基因是编码蛋白质的单位,基因通常由DNA组成。
基因在转录过程中产生mRNA,然后通过翻译过程合成蛋白质。
基因还可通过调控元件控制其表达水平。
2.DNA复制:DNA复制是生物体维持基因遗传的关键过程。
在DNA复制过程中,DNA双链被解旋,然后酶类将合适的核苷酸加到模板链上,形成两条新的DNA双链。
DNA复制是半保守性的,意味着每个新生成的DNA分子含有一条模板链和一条新合成的链。
3.转录与翻译:转录是将DNA的信息转录成mRNA的过程。
在转录过程中,RNA聚合酶将mRNA合成出来。
翻译是将mRNA的信息翻译成蛋白质的过程。
在翻译过程中,mRNA被核糖体翻译出蛋白质。
4.蛋白质结构与功能:蛋白质是生物体内的重要分子,它们具有多种结构和功能。
蛋白质的结构通常包括四级结构,即原始结构、α-螺旋和β-折叠的二级结构、特定的三级结构和蛋白质复合物的四级结构。
蛋白质的功能取决于它的结构,例如,酶是催化反应的蛋白质,抗体是免疫系统的重要组成部分。
5.基因调控:基因调控是通过一系列的转录因子、启动子、增强子和抑制子等调控元件控制基因表达的过程。
转录因子与DNA结合,可以促进或抑制RNA聚合酶的结合和转录。
6.基因突变与重组:基因突变是指DNA序列中的任何变化,例如点突变、插入、缺失和倒位等。
基因重组是指DNA发生重组,导致新的基因组合。
突变和重组对物种的遗传多样性和进化起着重要作用。
7.DNA修复与基因组稳定性:DNA会受到内部和外部因素的损害,例如紫外线、化学物质和代谢产物等。
细胞通过DNA修复机制来修复这些损伤,以维持基因组的稳定性。
8.分子遗传学与细胞周期:分子遗传学研究基因的遗传传递和表达的过程。
细胞周期是一系列有序的细胞分裂和生长阶段。
9.基因组学与蛋白质组学:基因组学研究整个基因组的结构和功能;蛋白质组学研究蛋白质组的结构和功能。
这两个领域的发展对于了解生物体的整个基因和蛋白质组合具有重要意义。
基础分子生物学知识点总结

基础分子生物学知识点总结一、细胞结构与功能1. 细胞膜细胞膜是细胞的外层膜状结构,由脂质和蛋白质构成。
它在细胞中的作用是保护细胞内部结构,控制物质的进出,并参与细胞间相互作用。
2. 细胞核细胞核是细胞内的一种重要细胞器,包含遗传物质DNA和RNA等。
细胞核的主要功能是储存遗传信息,调控基因表达,并参与细胞分裂。
3. 线粒体线粒体是细胞内的能量中心,参与细胞内的氧化还原反应,生成ATP分子,提供细胞所需的能量。
4. 端粒端粒是染色体末端的一种特殊结构,它在细胞分裂过程中保护染色体的稳定性,对细胞的寿命和衰老起重要作用。
5. 液泡液泡是细胞内的一种囊泡结构,内部含有细胞液和可溶性物质,参与细胞代谢和废物的储存与排泄。
6. 高尔基体高尔基体是细胞内的一种细胞器,主要参与细胞内物质的合成、运输和改造,是细胞分泌的重要场所。
7. 酶酶是一种生物催化剂,可以加速生物化学反应的进行,不参与反应本身的化学性质。
在细胞内,酶是细胞内代谢反应的催化剂,起着十分重要的作用。
8. 细胞骨架细胞骨架是由蛋白质构成的细胞内骨架结构,提供细胞形状的支持,维持细胞内器官的位置和运动,参与细胞的分裂和运输。
9. 细胞质细胞质是细胞内由细胞膜包围的一种基质结构,包含细胞器和细胞液等,是细胞内的主要活动场所。
10. 核糖体核糖体是细胞内的一种参与蛋白质合成的细胞器,含有rRNA和蛋白质,是蛋白质翻译的场所。
二、基因结构和功能1. DNADNA是细胞内的一种重要遗传物质,它包含遗传信息,可以编码生物体的形态和功能;2. RNARNA是DNA的合成产物,主要包括mRNA、tRNA和rRNA等,参与蛋白质的合成和翻译过程。
3. 基因基因是DNA表型表达和遗传的基本单位,是细胞内遗传信息的载体,负责编码蛋白质的合成。
4. 基因表达基因表达是指基因产生相应功能蛋白质的过程,包括转录和翻译两个过程。
5. 转录转录是DNA向RNA的过程,包括启动、延伸和终止三个阶段,是基因表达的第一步。
分子生物学详细知识点

分子生物学详细知识点1.DNA和RNA:DNA(脱氧核糖核酸)和RNA(核糖核酸)是生物体内的两种核酸,DNA是多聚核苷酸的长链,包含编码基因信息,RNA是DNA的转录产物,在蛋白质合成中起着重要作用。
