人教版九年级数学下册《解直角三角形》典型例题

合集下载

人教版九年级下册数学 28.2.1解直角三角形 同步习题(含解析)

人教版九年级下册数学 28.2.1解直角三角形 同步习题(含解析)

28.2.1解直角三角形同步习题一.选择题1.在Rt△ABC中,∠C=90°,cos A=,∠B的平分线BD交AC于点D,若AD=16,则BC长为()A.6B.8C.8D.122.如图,在△ABC中,sin B=,tan C=2,AB=3,则AC的长为()A.B.C.D.23.在△ABC中,∠A=40°,∠C=90°,BC=7,则AB边的长是()A.7sin40°B.7cos40°C.D.4.如图所示,△ABC的顶点在正方形网格的格点上,则tan A的值为()A.B.C.2D.25.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD的长度为()A.B.C.D.46.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°====2﹣.类比这种方法,计算tan22.5°的值为()A.+1B.﹣1C.D.7.如图,在平面直角坐标系中,点A(cos70°,sin70°),B(cos10°,sin10°),则坐标原点O到线段AB的中点M的距离为()A.B.C.D.18.如图,在平面直角坐标系中,AB=3,连结AB并延长至C,连结OC,若满足OC2=BC⋅AC,tanα=2,则点C的坐标为()A.(﹣2,4)B.(﹣3,6)C.(﹣,)D.(﹣,)9.如图,在△ABC中,∠ABC=90°,D为BC的中点,点E在AB上,AD,CE交于点F,AE=EF=4,FC=9,则cos∠ACB的值为()A.B.C.D.10.将一副学生常用的三角板如图摆放在一起,组成一个四边形ABCD,连接AC,则tan ∠ACD的值为()A.B.C.D.二.填空题11.如图,△ABC中,AC=BC,AB=8,点E、F分别在BC、AC边上,BE=CF,连接EF,若tan(∠A﹣∠CEF)=,则线段EF的长为.12.已知在△ABC中,AB=6,AC=2,∠B=60°,则△ABC的面积=.13.在△ABC中,AB=4,AC=2,tan B=,则BC的长为.14.如图,在△ABC中,AH⊥BC于点H,在AH上取一点K,连接CK,使得∠HKC+∠HAC=90°,在CK上取一点N,使得CN=AC,连接BN,交AH于点M,若tan∠ABC =2,BN=15,则CH的长为.15.在Rt△ABC中,∠ACB=90°,点D是AC边上一点,连BD,过C点作BD的垂线与过A点作AC的垂线交于点E.当tan∠ABD=,cos∠E=,则的值是.三.解答题16.根据下列条件,解直角三角形:(1)在Rt△ABC中,∠C=90°,a=2,b=2;(2)在Rt△ABC中,∠C=90°,∠A=60°,c=6.17.如图1.点A、B在直线MN上(A在B的左侧),点P是直线MN上方一点.若∠P AN =x°,∠PBN=y°,记<x,y>为P的双角坐标.例如,若△P AB是等边三角形,则点P的双角坐标为<60,120>.(1)如图2,若AB=22cm,P<26.6,58>,求△P AB的面积;(参考数据:tan26.6°≈0.50,tan58°≈1.60.)(2)在图3中用直尺和圆规作出点P<x,y>,其中y=2x且y=x+30.(保留作图痕迹)18.在直角三角形中,除直角外的5个元素中,已知2个元素(其中至少有1个是边),就可以求出其余的3个未知元素.对于任意三角形,我们需要知道几个元素就可以求出其余的未知元素呢?思考并解答下列问题:(1)观察图①~图④,根据图中三角形的已知元素,可以求出其余未知元素的序号是.(2)如图⑤,在△ABC中,已知∠A=37°,AB=12,AC=10,能否求出BC的长度?如果能,请求出BC的长度;如果不能,请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)参考答案一.选择题1.解:如图,∵cos A=,∴∠A=30°,∵∠C=90°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠A=∠CBD=30°,∴DB=DA=16,∴BC=BD•cos30°=16×=8,故选:C.2.解:过A作AD⊥BC于D,则∠ADC=∠ADB=90°,∵tan C=2=,sin B==,∴AD=2DC,AB=3AD,∵AB=3,∴AD=1,DC=,在Rt△ADC中,由勾股定理得:AC===,故选:B.3.解:∵在△ABC中,∠A=40°,∠C=90°,BC=7,∴sin A=,∴AB==.故选:C.4.解:如图,连接BD,由网格的特点可得,BD⊥AC,AD==2,BD==,∴tan A===,故选:A.5.解:∵∠C=90°,AC=4,cos A=,∴AB=,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A=,∴,故选:C.6.解:在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°,设AC=BC=1,则AB=BD=,∴tan22.5°===﹣1,故选:B.7.解:∵在平面直角坐标系中,点A(cos70°,sin70°),B(cos10°,sin10°),M为线段AB的中点,∴M(,),∵O(0,0),∴OM=====.故选:C.8.解:∵∠C=∠C,∵OC2=BC•AC,即,∴△OBC∽△OAC,∴∠A=∠COB,∵α+∠COB=90°,∠A+∠ABO=90°,∴∠ABO=α,∵tanα=2,∴tan∠ABO=,∴OA=2OB,∵AB=3,由勾股定理可得:OA2+OB2=AB2,即,解得:OB=3,∴OA=6.∴tan∠A==.如图,过点C作CD⊥x轴于点D,∵tanα=2,∴设C(﹣m,2m),m>0,∴AD=6+m,∵tan∠A=,∴=,∴=,解得:m=2,经检验,m=2是原方程的解.∴点C坐标为:(﹣2,4).故选:A.9.解:如图,延长AD到M,使得DM=DF,连接BM.∵BD=DC,∠BDM=∠CDF,DM=DF,∴△BDM≌△CDF(SAS),∴CF=BM=9,∠M=∠CFD,∵CE∥BM,∴∠AFE=∠M,∵EA=EF,∴∠EAF=∠EF A,∴∠BAM=∠M,∴AB=BM=9,∵AE=4,∴BE=5,∵∠EBC=90°,∴BC===12,∴AC===15,∴cos∠ACB===,故选:D.10.解:如图作AH⊥CB交CB的延长线于H.∵∠ABD=90°,∠DBC=45°,∴∠ABH=45°,∵∠AHB=90°,∴△ABH是等腰直角三角形,∴AH=BH,设AH=BH=a,则AB=a,BD=a,BC=CD=a,CH=a+a,∵∠AHB=∠DCB=90°,∴AH∥DC,∴∠ACD=∠CAH,∴tan∠ACD=tan∠CAH==+1,故选:B.二.填空题11.解:过F点作FM∥BC,过点B作BM∥EF,BM,FM相交于点M,连接AM,如图,∴四边形BMFE是平行四边形,∴EF=BM,∵FM∥BC,∴∠AFM=∠C,∵AC=BC,BE=CF,∴AF=CE,在△MAF和△FEC中,,∴△MAF≌△FEC(SAS),∴∠MAF=∠FEC,∵BM∥EF,∴∠MBC=∠FEC=∠MAF,∵AC=BC,∴∠CAB=∠CBA,∴∠MAB=∠MBA,∵,∴tan∠MAB=tan∠MBA=,过点M作MN⊥AB于点N,则有,BN=AB=×8=4,又,∴MN=3,由勾股定理得,BM=5,∴EF=BM=5故答案为:5.12.解:作AH⊥BC,垂足为点H.在Rt△ABH中,∵∠B=60°,AB=6,∴BH=3,AH=3,在Rt△ACH中,∵AC=2,∴CH===5,∴BC=8,∴S△ABC=•BC•AH=×8×3=12.13.解:当∠ACB为锐角时,如下图所示,过点A作AD⊥BC于点D,在Rt△ABD中,tan B=,设AD=x,则BD=2x,则AB==x=4,解得x=4,故AD=4,BD=8,在Rt△ACD中,CD===2,故BC=BD+CD=8+2=10;当∠ACB为钝角时,同理可得BC=8﹣2=6,故答案为10或6.14.解:如图,过点N作NJ⊥BC于J.设HJ=x.∵AH⊥BC,∴∠AHB=∠AHC=90°,∵tan∠ABH==2,∴可以假设BH=k,2k,∵∠HKC+∠HAC=90°,∠HKC+∠KCH=90°,∴∠HAC=∠KCH,∵NJ⊥BC,∴∠AHC=∠CJN=90°,∴△AHC∽△CJN,∴===2,∴CJ=k,∴CH=x+k,JN=(x+k),∴tan∠NBJ==,设NJ=y,BJ=2y,∵BN=15,∴5y2=152,∴y=3,∴NJ=3,∴CH=2NJ=6.15.解:设直线AB交CE于点H,BD交CE于点N,设∠E=α,则cos∠E==cosα,则sinα=,tanα=4,∵tan∠ABD=,则tan∠BHN=2,∵AE⊥AC,BC⊥AC,∴AE∥BC,∴∠E=∠ECB=α,∵∠NDC+∠NCD=90°,∠NCB+∠NCD=90°,∴∠NCB=∠NDC=α,在△AHE中,设AE=a,则AG=AE sinα=a sinα,GE=a cosα,则GH===AG=a sinα,则EH=GE+GH=a cosα+a sinα,在Rt△AEC中,EC==,则HC=EC﹣EH=﹣(a cosα+a sinα);在△BHC中,tan∠BHN=2,tanα=4,HC=﹣(a cosα+a sinα),同理可得:BC=×,在Rt△BCD中,CD==×=a(﹣﹣)=,AD=AC﹣CD=4a﹣=,则=,故答案为.三.解答题16.解:(1)在Rt△ABC中,∠C=90°,a=2,b=2,∴c==4,∴sin A==,sin B==,∴∠A=60°,∠B=30°.(2)在Rt△ABC中,∠C=90°,∠A=60°,c=6,∴∠B=180°﹣∠A﹣∠C=30°,∴sin A==,sin B==,∴a=3,b=3.17.解:(1)过点P作PC⊥AB于点C,则∠PCA=90°,在Rt△PBC中,∠PBC=58°,∵tan58°=,∴BC=,在Rt△P AC中,∠P AC=26.6°,∵tan26.6°=,∴AC=,∵AB=AC﹣BC,∴﹣=22,解得PC≈16(cm),∴S△P AB=22×16=176cm2;(2)如图3,点P即为所求.18.解:(1)∵图①已知一个角与这个角所对的边,则另两个角可以任意变动,∴图①不能求出其余未知元素;∵图②已知三个角,则三个边可以任意变动,∴图②求出其余未知元素;∵图③、图④已知两个角,则第三个角是固定的,并已知一个边,过第三个角的顶点向已知两个角的公共边作垂线即可求出其余未知两个边的长,∴图③、图④可以求出其余未知元素;故答案为:③④;(2)过点C作CD⊥AB于点D,如图⑤所示:在Rt△ADC中,∠A=37°,∴CD=AC•sin A=10×sin37°≈10×0.60=6,AD=AC•cos A=10×cos37°≈10×0.80=8,∴BD=AB﹣AD=12﹣8=4,∴在Rt△CDB中,BC===2,即BC的长度为2.。

九年级数学下册专题28.4 解直角三角形的应用中考真题专项训练(50道)(举一反三)(人教版)

九年级数学下册专题28.4 解直角三角形的应用中考真题专项训练(50道)(举一反三)(人教版)