2.基因表达调控:基因表达调控是指在细胞中控制基因转录和翻译的过程。
包括转录因子的结合、启动子的甲基化、组蛋白修饰等。
3.蛋白质合成:蛋白质合成是指通过翻译过程将mRNA上的信息编码转化为氨基酸序列的蛋白质。
主要包括mRNA的翻译、氨基酸激活、核糖体的结合等步骤。
5. PCR技术:聚合酶链式反应(Polymerase Chain Reaction,PCR)是一种体外扩增DNA的方法,通过反复循环的变性、退火和延伸步骤,迅速扩增目标DNA序列。
6.基因突变:基因突变是指DNA序列的改变,包括点突变、插入和缺失等。
可以导致蛋白质的结构和功能的改变,从而影响生物体的表型。
7.基因组学:基因组学是研究基因组结构、功能和演化的学科。
包括基因组测序、基因注释、功能基因组学等内容。
8.蛋白质结构与功能:蛋白质的结构决定其功能,分子生物学研究了蛋白质的二级结构、三级结构和四级结构等方面,以及蛋白质与其他分子(如DNA、RNA、小分子)的相互作用。
9.克隆基因和表达蛋白:分子生物学通过克隆目标基因,将其插入表达载体中,转化至宿主细胞中,使目标基因在宿主中表达,并得到目标蛋白质。
10.分子进化:分子进化研究基因组的演化和多样性。
包括跨物种比较基因组、遗传多态性、分子标记等内容。
11. RNA干扰:RNA干扰是一种通过RNA分子抑制目标基因表达的现象。
包括小干扰RNA(siRNA)和微小RNA(miRNA),通过与mRNA结合形成双链结构,进而降解或抑制mRNA的翻译。
通过以上的介绍,可以看出分子生物学可以研究生命体内分子的结构、功能和相互作用等方面,对于深入了解生命现象的本质和基础具有重要意义。
分子生物学知识点

分子生物学知识点分子生物学是生物学的一个重要分支,研究生物体内分子的结构、功能和相互作用等方面的知识。
本文将介绍分子生物学的几个重要知识点,包括基因、DNA复制、蛋白质合成、转录与翻译、基因调控和突变等。
一、基因基因是生物遗传信息的基本单位,是指能够编码蛋白质或功能RNA的DNA片段。
基因分为编码基因和非编码基因两类。
编码基因是指能够直接转录成mRNA并翻译成蛋白质的基因,而非编码基因则是指不具备编码蛋白质能力的基因,其转录产物主要是功能RNA。
二、DNA复制DNA复制是指在细胞分裂过程中,DNA分子能够通过互补配对原则进行复制的过程。
DNA复制是生物体遗传信息传递的基础,也是细胞分裂和繁殖的重要过程。
DNA复制的关键酶是DNA聚合酶,它能够在模板DNA链上合成新链。
三、蛋白质合成蛋白质合成是指在细胞中将mRNA上的遗传信息翻译成蛋白质的过程。
蛋白质合成包括转录和翻译两个过程。
转录是指在细胞核内将DNA上的遗传信息转录成mRNA的过程,而翻译则是在核糖体上将mRNA上的遗传信息翻译成氨基酸序列的过程。
四、转录与翻译转录是指在细胞核内,由RNA聚合酶将DNA模板上的遗传信息转录成mRNA的过程。
转录分为初始化、链式生长和终止三个阶段。
翻译是指在核糖体上将mRNA上的遗传信息翻译成氨基酸序列的过程。
翻译过程中需要使用到tRNA和rRNA等辅助分子。
五、基因调控基因调控是指在生物体内控制基因表达的过程。
基因调控包括转录水平的调控和转录后水平的调控两个层次。
转录水平的调控主要涉及到转录因子和启动子区域的结合,以及染色质构象的调整等。
转录后水平的调控则主要包括RNA剪接、RNA修饰和RNA降解等过程。
六、突变突变是指生物体遗传信息发生永久性改变的现象。
突变可以分为基因突变和染色体突变两类。
基因突变是指基因上的DNA序列发生改变,包括点突变、插入突变和缺失突变等。
染色体突变是指染色体上的结构发生改变,包括染色体缺失、染色体断裂和染色体重排等。
分子生物知识点总结

分子生物知识点总结1. DNADNA(脱氧核糖核酸)是生物体内存储遗传信息的一种生物分子。
DNA分子由磷酸、五碱基、核糖和脱氧核糖等部分组成。
DNA的功能主要包括两个方面:遗传物质和蛋白质合成。
DNA的双螺旋结构由Watson和Crick在1953年提出,并由此得到了诺贝尔奖。
通过基因复制,DNA可以在细胞分裂时实现自我复制,确保遗传信息的传递。
2. RNARNA(核糖核酸)是存在于细胞内的一种核酸分子。
它在生物体内主要担负信息传递、蛋白质合成和基因调控等功能。
RNA分子与DNA有很多相似之处,但也有很多独特的结构和功能。
RNA分子在翻译过程中负责传递DNA上的遗传信息,并将其转化成蛋白质序列。
3. 蛋白质蛋白质是生物体内最基本的大分子,也是一种最为复杂的生化分子。
蛋白质在生物体内担任着多种不同的功能,包括酶的催化作用、结构支持、运输作用、调节功能等。
蛋白质的合成是通过翻译过程实现的,翻译将mRNA上的信息转化为氨基酸序列,后者进而折叠成特定的三维结构,从而体现出蛋白质特定的功能和生物学意义。
4. 基因组基因组是指生物体内全部基因的总和,既包括编码基因,也包括非编码序列。
基因组学是对基因组进行研究的学科,主要研究基因组的结构、功能和调控。
研究发现,不同物种之间的基因组具有很大的相似性,但也存在着显著的差异。
人类基因组计划的开展将有助于我们更深入地了解基因组的组成和功能。
5. 克隆技术克隆技术是指通过人工手段将生物体的某一部分分离出来,并培养出完整的个体。
其中最重要的技术是核移植技术,它包括质体移植、细胞核移植和胚胎分裂等技术手段。
克隆技术的应用,既有助于生物学研究的深入,也对农业、医学等领域有着重要的应用价值。
6. PCR技术PCR(聚合酶链式反应)技术是一种重要的核酸扩增技术,它可以在体外模拟DNA的复制过程,以此扩增DNA片段。
PCR技术的应用范围非常广泛,包括基因分型、疾病诊断、法医学鉴定等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子生物学1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。
2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。
3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。
4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA 的甲基化。
甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用就是对自身DNA产生保护作用。
真核生物中的DNA甲基化则在基因表达调控中有重要作用。
真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’、5.CG岛:基因组DNA中大部分CG二核苷酸就是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。
“CG”岛特点就是G+C含量高以及大部分CG二核苷酸缺乏甲基化。
6.DNA双螺旋结构模型要点:(1)DNA就是反向平行的互补双链结构。
(2)DNA双链就是右手螺旋结构。
螺旋每旋转一周包含了10对碱基,螺距为3、4nm、 DNA 双链说形成的螺旋直径为2 nm。
每个碱基旋转角度为36度。
DNA双螺旋分子表面存在一个大沟与一个小沟,目前认为这些沟状结构与蛋白质与DNA间的识别有关。
(3)疏水力与氢键维系DNA双螺旋结构的稳定。
DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。
7.核小体的组成:染色质的基本组成单位被称为核小体,由DNA与5种组蛋白H1,H2A,H2B,H3与H4共同构成。
各两分子的H2A,H2B,H3与H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。
核小体的核心颗粒之间再由DNA与组蛋白H1构成的连接区连接起来形成串珠样结构。
8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。
9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。
从一条mRNA只能翻译出一条多肽链。
10.多顺反子(polycistron): 原核生物具有操纵子结构,几个结构基因转录在一条mRNA链上,因而转录物为多顺反子。
每个顺反子分别翻译出各自的蛋白质。