专题28.4 解直角三角形的应用中考真题专项训练(50道)【人教版】考卷信息:本套训练卷共50题,题型针对性较高,覆盖面广,选题有深度,涵盖了解直角三角形的应用中考真题的综合问题的所有类型!一.解答题(共50题)1.(2022·辽宁阜新·中考真题)如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB,在居民楼前方有一斜坡,坡长CD=15m,斜坡的倾斜角为α,cosα= 4.小文在C点处测得楼顶端A的仰角为60°,在D点处测得楼顶端A的仰角为30°(点A,B,5C,D在同一平面内).(1)求C,D两点的高度差;(2)求居民楼的高度AB.(结果精确到1m,参考数据:3≈1.7)2.(2022·山东东营·中考真题)胜利黄河大桥犹如一架巨大的竖琴,凌驾于滔滔黄河之上,使黄河南北“天堑变通途”.已知主塔AB垂直于桥面BC于点B,其中两条斜拉索AD、AC与桥面BC的夹角分别为60°和45°,两固定点D、C之间的距离约为33m,求主塔AB的高度(结果保留整数,参考数据:2≈1.41,3≈1.73)3.(2022·河南·中考真题)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7)4.(2022·四川资阳·中考真题)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进1003米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)5.(2022·辽宁朝阳·中考真题)某数学兴趣小组准备测量校园内旗杆顶端到地面的高度(旗杆底端有台阶).该小组在C处安置测角仪CD,测得旗杆顶端A的仰角为30°,前进8m 到达E处,安置测角仪EF,测得旗杆顶端A的仰角为45°(点B,E,C在同一直线上),测角仪支架高CD=EF=1.2m,求旗杆顶端A到地面的距离即AB的长度.(结果精确到1m.参考数据:3≈1.7)6.(2022·湖北襄阳·中考真题)位于岘山的革命烈士纪念塔是襄阳市的标志性建筑,是为纪念“襄樊战役”中牺牲的革命烈士及第一、第二次国内革命战争时期为襄阳的解放事业献身的革命烈士的而兴建的,某校数学兴趣小组利用无人机测量烈士塔的高度.无人机在点A处测得烈士塔顶部点B的仰角为45°,烈士塔底部点C的俯角为61°,无人机与烈士塔的水平距离AD 为10m ,求烈士塔的高度.(结果保留整数.参考数据:sin61°≈0.87,cos61°≈0.48,tan61°≈1.80)7.(2022·贵州安顺·中考真题)随着我国科学技术的不断发展,5G 移动通信技术日趋完善.某市政府为了实现5G 网络全覆盖,2021~2025年拟建设5G 基站3000个,如图,在斜坡CB 上有一建成的5G 基站塔AB ,小明在坡脚C 处测得塔顶A 的仰角为45°,然后他沿坡面CB 行走了50米到达D 处,D 处离地平面的距离为30米且在D 处测得塔顶A 的仰角53°.(点A 、B 、C 、D 、E 均在同一平面内,CE 为地平线)(参考数据:sin53°≈45,cos53°≈35,tan 53°≈43)(1)求坡面CB 的坡度;(2)求基站塔AB 的高.8.(2022·辽宁鞍山·中考真题)北京时间2022年4月16日9时56分,神舟十三号载人飞船返回舱成功着陆.为弘扬航天精神,某校在教学楼上悬挂了一幅长为8m 的励志条幅(即GF =8m ).小亮同学想知道条幅的底端F 到地面的距离,他的测量过程如下:如图,首先他站在楼前点B 处,在点B 正上方点A 处测得条幅顶端G 的仰角为37°,然后向教学楼条幅方向前行12m 到达点D 处(楼底部点E 与点B ,D 在一条直线上),在点D 正上方点C 处测得条幅底端F 的仰角为45°,若AB ,CD 均为1.65m (即四边形ABDC 为矩形),请你帮助小亮计算条幅底端F到地面的距离FE的长度.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)9.(2022·山东菏泽·中考真题)荷泽某超市计划更换安全性更高的手扶电梯,如图,把电梯坡面的坡角由原来的37°减至30°,已知原电梯坡面AB的长为8米,更换后的电梯坡面为AD,点B延伸至点D,求BD的长.(结果精确到0.1米.参考数据:sin37°≈0.60,cos37°≈0.80, tan37°≈0,75,3≈1.73)10.(2022·甘肃兰州·中考真题)如图,小睿为测量公园的一凉亭AB的高度,他先在水平地面点E处用高1.5m的测角仪DE测得∠ADC=31°,然后沿EB方向向前走3m到达点G 处,在点G处用高1.5m的测角仪FG测得∠AFC=42°.求凉亭AB的高度.(A,C,B三点共线,AB⊥BE,AC⊥CD,CD=BE,BC=DE.结果精确到0.1m)(参考数据:sin 31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)11.(2022·江苏盐城·中考真题)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,5≈2.24)12.(2022·山东日照·中考真题)2022年北京冬奥会的成功举办激发了人们对冰雪运动的热情.如图是某滑雪场的横截面示意图,雪道分为AB,BC两部分,小明同学在C点测得雪道BC的坡度i=1:2.4,在A点测得B点的俯角∠DAB=30°.若雪道AB长为270m,雪道BC 长为260m.(1)求该滑雪场的高度h;(2)据了解,该滑雪场要用两种不同的造雪设备来满足对于雪量和雪质的不同要求,其中甲设备每小时造雪量比乙设备少35m3,且甲设备造雪150m3所用的时间与乙设备造雪500m3所用的时间相等.求甲、乙两种设备每小时的造雪量.13.(2022·辽宁大连·中考真题)如图,莲花山是大连著名的景点之一,游客可以从山底乘坐索道车到达山项,索速车运行的速度是1米/秒,小明要测量莲花山山顶白塔的高度,他在索道A处测得白塔底部B的仰角的为30°,测得白塔顶部C的仰角的为37°.索道车从A 处运行到B处所用时间的为5分钟.(1)索道车从A处运行到B处的距离约为________米;(2)请你利用小明测量的数据,求白塔BC的高度(结果取整数).(参考数据:sin37°≈0.60, cos37°≈0.80,tan37°≈0.75,3≈1.73)14.(2022·上海·中考真题)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB 的长.(1)如图1所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,a的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC 方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度15.(2022·湖南郴州·中考真题)如图是某水库大坝的横截面,坝高CD=20m,背水坡BC 的坡度为i1=1:1.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为i2=1:3,求背水坡新起点A与原起点B之间的距离.(参考数据:2≈1.41,3≈1.73.结果精确到0.1m)16.(2022·辽宁锦州·中考真题)某数学小组要测量学校路灯P―M―N的顶部到地面的距离,他们借助皮尺、测角仅进行测量,测量结果如下:测量项目测量数据从A处测得路灯顶部P的仰角αα=58°从D处测得路灯顶部P的仰角ββ=31°测角仪到地面的距离AB=DC=1.6m两次测量时测角仪之间的水平距离BC=2m计算路灯顶部到地面的距离PE约为多少米?(结果精确到0.1米.参考数据;cos31°≈0.86, tan31°≈0.60,cos58°≈0.53,tan58°≈1.60)17.(2022·辽宁盘锦·中考真题)如图,小欢从公共汽车站A出发,沿北偏东30°方向走2000米到达东湖公园B处,参观后又从B处沿正南方向行走一段距离,到达位于公共汽车东南方向的图书馆C处.(参考数据:2≈1.414,3≈1.732)(1)求小欢从东湖公园走到图书馆的途中与公共汽车站之间最短的距离;(2)若小欢以100米/分的速度从图书馆C沿CA回到公共汽车站A,那么她在15分钟内能否到达公共汽车站?18.(2022·辽宁辽宁·中考真题)数学活动小组欲测量山坡上一棵大树CD的高度,如图,DC ⊥AM 于点E ,在A 处测得大树底端C 的仰角为15°,沿水平地面前进30米到达B 处,测得大树顶端D 的仰角为53°,测得山坡坡角∠CBM =30°(图中各点均在同一平面内).(1)求斜坡BC 的长;(2)求这棵大树CD 的高度(结果取整数).(参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43,3≈1.73)19.(2022·辽宁锦州·中考真题)如图,一艘货轮在海面上航行,准备要停靠到码头C ,货轮航行到A 处时,测得码头C 在北偏东60°方向上.为了躲避A ,C 之间的暗礁,这艘货轮调整航向,沿着北偏东30°方向继续航行,当它航行到B 处后,又沿着南偏东70°方向航行20海里到达码头C .求货轮从A 到B 航行的距离(结果精确到0.1海里.参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).20.(2022·山东青岛·中考真题)如图,AB 为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A 处时,某艘海上观光船位于小宇北偏东68°的点C 处,观光船到滨海大道的距离CB 为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西40°的方向航行至点D 处,此时,观光船恰好在小宇的正北方向,求观光船从C 处航行到D 处的距离.(参考数据:sin40°≈0.64,cos40°≈0.77,tan 40°≈0.84,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)21.(2022·贵州贵阳·中考真题)交通安全心系千万家.高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF=7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).(1)求A,B两点之间的距离(结果精确到1m);(2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.(参考数据:3≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4)22.(2022·四川广安·中考真题)八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A处向正北方向走了450米,到达菜园B处锄草,再从B处沿正西方向到达果园C处采摘水果,再向南偏东37°方向走了300米,到达手工坊D处进行手工制作,最后从D处回到门口A处,手工坊在基地门口北偏西65°方向上.求菜园与果园之间的距离.(结果保留整数)参考数据:sin65°≈ 0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈ 0.60,cos37°≈ 0.80,tan37°≈0.7523.(2022·辽宁营口·中考真题)在一次数学课外实践活动中,某小组要测量一幢大楼MN 的高度,如图,在山坡的坡脚A处测得大楼顶部M的仰角是58°,沿着山坡向上走75米到达B处.在B处测得大楼顶部M的仰角是22°,已知斜坡AB的坡度i=3:4(坡度是指坡面的铅直高度与水平宽度的比)求大楼MN的高度.(图中的点A,B,M,N,C均在同一平面内,N,A,C在同一水平线上,参考数据:tan22°≈0.4,tan58°≈1.6)24.(2022·贵州遵义·中考真题)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成如图2,AB是灯杆,CD是灯管支架,灯管支架CD与灯杆间的夹角∠BDC=60°.综合实践小组的同学想知道灯管支架CD的长度,他们在地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶部C的仰角为30°,测得AE=3m,EF=8m(A,E,F在同一条直线上).根据以上数据,解答下列问题:(1)求灯管支架底部距地面高度AD的长(结果保留根号);(2)求灯管支架CD的长度(结果精确到0.1m,参考数据:3≈1.73).25.(2022·江苏泰州·中考真题)小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB= 8 m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D到他的距离CD是多少?(结果精确到0.1 m,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)26.(2022·湖北鄂州·中考真题)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C处看见飞机A的仰角为45°,同时另一市民乙在斜坡CF上的D处看见飞机A的仰角为30°,若斜坡CF的坡比=1:3,铅垂高度DG=30米(点E、G、C、B在同一水平线上).求:(1)两位市民甲、乙之间的距离CD;(2)此时飞机的高度AB,(结果保留根号)27.(2022·山西·中考真题)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E 处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC 的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,3≈1.73).28.(2022·湖南常德·中考真题)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos 25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)29.(2022·湖南湘潭·中考真题)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小≈0.618):文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中DHAH伞柄AH始终平分∠BAC,AB=AC=20cm,当∠BAC=120°时,伞完全打开,此时∠BDC=90°.请问最少需要准备多长的伞柄?(结果保留整数,参考数据:3≈1.732)30.(2022·海南·中考真题)无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼CD楼顶D处的俯角为45°,测得楼AB楼顶A 处的俯角为60°.已知楼AB和楼CD之间的距离BC为100米,楼AB的高度为10米,从楼AB 的A处测得楼CD的D处的仰角为30°(点A、B、C、D、P在同一平面内).(1)填空:∠APD=___________度,∠ADC=___________度;(2)求楼CD的高度(结果保留根号);(3)求此时无人机距离地面BC的高度.31.(2022·四川自贡·中考真题)在东西方向的海岸线上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1h20min,又测得该轮船位于A的北偏东60°,且与A相距83km的C处.(1)求该轮船航行的速度.(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.32.(2022·四川达州·中考真题)某地是国家AAAA级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为“小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD,想法测出了尾部C看头顶B的仰角为40∘,从前脚落地点D看上嘴尖A的仰角刚好60∘,CB=5m,CD=2.7m.景区管理员告诉同学们,上嘴尖到地面的距离是3m.于是,他们很快就算出了AB的长.你也算算?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.2≈1.41,3≈1.73)33.(2022·广东广州·中考真题)如图,某无人机于空中A处探测到目标B、D的俯角分别是30°、60°,此时无人机的飞行高度AC为60m,随后无人机从A处继续水平飞行303m到达A′处.(1)求之间的距离(2)求从无人机A′上看目标的俯角的正切值.34.(2022·浙江舟山·中考真题)小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA 所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?35.(2022·重庆·中考真题)某水库大坝的横截面是如图所示的四边形BACD,其中AB∥CD.瞭望台PC正前方水面上有两艘渔船M、N,观察员在瞭望台顶端P处观测渔船M的俯角α=31°,观测渔船N在俯角β=45°,已知NM所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为i=1:1.5,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)36.(2022·贵州遵义·中考真题)下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点F,∠CDF=45°,求DM和BC的水平距离BM的长度.(结果精确到0.1 m.参考数据:sin 31°≈0.52,cos31°≈0.86,tan31°≈0.60)37.(2022·四川巴中·中考真题)2013年4月20日,四川雅安发生里氏7.0级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距4米,探测线与地面的夹角分别为300和600,如图所示,试确定生命所在点C的深度(结果精确到0.1米,参考数据2≈1.41,3≈1.73)38.(2022·广西南宁·中考真题)如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF 的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)39.(2022·湖北黄石·中考真题)如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB和CD(均与水平面垂直),再将集热板安装在AD上.为使集热板吸热率更高,公司规定:AD与水平面夹角为θ1,且在水平线上的射影AF为1.4m.现已测量出屋顶斜面与水平面夹角为θ2,并已知tanθ1=1.082,tanθ2 =0.412.如果安装工人确定支架AB高为25cm,求支架CD的高(结果精确到1cm)?40.(2022·四川泸州·中考真题)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10 nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距82nmile.求B,D间的距离(计算过程中的数据不取近似值).41.(2022·重庆·中考真题)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:2≈1.414,3≈1.732)42.(2022·重庆·中考真题)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且B在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:3=1.732);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)43.(2022·辽宁朝阳·中考真题)一数学兴趣小组去测量一棵周围有围栏保护的古树的高,在G处放置一个小平面镜,当一位同学站在F点时,恰好在小平面镜内看到这棵古树的顶端A的像,此时测得FG=3m,这位同学向古树方向前进了9m后到达点D,在D处安置一高度为1m的测角仪CD,此时测得树顶A的仰角为30°,已知这位同学的眼睛与地面的距离EF=1.5m,点B,D,G,F在同一水平直线上,且AB,CD,EF均垂直于BF,求这棵古树AB的高.(小平面镜的大小和厚度忽略不计,结果保留根号)44.(2022·辽宁锦州·中考真题)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC//MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1∶3(即坡面上点B处的铅直高度BN 与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)45.(2022·江苏徐州·中考真题)如图,斜坡AB的坡角∠BAC=13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A,过其另一端D安装支架DE,DE所在的直线垂直于水平线AC,垂足为点F,E为DF与AB的交点.已知AD=100cm,前排光伏板的坡角∠DAC=28°.(1)求AE的长(结果取整数);(2)冬至日正午,经过点D的太阳光线与AC所成的角∠DGA=32°.后排光伏板的前端H在AB 上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH的最小值为多少(结果取整数)?参考数据:2≈1.41,3≈1.73,6≈2.45三角函数锐角A13°28°32°sin A0.220.470.53cos A0.970.880.85tan A0.230.530.6246.(2022·内蒙古呼伦贝尔·中考真题)如图,在山坡AP的坡脚A处竖有一根电线杆AB(即AB⊥MN),为固定电线杆,在地面C处和坡面D处各装一根引拉线BC和BD,它们的长度,∠PAN=30°,求点D到AB的距离.相等.测得AC=6米,tan∠BCA=4347.(2022·内蒙古鄂尔多斯·中考真题)图①是一种手机平板支架、由托板、支撑板和底座构成,手机放置在托板上,图②是其侧面结构示意图、托板长AB=115mm,支撑板长CD=70mm,板AB固定在支撑板顶点C处,且CB=35mm,托板AB可绕点C转动,支撑板CD可绕点D转动,∠CDE=60°.(1)若∠DCB=70°时,求点A到直线DE的距离(计算结果精确到个位);(2)为了观看舒适,把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B 落在直线DE上即可、求CD旋转的角度.(参考数:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2,sin26.6°≈0.4,cos26.6°≈0.9,tan 26.6°≈0.5,3≈1.7)48.(2022·辽宁营口·中考真题)小张早起在一条东西走向的笔直马路上晨跑,他在A处时,D处学校和E处图书馆都在他的东北方向,当小张沿正东方向跑了600m到达B处时,E处图书馆在他的北偏东15°方向,然后他由B处继续向正东方向跑600m到达C处,此时D处学校在他的北偏西63.4°方向,求D处学校和E处图书馆之间的距离.(结果保留整数)(参考数据:sin63.4°≈0.9,cos63.4°≈0.4,tan63.4°≈2.0,2≈1.4,3≈1.7,6≈2.4)49.(2022·辽宁本溪·中考真题)如图,某地政府为解决当地农户网络销售农特产品物流不畅问题,计划打通一条东西方向的隧道AB.无人机从点A的正上方点C,沿正东方向以8m s 的速度飞行15s到达点D,测得A的俯角为60°,然后以同样的速度沿正东方向又飞行50s 到达点E,测得点B的俯角为37°.(1)求无人机的高度AC(结果保留根号);(2)求AB的长度(结果精确到1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan2137°≈0.75,3≈1.73)50.(2022·贵州安顺·中考真题)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C 两点之间的距离.如图所示,小星站在广场的B 处遥控无人机,无人机在A 处距离地面的飞行高度是41.6m ,此时从无人机测得广场C 处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE =1.6m ,EA =50m (点A,E,B,C 在同一平面内).(1)求仰角α的正弦值;(2)求B,C 两点之间的距离(结果精确到1m ).(sin63°≈0.89,cos63°≈0.45,tan63°≈1.96, sin27°≈0.45, cos27°≈0.89,tan27°≈0.51)。

九年级数学下册《第二十八章 解直角三角形及其应用》练习题附答案解析-人教版

九年级数学下册《第二十八章 解直角三角形及其应用》练习题附答案解析-人教版

九年级数学下册《第二十八章解直角三角形及其应用》练习题附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.图,在Rt△ABC中△ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB交AC于点F,若BC=4,sin△CEF= 3,则△AEF的面积为()5A.3B.4C.5D.62.小丽在小华北偏东40°的方向,则小华在小丽的()A.南偏西50°B.北偏西50°C.南偏西40°D.北偏西40°3.如图,小明在距离地面30米的P处测得A处的俯角为15︒,B处的心角为60︒,若斜面坡度为,则斜面AB的长是()米.A.B.C.D.4.如图,某渔船正在海上P处捕鱼,先向北偏东30°的方向航行10km到A处.然后右转40°再航行到B处,在点A的正南方向,点P的正东方向的C处有一条船,也计划驶往B处,那么它的航向是()A .北偏东20°B .北偏东30°C .北偏东35°D .北偏东40°5.如图,某建筑物的顶部有一块宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°,已知斜坡AB 的坡角为30°,10AB =米,15AE =米,则宣传牌CD 的高度是( )米A .20-B .20+C .15+D .56.如图,已知正六边形ABCDEF 内接于半径为r 的O ,随机地往O 内投一粒米,落在正六边形内的概率为( )A B C D .以上答案都不对7.如图,小明利用标杆BE 测量建筑物DC 的高度,已知标杆BE 的长为1.2米,测得AB =85米,BC =425米,则楼高CD 是( )A .6.3米B .7.5米C .8米D .68.如图,点E 是⊥ABCD 的边AB 上一点,过点E 作EF ∥BC ,交CD 于F ,点P 为EF 上一点,连接PB 、PD .下列说法不正确的是( )A .若⊥ABP =⊥CDP ,则点P 在⊥ABCD 的对角线BD 上B .若AE :EB =2:3,EP :PF =1:2,则S △BEP :S △DFP =3:4C .若S △BEP =S △DFP ,则点P 在AC 上D .若点P 在BD 上,则S △BEP =S △DFP9.如图,一棵大树被台风拦腰刮断,树根A 到刮断点P 的距离是4米,折断部分PB 与地面成40︒的夹角,那么原来这棵树的高度是( )A .44cos 40+︒⎛⎫ ⎪⎝⎭米B .44sin 40+︒⎛⎫ ⎪⎝⎭米C .()44sin 40+︒米D .()44tan 40+︒米10.如图,等腰Rt △ABC 中⊥A =90°,AB =AC ,BD 为△ABC 的角平分线,若2CD =,则AB 的长为( )A.3 B .2 C .4 D 2+二、填空题11.在Rt ABC 中90C ∠=︒,有一个锐角为60︒,6AB =若点P 在直线..AB 上(不与点A ,B 重合),且30PCB ∠=︒,则AP 的长为_______.12.如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O '处,得到扇形A O B '''.若⊥O =90°,OA =2,则阴影部分的面积为______.13.如图,在一次数学实践活动中小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A的仰角为30︒,已知斜坡的斜面坡度i =A ,B ,C ,D ,在同一平面内,小明同学测得古塔AB 的高度是___________.14.如图,在直角坐标系中点A 的坐标为(0,点B 为x 轴的正半轴上一动点,作直线AB ,⊥ABO 与⊥ABC 关于直线AB 对称,点D ,E 分别为AO ,AB 的中点,连接DE 并延长交BC 所在直线于点F ,连接CE ,当⊥CEF 为直角时,则直线AB 的函数表达式为__.15.如图,平行四边形OABC 的顶点O 是坐标原点,A 在x 轴的正半轴上,B ,C 在第一象限,反比例函数1y x =的图象经过点C ,()0k y k x=≠的图象经过点B .若OC AC =,则k =________.16.在⊥ABC 中AB =6AC =且45B ∠=,则BC =______________.17.如图,大坝横截面的迎水坡AB 的坡比为1:2,(即BC :AC=1:2),若坡面AB 的水平宽度AC 为12米,则斜坡AB 的长为________米.18.如图,等边ABC 中115,125AOB BOC ∠=︒∠=︒,则以线段,,OA OB OC 为边构成的三角形的各角的度数分别为______________________________.三、解答题19.实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN 的距离皆为100cm .王诗嬑观测到高度90cm 矮圆柱的影子落在地面上,其长为72cm ;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN 互相垂直,并视太阳光为平行光,测得斜坡坡度1:0.75i =,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm ,且此刻她的影子完全落在地面上,则影子长为多少cm ?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100cm ,则高圆柱的高度为多少cm ?20.八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A 处向正北方向走了450米,到达菜园B 处锄草,再从B 处沿正西方向到达果园C 处采摘水果,再向南偏东37°方向走了300米,到达手工坊D 处进行手工制作,最后从D 处回到门口A 处,手工坊在基地门口北偏西65°方向上.求菜园与果园之间的距离.(结果保留整数)参考数据:sin65°≈ 0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈ 0.60,cos37°≈ 0.80,tan37°≈0.7521.如图是某水库大坝的横截面,坝高20m CD =,背水坡BC 的坡度为11:1i =.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为2i =求背水坡新起点A 与原起点B之间的距离. 1.41 1.73≈结果精确到0.1m )参考答案与解析1.C【分析】连接BF ,由已知CE AE BE ==得到A FBA ACE ==∠∠∠,再得出CEF ∠与CBF ∠的关系,由三角函数关系求得CF 、BF 的值,通过BF AF =,用三角形面积公式计算即可.【详解】解:连接BF⊥CE 是斜边AB 上的中线 ⊥12CE AE BE AB ===(直角三角形斜边上的中线等于斜边的一半)⊥A FBA ACE ==∠∠∠又⊥90BCA BEF ==︒∠∠在⊥ABC 中180902CBF ACB A ABF A =︒-∠-∠-∠=︒-∠∠在⊥AEC 中180902CEF AEF A ACE A =︒-∠-∠-∠=︒-∠∠⊥CEF CBF ∠=∠3sin sin 5CBF CEF ∴∠=∠=4BC =,设3,5CF x BF x ==则222BC CF BF +=,即()()222435x x +=解得1x =(负值舍掉)3,5CF BF ∴== ⊥EF 是AB 的垂直平分线, ⊥5BF AF ==11·541022AFB S AF BC ∴==⨯⨯=△ 152AEF ABF S S ∴==△△故选:C .【点睛】本题综合考查了垂直平分线的性质、直角三角形和等腰三角形的性质、勾股定理及三角函数等相关知识,熟练利用相关定理和性质进行计算是解决本题的关键.2.C【分析】画出示意图,确定好小丽和小华的的方向和位置即可.【详解】解:如图所示,当小丽在小华北偏东40°的方向时,则小华在小丽的南偏西40°的方向.故选:C【点睛】本题考查了方位角的知识点,确定好物体的方向和位置是解题的关键.3.B【分析】过点A 作AF BC ⊥于点F ,根据三角函数的定义得到30ABF ∠=︒,根据已知条件得到3045HPB APB ∠∠=︒=︒,求得60HBP ∠=︒,解直角三角形即可得到结论.【详解】如图所示:过点A 作AF BC ⊥于点F斜面坡度为AF tan ABF BF ∠∴=== 30ABF ∠∴=︒在P 处进行观测,测得山坡上A 处的俯角为15︒,山脚B 处的俯角为60︒3045HPB APB ∠∠∴=︒=︒,60HBP ∠∴=︒9045PBA BAP ∠∠∴=︒=︒,PB AB ∴=303060PH PH m sin PB PB =︒===,解得:)PB m =故AB =故选:B .【点睛】此题主要考查了解直角三角形的应用-仰角俯角问题,解直角三角形的应用-坡度坡角问题,正确得出PB AB =是解题关键.4.C【分析】连接BC ,由锐角三角函数定义得AC A = km ,则AC =AB ,再由等腰三角形的性质得⊥ACB =⊥ABC =35°,即可得出结论.【详解】解:如图,连接BC由题意得:⊥ACP =⊥ACD =90°,⊥P AC =30°,P A =10km ,⊥BAE =40°,AB =⊥⊥BAC =180°—⊥P AC —⊥BAE =180°—30°—40°=110°⊥cos⊥P AC =ACPA =cos30°=⊥AC =P A =×10= km⊥AC =AB⊥⊥ACB =⊥ABC =12×(180°—⊥BAC )=12×(180°—110°)=35°即B 处在C 处的北偏东35°方向故选:C .【点睛】本题考查了解直角三角形的应用—方向角问题,等腰三角形的性质,锐角三角函数定义等知识,由锐角三角函数定义求出AC 的长是解题的关键.5.A【分析】过点B 分别作AE 、DE 的垂线,垂足分别为G 、F ,在Rt ⊥ABG 中由已知可求得BG 、AG 的长,从而可易得EF 及EG 、BF 的长度,由等腰直角三角形的性质可得CF 的长度,在Rt ⊥DAE 中由正切函数关系可求得DE 的长度,从而可求得CD 的长度.【详解】过点B 分别作AE 、DE 的垂线,垂足分别为G 、F ,如图在Rt ⊥ABG 中⊥BAG =30゜⊥152BG AB ==米,cos3010AG AB =︒==⊥15)EG AG AE =+=米⊥BG ⊥AE ,BF ⊥ED ,AE ⊥ED⊥四边形BGEF 是矩形⊥EF =BG =5米,15)BF EG ==米⊥⊥CBF =45゜,BF ⊥ED⊥⊥BCF =⊥CBF =45゜⊥15)CF BF ==米在Rt ⊥DAE 中⊥DAE =60゜,AE =15米⊥tan DE AE DAE =∠=米)⊥155(20CD CF EF DE =+-=+-=-米故选:A【点睛】本题考查了解直角三角形的实际应用,理解坡角、仰角的含义,构造辅助线得到直角三角形是解题的关键.6.A【分析】连接OB ,过点O 作OH ⊥AB 于点H ,由正六边形的特点可证得⊥OAB 是等边三角形,由特殊角的三角函数值可求出OH 的长,利用三角形的面积公式即可求出⊥OAB 的面积,进而可得出正六边形ABCDEF 的面积,即可得出结果.【详解】解:如图:连接OB ,过点O 作OH ⊥AB 于点H⊥六边形ABCDEF 是正六边形⊥⊥AOB =60°⊥OA =OB =r⊥⊥OAB 是等边三角形⊥AB =OA =OB =r ,⊥OAB =60°在Rt OAH △中sin OH OA OAB r =⋅∠==⊥21122OAB S AB OH r =⋅==△⊥正六边形的面积226== ⊥⊥O 的面积=πr 2⊥米粒落在正六边形内的概率为:222rπ 故选:A .【点睛】本题考查了正多边形和圆、正六边形的性质、等边三角形的判定与性质、解直角三角形;熟练掌握正六边形的性质,通过作辅助线求出⊥OAB 的面积是解决问题的关键.7.B【分析】先判断出⊥ABE ⊥⊥ACD ,再根据相似三角形对应边成比例解答.【详解】⊥AB =85,BC =425 ⊥AC =AB +BC =10⊥BE ⊥AC ,CD ⊥AC⊥BE ⊥CD⊥AB :AC =BE :CD ⊥85:10=1.2:CD⊥CD =7.5米.故选:B .【点睛】本题只要是把实际问题抽象到相似三角形中利用相似三角形的相似比,列出方程,通过解方程求出建筑物的高度,体现了方程的思想.8.D【分析】根据平行四边形的性质和判定进行判断即可.【详解】解:A 、若⊥ABP =⊥CDP ,则点P 在⊥ABCD 的对角线BD 上,说法正确;B 、若AE :EB =2:3,EP :PF =1:2则S △BEP :S △DFP =3:4,说法正确;C 、过点P 作GH AB ∥,分别交AD ,BC 于G ,H⊥GH AB ∥ GA HB ∥⊥四边形ABHG 是平行四边形同理:四边形CDGH 、四边形BHPE ,四边形DGPE 都是平行四边形 ⊥12BEP BHPE S S =△ 12DFP DGPF S S =△又BEP DFP S S =△△⊥BEPH DGPF SS = ⊥ABHG ADFE S S =同理:BCFE CDGH S S =⊥点P 在AC 上,C 说法正确;D 、若点P 在BD 上,不能得出EP =PF ,所以S △BEP 不一定等于S △DFP ,说法错误;故选:D .【点睛】此题考查平行四边形的判定和性质,掌握平行四边形的性质是解题的关键.9.B【分析】通过解直角三角形即可求得.【详解】解:在Rt ABP △中4==sin sin 40AP BP ABP ∠︒ 故原来这棵树的高度为:4=4sin 40AP BP ⎛⎫++ ⎪︒⎝⎭(米) 故选:B .【点睛】本题考查了解直角三角形的应用,熟练掌握和运用解直角三角形的方法是解决本题的关键.10.D【分析】过点D 作DE ⊥BC 于点E ,设AB =AC =x ,则AD =x -2,根据等腰Rt △ABC 中90,A AB AC ∠=︒= 得到⊥C =45°,根据BD 为△ABC 的角平分线,⊥A =90°,DE ⊥BC ,推出DE =AD =x -2,运用⊥C 的正弦即可求得.【详解】解:过点D 作DE ⊥BC 于点E ,则⊥DEB =⊥DEC =90°设AB =AC =x ,则AD =x -2⊥等腰Rt △ABC 中,⊥A =90°,AB =AC ,⊥⊥C =(180°-⊥A )=45°⊥BD 为△ABC 的角平分线⊥DE =AD =x -2⊥sin sin 452DE C CD ︒===⊥22x -⊥2x ,即2AB =.故选D .【点睛】本题主要考查了等腰直角三角形,角平分线,解直角三角形,熟练掌握等腰直角三角形的性质,角平分线的性质,正弦的定义和45°的正弦值,是解决问题的关键.11.92或9或3 【分析】分⊥ABC =60、⊥ABC =30°两种情况,利用数形结合的方法,分别求解即可.【详解】解:当⊥ABC =60°时,则⊥BAC =30°⊥132BC AB ==⊥AC ==当点P 在线段AB 上时,如图⊥30PCB ∠=︒⊥⊥BPC =90°,即PC ⊥AB⊥9cos 2AP AC BAC =⋅∠==;当点P 在AB 的延长线上时⊥30PCB ∠=︒,⊥PBC =⊥PCB +⊥CPB⊥⊥CPB =30°⊥⊥CPB =⊥PCB⊥PB =BC =3⊥AP =AB +PB =9;当⊥ABC =30°时,则⊥BAC =60°,如图⊥132AC AB ==⊥30PCB ∠=︒⊥⊥APC =60°⊥⊥ACP =60°⊥⊥APC =⊥P AC =⊥ACP⊥⊥APC 为等边三角形⊥P A =AC =3.综上所述,AP 的长为92或9或3. 故答案为:92或9或3 【点睛】本题是解直角三角形综合题,主要考查了含30度角的直角三角形、解直角三角形,等边三角形的判定和性质等,分类求解是本题解题的关键.12.3π【分析】设A O '与扇形AOB 交于点C ,连接OC ,解Rt OCO ',求得60O C COB '=∠=︒,根据阴影部分的面积为()OCO A O B OCB S S S ''''--扇形扇形,即可求解.【详解】如图,设A O '与扇形AOB 交于点C ,连接OC ,如图O '是OB 的中点11122OO OB OA '∴===, OA =2 AOB ∠=90°,将扇形AOB 沿OB 方向平移90A O O ''∴∠=︒1cos 2OO COB OC '∴∠== 60COB ∴∠=︒sin 60O C OC '∴=︒=∴阴影部分的面积为()OCO A O B OCB S S S''''--扇形扇形 OCO AOB OCB S S S ''=-+扇形扇形22906012213603602ππ=⨯-⨯+⨯3π=故答案为:3π+【点睛】本题考查了解直角三角形,求扇形面积,平移的性质,求得60COB ∠=︒是解题的关键.13.(20m +【分析】过D 作DF ⊥BC 于F ,DH ⊥AB 于H ,设DF =x m ,CF m ,求出x =10,则BH =DF =,CF =,DH =BF ,再求出AH DH ,即可求解. 【详解】解:过D 作DF ⊥BC 于F ,DH ⊥AB 于H⊥DH =BF ,BH =DF⊥斜坡的斜面坡度i =1⊥:DF CF =设DF =x m ,CFm⊥CD 220x ==⊥x =10⊥BH =DF =10m ,CF =⊥DH =BF =(m )⊥⊥ADH =30°⊥AH 10=+m ) ⊥AB =AH +BH =20103(m )故答案为:(20m +【点睛】本题考查了解直角三角形的应用-仰角俯角问题、坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键.14.y【分析】证明⊥ABO ⊥⊥ABC ,于是可知⊥CBA =⊥ABO =30°,得出OB =3即可求出直线AB 的函数表达式.【详解】解:⊥⊥ABO 与⊥ABC 关于直线AB 对称⊥⊥ACB =⊥AOB =90°⊥点E 是AB 的中点⊥CE =BE =EA⊥⊥EAC =⊥ECA⊥⊥ECA +⊥ECF =90°,⊥ECF +⊥CFE =90°⊥⊥CFE =⊥BAC而点D ,E 分别为AO ,AB 的中点⊥DF ∥OB⊥⊥CFE =⊥CBO =2⊥CBA =2⊥ABO⊥⊥ABO 与⊥ABC 关于直线AB 对称⊥⊥ABO ⊥⊥ABC⊥⊥OAB =⊥CAB =2⊥ABO⊥⊥ABO =30°而点A 的坐标为(0,即OAAB ∴=⊥OB =3即点B 的坐标为(3,0)于是可设直线AB 的函数表达式为y =kx +b ,代入A 、B 两点坐标得30b k b ⎧=⎪⎨+=⎪⎩解得kb故答案为y【点睛】本题考查的是三角形的全等,并考查了用待定系数法求函数解析式,找到两个已知点的坐标是解决本题的关键.15.3【分析】过点C 作CD ⊥OA 于D ,过点B 作BE ⊥x 轴于E ,先证四边形CDEB 为矩形,得出CD =BE ,再证Rt △COD ⊥Rt △BAE (HL ),根据S 平行四边形OCBA =4S △OCD =2,再求S △OBA =112OCBA S =平行四边形即可. 【详解】解:过点C 作CD ⊥OA 于D ,过点B 作BE ⊥x 轴于E⊥CD ⊥BE⊥四边形ABCO 为平行四边形⊥CB OA ∥ ,即CB DE ∥,OC =AB⊥四边形CDEB 为平行四边形⊥CD ⊥OA⊥四边形CDEB 为矩形⊥CD =BE⊥在Rt △COD 和Rt △BAE 中OC AB CD EB =⎧⎨=⎩⊥Rt △COD ⊥Rt △BAE (HL )⊥S △OCD =S △ABE⊥OC =AC ,CD ⊥OA⊥OD =AD⊥反比例函数1yx=的图象经过点C⊥S△OCD=S△CAD=12⊥S平行四边形OCBA=4S△OCD=2⊥S△OBA=11 2OCBAS=平行四边形⊥S△OBE=S△OBA+S△ABE=13 122 +=⊥3232k=⨯=.故答案为3.【点睛】本题考查反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质,掌握反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质.16.3或3【分析】画出图形,分⊥ABC为锐角三角形和钝角三角形两种情况讨论即可.【详解】解:情况一:当⊥ABC为锐角三角形时,如图1所示:过A点作AH⊥BC于H⊥⊥B=45°⊥⊥ABH为等腰直角三角形⊥363322ABAH BH在Rt⊥ACH中由勾股定理可知:2236273CH AC AH⊥333BC BH CH.情况二:当⊥ABC为钝角三角形时,如图2所示:由情况一知:363322ABAH BH2236273CH AC AH⊥333BC BH CH .故答案为:3或3.【点睛】本题考察了等腰直角三角形的性质及勾股定理的应用,本题的关键是能将⊥ABC 分成锐角三角形或钝角三角形分类讨论.17.【分析】根据坡面AB 的坡比以及AC 的值,求出BC ,再利用勾股定理即可求出斜面AB 的长.【详解】解:⊥大坝横截面的迎水坡AB 的坡比为1:2,AC=12米⊥1212BC BC AC == ⊥BC=6⊥AB =故答案为:【点睛】本题主要考查学生对坡度坡角的掌握及三角函数的运用能力,能根据坡度求出BC 是解题关键. 18.55°,60°,65°.【分析】通过旋转AOB 至CDB △,可得BOD 是等边三角形,将,,OA OB OC 放在一个三角形中进而求出各角大小。

人教版九年级下册数学 28.2.2解直角三角形的应用举例 例5 航海——方位角(共18张PPT)

人教版九年级下册数学   28.2.2解直角三角形的应用举例 例5 航海——方位角(共18张PPT)
军舰从B处向正西方向行驶至C处时,发现灯塔A在我军舰的北偏东60°的方向,求该军舰行驶的路程。
险区。这渔船如果继续向东追赶鱼群,有没有进入危险 将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);
方位角
区的可能? (3)边角之间的关系:
某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向
的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北 方向前进,甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上, 于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处 相遇。 (1)甲船从C处追赶上乙船用了多长时间? (2)甲船追赶乙船的速度北是每小时多少千米?
B
D
C 75°
45°
西走60米到达C点,测得点B在点C的北偏东60°方向。 这渔船如果继续向东追赶鱼群,有没有进入危险区的可能?
C
为有效开发海洋资源,保护海洋权益,我国对南海诸岛
2解直角三角形的应用举例
北 为有效开发海洋资源,保护海洋权益,我国对南海诸岛
进行了全面调查,一测量船在A岛测得B岛2解直角三角形的应用举例 航海问题——方位角
北 M东
B
A
D
N
解直角三角形的依据
(1)三边之间的关系: (2)锐角之间的关系:
(3)边角之间的关系:

c a

bC
仰角俯角
A
?
E 34
F
18
D
10米
B
方位角

C
西
O
B


利用锐角三角函数解决航海问题
如图,一艘海伦位于灯塔P的北偏东65°方向,距离灯 塔80海里的A处,它沿正南方向航行一段时间后,到达 位于灯塔P的南偏东34°方向的B处。这时,B处距离 灯塔P有多远?(结果取整数)(cos25°=0.9063, sin34°=0.5291, )

人教版九年级数学下册《解直角三角形》同步作业(含答案)

人教版九年级数学下册《解直角三角形》同步作业(含答案)