11.原核生物mRNA结构的特点:(1) 原核生物mRNA往往就是多顺反子的,即每分子mRNA带有几种蛋白质的遗传信息。
(2)mRNA 5‘端无帽子结构,3‘端无多聚A尾。
(3)mRNA一般没有修饰碱基。
12.真核生物mRNA结构的特点:(1)5‘端有帽子结构。
即7-甲基鸟嘌呤-三磷酸鸟苷m7GpppN。
(2)3‘端大多数带有多聚腺苷酸尾巴。
(3)分子中可能有修饰碱基,主要有甲基化。
(4)分子中有编码区与非编码区。
14.tRNA的结构特点(1)tRNA就是单链小分子。
(2)tRNA含有很多稀有碱基。
(3)tRNA的5‘端总就是磷酸化,5’末端核苷酸往往就是pG、(4)tRNA的3‘端就是CCA-OH序列。
就是氨基酸的结合部位。
(5)tRNA的二级结构形状类似于三叶草,含二氢尿嘧啶环(D环)、T环与反密码子环。
(6)tRNA的三级结构就是倒L型。
D环与T环在L的拐角上。
15.rRNA(1)rRNA就是细胞内含量最丰富的RNA,它们与核糖体蛋白共同构成核糖体,后者就是蛋白质合成的场所。
(2) 核糖体与rRNA一般都用沉降系数S表示大小。
原核生物核糖体的沉降系数为70S,由50S与30S两个大小亚基组成,30S小亚基含有16SrRNA与21种蛋白质。
50S大亚基含有23S与5SrRNA以及34种蛋白质。
真核生物沉降系数为80S,由大小亚基组成。
40S小亚基含有18SrRNA与30多种蛋白质。
60SrRNA含有5S、5、8S与28SrRNA 以及大约45种蛋白质。
16.核酶(ribozyme):某些RNA分子能催化自身或其她RNA分子进行化学反应,即具有酶样的催化活性,这类具有催化活力的RNA称为核酶。
核酶分为3类:(1) 异体催化的剪切型。
(2)自体催化的剪切型 (3)内含子的自我剪切型。
17.核内不均一RNA(hnRNA):真核生物转录生成的mRNA前体即为hnRNA。
这类mRNA前体必须经过一系列的加工处理才能变成成熟的mRNA。
加工过程的主要环节包括:(1)5‘端加帽(2)3’端加尾 (3)内含子的切除与外显子的连接 (4)分子内部的甲基化修饰 (5)核苷酸序列的编辑作用。
18.miRNA:就是一种单链小分子RNA,广泛存在于真核生物中,就是一组不编码蛋白质的短序列RNA,其特点就就是高度的保守性、时序性与组织特异性。
研究表明miRNA可能决定组织与细胞的功能特异性,也可能参与了复杂的基因调控,对组织的发育起重要作用。
19.siRNA:小干扰RNA。
就是人工合成的短的双链RNA,它可抑制细胞内特定基因的表达,导致转录后基因失活。
siRNA就是RNAi的重要工具。
20.反义RNA:碱基序列正好与有意义mRNA互补的RNA称为反义RNA。
这类RNA也就是单链RNA,可与mRNA配对形成双链,最终抑制mRNA作为模板进行翻译,这就是反义RNA主要的调控功能。
21.顺式作用元件(cis-acting element):真核生物基因中的调控序列被称为顺式作用元件,包括:启动子与上游启动子元件,增强子,反应元件,Poly(A)加尾信号。
22.增强子(enhancer):就是一段短的DNA序列,其中含有多个作用元件,可以特异性与转录因子结合,增强基因的转录活性。
增强子可以位于基因的任何位置,增强子的功能与其位置与方向无关。
23.基因:就是核酸分子中贮存遗传信息的遗传单位,就是指贮存有功能的蛋白质多肽链或RNA序列信息及表达这些信息所必需的全部核苷酸序列。
一个基因不仅仅包括编码蛋白质肽链或RNA的核酸序列,还包括保证转录所必需的调控序列及位于编码区5‘端上游的非编码序列,内含子与位于编码区3’端下游的非编码序列。
24.基因组:泛指一个细胞或病毒的全部遗传信息。
在真核生物体中,基因组就是指一套完整单倍体DNA与线粒体DNA的全部序列,既包括编码序列,也包括非编码序列。
25.病毒基因组包括:单链正股RNA,单链负股RNA,双链RNA,双链DNA与单链正股DNA。
26.SARS冠状病毒属于:单链正股RNA病毒。
逆转录病毒属于:单链正股RNA病毒。
27.逆转录病毒基因组包括三个结构基因:gag、pol与env。
分别编码:核心蛋白、逆转录酶与膜蛋白。