图28-3练习9 解直角三角形一、自主学习1.如图28-3所示,Rt △ABC 中 (1)它三边之间的关系是_________. (2)它两锐角之间的关系是________. (3)它的边角之间的关系是:___________________,____________________; ___________________,__________________; ___________________,____________________; 二、基础巩固2.等腰三角形的周长为2+3,腰长为1,则它的底角等于________.3.在离地面5 m 处引拉线固定电线杆,拉线和地面成60°角,则拉线的长为_______________.4.一个梯形的两个下底角分别为30°和45°,较大的腰长为10 cm ,则它另一腰长为________.5.△ABC 中,BC=2,AC=3+3,∠C=30°,则sinA=_________.6.在高度为93 m 的建筑物上,观察一楼房的顶端和底部的俯角分别为30°,60°,则这栋楼房的高度为___________m.7.Rt △ABC 中,∠C=90°,sinA=54,AB=10,则BC=________,cosB=________8.△ABC 中,若∠ABC=45°,∠ACB=30°,AB=22,则S △ABC =_________.9.如图28-4所示,△ABC 中,CD ⊥AB 于D 点,且BD=2AD ,若CD=34,tan ∠BCD=33,则高AE=____.10.Rt △ABC 中,CD 是斜边AB 上的高,AB=8 cm ,AC=34cm ,则AD=_____________cm.11.Rt △ABC 中,∠C=90°,∠A 、∠B 、∠c 所对的边分别为a 、b 、c ,若a=25,b=215,则c=________,∠A_______,∠B________.三、能力提高12.Rt △ABC 斜边上的中线CD 长为1,周长是2+6,则它的面积是( ) A.2B.21C.1D.)32(21+13.正方形ABCD 的边长为5,E 、F 分别在边BC 、CD 上,若△AEF 为等边三角形,则BE 的长是( ) A.3255-B.3310C.3510-D.23514.如图28-5所示,一束平行的光线从教室窗射入教室,测得光线与地面所成的∠AMC=30°,窗户的高在教室地面的图28-4影长MN=32m ,窗户的下檐到教室地面的距离BC=1 m ,(点M 、N 、C 在同一直线上),则窗户高AB 为( )图28-5 图28-6 图28-7A.3m B.3 m C.2 m D.1.5 m15.在平面直角坐标系内,坐标原点为O ,点M 在第四象限,且OM=1,∠MOx=30°,则点M 的坐标是( ) A.(21,23-) B.(21,23--) C.(21,23-) D.(23,21-)16.如图28-6所示,在山坡上种树,已知相邻两株树的坡面距离AB 为4 m ,∠B=60°,则这两株树的水平距离和高度差分别为( ) A.32m ,2 m B.2 m ,32m C.3 m ,1 mD.1 m,3m17.大风刮断一根废弃的木电线杆,如图28-7所示,杆的顶端B 落到地面离其底部A 的距离为3m处,若两截电线杆的夹角为30°,则电线杆刮断前的高度为( ) A.6 m B.33m C.3+32 m D.32 m18.Rt △ABC 中,∠C=90°,若AC 的长等于斜边上的中线长的34,则较大锐角的余弦值是( )A.35B.552C.553D.3219.如图28-8所示,将-矩形纸片ABCD 折起一个角,使点C 恰好落在AB 边,若AD=m ,∠CDE=α,则折痕DE=( )A.αα2sin cos •mB.ααcos sin 2•mC.ααcos sin •mD.ααsin cos 2•m图28-8 图28-920.已知平行四边形两邻边长分别是64cm和34cm ,一角为45°,则这个平行四边形的较长对角线长是( ) A.66cm B.68 cm C.38 cm D.154cm21.如图28-9所示,△ABC 中,D 为AB 的中点,∠ACB=135°,AC ⊥CD ,则sinA=( ) A.53B.55C.51 D.52四、模拟链接22.小明家在花园小区某栋楼AD 内,他家附近又新建了一座大厦BC ,已知两栋楼房间的水平距离为90 m ,AD 楼高60 m ,小明爬上自家所在楼房顶测得大厦顶部C 的仰角为30°,求大厦BC 的高.(精确到1 m ,如图28-10所示)图28-1023.小华所在的学校A位于某工地O的正西方向,如图28-11所示,且OA=200 m.一拖拉机从工地O出发,以5m/s的速度沿北偏西53°方向行驶,设拖拉机的噪音影响半径为130 m,问小华所在的学校A是否受拖拉机噪音影响?若受影响,请求出学校受拖拉机噪音影响的时间.(已知sin53°≈0.80、sin37°≈0.60)图28-1124.阅读下列材料,并解决后面的问题:在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,作AD ⊥BC 于D(如图28-12),则sinB=cAD ,sinC=bAD ,即AD=c·sinB ,AD=b·sinC ,于是c·sinB=b·sinC ,即C cB b sin sin =,同理有A a C c sin sin =,即Cc B b A a sin sin sin == 即:在一个锐角三角形中,各边和它所对角的正弦的比相等.[来源:学+科+网Z+X+X+K](1)在锐角三角形中,若已知三个元素a 、b 、∠A ,运用上述结论和有关定理就可求出其余三个元素c 、∠B 、∠C ,请按照下列步骤填空,完成求解过程.第一步:由条件a 、b 、∠A −−−→−有关系式_________−−→−求出∠B ; 第二步:由条件∠A 、∠B −−−→−有关系式________−−→−求出∠C ; 第三步:由条件_______−−−→−有关系式__________−−→−求出∠c (2)一货轮在C 处测得灯塔A 在其北偏西30°的方向上,随后货轮以284海里/时的速度沿北偏东45°的方向航行,半小时后到达B 处,此时又测得灯塔在货轮的北偏西70°的方向上(如图28-13),求此时货轮距灯塔A 的距离AB(结果精确到0.1,参考数据:sin40°=0.643,sin65°=0.906,sin70°=0.940,sin75°=0.966).图28-12图28-13参考答案一、自主学习1.如图28-3所示,Rt△ABC中(1)它三边之间的关系是_________.(2)它两锐角之间的关系是________.(3)它的边角之间的关系是:__________________________,_______________________ ______;____________________________,__________________________;___________________________,_________________________;图28-3答案:(1)a 2+b 2=c 2 (2)∠A+∠B=90° (3)sinA=ca ,cosA=cb ,tanA=bacotA=ab ,sinB=cb ,cosB=ca ,tanB=ab ,cotB=ba二、基础巩固2.等腰三角形的周长为2+3,腰长为1,则它的底角等于________. 答案:30°3.在离地面5 m 处引拉线固定电线杆,拉线和地面成60°角,则拉线的长为_______________. 答案:3310m4.一个梯形的两个下底角分别为30°和45°,较大的腰长为10 cm ,则它另一腰长为________. 答案:255.△ABC 中,BC=2,AC=3+3,∠C=30°,则sinA=_________.答案:10106.在高度为93 m 的建筑物上,观察一楼房的顶端和底部的俯角分别为30°,60°,则这栋楼房的高度为___________m.答案:627.Rt △ABC 中,∠C=90°,sinA=54,AB=10,则BC=________,cosB=________ 答案:8548.△ABC 中,若∠ABC=45°,∠ACB=30°,AB=22,则S △ABC =_________. 答案:2329.如图28-4所示,△ABC 中,CD ⊥AB 于D 点,且BD=2AD ,若CD=34,tan ∠BCD=33,则高AE=__________.图28-4答案:3310.Rt △ABC 中,CD 是斜边AB 上的高,AB=8 cm ,AC=34cm ,则AD=_____________cm.答案:611.Rt △ABC 中,∠C=90°,∠A 、∠B 、∠c 所对的边分别为a 、b 、c ,若a=25,b=215,则c=________,∠A_______,∠B________. 答案:530° 60°三、能力提高12.Rt △ABC 斜边上的中线CD 长为1,周长是2+6,则它的面积是( ) A.2B.21 C.1D.)32(21+答案:B13.正方形ABCD 的边长为5,E 、F 分别在边BC 、CD 上,若△AEF 为等边三角形,则BE 的长是( ) A.3255-B.3310C.3510-D.235答案:C14.如图28-5所示,一束平行的光线从教室窗射入教室,测得光线与地面所成的∠AMC=30°,窗户的高在教室地面的影长MN=32m ,窗户的下檐到教室地面的距离BC=1 m ,(点M 、N 、C 在同一直线上),则窗户高AB 为( )图28-5A.3m B.3 m C.2 mD.1.5 m 答案:C15.在平面直角坐标系内,坐标原点为O ,点M 在第四象限,且OM=1,∠MOx=30°,则点M 的坐标是( )A.(21,23-) B.(21,23--) C.(21,23-)D.(23,21-)答案:A16.如图28-6所示,在山坡上种树,已知相邻两株树的坡面距离AB 为4 m ,∠B=60°,则这两株树的水平距离和高度差分别为( ) A.32m ,2 m B.2 m ,32 m C.3 m ,1 mD.1 m,3m图28-6答案:A17.大风刮断一根废弃的木电线杆,如图28-7所示,杆的顶端B 落到地面离其底部A 的距离为3m处,若两截电线杆的夹角为30°,则电线杆刮断前的高度为( ) A.6 m B.33 m C.3+32mD.32m图28-7答案:C18.Rt △ABC 中,∠C=90°,若AC 的长等于斜边上的中线长的34,则较大锐角的余弦值是( )A.35B.552 C.553D.32 答案:D19.如图28-8所示,将-矩形纸片ABCD 折起一个角,使点C 恰好落在AB 边,若AD=m ,∠CDE=α,则折痕DE=( )图28-8A.αα2sin cos •mB.ααcos sin 2•mC.ααcos sin •mD.ααsin cos 2•m 答案:A20.已知平行四边形两邻边长分别是64cm和34cm ,一角为45°,则这个平行四边形的较长对角线长是( ) A.66 cm B.68 cm C.38cmD.154cm答案:D21.如图28-9所示,△ABC 中,D 为AB 的中点,∠ACB=135°,AC ⊥CD ,则sinA=( ) A.53 B.55C.51 D.52图28-9答案:B 四、模拟链接22.小明家在花园小区某栋楼AD 内,他家附近又新建了一座大厦BC ,已知两栋楼房间的水平距离为90 m ,AD 楼高60 m ,小明爬上自家所在楼房顶测得大厦顶部C 的仰角为30°,求大厦BC 的高.(精确到1 m ,如图28-10所示)图28-10答案:112 m23.小华所在的学校A 位于某工地O 的正西方向,如图28-11所示,且OA=200 m.一拖拉机从工地O 出发,以5m/s 的速度沿北偏西53°方向行驶,设拖拉机的噪音影响半径为130 m ,问小华所在的学校A 是否受拖拉机噪音影响?若受影响,请求出学校受拖拉机噪音影响的时间.(已知sin53°≈0.80、sin37°≈0.60)图28-11答案:受影响的时间为20 s24.阅读下列材料,并解决后面的问题:在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,作AD ⊥BC 于D(如图28-12),则sinB=cAD ,sinC=bAD ,即AD=c·sinB ,AD=b·sinC ,于是c·sinB=b·sinC ,即C cB b sin sin =,同理有A a C c sin sin =,即Cc B b A a sin sin sin == 即:在一个锐角三角形中,各边和它所对角的正弦的比相等.[来源:学+科+网Z+X+X+K](1)在锐角三角形中,若已知三个元素a 、b 、∠A ,运用上述结论和有关定理就可求出其余三个元素c 、∠B 、∠C ,请按照下列步骤填空,完成求解过程.第一步:由条件a 、b 、∠A −−−→−有关系式_________−−→−求出∠B ; 第二步:由条件∠A 、∠B −−−→−有关系式________−−→−求出∠C ; 第三步:由条件_______−−−→−有关系式__________−−→−求出∠c (2)一货轮在C 处测得灯塔A 在其北偏西30°的方向上,随后货轮以284海里/时的速度沿北偏东45°的方向航行,半小时后到达B 处,此时又测得灯塔在货轮的北偏西70°的方向上(如图28-13),求此时货轮距灯塔A 的距离AB(结果精确到0.1,参考数据:sin40°=0.643,sin65°=0.906,sin70°=0.940,sin75°=0.966).图28-12 图28-13答案:(1)略(2)约为21.3海里(提示:用题目中的结论)。

九年级解直角三角形经典习题附答案

九年级解直角三角形经典习题附答案

解直角三角形班级: 姓名 成绩解直角三角形1、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.2、我国为了维护队钓鱼岛P 的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP ∥BD ),当轮船航行到距钓鱼岛20km 的A 处时,飞机在B 处测得轮船的俯角是45°;当轮船航行到C 处时,飞机在轮船正上方的E 处,此时EC =5km .轮船到达钓鱼岛P 时,测得D 处的飞机的仰角为30°.试求飞机的飞行距离BD (结果保留根号).3、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为︒55,路基高度为5.8米,求路基下底宽(精确到0.1米).C AD B︒ 55 5.8m 10mA BC D 姓名: 得分:M E NCA4、为申办2010年冬奥会,须改变哈尔滨市的交通状况。

在大直街拓宽工程中,要伐掉一棵树AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区,现在某工人站在离B 点3米远的D 处,从C 点测得树的顶端A 点的仰角为60°,树的底部B 点的俯角为30°. 问:距离B 点8米远的保护物是否在危险区内?5、如图,某一水库大坝的横断面是梯形ABCD ,坝顶宽CD =5米,斜坡AD =16 米,坝高 6米,斜坡BC 的坡度3:1=i .求斜坡AD 的坡角∠A (精确到1分)和坝底宽AB .(精确到0.1米)6. 在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):(1) 在测点A 处安置测倾器,测得旗杆顶部M 的仰角∠MCE =α ; (2) 量出测点A 到旗杆底部N 的水平距离AN =m; (3) 量出测倾器的高度AC =h 。

根据上述测量数据,即可求出旗杆的高度MN 。

人教版数学九年级下28.2《解直角三角形的应用》测试题(含答案及解析)

人教版数学九年级下28.2《解直角三角形的应用》测试题(含答案及解析)

人教版数学九年级下28.2《解直角三角形的应用》测试题(含答案及解析) 1 / 14解直角三角形的应用 测试题时间:100分钟 总分: 100一、选择题(本大题共10小题,共30.0分)1. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度 如图,旗杆PA 的高度与拉绳PB 的长度相等 小明将PB 拉到 的位置,测得 为水平线 ,测角仪 的高度为1米,则旗杆PA 的高度为A.B.C. D.2. 如图,长4m 的楼梯AB 的倾斜角 为 ,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角 为 ,则调整后的楼梯AC 的长为 A. B.C. D. 3. 一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为 现要在楼梯上铺一条地毯,已知 米,楼梯宽度1米,则地毯的面积至少需要A. 米B.米 C.米D. 米4. 上午9时,一条船从A 处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处 如图 从A 、B 两处分别测得小岛M 在北偏东 和北偏东 方向,那么在B 处船与小岛M 的距离为A. 20海里B. 海里C. 海里D. 海里 5. 如图,某游乐场一山顶滑梯的高为h ,滑梯的坡角为a ,那么滑梯长m 为A. B. C. D.6.如图所示,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为,再向电视塔方向前进120米达到F处,又测得电视塔顶端A的仰角为,则这个电视塔的高度单位:米为A. B. 61 C. D. 1217.某校八年级生物兴趣小组租两艘快艇去微山湖生物考察,他们从同一码头出发,第一艘快艇沿北偏西方向航行50千米,第二艘快艇沿南偏西方向航行50千米,如果此时第一艘快艇不动,第二艘快艇向第一艘快艇靠拢,那么第二艘快艇航行的方向和距离分别是A. 南偏东,千米B. 北偏西,千米C. 南偏东,100千米D. 北偏西,100千米8.如图,一艘海轮位于灯塔P的南偏东方向,距离灯塔60nmile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东方向上的B处,这时,B处与灯塔P的距离为A. nmileB. nmileC. nmileD. nmile9.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度:,则坝底AD的长度为A. 26米B. 28米C. 30米D. 46米10.如图是某水库大坝的横截面示意图,已知,且AD、BC之间的距离为15米,背水坡CD的坡度:,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度:4,则大坝底端增加的长度CF是米.A. 7B. 11C. 13D. 20二、填空题(本大题共10小题,共30.0分)人教版数学九年级下28.2《解直角三角形的应用》测试题(含答案及解析) 3 / 1411. 为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形已知迎水坡面 米,背水坡面 米, ,加固后拦水坝的横断面为梯形ABED ,,则CE 的长为______ 米12. 如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为 ,测得底部C 的俯角为 ,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 约为______ 米 精确到1米,参考数据:13. 小明沿着坡度i 为1: 的直路向上走了50m ,则小明沿垂直方向升高了______ 14. 如图,长4m 的楼梯AB 的倾斜角 为 ,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角 为 ,则调整后楼梯AC 长为______ 米15. 如图,一名滑雪运动员沿着倾斜角为 的斜坡,从A 滑行至B ,已知 米,则这名滑雪运动员的高度下降了______米 参考数据: , ,16. 如图,为测量某栋楼房AB 的高度,在C 点测得A 点的仰角为 ,朝楼房AB 方向前进10米到达点D ,再次测得A 点的仰角为 ,则此楼房的高度为______ 米 结果保留根号 .17. 如图,从热气球C 处测得地面A 、B 两点的俯角分别为 、 ,如果此时热气球C 处的高度为200米,点A 、B 、C 在同一直线上,则AB 两点间的距离是______米 结果保留根号 .18.如图,水库堤坝的横断面是梯形,测得BC长为30m,CD长为,斜坡AB的坡比为1:3,斜坡CD的坡比为1:2,则坝底的宽AD为______19.如图,某堤坝的斜坡AB的斜角是,坡度是:,则______.20.某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在地面C处同一方向上分别测得A处的仰角为,B处的仰角为已知无人飞机的飞行速度为3米秒,则这架无人飞机的飞行高度为结果保留根号______ 米三、计算题(本大题共4小题,共24.0分)21.如图,某数学兴趣小组要测量一栋五层居民楼CD的高度该楼底层为车库,高米;上面五层居住,每层高度相等测角仪支架离地米,在A处测得五楼顶部点D的仰角为,在B处测得四楼顶部点E的仰角为,米求居民楼的高度精确到米,参考数据:22.某兴趣小组借助无人飞机航拍校园如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为,B处的仰角为已知无人飞机的飞行速度为4米秒,求这架无人飞机的飞行高度结果保留根号人教版数学九年级下28.2《解直角三角形的应用》测试题(含答案及解析)23.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为,教学楼底部B的俯角为,量得实验楼与教学楼之间的距离.求的度数.求教学楼的高结果精确到,参考数据:,24.如图,在大楼AB的正前方有一斜坡CD,米,坡角,小红在斜坡下的点C处测得楼顶B的仰角为,在斜坡上的点D处测得楼顶B的仰角为,其中点A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度结果保留根号5 / 14四、解答题(本大题共2小题,共16.0分)25.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为,测得大楼顶端A的仰角为点B,C,E在同一水平直线上,已知,,求障碍物B,C两点间的距离结果精确到参考数据:,26.如图,某湖中有一孤立的小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PQ通往小岛,某同学在观光道AB上测得如下数据:米,,请求出小桥PQ的长,结果精确到米人教版数学九年级下28.2《解直角三角形的应用》测试题(含答案及解析)7 / 14答案和解析【答案】 1. A 2. B 3. D 4. B5. A6. C7. B8. B 9. D 10. C11. 8 12. 208 13. 2514. 15. 280 16.17. 18. 130 19.20.21. 解:设每层楼高为x 米,由题意得: 米, , ,在 中, ,,在 中, ,, ,,解得: ,则居民楼高为 米. 22. 解:如图,作 , 水平线,由题意得: , , ,, , ,, , ,则 .23. 解: 过点C 作 ,则有 , ,;由题意得: ,在 中, , 在 中, ,教学楼的高 , 则教学楼的高约为 .24. 解:在 中, 米, , ,米;过D作,交AB于点F,,,,即为等腰直角三角形,设米,四边形DEAF为矩形,米,即米,在中,,米,米,米,,,,在中,根据勾股定理得:,解得:,则米.25. 解:如图,过点D作于点F,过点C作于点H.则,在直角中,,,.在直角中,,,,.答:障碍物B,C两点间的距离约为.26. 解:设米,在直角中,,,在直角中,,,米,,解得:米.答:小桥PQ的长度约是米.【解析】1. 解:设,在中,,,人教版数学九年级下28.2《解直角三角形的应用》测试题(含答案及解析) 9 / 14, ,.故选:A .设 ,在 中,根据,列出方程即可解决问题.本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.2. 解:在 中,,, 在 中,,.故选B .先在 中利用正弦的定义计算出AD ,然后在 中利用正弦的定义计算AC 即可.本题考查了解直角三角形的应用 坡度坡角:坡度是坡面的铅直高度h 和水平宽度l 的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i 表示,常写成 :m 的形式 把坡面与水平面的夹角 叫做坡角,坡度i 与坡角 之间的关系为: . 3. 解:在 中, 米 , 米 ,地毯的面积至少需要 米 ; 故选:D .由三角函数表示出BC ,得出 的长度,由矩形的面积即可得出结果.本题考查了解直角三角形的应用、矩形面积的计算;由三角函数表示出BC 是解决问题的关键.4. 解:如图,过点B 作 于点N .由题意得,海里, .作 于点N .在直角三角形ABN 中, . 在直角 中, ,则 , 所以 海里 . 故选B .过点B 作 于点 根据三角函数求BN 的长,从而求BM 的长.解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.5. 解:,. 故选A .根据三角函数的定义即可求解.本题考查了三角函数的定义,理解定义是关键. 6. 【分析】根据题意求出CE 的长,根据三角形的外角的性质和等腰三角形的性质求出AE 的长,根据正弦的定义计算即可.本题考查的是解直角三角形的应用仰角俯角问题,理解仰角的概念、熟记锐角三角函数的定义是解题的关键.【解答】解:由题意得,,,,,,.故选:C.7. 解:第一艘快艇沿北偏西方向,第二艘快艇沿南偏西方向,,,,,第二艘快艇沿南偏西方向,,,第二艘快艇航行的方向和距离分别是:北偏西,千米.故选:B.根据题意得出以及,进而得出第二艘快艇航行的方向和距离.此题主要考查了方向角以及勾股定理,正确把握方向角的定义是解题关键.8. 解:如图作于E.在中,,,,在中,,,故选:B.如图作于在中,求出PE,在中,根据即可解决问题.本题考查方向角、直角三角形、锐角三角函数的有关知识解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.9. 解:坝高12米,斜坡AB的坡度:,米,米,米,故选:D.先根据坡比求得AE的长,已知,即可求得AD.此题考查了解直角三角形的应用中的坡度坡角的问题及等腰梯形的性质的掌握情况,将相关的知识点相结合更利于解题.10. 解:过D作于G,于H,,,背水坡CD的坡度:,背水坡EF的坡度:4,,,米,人教版数学九年级下28.2《解直角三角形的应用》测试题(含答案及解析) 11 / 14 故选C .过D 作 于G , 于H ,解直角三角形即可得到结论.本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.11. 解:分别过A 、D 作 , ,垂点分别为F 、G ,如图所示.在 中, 米, ,,, .在 中, , 米,.在 中, ,,,.即CE 的长为8米.故答案为8.分别过A 、D 作下底的垂线,设垂足为F 、 在 中,已知坡面长和坡角的度数,可求得铅直高度AF 的值,也就得到了DG 的长;在 中,由勾股定理求CG 的长,在 中,根据正切函数定义得到GE 的长;根据 即可求解. 本题考查的是解直角三角形的应用 坡度坡角问题,锐角三角函数的定义,勾股定理 作辅助线构造直角三角形是解答此类题的一般思路.12. 解:由题意可得:, 解得: ,,解得: ,故该建筑物的高度为: ,故答案为:208.分别利用锐角三角函数关系得出BD ,DC 的长,进而求出该建筑物的高度. 此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键. 13. 解:如图,过点B 作 于点E ,坡度: : ,:, ,,.他升高了25m .故答案为:25.首先根据题意画出图形,由坡度为1: ,可求得坡角,又由小明沿着坡度为1:的山坡向上走了50m,根据直角三角形中,所对的直角边是斜边的一半,即可求得答案.此题考查了坡度坡角问题此题比较简单,注意能构造直角三角形并用解直角三角形的知识求解是解此题的关键,注意数形结合思想的应用.14. 解:在中,,,在中,,.故答案是:.先在中利用正弦的定义计算出AD,然后在中利用正弦的定义计算AC即可.本题考查了解直角三角形的实际应用中的坡度坡角问题,难度不大,注意细心运算即可.15. 解:如图在中,,这名滑雪运动员的高度下降了280m.故答案为280如图在中,,可知这名滑雪运动员的高度下降了280m.本题考查解直角三角形、坡度坡角问题、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于中考常考题型.16. 解:在直角三角形ADB中,,,,在直角三角形ABC中,,,,,解得:.故答案为:.首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及构造方程关系式,进而可解,即可求出答案.本题考查解直角三角形的应用仰角俯角问题,要求学生能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形.17. 解:从热气球C处测得地面A、B两点的俯角分别为、,,,,,是等腰直角三角形,,人教版数学九年级下28.2《解直角三角形的应用》测试题(含答案及解析) 13 / 14在 中, , ,,.故答案为: .先根据从热气球C 处测得地面A 、B 两点的俯角分别为 、 可求出 与 的度数,再由直角三角形的性质求出AD 与BD 的长,根据 即可得出结论.本题考查的是解直角三角形的应用 仰角俯角问题,熟知锐角三角函数的定义是解答此题的关键.18. 解:作 于E , 于F ,斜坡CD 的坡比为1:2,即 ,,又 ,, ,由题意得,四边形BEFC 是矩形,, ,斜坡AB 的坡比为1:3,,即 , ,故答案为:130m .作 于E , 于F ,根据坡度的概念分别求出AE 、DF ,结合图形计算即可.本题考查的是解直角三角形的应用 坡度坡角问题,掌握坡度是坡面的铅直高度h 和水平宽度l 的比是解题的关键,掌握矩形的判定和性质的应用.19. 解: : ,则 .故答案是: .根据坡度就是坡角的正切值即可求解.本题主要考查了坡度的定义,理解坡度和坡角的关系是解题的关键.20. 解:如图,作 , 水平线,由题意得: , , ,, ,,, ,,.故答案为: .作 , 水平线,根据题意确定出 与 的度数,利用锐角三角函数定义求出AD 与BD 的长,由 求出BC 的长,即可求出BH 的长.此题考查了解直角三角形的应用 仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.21. 设每层楼高为x 米,由 求出 的长,进而表示出 与 的长,在直角三角形 中,利用锐角三角函数定义表示出 ,同理表示出 ,由 求出AB 的长即可.此题属于解直角三角形的应用 仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.22. 如图,作 , 水平线,根据题意确定出 与 的度数,利用锐角三角函数定义求出AD 与BD 的长,由 求出BC 的长,即可求出BH 的长.此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.23. 过点C作CE与BD垂直,根据题意确定出所求角度数即可;在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由求出BD的长,即为教学楼的高.此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.24. 在直角三角形DCE中,利用锐角三角函数定义求出DE的长即可;过D作DF垂直于AB,交AB于点F,可得出三角形BDF为等腰直角三角形,设,表示出BC,BD,DC,由题意得到三角形BCD为直角三角形,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出AB的长.此题考查了解直角三角形仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.25. 如图,过点D作于点F,过点C作于点通过解直角得到DF的长度;通过解直角得到CE的长度,则.本题考查了解直角三角形仰角俯角问题要求学生能借助仰角构造直角三角形并解直角三角形.26. 设米,在直角和直角中分别利用x表示出AQ和BQ的长,根据,即可列方程求得x的值.本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般.。

九年级数学(下)《解直角三角形》练习题含答案

九年级数学(下)《解直角三角形》练习题含答案

九年级数学(下)《解直角三角形》练习题1、测得某坡面垂直高度为2m,水平宽度为4m,则坡度为 [ ]2、在Rt △ABC 中,∠C=90°,∠A=30°,b=310,则a= ,c= ;3、已知在直角梯形ABCD 中,上底CD=4,下底AB=10,非直角腰BC=34,则底角∠B= ;4.如图:铁路的路基的横截面是等腰梯形,斜坡AB 的坡度为1∶3,BE 为33米,基面AD 宽2米,求路基的高AE ,基底的宽BEC 及坡角B 的度数.(答案可带根号)5.水坝横断面为等腰梯形,尺寸如图,(单位:米)坡度I=DEAE =1,求坡面倾斜角(坡角),并计算修建长1000米的水坝约需要多少土方? 6.如图,上午9时,一条船从A 处出发,以20节的速度向正北航行,11时到达B 处,从A ,B 望灯塔C ,测得∠NAC =36°,∠NBC =72°,那么从B 处到灯塔C 的距离是多少海里?7.如图,王聪同学拿一把∠ACB =30°的小型直角三角尺ABC 目测河流在市区河段的宽度.他先在岸边的点A 顺着30°角的邻边AC 的方向确定河对岸岸边的一棵树M .然后,沿30°角的对边AB 的方向前进到点B ′,顺着斜边C B ''的方向看见M ,并测得B A '=100 m ,那么他目测的宽大约为多少?(结果精确到 1m)8.海中有一个小岛A,它的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°,航行12海里到达D点,这时测得小岛A在北偏东30°.如果渔船不改变航向,继续向东捕捞,有没有触礁的危险?思考·探索·交流1.如图,MN表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°的方向上有一点A,以A为圆心、500 m为半径的圆形区域为居民区.取MN上另一点B,测得BA的方向为南偏东 75°.已知MB=400 m,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?答案:1、D 2、10,20 3、30°4.解:∵3133 AE∴AE=3(米)BC=(2+63)(米)∠B=30°5. 45°,444000土方6.40 海里.7.河宽约 173 m .8.渔船没有触礁的危险.思考·探索·交流答案:1.输水路线不会穿过居民区.提示:过点A 作MN 的垂线,垂足为C ,求AC。

人教新版九年级下册《28.2_解直角三角形及其应用》2024年同步练习卷(13)+答案解析

人教新版九年级下册《28.2_解直角三角形及其应用》2024年同步练习卷(13)+答案解析

人教新版九年级下册《28.2解直角三角形及其应用》2024年同步练习卷(13)一、选择题:本题共9小题,每小题3分,共27分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,,则拉线BC的长度为、D、B在同一条直线上()A.B.C.D.2.身高相同的甲、乙、丙三人放风筝,各人放出线长分别为300米、250米、200米,线与地面的夹角分别为、、假设风筝线是拉直的,三人所放风筝()A.甲的最高B.乙的最高C.丙的最高D.一样高3.如图,一艘海轮位于灯塔P的南偏东方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里4.如图,在地面上的点A处测得树顶B的仰角为度,,则树高BC为用含的代数式表示()A.B.C.D.5.如图,这是拦水坝的横断面,斜坡AB的水平宽度为12m,斜面坡度为1:2,则斜坡AB的长为()A. B. C. D.24m6.如图,斜面AC的坡度与AD的比为1:2,米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若米,则旗杆BC的高度为()A.5米B.6米C.8米D.米7.如图,小明利用一个锐角是的三角板测操场旗杆的高度,已知他与旗杆之间的水平距离BC为15m,AB为即小明的眼睛与地面的距离,那么旗杆的高度是()A.B.C.D.8.如图,在建筑物AB左侧距楼底B点水平距离150米的C处有一山坡,斜坡CD的坡度为:,坡顶D到BC的垂直距离米,点A、B、C、D、E在同一面内,在点D处测得建筑物顶点A的仰角为,则建筑物AB的高度约参考数据:,,A.米B.米C.米D.米9.如图,为了测量某建筑物BC高度,小明采用了如下的方法:先从与某建筑物底端B在同一水平线上的A 点出发,先沿斜坡AD行走260米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为,建筑物底端B的俯角为,其中点A、B、C、D、E在同一平面内,斜坡AD的坡度:,根据小明的测量数据,计算得出建筑物BC的高度约为计算结果精确到米,参考数据:,,,()A.米B.米C.米D.米二、填空题:本题共2小题,每小题3分,共6分。

数学人教版九年级下册解直角三角形应用举例----仰角和俯角

数学人教版九年级下册解直角三角形应用举例----仰角和俯角

B
α=30° 120 D β=60°
部的俯角为60°,热气球与
高楼的水平距离为120m,这
A
栋高楼有多高?
C
例2、操场上有一根旗杆,小明同学 拿了一把卷尺,并且向数学老师借 了一把含300的三角板去度量旗杆的 高度。 (1)小明将旗杆上绳子拉成仰角为 600,用卷尺量得BC=4米,则旗杆AB 的高多少?
在D点测得山顶A的仰角为600 ,求山高AB。
A
Hale Waihona Puke D 30° C EF
B
练习4、在山顶上处D有一铁塔,在塔顶B处测得地面上一 点A的俯角α =60o,在塔底D测得点A的俯角β =45o,已知 塔高BD=30米,求山高CD。
B α
D
β
C
A
练习5、建筑物BC上有一旗杆AB,由距BC 40m的D处观
察旗杆顶部A的仰角为60°,观察底部B的仰角为45°,
A
60
0
B
4 m
例3. 如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔80海里的A
处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上 的B处,这时,海轮所在的B处距离灯塔P有多远? (精确到0.01海里)
60°
80
A C
P
30°
B
练习1、如图,为了测量电线杆的高度AB,在离电线杆 22.7米的C 处,用高1.20米的测角仪CD 测得电线杆顶端
B 的仰角a=30°,求电线杆AB 的高.(精确到0.1米)
图19.4.4
练习2、在山脚C 处测得山顶A的仰角为45°,沿 着水平地面向前300米到达D点,在D点测得山顶A
的仰角为600 , 求山高AB。

2022-2023学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习题(附答案)

2022-2023学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习题(附答案)

2022-2023学年人教版九年级数学下册《28.2解直角三角形及其应用》同步练习题(附答案)一.选择题1.如图某河堤迎水坡AB坡比i=tan∠CAB=1:,堤高BC=5m,则坡面AB长是()A.5 m B.10m C.5m D.8 m2.从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是()A.42米B.14米C.21米D.42米3.如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A.米B.4sinα米C.米D.4cosα米4.在台风来临之前,有关部门用钢管加固树木(如图),固定点A离地面的高度AC=m,钢管与地面所成角∠ABC=∠1,那么钢管AB的长为()A.B.C.m•cos∠1D.m•sin∠15.如图,测得一商场自动扶梯的长为l,自动扶梯与地面所成的角为θ,则该自动扶梯到达的高度h为()A.l•sinθB.C.l•cosθD.6.如图,梯子AC的长为2.8米,则梯子顶端离地面的高度AD是()A.米B.米C.sinα米D.cosα米7.如图,A,B,C是3×1的正方形网格中的三个格点,则tan B的值为()A.B.C.D.8.如图,一艘船向东航行,上午8时到达A处,测得一灯塔B在船的北偏东30°方向,且距离船48海里;上午11时到达C处,测得灯塔在船的正北方向.则这艘船航行的速度为()A.24海里/时B.8海里/时C.24海里/时D.8海里/时二.填空题9.某斜坡坡角α的正弦值sinα=,则该斜坡的坡比为.10.如图,在市区A道路上建造一座立交桥,要求桥面的高度h为4.8米,引桥的坡角为14°,则引桥的水平距离l为米(结果精确到0.1m,参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25).11.如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)12.如图,小明在某天15:00时测量某树的影长时,日照的光线与地面的夹角∠ACB=60°,当他在17:00时测量该树的影长时,日照的光线与地面的夹角∠ADB=30°,若两次测得的影长之差CD长为6m,则树的高度为m.13.平放在地面上的三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示,量得∠A 为54°,∠B为36°,边AB的长为2.1m,BC边上露出部分BD的长为0.6m,则铁板BC边被掩埋部分CD的长是m.(结果精确到0.1m.参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38)14.如图,一艘轮船由西向东航行,在A处测得灯塔P在北偏东60°的方向,继续向东航行40海里后到B处,测得灯塔P在北偏东30°的方向,此时轮船与灯塔之间的距离是海里.15.如图,某校无人机兴趣小组借助无人机测量教学楼的高度AB,无人机在离教学楼底部B处16米的C处垂直上升31米至D处,测得教学楼顶A处的俯角为39°,则教学楼的高度AB约为米.(结果精确到0.1米)【参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81】16.如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB的坡度为.三.解答题17.如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB=30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.(参考数据:≈1.4,≈1.7,结果精确到1千米).18.如图,已知在一高速公路L边上有一测速站点P,现测得PC=24米,PD=26米,CD =10米.一辆汽车在公路L上匀速行驶,测得此车从点A行驶到点B所用的时间为1秒,并测得∠PBD=60°,∠P AD=30°,计算此车是否超过了每秒25米的限制速度.19.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)20.如图,校门口路灯灯柱AB被钢缆CD固定,已知BD=4米,且cos∠DCB=.(1)求钢缆CD的长度;(2)若AD=2米,灯的顶端E距离A处1.6米,∠EAB=120°,则灯的顶端E距离地面多少米?21.某综合实验小组利用大厦AC测量楼前一棵树EF的高,小明在大厦的B点能透过树梢F看到小强同学在G点,小明上升到达C点透过F点看到小文同学在D点,已知G,D,E,A在同一直线上,AC⊥AG,EF⊥AG测得GD=6米,∠C=27°,∠G=38.5°,则树的高度约为多少米?(参考数据:tan27°=0.50,tan38.5°=0.80).22.图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.(1)求∠ABC的度数;(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin66.4°≈0.92,cos66.4°≈0.40,sin23.6°≈0.40,≈1.414)参考答案一.选择题1.解:∵tan∠CAB===,∴在Rt△ABC中,∠BAC=30°,又∵BC=5m,∴AB=2BC=10m,故选:B.2.解:根据题意可得:船离海岸线的距离为42÷tan30°=42(米)故选:A.3.解:过点A′作A′C⊥AB于点C,由题意可知:A′O=AO=4,∴sinα=,∴A′C=4sinα,故选:B.4.解:在Rt△ABC中,sin∠1=,∴AB=,故选:A.5.解:∵sinθ=,∴h=l•sinθ,故选:A.6.解:在Rt△ACD中,∠ADC=90°,AB=2.8m,∠ACD=α,∴AD=AC•sin∠ACD=2.8sinα=sinα米,故选:C.7.解:如图所示,在Rt△ABD中,tan B==.故选:A.8.解:在Rt△ABC中,∵∠B=30°,AB=48海里,∴AC=AB=24海里,则这艘船航行的速度为24÷3=8(海里/小时),故选:D.二.填空题9.解;如图,设BC=x,在Rt△ABC中,sin A==,则AB=2x,由勾股定理得,AC==x,∴斜坡的坡比===1:,故答案为:1:.10.解:由题意可得:tan14°==≈0.25,解得:l=19.2,故答案为:19.2.11.解:如图,过点D作DE⊥AB,垂足为点E,则DE=BC=5m,DC=BE=1.5m,在Rt△ADE中,∵tan∠ADE=,∴AE=tan∠ADE•DE=tan50°×5≈1.19×5=5.95(m),∴AB=AE+BE=5.95+1.5≈7.5(m),故答案为:7.5m.12.解:∵tan∠ADB=,∴BD==AB(m),∵tan∠ACB=,∴BC==AB(m),∵CD=BD﹣BC,∴6=AB﹣AB(m),∴AB=9(m),故答案为9.13.解:在直角三角形中,sin A=,∴BC=AB•sin A=2.1sin54°≈2.1×0.81=1.701(m),∴CD=BC﹣BD=1.701﹣0.6=1.101≈1.1(m),故答案为:1.1.14.解:如图所示:由题意可得,∠P AB=30°,∠DBP=30°,故∠PBE=60°,则∠P=∠P AB=30°,可得:AB=BP=40海里.故答案为:40.15.解:过点A作AM⊥CD于点M,则∠DAM=∠ADE=39°,如图所示.在Rt△ADM中,AM=16,∠DAM=39°,∴DM=AM•tan∠DAM=16×0.81=12.96,∴AB=CM=CD﹣DM=31﹣12.96=18.04≈18.0.故答案为:18.0.16.解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.三.解答题17.解:过点C作CD⊥AB于点D,如图所示.在Rt△ACD中,AC=8(千米),∠CAD=30°,∠CDA=90°,∴CD=AC•sin∠CAD=4(千米),AD=AC•cos∠CAD=4(千米)≈6.8(千米).在Rt△BCD中,CD=4(千米),∠BDC=90°,∠CBD=45°,∴∠BCD=45°,∴BD=CD=4(千米),∴AB=AD+BD=6.8+4≈11(千米).答:A、B两点间的距离约为11千米.18.解:此车超过了每秒25米的限制速度,理由如下:∵PC=24米,PD=26米,CD=10米,242+102=262,∴PC2+CD2=PD2,∴△PCD是直角三角形,∠PCD=90°,∴∠PCB=90°,在Rt△PCB中,∠PBD=60°,sin∠PBD=,∴PB===16≈27.7(米),∵∠P AD=30°,∴∠APB=∠PBD﹣∠P AD=60°﹣30°=30°,∴∠APB=∠P AD,∴AB=PB≈27.7米,∵27.7>25,∴此车超过了每秒25米的限制速度.19.解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80mm,CD=80mm,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40mm=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44(mm),∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80mm,BC=40mm,∴tan∠D===0.500,∴∠D≈26.6°,因此旋转的角度约为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.20.解:(1)在Rt△DCB中,cos∠DCB=,∴∴设BC=3x,DC=5x,∴BD=,∵BD=4m,∴4x=4,∴x=1,∴CD=5米;(2)如图,过点E作EF⊥AB,交BA的延长线于点F.∵∠EAB=120°,∴∠EAF=60°,∴AF=AE•cos∠EAF=1.6×=0.8(米),∴FB=AF+AD+DB=0.8+2+4=6.8(米).∴灯的顶端E距离地面6.8米.21.解:∵AC⊥AG,EF⊥AG,∴∠A=∠FED=90°,∴AC∥EF,∴∠DFE=∠C=27°,在Rt△GEF和Rt△DEF中,tan∠G==,即=0.80,tan∠DFE==0.5,即DE=0.5EF,∴=0.8,解得EF=8(米).答:树的高度约为8米.22.解:(1)过点B作BH⊥MP,垂足为H,过点M作MI⊥FG,垂足为I,过点P作PK ⊥DE,垂足为K,∵MP=25.3cm,BA=HP=8.5cm,∴MH=MP﹣HP=25.3﹣8.5=16.8(cm),在Rt△BMH中,cos∠BMH===0.4,∴∠BMH=66.4°,∵AB∥MP,∴∠BMH+∠ABC=180°,∴∠ABC=180°﹣66.4°=113.6°;(2)∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMI=180°﹣∠BMN﹣∠BMH=180°﹣68.6°﹣66.4°=45°,∵MN=28cm,∴cos45°==,∴MI≈19.80cm,∵KI=50cm,∴PK=KI﹣MI﹣MP=50﹣19.80﹣25.3=4.90≈4.9(cm),∴此时枪身端点A与小红额头的距离是在规定范围内.。