28.操纵子(operon):就是指数个功能上相关联的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子与操纵序列)与下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺反子。
29.质粒:就是存在于细菌染色体之外的、具有自主复制能力的环状双链DNA分子。
30.质粒的不相容性:具有相同复制起始位点与分配区的两种质粒不能共存于一个宿主菌,这种现象称为质粒的不相容性。
31.转座因子:既可移动的基因成分,就是指能在一个DNA分子内部或两个DNA分子之间移动的DNA片段。
原核生物的转座因子包括:插入序列、转座子与Mu噬菌体。
32.插入序列: 就是一类较小的没有表型效应的转座因子,由一个转位酶基因及两侧的反向重复序列组成。
33.转座子:就是一类较大的可移动成分,除有关转座的基因外,至少带有一个与转座作用无关的并决定宿主菌遗传性状的基因。
34.断裂基因:真核生物的结构基因,由若干个编码区与非编码区互相间隔而又连续镶嵌而成,去除编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质这些基因称为断裂基因。
35.snRNA:核内小RNA,分子中尿嘧啶含量最丰富。
snRNA与核内蛋白质组成小分子核糖核蛋白体,作为RNA剪接的场所。
36.启动子:能够被RNA聚合酶识别并结合并起始转录的核苷酸序列。
典型的启动子包括TATA盒,CAAT盒与GC盒。
37.反应元件:一些信息分子的受体被细胞外信息分子激活后,能与特异的 DNA序列结合,调控基因的表达。
这些特异的DNA序列实际上也就是顺式元件,由于能介导基因对细胞外的某种信号产生反应,被称为反应元件。
38.基因家族:指核苷酸序列或编码产物的结构具有一定程度同源性的一组基因。
39.端粒DNA重复序列:TTAGGG。
微卫星DNA常见重复单位(AC)与(TG)。
40.卫星DNA:就是出现在非编码区的串联重复序列。
其特点就是具有固定的重复序列,该重复单位首尾相连形成重复序列片段,通常存在于间隔DNA与内含子中。
卫星DNA可分为大卫星DNA、小卫星DNA与微卫星DNA。
41.端粒:以线性染色体形式存在的真核基因组DNA的末端都有一种特殊的结构,端粒。
该结构就是一段DNA序列与蛋白质形成的一种复合体,仅在真核细胞染色体末端存在。
端粒的功能主要有:保护线性DNA的完整复制,保护染色体末端及决定细胞的寿命等。
42.Alu家族:序列中有限制性内切酶Alu的酶切位点。
重复单位就是300bp、属短散在核元件,为灵长类基因组所特有。
43.假基因:就是指与某些有功能的基因结构相似,但不能表达基因产物的基因。
44.人类基因组的四张图谱:遗传图、物理图、序列图与转录图。
遗传图指基因或DNA标记在染色体上以遗传距离表示的相对位置。
物理图指基因或DNA标记间的实际距离。
序列图指人类基因组的全部核苷酸序列,也就是最详尽的物理图。
转录图指基因图谱。
45.端粒酶:由三部分组成,端粒RNA,端粒酶逆转录酶,端粒酶协同蛋白。
端粒酶兼有提供RNA模版与催化逆转录酶的功能。
端粒酶通过一种爬行模型的机制维持染色体的完整。
46、半保留复制:子代细胞的DNA,一股单链从亲代完整的接受过来,另一股单链则完全重新合成,两个子细胞的DNA都与亲代DNA碱基序列一致,这种复制方式称为半保留复制。
47、半不连续复制:顺着解链方向生成的子链,复制就是连续进行的,这股链称为领头链。
另一股链因为复制方向与解链方向相反,不能顺着解链方向连续延长,必须等模板链解开至足够长度,然后从5’-3’生成引物并复制子链。
延长过程中,又要等待下一段有足够长度的模板再次生成引物而延长。
这股不连续复制的链称为随从链。
领头链连续复制而随从链不连续复制,这就就是复制的半不连续复制。
48、冈崎片段:随从链的复制由于与解链方向相反,必须待母链解开足够长度后才开始生成引物接着延长。
复制中形成的不连续复制片断就就是冈崎片段。
49、滚环复制:就是某些低等生物或染色体外的DNA的复制形式。
环状DNA外环打开,伸出环外作母链复制,内环不打开一边滚动一边复制。
最后,一个双链环就滚动复制成两个双链环。