人教版九年级数学下册《解直角三角形》

人教版九年级数学下册《解直角三角形》
锐角三角函数
解直角三角形
教学新知Biblioteka 1972年测量比萨斜塔数据:如图所示,
设塔顶中心点为B,塔身中心线与垂直中
心线的夹角为∠A,过点B 向垂直中心线
引垂线,垂足为点C。在Rt△ABC 中,
∠C =90°,BC=5.2m,AB=54.5m。
教学新知
三边关系:a2+b2=c2(勾股定理)
两锐角之间的关系:
1.直角三角形中的有关关系:
(1)三边关系:a 2+b 2=c 2(勾股定理)。
(2)两锐角之间的关系:∠A+∠B =90°(互余关系)



(3)边角之间的关系:sinA= ,cosA= ,tanA= 。



2.定义:由直角三角形中的已知元素,求出其余未知元素的过
程,叫做解三角形。知道两个元素(至少有一条边),求另外



边角之间的关系:sinA= ,cosA= ,tanA= 。



小练习
已知在Rt△ABC 中,∠C =90°,∠A、∠B、∠C的对边
分别是a、b、c,则下列关系式错误的是( D )
A. a =b tanA
C. c =csinA
B. b =c cosA
D. c

=
sin
知识梳理
知识点2:解直角三角形。
由直角三角形中的已知元素,求出其余未知元素的过程,
叫做解直角三角形。
知道两个元素(至少有一条边),求另外五个的过程。
小练习
●在Rt △ ABC 中,∠C =90°,∠A、∠B、∠C的对边分别
是a、b、c,由下列条件解直角三角形。
(1)已知a=4 10,c=8 5。

九年级数学下册《解直角三角形》典型例题(含答案)

九年级数学下册《解直角三角形》典型例题(含答案)

《解直角三角形》典型例题例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形.分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决.解 (1); (2)由ab B =tan ,知 ; (3)由c a B =cos ,知860cos 4cos =︒==B a c . 说明 此题还可用其他方法求b 和c .例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形.解法一 ∵∴设,则由勾股定理,得 ∴ .∴. 解法二 133330tan =⨯=︒=b a说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题.例 3 设中, 于D ,若 ,解三角形ABC .分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手.解在Rt中,有:∴在Rt中,有说明(1)应熟练使用三角函数基本关系式的变形,如:(2)平面几何中有关直角三角形的定理也可以结合使用,本例中“”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值:所以解直角三角形问题,应开阔思路,运用多种工具.例4在中,,求.分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差;(2)不是直角三角形,可构造直角三角形求解.解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有;在中,,且,∴;于是,有,则有说明还可以这样求:例5 如图,在电线杆上离地面高度5m 的C 点处引两根拉线固定电线杆,一根拉线AC 和地面成60°角,另一根拉线BC 和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).分析 分别在两个直角三角形ADC 和BDC 中,利用正弦函数的定义,求出AC 和BC .解: 在Rt △ADC 中,331023560sin ==︒=DCAC在Rt △BDC 中,221022545sin ==︒=DC BC说明 本题考查正弦的定义,对于锐角三角函数的定义,要熟练掌握.。

(附答案)《解直角三角形》典型例题

(附答案)《解直角三角形》典型例题

《解直角三角形》典型例题例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ;(2)由abB =tan ,知 ;(3)由c a B =cos ,知860cos 4cos =︒==B a c . 说明 此题还可用其他方法求b 和c .例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形.解法一 ∵ ∴设 ,则由勾股定理,得∴ .∴.解法二 133330tan =⨯=︒=b a说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中,于D ,若,解三角形ABC .分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手.解在Rt中,有:∴在Rt中,有说明(1)应熟练使用三角函数基本关系式的变形,如:(2)平面几何中有关直角三角形的定理也可以结合使用,本例中“”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值:所以解直角三角形问题,应开阔思路,运用多种工具.例4在中,,求.分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差;(2)不是直角三角形,可构造直角三角形求解.解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有;在中,,且,∴;于是,有,则有说明还可以这样求:例5 如图,在电线杆上离地面高度5m 的C 点处引两根拉线固定电线杆,一根拉线AC 和地面成60°角,另一根拉线BC 和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).分析 分别在两个直角三角形ADC 和BDC 中,利用正弦函数的定义,求出AC 和BC .解: 在Rt △ADC 中,331023560sin ==︒=DC AC 在Rt △BDC 中,221022545sin ==︒=DC BC说明 本题考查正弦的定义,对于锐角三角函数的定义,要熟练掌握.学习要有三心:一信心;二决心;三恒心.知识+方法=能力,能力+勤奋=效率,效率×时间=成绩. 宝剑锋从磨砺出,梅花香自苦寒来.。

人教版-数学-九年级下册--28.2解直角三角形 本站原创 完整版

人教版-数学-九年级下册--28.2解直角三角形  本站原创  完整版

解直角三角形一、选择题1.(2009年甘肃兰州)如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为A.5m B.6m C.7m D.8m【关键词】解直角三角形.坡度【答案】A2.(2009年吉林长春).菱形OABC在平面直角坐标系中的位置如图所示,452AOC OC∠==°,B的坐标为()A.2,B.2),C.211),D.(121),【关键词】菱形的性质与判定.直角三角形的有关计算.平面内点的坐标的意义【答案】C3.(2009年河北)图是某商场一楼与二楼之间的手扶电梯示意图.其中AB.CD分别表示一楼.二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是()A833m B.4 m C.43m D.8 m【关键词】解直角三角形【答案】B4.(2009年山东潍坊)如图,小明要测量河内小岛B到河边公路l的距离,在A点测得30BAD∠=°,在C点测得60BCD∠=°,又测得50AC=米,则小岛B到公路l的距离为()米.C D150°hxyOC BAA.25 B.253C.1003D.25253+【关键词】解直角三角形【答案】B5.(2009年湖北恩施)如图5,在ABC△中,C∠9060B D=∠=°,°,是AC上一点,DE AB⊥于E,且21CD DE==,,则BC的长为()A.2 B.433C.23D.43【关键词】解直角三角形.【答案】B6.(200 9年浙江丽水)如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2 , l2,l3之间的距离为3 ,则AC的长是()A.172B.52C.24D.7【关键词】直线与直线的距离.勾股定理,解直角三角形【答案】A7.(2009年山东泰安)在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测得A地在C 地南偏西30°方向,则A.C两地的距离为l1l2l3ACBBCA D lA .km 3310 B.km 335 C.km 25 D.km 35 【关键词】解直角三角形【答案】A8.(2009年甘肃白银)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( )A .8米B .83米C .833米D .433米 【关键词】倾斜角.直角三角形的有关计算【答案】C9.(2009年湖南益阳)如图3,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为A. αcos 5B. αcos 5C. αsin 5D. αsin 5【关键词】解直角三角形【答案】B10..(2009年甘肃定西)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( )A .8米B .83米C .833米D .433米 【关键词】解直角三角形【答案】C11.(2009年青海)一根电线杆的接线柱部分AB 在阳光下的投影CD 的长为1米,太阳光线与地面的夹角60ACD ∠=°,则AB 的长为( )A .12米B .3米α5米AB图3 第9题图C.32米D.33米【关键词】解直角三角形【答案】B二、填空题1.(2009年湖北仙桃)如图所示,小华同学在距离某建筑物6米的点A处测得广告牌B点.C 点的仰角分别为52°和35°,则广告牌的高度BC为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)【关键词】解直角三角形.【答案】3.52. (2009年广西桂林)如图,在一次数学课外活动中,测得电线杆底部B与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A到地面的距离AB是米.(结果保留根号).【关键词】直角三角形【答案】33.(2009年黑龙江齐齐哈尔)(用直角边分别为3和4的两个直角三角形拼成凸四边形,所得的四边形的周长是____________.【关键词】直角三角形性质【答案】14或16或184.(2009年浙江宁波)如图,在坡屋顶的设计图中,AB AC=,屋顶的宽度l为10米,坡角α为35°,则坡屋顶高度h为米.(结果精确到0.1米)【关键词】直角三角形的有关计算【答案】3.55.(2009浙江丽水)将一副三角板按如图1位置摆放,使得两块三角板的直角边AC和MDAB Chlα第15题图AB C重合.已知AB=AC=8 cm,将△MED绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积约是▲cm2 (结果精确到0.1,73.13≈).【关键词】特殊三角形【答案】20.36.(2009年湖南怀化)如图8,小明从A地沿北偏东ο30方向走1003m到B地,再从B地向正南方向走200m到C地,此时小明离A地m.【关键词】直角三角形的有关计算【答案】1007.(2009年湖北鄂州) 小明同学在东西方向的沿江大道A处,测得江中灯塔P在北偏东60°方向上,在A处正东400米的B处,测得江中灯塔P在北偏东30°方向上,则灯塔P到沿江大道的距离为____________米.【关键词】方位角【答案】32008.(2009年广西南宁)如图,一艘海轮位于灯塔P的东北方向,距离灯塔2A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为_____________海里(结果保留根号).图2图1A(M)EDCBDCB A(M)【关键词】直角三角形的有关计算【答案】()40340+9.(2009年甘肃白银)如图7,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B .C ,那么线段AO = cm .【关键词】直角三角形的有关计算【答案】510.(2009年湖南衡阳)某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为_________.【关键词】三角函数.坡度【答案】1:211.(2009年广西梧州)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A ,则AB 的长是 cm . 【关键词】解直角三角形【答案】1012.(2009年内蒙古包头)如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).【关键词】旋转.直角三角形答案:213.(2009年山东青岛)如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .【关键词】直角三角形的有关计算.勾股定理【答案】10,14.(2009年安徽)长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m .【关键词】直角三角形的有关计算【答案】三、解答题1.(2009年辽宁朝阳)一艘小船从码头A 出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C 处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离1.4 1.7,结果保留整数).第13题图 BA 6cm 3cm1cm第4题图 AEC (F )B 图(1) E A G BC (F )D 图(2)【关键词】解直角三角形 【答案】解:由题意知:532330BAC ∠=-︒=︒°(1分)232245C ∠=+︒=︒°过点B 作BD AC ⊥,垂足为D ,则CD BD =10BC =Q 2cos 4510527.0CD BC ∴=︒=⨯=·≈ 352525235 1.4 1.711.9tan3033BC AD ==÷=⨯=⨯⨯⨯≈≈° 11.97.018.919AC AD CD ∴=+=+=≈答:小船到码头的距离约为19海里.2.(2009四川眉山)海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45方向,求此时灯塔B 到C 处的距离.【关键词】解直角三角形【答案】解:如图,过B 点作BD ⊥AC 于D∴∠DAB =90°-60°=30°,∠DCB =90°-45°=45°设BD =x在Rt △ABD 中,AD =x ⋅tan30°=33x 在Rt △BDC 中BD =DC =x BC 2x 又AD =5×2=10 310x x +=得5(31)x = ∴25(31)62)BC ==(海里)答:灯塔B 距C 处5(62)海里3.(2009年广东中山)如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:3 1.732,2 1.414)【关键词】方位角问题【答案】过点P 作PC AB ⊥,C 是垂足,则30APC ∠=°,45BPC ∠=°,tan30AC PC =g °,tan 45BC PC =g °,AC BC AB +=Q ,tan30tan 45100PC PC ∴+=g g °°, 31100PC ⎫∴+=⎪⎪⎝⎭,50(33)50(3 1.732)63.450PC ∴=⨯->≈≈,答:森林保护区的中心与直线AB 的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.4.(2009年黑龙江哈尔滨)如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)【关键词】方位角问题【答案】先把此题转化为数学问题,本题即是求CD 的长,再利用速度与时间的乘积计算出线段AB 的长,再利用直角三角形的性质,结合方程即可求解.由题意得306030CAB CBD ACB ∠=∠=∴∠=°,°,°,BCA CAB ∴∠=∠,20240BC AB ∴==⨯=.C DBA北60°30° A B FE PC90sin CD CDB CBD BC ∠=∴∠=Q °,.sin 60CD BC ∴==°40CD BC ∴===. ∴此时轮船与灯塔C的距离为5.(2009年四川凉山州)如图,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60°方向上.(1)MN1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?【关键词】三角函数.列方程解应用题【答案】(1)理由如下:如图,过C 作CH AB ⊥于H ,设CH x =,由已知有4560EAC FBC ∠=∠=°,°则4530CAH CBA ∠=∠=°,°,在Rt ACH △中,AH CH x ==,在Rt HBC △中,tan CH HBC HB∠=tan 30CH HB ∴===°,AH HB AB +=Q600x ∴=解得220x =(米)>200(米).MN ∴不会穿过森林保护区. (2)解:设原计划完成这项工程需要y 天,则实际完成工程需要(5)y -天. CHF B N M A E60° 45°(第21题答图) CB N M A(第21题)根据题意得:11(125%)5y y=+⨯-,解得:25y=,经检验知:25y=是原方程的根.答:原计划完成这项工程需要25天.6.(2009年吉林长春)如图,两条笔直的公路AB CD、相交于点O,AOC∠为36°,指挥中心M设在OA路段上,与O地的距离为18千米.一次行动中,王警官带队从O地出发,沿OC方向行进,王警官与指挥中心均配有对讲机,两部对讲机只能在10千米之内进行通话,通过计算判断王警官在行进过程中能否实现与指挥中心用对讲机通话.【参考数据:sin360.59cos360.81tan360.73===°,°,°.】【关键词】直角三角形的有关计算【答案】解:过点M作MH⊥OC于点H.在Rt△MOH中,sin∠MOH=OMMH.(3分)∵OM=18,∠MOH=36°,∴MH=18×sin36°=18×0.59=10.62>10.即王警官在行进过程中不能实现与指挥中心用对讲机通话.(6分)7. (2009年辽宁锦州)为了加快城市经济发展,某市准备修建一座横跨南北的大桥.如图10所示,测量队在点A处观测河对岸水边有一点C,测得C在北偏东60°的方向上,沿河岸向东前行30米到达B处,测得C在北偏东45°的方向上,请你根据以上数据帮助该测量队计算出这条河的宽度.(结果保留根号)【关键词】直角三角形的有关计算.分式方程【答案】C解:过点C作CD⊥AB于D.设CD=x米.在Rt△BCD中,∠CBD=45°,OAMB36°∴BD=CD=x米.在Rt△ACD中,∠DAC=30°,AD=AB+BD=(30+x)米.∵tan∠DAC=,∴.∴x=.答:这条河的宽度为()米.8.(2009年湖南郴州)如图7,数学活动小组来到校园内的一盏路灯下测量路灯的高度,测角仪AB的高度为1.5米,测得仰角α为30°,点B到电灯杆底端N的距离BN为10米,求路灯的高度MN2=1.4143,结果保留两位小数)【关键词】直角三角形【答案】解:在直角三角形MPA中,30α∠=°,10AP=米310tan3010 5.773MP=窗=椿米因为 1.5AB=米所以 1.5 5.87.27MN=+=米答:路灯的高度为7.27米9.(2009年湖南常德)如图5,某人在D处测得山顶C的仰角为30o,向前走200米来到山脚A处,测得山坡AC的坡度为i=1∶0.5,求山的高度(不计测角仪的高度,3 1.73,结果保留整数).αN BAPM图7【关键词】直角三角形【答案】设山高BC =x ,则AB =12x , 由tan 3012002BC x BDx ==+o ,得 (231)400x -=,解得400(231)162231x +==-≈米 10. (2009年四川达州) 阳光明媚的一天,数学兴趣小组的同学去操场上测量旗杆的高度,他们带了以下测量工具:皮具.三角尺.标杆.小平面镜等.首先,小明说:“我们用皮尺和三角尺(含30︒角)来测量”.于是大家一起动手,测得小明与旗杆的距离AC 为15㎝,小明的眼睛与地面的距离为1.6㎝,如图9(甲)所示.然后,小红和小强提出了自己的想法.小红说:“我用皮尺和标杆能测出旗杆的高度.”小强说:“我用皮尺和小平面镜也能测出旗杆的高度!”根据以上情景,解答下列问题:(1)利用图9(甲),请你帮助小明求出旗杆AB 的高度(结果保留整数.参考数据:5.030sin =︒,87.030cos ≈︒,58.030tan ≈︒,73.130cot ≈︒);(2)你认为小红和小强提出的方案可行吗?如果可行,请选择一中..方案在图9(乙)中画出测量示意图,并简述..测量步骤. 图5【关键词】解直角三角形【答案】20.解:(1)过点D 作DE ⊥AB 于点E ,在Rt △BDE 中,DE=AC=15m ,∠BDE=30°∴BE=DE·tan30°≈15×058=870(m)∴AB=BE+AE=870m+16m=103m≈10m(2)小红和小强提出的方案都是可行的小红的方案:利用皮尺和标杆:(1)测量旗杆的影长AG(2)测量标杆EF 的长度(3)测量同一时刻标杆影长FH小强的方案:把小平面镜放在适当的位置(如图点P 处),使得小强可以在镜中看到旗杆AB 的顶端 步骤:(1)测出AP 的长度(2)测出NP 的长度(3)测出小强眼睛离地面的高度MN11.(2009年福建宁德) 某大学计划为新生配备如图(1)所示的折叠椅.图(2)是折叠椅撑开后的侧面示意图,其中椅腿AB 和CD 的长相等,O 是它们的中点.为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32cm ,∠DOB =100°,那么椅腿的长AB 和篷布面的宽AD 各应设计为多少cm ?(结果精确到0.1cm )【关键词】解直角三角形解法1:连接AC ,BD∵OA=OB=OC=OB∴四边形ACBD 为矩形∵∠DOB=100º, ∴∠ABC=50º A O D100º 32 cm图(2)由已知得AC=32在Rt △ABC 中,sin ∠ABC=ABAC ∴AB=ABC AC ∠sin =︒50sin 32≈41.8(cm ) tan ∠ABC=BC AC ,∴BC=ABC AC ∠tan =︒50tan 32≈26.9 (cm ) ∴AD=BC =26.9 (cm )答:椅腿AB 的长为41.8cm ,篷布面的宽AD 为26.9cm .解法2:作OE ⊥AD 于E.∵OA=OB=OC=OD, ∠AOD=∠BOC∴△AOD ≌△BOC∵∠DOB =100º, ∴∠OAD =50º∴OE =3221⨯=16在Rt △AOE 中,sin ∠OAE =AOOE ∴AO =OAEOE ∠sin = ︒50sin 16≈20.89 ∴AB =2AO ≈41.8(cm )tan ∠OAE =AE OE ,AE=OAE OE ∠tan =︒50tan 16≈13.43 ∴AD =2 AE ≈26.9(cm )答:椅腿AB 的长为41.8cm ,篷布面的宽AD 为26.9cm .12.(2009年河北) 图10是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE = 1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?【关键词】解直角三角形,勾股定理,O图10图(2)解:(1)∵OE ⊥CD 于点E ,CD =24,∴ED =12CD =12. 在Rt △DOE 中,∵sin ∠DOE =ED OD =1213, ∴OD =13(m ).(2)OE =22OD ED - =2213125-=.∴将水排干需:5÷0.5=10(小时).13.(2009年湖北黄冈) 如图,在海面上生产了一股强台风,台风中心(记为点M )位于海滨城市(记作点A )的南偏西15°,距离为612千米,且位于临海市(记作点B )正西方向603千米处.台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.(1)滨海市.临海市是否会受到此次台风的侵袭?请说明理由.(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?【关键词】解直角三角形的应用【答案】(1)过点A 作AC ⊥MN 于C,过点B 作BD ⊥MN 于D.在Rt △AMC 中, ∠AMC=60°-15°=45°∴AC=612=AM>60∴滨海市不会受到此次台风的侵袭在Rt △MBD 中, ∠BMD=90°-60°=30°∴BD=3302=BM <60 ∴临海市会受到此次台风的侵袭(2)设台风中心在EF 段移动时临海市受侵袭.则EB=FB=60NC DEF由勾股定理知ED=()303306022=-∴EF=60受影响的时间是7260÷=65(时) 14.(2009年四川成都)某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C 测得教学楼AB 的顶点A 的仰角为30°,然后向教学楼前进60米到达点D ,又测得点A 的仰角为45°.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值) AB C D 【关键词】仰角,俯角【答案】如图,由已知可得∠ACB=30°,∠ADB=45°∴在Rt △ABD 中,BD=AB又在Rt △ABC 中,∵ tan30°=BCAB ∴33=BC AB ,即BC=3AB ∵BC=CD+BD ,∴3AB=CD+AB 即(3-1)AB=60∴AB=1360-=30(3+1)米∴教学楼高度为30(3+1)米15.(2009四川綦江)如图,在矩形ABCD 中,E 是BC 边上的点,AE=BC ,DF ⊥AE ,垂足为F ,连接DE . (1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值.【关键词】全等三角形,矩形,三角函数 DA B C E F【答案】(1)证明:在矩形ABCD中,90BC AD AD BC B=∠=,∥,°DAF AEB∴∠=∠DF AE AE BC⊥=Q,90AFD B∴∠=∠°=AE AD=ABE DFA∴△≌△.(2)解:由(1)知ABE DFA△≌△6AB DF∴==在直角ADF△中,8 AF===2EF AE AF AD AF∴=-=-=在直角DFE△中,DE==sinEFEDFDE∴∠===16.(2009山东威海)如图,一巡逻艇航行至海面B处时,得知其正北方向上C处一渔船发生故障.已知港口A处在B处的北偏西37°方向上,距B处20海里;C处在A处的北偏东65°方向上.求B,C之间的距离(结果精确到0.1海里).参考数据:sin370.60cos370.80tan370.75≈≈≈o o o,,,sin650.91cos650.42tan65 2.14.≈≈≈o o o,,【关键词】方位角问题【答案】过点A作AD BC⊥,垂足为D在Rt ABD△中,20AB=,37B∠=°,∴sin3720sin3712AD AB==·°°≈.cos3720cos3716BD AB==·°°≈.在Rt ADC△中,65ACD∠=°,∴12 5.61tan 65 2.14AD CD =≈≈° 5.611621.6121.6BC BD CD ∴=++=≈≈(海里)答:B C ,之间的距离约为21.6海里.17.(2009年湖南长沙)某校九年级数学兴趣小组的同学开展了测量湘江宽度的活动.如图,他们在河东岸边的A 点测得河西岸边的标志物B 在它的正西方向,然后从A 点出发沿河岸向正北方向行进550米到点C 处,测得B 在点C 的南偏西60°方向上,他们测得的湘江宽1.4141.732)【答案】解:由题意得:ABC △中,9060550BAC ACB AC ∠=∠==°,°,, tan AB AC ACB =∠g≈952.6≈953≈(米). 答:他们测得湘江宽度为953米.18.(2009年内蒙古包头)如图,线段AB DC 、分别表示甲.乙两建筑物的高,AB BC DC BC ⊥,⊥,从B 点测得D 点的仰角α为60°从A 点测得D 点的仰角β为30°,已知甲建筑物高36AB =米.(1)求乙建筑物的高DC ;(2)求甲.乙两建筑物之间的距离BC (结果精确到0.01米).1.414 1.732)【答案】本题考查三角函数在实际生活中测物高的应用,涉及到仰角有关概念.解方程及近似计算等.(1)过点A 作AE ⊥CD 于E ,根据题意,得60,30,DBC DAE αβ∠=∠=︒∠=∠=︒AE=BC ,EC=AB=36米,设DE=x ,则DC=DE+EC=X+36, αβ D乙 C B A甲北东西在RT AED ∆,tan tan 30DE DAE AE ∠=︒=,∴AE =,∴BC AE ==在RT DCB ∆中,tan tan 60DC DBC BC ∠=︒= ,= ∴336,18,x x x =+= ∴DC=54(米)(2).∵,18BC AE x ===,∴1818 1.73231.18BC ==⨯≈(米)19. (2009年山西太原)如图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A .D .B 在同一直线上,求建筑物A .B 间的距离.【关键词】解直角三角形【答案】解:由已知,得306090ECA FCB CD ∠=∠==°,°,,EF AB CD AB ⊥∥,于点D .3060A ECA B FCB ∴∠=∠=∠=∠=°,°.在Rt ACD △中,90tan CD CDA A AD∠=°,=,90tan CD AD A ∴==== 在Rt BCD △中,90tan CD CDB B BD∠=°,=,tan CD DB B ∴===AB AD BD ∴=+==(米).答:建筑物A B 、间的距离为米.20.(2009湖北襄樊)为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航舰正在某小岛A 北偏西45︒并距该岛20海里的B 处待命.位于该岛正西方向C 处的某外国商船遭到海盗袭击,船长发现在其北偏东60︒的方向有我军护航舰(如图9所示),便发出紧急求救信号.我护航舰接警后,立即沿BC 航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该商船所在的位置C 处?(结果精确到个位.参考数据:2 1.43 1.7≈,≈)【关键词】解直角三角形【答案】解:由图可知,3045ACB BAC =︒=︒∠,∠作BD AC ⊥于D (如图),在Rt ADB △中,20AB = ∴2sin 4520102BD AB ==⨯=g ° 在Rt BDC △中,30ACB =︒∠∴210220228BC =⨯=≈∴280.4760≈ ∴0.476028.228⨯=≈(分钟) 答:我护航舰约需28分钟就可到达该商船所在的位置C .21.(2009年贵州黔东南州)如图7,在凯里市某广场上空飘着一只汽球P ,A .B 是地面上相距90米的两点,它们分别在汽球的正西和正东,测得仰角∠PAB=45o ,仰角∠PBA=30o ,求汽球P 的高度(精确到0.1米,3=1.732)C AB60°45° 北北D C A B60°45° 北北图9【关键词】仰角,俯角【答案】解:过点P 作PC ⊥AB 于C 点,设PC=x 米.在Rt △PAC 中,tan ∠PAB=ACPC ,∴︒=45tan PC AC =PC=x (米) 在Rt △PBC 中,tan ∠PBA=BCPC ∴BC=︒30tan PC =x 3(米) 又∵AB=90∴AB=AC+BC=903=+x x∴)13(453190-=+=x (米) ∴PC=45(1.732-1)=32.9(米)答:略22.(2009年江苏)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).(参考数据:3 1.73≈,sin760.97°≈, cos760.24°≈,tan76 4.01°≈)【关键词】方位角问题【答案】(1)设AB 与l 交于点O .在Rt AOD △中,6024cos60AD OAD AD OA ∠====°,,°. 又106AB OB AB OA =∴=-=,.在Rt BOE △中,60cos603OBE OAD BE OB ∠=∠=∴==g °,°(km ).∴观测点B 到航线l 的距离为3km .(2)在Rt AOD △中,tan 60OD AD ==g °在Rt BOE △中,tan 60OE BE ==g °DE OD OE ∴=+=.在Rt CBE △中,763tan 3tan76CBE BE CE BE CBE ∠==∴=∠=g °,,°.3tan 76 3.38CD CE DE ∴=-=-°.15min h 12=,1212 3.3840.6112CD CD ∴==⨯≈(km/h ). 答:该轮船航行的速度约为40.6km/h .23.(2009年吉林)小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(精确到1mm )(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)【关键词】解直角三角形【答案】解:作BE l ⊥于点E ,DF l ⊥于点F .18018090909036.DAF BAD ADF DAF ADF αα+∠=-∠=-=∠+∠=︒∴∠==︒Q °°°°,,根据题意,得BE =24mm ,DF =48mm.在Rt ABE △中,sin BE ABα=, 2440sin 360.60BE AB ∴===°mm ClC在Rt ADF △中,cos DF ADF AD∠=, 4860cos360.80DF AD ∴===°mm . ∴矩形ABCD 的周长=2(40+60)=200mm .24.(2009年浙江台州)如图,有一段斜坡BC 长为10米,坡角12CBD ︒∠=,为方便残疾人的轮椅车通行,现准备把坡角降为5°.(1)求坡高CD ;(2)求斜坡新起点A 与原起点B 的距离(精确到0.1米).【关键词】直角三角形的有关计算【答案】解:(1)在BCD Rt ∆中,︒=12sin BC CD1.221.010=⨯≈(米).(2)在BCD Rt ∆中,︒=12cos BC BD8.998.010=⨯≈(米);在ACD Rt ∆中,︒=5tan CD AD 2.123.330.09≈≈(米), 23.339.813.5313.5AB AD BD =-≈-=≈(米). 答:坡高2.1米,斜坡新起点与原起点的距离为13.5米25.(2009年浙江宁波)已知,如图,O ⊙的直径AB 与弦CD 相交于E ,»»BCBD =,O ⊙的切线BF 与弦AD 的延长线相交于点F .(1)求证:CD BF ∥;(2)连结BC ,若O ⊙的半径为4,3cos 4BCD ∠=,求线段AD .CD 的长. 【关键词】直角三角形的有关计算 【答案】解:(1)Q 直径AB 平分»CD, ∴AB CD ⊥.BF Q 与O ⊙相切,AB 是O ⊙的直径,AB BF ∴⊥.CD BF ∴∥.(2)连结BD ,D CBA 5°12°Q AB 是O ⊙的直径,90ADB ∴∠=°,在Rt ADB △中, 3cos cos 4A C ∠=∠=Q ,428AB =⨯=. 3cos 864AD AB A ∴=∠=⨯=g . AB CD Q ⊥于E ,在Rt AED △3cos cos 4A C ∠=∠=Q ,7sin 4A ∠=. 73sin 672DE AD A ∴=∠=⨯=g . Q 直径AB 平分»CD, 237CD DE ∴==.26.(2009年广西河池)如图8,为测量某塔AB 的高度,在离该塔底部20米处目测其顶A ,仰角为60o ,目高1.5米,试求该塔的高度(3 1.7)≈.【关键词】解直角三角形【答案】解:如图,CD =20,∠ACD =60°,1.5 图8 C o A1.5AD B COECD ∴ 3=20AD ∴ AD =203≈34又∵ BD =1.5∴ 塔高AB =34 1.535.5+=(米)27.(2009年广西柳州) 如图8,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒60,看这栋高楼底部的俯角为︒30,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈)【关键词】解直角三角形【答案】解:如图8,过点A 作BC AD ⊥,垂足为D根据题意,可得 ︒=∠60BAD ,︒=∠30CAD ,66=AD在Rt △ADB 中,由ADBD BAD =∠tan 得36636660tan 66tan =⨯=︒⨯=∠⋅=BAD AD BD .DCAB图8CAB图8AD得322336630tan 66tan =⨯=︒⨯=∠⋅=CAD AD CD . ∴663223883152.2BC BD CD =+=+=≈.答:这栋楼高约为152.2 m .(其它解法参照给分)28.(2009年湖南娄底)在学习实践科学发展观的活动中,某单位在如图8所示的办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE ,张明同学站在离办公楼的地面C 处测得条幅顶端A 的仰角为50°,测得条幅底端E 的仰角为30°. 问张明同学是在离该单位办公楼水平距离多远的地方进行测量?(精确到整数米)(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20,sin30°=0.50,cos30°≈0.87,tan30°≈0.58)【关键词】解直角三角形.三角函数【答案】解:方法一:过D 点作DF ⊥AB 于F 点在Rt △DEF 中,设EF =x ,则DF =3x在Rt △ADF 中,tan 50°=303x x+≈1.204分30+x=3x×1.20x≈27.8∴DF =3x≈48答:张明同学站在离办公楼约48米处进行测量的方法二:过点D 作DF ⊥AB 于F 点在Rt △DEF 中,EF =FD·tan 30°在Rt △AFD 中,AF =FD·tan 30°∵AE +EF =AF∴30+FDtan 30°=FD·tan 50°∴FD ≈48答:张明同学站在离办公楼约48米处进行测量的29.(2009年山东烟台) 腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图②).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3173.=).【关键词】特殊三角形【答案】解:过点C 作CE AB ⊥于E .906030903060D ACD ∠=-︒=∠=-=Q °°,°°°,90CAD ∴∠=°.11052CD AC CD =∴==Q ,. 在Rt ACE △中,5sin 5sin 302AE AC ACE =∠==g g °, 5cos 5cos3032CE AC ACE =∠==g g °, 在Rt BCE △中,545tan 4532BCE BE CE ∠=∴==Q g °,°, 5553(31) 6.8222AB AE BE ∴=+=+=+≈(米). 所以,雕塑AB 的高度约为6.8米.30.(2009年湖南邵阳)如图(十一),家住江北广场的小李经西湖桥到教育局上班,路线为A →B →C →D .因西湖桥维修封桥,他只能改道经临津门渡口乘船上班,路线为A →F →E →D .已知BC EF ∥,BF CE ∥,AB BF ⊥,CD DE ⊥,200AB =米,100BC =米,37AFB ∠=°,53DCE ∠=°.请你计算小李上班的路程因改道增加了多少?(结果保留整数)温馨提示:sin370.60cos370.80tan370.75︒°≈,≈,°≈.DCB A ② ①【关键词】直角三角形的有关计算【答案】在Rt ABF△中,37200333sin37ABAFB AB AF∠===°,,≈,°267tan37ABBF=≈°,BC EF BF CE∴Q∥,∥,四边形BCEF为平行四边形.267CE BF∴==,100BC EF==.在Rt CDE△中,53DCE∠=°,CD DE⊥,37CED∴∠=°,cos37214DE CE=≈·°,sin37160CD CE=︒≈·,∴增加的路程=()()AF EF DE AB BC DC++-++(333100214)++≈-(200100160)187++=(米).31.(2009年湖北鄂州) 如图所示,某居民楼Ⅰ高20米,窗户朝南.该楼内一楼住户的窗台离地面距离CM为2米,窗户CD高1.8米.现计划在I楼的正南方距I楼30米处新建一居民楼Ⅱ.当正午时刻太阳光线与地面成30°角时,要使Ⅱ楼的影子不影响I楼所有住户的采光,新建Ⅱ楼最高只能盖多少米?【关键词】三角函数在实际中的应用【答案】设正午时,太阳光线正好照在I楼的窗台处,此时新建居民楼II高x米,过C作CF⊥l于F,在Rt△ECF中,EF=x-2,FC=30,∠ECF=30°∴30230tan-==︒xFCEF∴2310+=x答:新建居民楼II最高只能建)(2310+米.DCB FEA 江北广场渡口渡口教育局西湖桥资江53°图十一37°32.(2009年河南)如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)【关键词】三角函数在实际中的应用【答案】过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.∵AB=AC,∴CE=12BC=0.5.在Rt△ABC和Rt△DFC中,∵tan780=AE EC,∴AE=EC×tan780≈0.5×4.70=2.35.又∵sinα=AEAC=DFDC,DF=DCAC·AE=37×AE≈1.007.李师傅站在第三级踏板上时,头顶距地面高度约为:1.007+1.78=2.787.头顶与天花板的距离约为:2.90-2.787≈0.11.∵0.05<0.11<0.20,∴它安装比较方便.33.(2009年山东烟台)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图②).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3173.=).【关键词】直角三角形的有关计算【答案】解:过点C 作CE AB ⊥于E .906030903060D ACD ∠=-︒=∠=-=Q °°,°°°,90CAD ∴∠=°.11052CD AC CD =∴==Q ,. 在Rt ACE △中,5sin 5sin 302AE AC ACE =∠==g g °, 5cos 5cos3032CE AC ACE =∠==g g °, 在Rt BCE △中,545tan 4532BCE BE CE ∠=∴==Q g °,°, 5553(31) 6.8222AB AE BE ∴=+=+=+≈(米). 所以,雕塑AB 的高度约为6.8米.34. ( 2009年浙江嘉兴)如图,已知一次函数b kx y +=的图象经过)1,2(--A ,)3,1(B 两点,并且交x 轴于点C ,交y 轴于点D ,(1)求该一次函数的解析式;(2)求OCD ∠tan 的值;DCB A② ①。

2022-2023学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习题(附答案)

2022-2023学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习题(附答案)

2022-2023学年人教版九年级数学下册《28.2解直角三角形及其应用》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,已知tan A=,BC=a,则AB的长为()A.a B.2a C.a D.a2.如图,四边形ABCD的对角线AC、BD相交于O,∠AOD=60°,AC=BD=2,则这个四边形的面积是()A.B.C.D.3.如图,在4×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则tan∠BAC的值为()A.B.C.2D.34.如图,在离铁塔200米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为()A.(1.5+200sinα)米B.(1.5+200cosα)米C.(1.5+200tanα)米D.(1.5+)米5.如图,AB是垂直于水平面的建筑物,沿建筑物底端B沿水平方向向左走8米到达点C,沿坡度i=1:2(坡度i=坡面铅直高度与水平宽度的比)斜坡走到点D,再继续沿水平方向向左走40米到达点E(A、B、C、D、E在同一平面内),在E处测得建筑物顶端A 的仰角为34°,已知建筑物底端B与水平面DE的距离为2米,则建筑物AB的高度约是()(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)A.27.1米B.30.8米C.32.8米D.49.2米6.如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是()A.8(3﹣)m B.8(3+)m C.6(3﹣)m D.6(3+)m 7.如图,一架水平飞行的无人机在A处测得正前方河岸边C处的俯角为α,tanα=2,无人机沿水平线AF方向继续飞行80米至B处时,被河对岸D处的小明测得其仰角为30°.无人机距地面的垂直高度用AM表示,点M,C,D在同一条直线上,其中MC=100米,则河流的宽度CD为()A.200米B.米C.米D.米8.如图,一条船从灯塔C南偏东42°的A处出发,向正北航行8海里到达B处,此时灯塔C在船的北偏西84°方向,则船与灯塔C距离为()海里.A.4B.8C.16D.24二.填空题9.在△ABC中,sin B=,AC=2,AD是BC边上的高,∠ACD=45°,则BC的长为.10.如图,在4×4正方形网格中,点A,B,C为网格交点,AD⊥BC,垂足为D,则(1)AD=;(2)sin∠BAD=.11.2022年,北京成功举办第24届冬季奥运会后,很多学校都开展了冰雪项目的学习活动.如图,一位同学乘滑雪板沿坡度为i=1:2的斜坡滑行30米,则他下降的高度为米.12.数学课外学习小组利用矩形建筑物ABED测量广场灯塔CF的高,如图所示,在点B处测得灯塔顶端C的仰角为28°,在点D处测得灯塔顶端C的仰角为45°,已知AB=10m,AD=30m.求灯塔CF=m(结果保留整数).(参考数据:tan28°≈0.53,cos28°≈0.88,sin28°≈0.47,)13.一艘轮船位于灯塔P的南偏东60°方向,距离灯塔30海里的A处,它沿北偏东30°方向航行一段时间后,到达位于灯塔P的北偏东67°方向上的B处,此时与灯塔P的距离约为海里.(参考数据:sin37°≈,cos37°≈,tan37°≈)14.公元前240年前后,在希腊的亚历山大城图书馆当馆长的埃拉托色尼通过测得有关数据,求得了地球圆周的长度,他是如何测量的呢?如图所示,由于太阳距离地球很远,太阳射来的光线可以看作平行线,在同时刻,光线与A城和地心的连线OP所夹的锐角记为∠1,光线与B城和地心的连线OQ重合,通过测量A,B两城间的路程(即弧AB)和∠1的度数,利用圆的有关知识,地球圆周的长度就可以大致算出来了.已知弧AB的长度约为800km,若∠1≈7.2°,则地球的周长约为km.15.如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以12千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞至村庄C 的正上方A处时,测得∠NAD=60°,该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°,则村庄C、D间的距离为千米.(≈1.732,结果保留一位小数)16.如图1是一台手机支架,图2是其侧面示意图,线段AB,BC可分别绕点A,B转动,已知AB=18cm.当AB转动到∠BAD=30°,BC转动到与AD垂直时,点C恰好落在AD上;当AB转动到∠BAD=60°,BC转动到∠ABC=50°时,点C到AD的距离为cm.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,)三.解答题17.如图,湖边A、B两点由两段笔直的观景栈道AC和CB相连.为了计算A、B两点之间的距离,经测量得:∠BAC=37°,∠ABC=58°,AC=80米,求A、B两点之间的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)18.如图,某小区A栋楼在B栋楼的南侧,两楼高度均为90m,楼间距为MN.春分日正午,太阳光线与水平面所成的角为55.7°,A栋楼在B栋楼墙面上的影高为DM;冬至日正午,太阳光线与水平面所成的角为30°,A栋楼在B栋楼墙面上的影高为CM,已知CD =45m.求楼间距MN(参考数据:tan30°≈0.58,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)19.图1是一种可折叠台灯,它放置在水平桌面上,将其抽象成图2,其中点B,E,D均为可转动点,现测得AB=BE=ED=CD=20cm,经多次调试发现当点B,E都在CD的垂直平分线上时(如图3所示)放置最平稳.(1)求放置最平稳时灯座DC与灯杆DE的夹角的大小;(2)当A点到水平桌面(CD所在直线)的距离为42cm﹣43cm时,台灯光线最佳,能更好的保护视力.若台灯放置最平稳时,将∠ABE调节到105°,试通过计算说明此时光线是否为最佳.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)20.如图,一扇窗户垂直打开,即打开到OM⊥OP的状态,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向向内旋转45°到达ON位置,此时,点A、C的对应位置分别是点B、D.测出此时∠ODB为30°,BO的长为20cm.求滑动支架AC的长.(精确到1cm,≈1.41,≈1.73).21.如图,在△ABC中,AB=AC,点D在线段BC上运动,连接AD,以AD为边作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.①若tan∠ABC=2,AB=3,AE=2,求BD长?②若直线DE与直线BC所夹锐角的正切值是,cos∠BAC=,BC=4,求BD的长.22.如图,在苏州工业园区的金鸡湖东岸,有一座世界最大的水上摩天轮“苏州之眼”,其直径为120m,旋转1周用时24min.小明从摩天轮的底部(与地面相距0.5m)出发开始观光.(1)4min后小明离地面多高?(2)摩天轮转动1周,小明在离地面90.5m以上的空中有多长时间?23.如图,在屋顶的斜坡面上安装太阳能热水器,先安装支架AB和CD(均与水平面垂直),再将集热板安装在AD上.为使集热板吸热率更高,要求AD与水平线的夹角α为48°,且两支架之间的水平距离为150cm.现测量出屋顶斜面BC与水平面的夹角β为30°,支架AB的高度为20cm,求支架CD的高度.(结果精确到1cm.参考数值:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,)24.西山公园要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的坡度为1:3,一楼到地下停车场地面的垂直高度CD=3.2米,一楼到地平线的距离BC=1米.(1)为保证斜坡的坡度为1:3,斜面AD的长度应为多少米?(2)如果给该地下停车场送货的货车高度为2.8米,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:)参考答案一.选择题1.解:在Rt△ABC中,∠C=90°,∵tan A==,BC=a,∴AC=2a,由勾股定理得,AB==a,故选:C.2.解:如图,过B、D分别作BE⊥AC于E,DF⊥AC于F,则∠BEO=∠DFO=90°.在Rt△BOE中,∠BOE=∠AOD=60°,∴BE=OB•sin∠BOE=OB•sin60°=OB,在Rt△DOF中,∠AOD=60°,∴DF=OD•sin∠BOE=OD•sin60°=OD.∵AC=BD=2,∴S四边形ABCD=S△ABC+S△ADC=AC•BE+AC•DF=×2×OB+×2×OD=OB+OD=(OB+OD)=BD=×2=.故选:C.3.解:由网格以及勾股定理可得,AB==2,BC==,AC==,∴AB2+BC2=8+2=10=AC2,∴△ABC是直角三角形,且∠ABC=90°,∴tan∠BAC==,故选:B.4.解:过点A作AE⊥BC,垂足为E,则CE=AD=1.5米,AE=CD=200米,在Rt△ABE中,∠BAE=α,∴BE=AE•tanα=200tanα(米),∴BC=BE+EC=(1.5+200tanα)米,∴铁塔的高BC为(1.5+200tanα)米,故选:C.5.解:如图,延长AB交ED的延长线于F,作CG⊥EF于G,由题意得:FG=BC=8米,DE=40米,BF=CG=2米,在Rt△CDG中,i=1:2,∴DG=4米,在Rt△AFE中,∠AFE=90°,FE=FG+GD+DE=52米,∠E=43°,∴AF=FE•tan34°≈52×0.67=34.84(米),∴AB=AF﹣BF=34.84﹣2≈32.8(米);即建筑物AB的高度约为32.8米.故选:C.6.解:设AD=x米,∵AB=16米,∴BD=AB﹣AD=(16﹣x)米,在Rt△ADC中,∠A=45°,∴CD=AD•tan45°=x(米),在Rt△CDB中,∠B=60°,∴tan60°===,∴x=24﹣8,经检验:x=24﹣8是原方程的根,∴CD=24﹣8=8(3﹣))米,∴这棵树CD的高度是8(3﹣)米,故选:A.7.解:作BE⊥MD于点E,如图所示,由已知可得:∠BAC=α,tanα=2,AB=80米,∠BDE=30°,MC=100米,AM⊥MD,AB∥MD,∴ME=AB=80米,∠ACM=∠BAC=α,AM=BE,∴=2,解得AM=200米,∴BE=200米,∵tan∠BDE=,∴tan30°=,解得DE=200米,∴CD=MD﹣MC=ME+DE﹣MC=80+200﹣100=(200﹣20)米,故选:C.8.解:由题意得,∠BAC=42°,∠BCA=84°﹣42°=42°,AB=8海里,∴∠BAC=∠BCA,∴BC=AB=8海里,即船与灯塔C距离为8海里.故选:B.二.填空题9.解:当点D在线段BC的延长线上时,∵AD是BC边上的高,∠ACD=45°,∴CD=AD.∵AC2=CD2+AD2,AC=2,∴CD=AD=2.∵sin B==,∴AB=2.在Rt△ABD中,BD====4.∴BC=BD﹣CD=4﹣2=2.若点D在线段BC上时,同理可求BD=4,CD=2,∴BC=6,故答案为:2或6.10.解:如图,连接AC,根据题意得:,而,∵AD⊥BC,∴,解得:,∴,设AD=4x,则AB=5x,∴,∴.故答案为:,.11.解:设他下降的高度AC为x米,∵斜坡的坡度为i=1:2,∴这位同学滑行的是水平距离BC为2x米,由勾股定理得:AC2+BC2=AB2,即x2+(2x)2=302,解得:x=±6(负值舍去),∴他下降的高度为6米,故答案为:6.12.解:延长BE交CD于点G,交CF于点H,在Rt△DEG中,∠EDG=45°,∴EG=DE=10m.∠EGD=45°,设CH=xm,在Rt△CGH中,∠CGH=∠EGD=45°,∴GH=CH=xm,在Rt△CBH中,∠CBH=28°,∴tan∠CBH=,即:=0.53,解得:x≈45.1,∴灯塔的高CF=45.1+10=55.1≈55(m).答:灯塔的高为55米.13.解:如图所示标注字母,根据题意得,∠CAP=∠EP A=60°,∠CAB=30°,P A=30海里,∴∠P AB=90°,∠APB=180°﹣67°﹣60°=53°,∴∠B=180°﹣90°﹣53°=37°,在Rt△P AB中,sin37°=≈,解得PB≈50,∴此时与灯塔P的距离约为50海里.故答案为:50.14.解:∵太阳射来的光线可以看作平行线,∴∠AOB=∠1≈7.2°.设地球的半径为R千米,由题意得=800,解得R=,∴地球的周长约为2π×=40000(千米).故答案为:40000.15.解:如图,过B作BE⊥AD于E,∵∠NAD=60°,∠ABD=75°,∴∠ADB=45°,∵AB=12×=8(千米),∴AE=4(千米).BE=4(千米),∴DE=BE=4(千米),∴AD=(4+4)(千米),∵∠C=90,∠CAD=30°,∴CD=AD=2+2≈5.5(千米).故答案为:5.5.16.解:当AB转动到∠BAD=30°,BC转动到与AD垂直时,点C恰好落在AD上,如图:在Rt△ABC中,BC=AB=×18=9(cm),当AB转动到∠BAD=60°,BC转动到∠ABC=50°时,如图:过点B作BF⊥AD,垂足为F,过点C作CG⊥BF,垂足为G,过点C作CE⊥AD,垂足为E,则FG=CE,∠BGC=90°,在Rt△ABF中,AB=18cm,∠BAD=60°,∴BF=AB•sin60°=18×=9(cm),∠ABF=90°﹣∠BAD=30°,∵∠ABC=50°,∴∠CBG=∠ABC﹣∠ABF=20°,∴∠BCG=90°﹣∠CBG=70°,在Rt△BCG中,BC=9cm,∴BG=BC•sin70°≈9×0.94=8.46(cm),∴CE=FG=BF﹣BG=9﹣8.46≈7.1(cm),∴点C到AD的距离为7.1cm,故答案为:7.1.三.解答题17.解:如图,过点C作CD⊥AB,垂足为点D,在Rt△ACD中,∵∠DAC=37°,AC=80米,∴sin∠DAC=,cos∠DAC=,∴CD=AC•sin37°≈80×0.60=48(米),AD=AC•cos37°≈80×0.80=64(米),在Rt△BCD中,∵∠CBD=58°,CD=48米,∴tan∠CBD=,∴BD=≈=30(米),∴AB=AD+BD=64+30=94(米).答:A、B两点之间的距离约为94米.18.解:如图,过点C、D分别作CE⊥PN,DF⊥PN,垂足分别为E、F,则,PN=90m,MB=DF=CE,DM=FN,CD=EF=45m,设MN=xm,在Rt△PDF中,∠PDF=55.7°,DF=MN=xm,∴PF=tan55.7°•DF≈1.47x(m),在Rt△PCE中,∠PCE=30°,CE=xm,∴PE=tan30°•CE≈0.58x(m),∵EF=PF﹣PE,即CD=PF﹣PE,∴1.47x﹣0.58x=45,解得x≈50.56(m),即MN=50.56m.19.解:(1)延长BE交DC于点F,由题意得:EF⊥CD,FD=CD=CD=10cm,在Rt△DEF中,DE=20cm,∴cos D===,∴∠D=60°,∴灯座DC与灯杆DE的夹角为60°;(2)过点A作AM⊥DC,交DC的延长线于点M,过点B作BG⊥AM,垂足为G,则GM=BF,∠GBF=90°,在Rt△DEF中,DE=20cm,DF=10cm,∴EF===10(cm),则GM=BF=BE+EF=(20+10)cm,∵∠ABE=105°,∴∠ABG=∠ABF﹣∠GBF=15°,在Rt△ABG中,AB=20cm,∴AG=AB⋅sin15°≈20×0.26=5.2(cm),∴AM=AG+GM=20+10+5.2≈42.5(cm),∴A点到水平桌面(CD所在直线)的距离约为42.5cm,∴此时光线最佳.20.解:由题意可知:∠BOE=45°,BO=20cm,BE⊥OD,∴BE=OE=BO•sin45°=10(cm),在Rt△BDE中,∠BDE=30°,∴sin∠BDE=,∴BD=20cm,∵BD=AC,∴AC=20≈28(cm),答滑动支架AC的长约为28cm.21.解:①如图1中,作DF⊥AB于F.∵tan∠B=2=,设BF=k,DF=2k,则AF=3﹣k,在Rt△ADF中,AD=AE=2,∴(2)2=(2k)2+(3﹣k)2,∴k=或,∵BD=k,∴BD=1或5.②如图②中,作DF⊥AB于F,BH⊥AC于H,∵∠AED=∠ACD,∴∠EDC=∠CAE=∠BAD,在Rt△ABH中,∵cos∠BAH==,设AH=m,AB=3m,则CH=2m,BH=2m,在Rt△BCH中,(2m)2+(2m)2=16,解得m=,∴AB=2,∵tan∠BAD==,设DF=n,AF=3n,易知tan B==,∴BF=n,∵AF+BF=AB=2,∴4n=2,∴n=,∴BD=n=.22.解:(1)过点C作CE⊥OA,垂足为E,作CD⊥AM,垂足为D.∵旋转1周用时24min,∴4min后∠AOC的度数为:360°×=60°,在Rt△OCE中,OC=60m,∠AOC=60°,∵cos∠AOC=,∴OE=120×cos60°=30m.∴AE=OA﹣OE=60.5﹣30=30.5(m).∵四边形AECD是矩形,∴CD=AE=30.5m.即4min后小明离地面30.5m.(2)延长AO交圆上点G,过OG的中点H作PQ⊥AG,连接PO、PQ.∵OB=60m,AB=0.5m,OH=30m,∴AH=90.5m.∴PQ上的点都距离地面90.5m,弧PGQ上的点都大于90.5m.在Rt△OPH中,∵OP=60m,OH=30m,∴∠P=30°.∴∠POH=60°.同理∠QOH=60°.∴∠POQ=120°.∵摩天轮旋转1周用时24min,∴摩天轮旋转120°用时:24×=8(min).即摩天轮转动1周,小明有8min在离地面90.5m以上的空中.23.解:过点A作AF⊥DC于点F,过点B作BE⊥DC于点E,∵矩形ABEF中,AF=BE=150cm,AB=EF=20cm.Rt△DAF中,∠DAF=48°,DF=AF•tan48°≈150×1.11≈166.5(cm),Rt△CBE中,∠CBE=30°,CE=BE°tan30°=150×≈86.5(cm),∴DE=DF+EF=166.5+20=186.5(cm),DC=DE﹣CE=186.5﹣86.5=100(cm),答:支架CD的高约为100cm.24.解:(1)∵斜坡的坡度为1:3,∴=,∵BD=CD﹣CB=2.2(米),在Rt△ABD中,AB=3BD=6.6(米),故AD==≈7.04(米),答:斜面AD的长度应约为7.04米.(2)过C作CE⊥AD,垂足为E,∴∠DCE+∠CDE=90°,∵∠BAD+∠ADB=90°,∴∠DCE=∠BAD,∴tan∠BAD=tan∠DCE==,设DE=x米,则EC=3x米,在Rt△CDE中,3.22=x2+(3x)2,解得:x≈1.012,则3x=3.036,∵3.036>2.8,∴货车能进入地下停车场.。

人教版九年级下册解直角三角形(精选)

人教版九年级下册解直角三角形(精选)

6
AB cos A AC AC AB cos A 6 cos 75
75°
1.A56
C
AB
引例探究力
(2) 已知AC=,AB=6,你能求出这个直角三角形的
其他元素吗?(参考数据:cos66°≈)
分析:
AB2 AC2 BC2
BC AB2 AC2 cos A AC AB
cos A 2.4 0.4 6
如图△ABC中, AC = 4,∠ A=30°,∠ACB=105°求 AB 和 BC 的长.
( D)
b=c·cosA
D.
如图△ABC中, AC = 4,∠ A=30°,∠ACB=105°求 AB 和 BC 的长.
A. 4 3 B.4 C.8 3 (2) 两锐角之间的关系:
D.4 3
4
课堂小测试
3. 在Rt△ABC中,∠C=90°,sinA =3 ,BC=6,则
5
AB的值为
(D)
A.4 B.6
C.8 D.10
4. 如图,在菱形ABCD中,AE⊥BC于点E,EC=4,
sinB=
4 5
,则菱形的周长是
(
C)
A.10
B.20
C.40
D.28
课堂小结1
勾股定理
依据 两锐角互余
解直角三角形
锐角的三角函数
解法:只要知道五个元素中的两 个元素(至少有一个是边),就 可以求出余下的三个未知元素
(1) 已知∠A=75°,AB=6,你能求出这个直角三角形的其他元素吗?(参考数据 :sin75°≈,cos75°≈,tan75°≈)
B
tanA=_____.
解:Rt△ABC 中,∠C=90
BC (1)已知两条边 sin A BC AB sin A 6 sin 75 5.82 在Rt△ABC中,∠C=90°,a = 30,b = 20,根据条件解这个直角三角形 ( 参考数据: °≈,°≈)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《解直角三角形》典型例题
例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ;
(2)由a
b
B =
tan ,知 ;
(3)由c a B =
cos ,知860cos 4cos =︒
==B a c . 说明 此题还可用其他方法求b 和c .
例 2在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴
设 ,则
由勾股定理,得
∴ .


解法二 13
3
330tan =⨯
=︒=b a
说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中,
于D ,若
,解三
角形ABC .
分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手.
解在Rt中,有:

在Rt中,有
说明(1)应熟练使用三角函数基本关系式的变形,如:
(2)平面几何中有关直角三角形的定理也可以结合使用,本例中
“”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值:
所以解直角三角形问题,应开阔思路,运用多种工具.
例4在中,,求.
分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差;
(2)不是直角三角形,可构造直角三角形求解.
解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有

在中,,且

∴;
于是,有

则有
说明还可以这样求:
例5 如图,在电线杆上离地面高度5m 的C 点处引两根拉线固定电线杆,一根拉线AC 和地面成60°角,另一根拉线BC 和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).
分析 分别在两个直角三角形ADC 和BDC 中,利用正弦函数的定义,求出AC 和BC .
解: 在Rt △ADC 中,33
102
3
560sin =
=︒=
DC AC 在Rt △BDC 中,22
102
2
545sin =
=︒=
DC BC
说明 本题考查正弦的定义,对于锐角三角函数的定义,要熟练掌握.。

相关文档
最新文档